3-D Mesh Generation Nonlinear Systems
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less
Improvements to the Unstructured Mesh Generator MESH3D
NASA Technical Reports Server (NTRS)
Thomas, Scott D.; Baker, Timothy J.; Cliff, Susan E.
1999-01-01
The AIRPLANE process starts with an aircraft geometry stored in a CAD system. The surface is modeled with a mesh of triangles and then the flow solver produces pressures at surface points which may be integrated to find forces and moments. The biggest advantage is that the grid generation bottleneck of the CFD process is eliminated when an unstructured tetrahedral mesh is used. MESH3D is the key to turning around the first analysis of a CAD geometry in days instead of weeks. The flow solver part of AIRPLANE has proven to be robust and accurate over a decade of use at NASA. It has been extensively validated with experimental data and compares well with other Euler flow solvers. AIRPLANE has been applied to all the HSR geometries treated at Ames over the course of the HSR program in order to verify the accuracy of other flow solvers. The unstructured approach makes handling complete and complex geometries very simple because only the surface of the aircraft needs to be discretized, i.e. covered with triangles. The volume mesh is created automatically by MESH3D. AIRPLANE runs well on multiple platforms. Vectorization on the Cray Y-MP is reasonable for a code that uses indirect addressing. Massively parallel computers such as the IBM SP2, SGI Origin 2000, and the Cray T3E have been used with an MPI version of the flow solver and the code scales very well on these systems. AIRPLANE can run on a desktop computer as well. AIRPLANE has a future. The unstructured technologies developed as part of the HSR program are now targeting high Reynolds number viscous flow simulation. The pacing item in this effort is Navier-Stokes mesh generation.
Mesh generation from 3D multi-material images.
Boltcheva, Dobrina; Yvinec, Mariette; Boissonnat, Jean-Daniel
2009-01-01
The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. PMID:20426123
Triangular framework mesh generation of 3D geological structure
NASA Astrophysics Data System (ADS)
Meng, Xianhai; Zhou, Kun; Li, Jigang; Yang, Qin
2013-03-01
The dynamic simulation of oil migration and accumulation is an important issue on the research of petroleum exploration, and it is a numerical simulation process with special requirement on the framework mesh of 3D geological models, which means that the mesh should have same geometry and topology relation near the intersected part of geological surfaces. In this paper, basing on the conforming Delaunay triangulation algorithm to construct mesh of individual geological stratum or fault, a novel link-Delaunay-triangulation method is presented to achieve the geometric and topological consistency in the intersected line between two surfaces, also with the analysis of termination of our algorithm. Finally, some examples of the geological framework mesh are provided and the experimental result proved that the algorithm's effectiveness in engineering practice.
Shape design sensitivities using fully automatic 3-D mesh generation
NASA Technical Reports Server (NTRS)
Botkin, M. E.
1990-01-01
Previous work in three dimensional shape optimization involved specifying design variables by associating parameters directly with mesh points. More recent work has shown the use of fully-automatic mesh generation based upon a parameterized geometric representation. Design variables have been associated with a mathematical model of the part rather than the discretized representation. The mesh generation procedure uses a nonuniform grid intersection technique to place nodal points directly on the surface geometry. Although there exists an associativity between the mesh and the geometrical/topological entities, there is no mathematical functional relationship. This poses a problem during certain steps in the optimization process in which geometry modification is required. For the large geometrical changes which occur at the beginning of each optimization step, a completely new mesh is created. However, for gradient calculations many small changes must be made and it would be too costly to regenerate the mesh for each design variable perturbation. For that reason, a local remeshing procedure has been implemented which operates only on the specific edges and faces associated with the design variable being perturbed. Two realistic design problems are presented which show the efficiency of this process and test the accuracy of the gradient computations.
Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics
NASA Technical Reports Server (NTRS)
Kayrak, C.; Ozsoy, T.
1985-01-01
An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.
Hex-dominant mesh generation using 3D constrained triangulation
OWEN,STEVEN J.
2000-05-30
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.
Zhang, Yongjie; Hughes, Thomas J R; Bajaj, Chandrajit L
2010-01-01
This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
3D active shape models of human brain structures: application to patient-specific mesh generation
NASA Astrophysics Data System (ADS)
Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.
2015-03-01
The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.
KNUPP,PATRICK; MITCHELL,SCOTT A.
1999-11-01
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.
2013-01-01
The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031
Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna
2015-08-01
Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to
PMESH: A parallel mesh generator
Hardin, D.D.
1994-10-21
The Parallel Mesh Generation (PMESH) Project is a joint LDRD effort by A Division and Engineering to develop a unique mesh generation system that can construct large calculational meshes (of up to 10{sup 9} elements) on massively parallel computers. Such a capability will remove a critical roadblock to unleashing the power of massively parallel processors (MPPs) for physical analysis. PMESH will support a variety of LLNL 3-D physics codes in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics.
An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform
NASA Astrophysics Data System (ADS)
Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra
2011-06-01
The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.
3D Finite Element Trajectory Code with Adaptive Meshing
NASA Astrophysics Data System (ADS)
Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien
2004-11-01
Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.
NASA Astrophysics Data System (ADS)
Ecer, A.
1987-05-01
Computational grids for complex three dimensional flow geometries, and a finite element grid generation scheme based on multiple block structures are introduced. The procedure can handle arbitrary geometries and is not restricted to modeling single shapes.
Spherical geodesic mesh generation
Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich
2015-02-27
In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.
A Software System for Filling Complex Holes in 3D Meshes by Flexible Interacting Particles
NASA Astrophysics Data System (ADS)
Yamazaki, Daisuke; Savchenko, Vladimir
3D meshes generated by acquisition devices such as laser range scanners often contain holes due to occlusion, etc. In practice, these holes are extremely geometrically and topologically complex. We propose a heuristic hole filling technique using particle systems to fill complex holes with arbitrary topology in 3D meshes. Our approach includes the following steps: hole identification, base surface creation, particle distribution, triangulation, and mesh refinement. We demonstrate the functionality of the proposed surface retouching system on synthetic and real data.
3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS
J. MOREL; J. MCGHEE; ET AL
2000-11-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.
2007-02-02
The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less
Christon, M.; Hardin, D.; Compton, J.; Zosel, M.
1994-08-29
Building complex meshes for large-scale numerical simulations presents immense difficulties in exploiting high-performance computers. Industry and research leaders will describe the current state of the art for generating meshes for such large scientific problems. This will be followed by a panel and general audience discussion of the algorithmic and architectural issues surrounding the generation of meshes with10{sup 7} to 10{sup 9} grid points. (Note: The terms ``mesh`` and ``grid`` are used interchangeably in the literature.)
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
LayTracks3D: A new approach for meshing general solids using medial axis transform
Quadros, William Roshan
2015-08-22
This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less
3D unstructured mesh discontinuous finite element hydro
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
Advanced numerical methods in mesh generation and mesh adaptation
Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A
2010-01-01
-based error estimates. We conclude that the quasi-optimal mesh must be quasi-uniform in this metric. All numerical experiments are based on the publicly available Ani3D package, the collection of advanced numerical instruments.
Conservative Patch Algorithm and Mesh Sequencing for PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. P.; Abdol-Hamid, K. S.
2005-01-01
A mesh-sequencing algorithm and a conservative patched-grid-interface algorithm (hereafter Patch Algorithm ) have been incorporated into the PAB3D code, which is a computer program that solves the Navier-Stokes equations for the simulation of subsonic, transonic, or supersonic flows surrounding an aircraft or other complex aerodynamic shapes. These algorithms are efficient, flexible, and have added tremendously to the capabilities of PAB3D. The mesh-sequencing algorithm makes it possible to perform preliminary computations using only a fraction of the grid cells (provided the original cell count is divisible by an integer) along any grid coordinate axis, independently of the other axes. The patch algorithm addresses another critical need in multi-block grid situation where the cell faces of adjacent grid blocks may not coincide, leading to errors in calculating fluxes of conserved physical quantities across interfaces between the blocks. The patch algorithm, based on the Stokes integral formulation of the applicable conservation laws, effectively matches each of the interfacial cells on one side of the block interface to the corresponding fractional cell area pieces on the other side. This approach is comprehensive and unified such that all interface topology is automatically processed without user intervention. This algorithm is implemented in a preprocessing code that creates a cell-by-cell database that will maintain flux conservation at any level of full or reduced grid density as the user may choose by way of the mesh-sequencing algorithm. These two algorithms have enhanced the numerical accuracy of the code, reduced the time and effort for grid preprocessing, and provided users with the flexibility of performing computations at any desired full or reduced grid resolution to suit their specific computational requirements.
Generic remeshing of 3D triangular meshes with metric-dependent discrete voronoi diagrams.
Valette, Sebastien; Chassery, Jean Marc; Prost, Rémy
2008-01-01
In this paper, we propose a generic framework for 3D surface remeshing. Based on a metric-driven Discrete Voronoi Diagram construction, our output is an optimized 3D triangular mesh with a user defined vertex budget. Our approach can deal with a wide range of applications, from high quality mesh generation to shape approximation. By using appropriate metric constraints the method generates isotropic or anisotropic elements. Based on point-sampling, our algorithm combines the robustness and theoretical strength of Delaunay criteria with the efficiency of entirely discrete geometry processing . Besides the general described framework, we show experimental results using isotropic, quadric-enhanced isotropic and anisotropic metrics which prove the efficiency of our method on large meshes, for a low computational cost. PMID:18192716
Unstructured mesh generation and adaptivity
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1995-01-01
An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.
Geometric approaches to mesh generation
Hoffmann, C.M.
1995-12-31
We review three approaches to mesh generation that axe based on analyzing and accounting for the geometric structure of the domain. In the first approach, due to Armstrong, the domain is partitioned into subdomains based on the medial-axis transform, a tool for analyzing spatial structures. In the second approach, due to Cox, the design history defines a geometric structure of the domain. The design primitives of that structure are meshed separately, and mesh overlap is accounted for by coupling equations. The third approach argues that mesh generation ought to be integrated into the shape design process, by meshing design features separately and resolving overlapping meshes by standard geometric computations.
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes
Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun
2016-01-01
By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849
Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays
Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.
2013-01-01
Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253
3D Compressible Melt Transport with Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo
2015-04-01
Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and
Translation, Enhancement, Filtering, and Visualization of Large 3D Triangle Mesh
1997-04-21
The runthru system consists of five programs: workcell filter, just do it, transl8g, decim8, and runthru. The workcell filter program is useful if the source of your 3D triangle mesh model is IGRIP. It will traverse a directory structure of Deneb IGRIP files and filter out any IGRIP part files that are not referenced by an accompanying IGRIP work cell file. The just do it program automates translating and/or filtering of large numbers of partsmore » that are organized in hierarchical directory structures. The transl8g program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model engancement features include common vertex joining, consistent triangle vertex ordering, vertex noemal vector averaging, and triangle strip generation. Many of the traditional O(n2) algorithms required to provide the above features have been recast and are o(nlog(n)) which support large mesh sizes. The decim8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent 3D models of geometry, scientific visualization results, and discretely sampled data. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer, larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations. The runthru program provides high performance interactive display and manipulation of 3D triangle mesh models.« less
NASA Astrophysics Data System (ADS)
Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain
2016-04-01
We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.
Parallel adaptive mesh refinement within the PUMAA3D Project
NASA Technical Reports Server (NTRS)
Freitag, Lori; Jones, Mark; Plassmann, Paul
1995-01-01
To enable the solution of large-scale applications on distributed memory architectures, we are designing and implementing parallel algorithms for the fundamental tasks of unstructured mesh computation. In this paper, we discuss efficient algorithms developed for two of these tasks: parallel adaptive mesh refinement and mesh partitioning. The algorithms are discussed in the context of two-dimensional finite element solution on triangular meshes, but are suitable for use with a variety of element types and with h- or p-refinement. Results demonstrating the scalability and efficiency of the refinement algorithm and the quality of the mesh partitioning are presented for several test problems on the Intel DELTA.
3D Mesh optimization methods for unstructured polyhedra: A progress report
Miller, D.S.; Burton, D.E.
1994-11-22
A mesh optimization scheme allows a Lagrangian code to run problems with extreme mesh distortion by reconfiguring node and zone connectivity as the problem evolves. We have developed some 3D mesh optimization operations and criteria for applying them. These are demonstrated in a 3D Free Lagrange code being developed at LLNL. In the simplest case of a mesh or mesh subregion composed purely of tetrahedra we can maintain a Delaunay tetrahedralization. For more interesting meshes, made up of general polyhedra, a suite of optimization operations and their respective application criteria have been developed.
Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu
2010-07-01
We propose an original hybrid modeling process of urban scenes that represents 3-D models as a combination of mesh-based surfaces and geometric 3-D-primitives. Meshes describe details such as ornaments and statues, whereas 3-D-primitives code for regular shapes such as walls and columns. Starting from an 3-D-surface obtained by multiview stereo techniques, these primitives are inserted into the surface after being detected. This strategy allows the introduction of semantic knowledge, the simplification of the modeling, and even correction of errors generated by the acquisition process. We design a hierarchical approach exploring different scales of an observed scene. Each level consists first in segmenting the surface using a multilabel energy model optimized by -expansion and then in fitting 3-D-primitives such as planes, cylinders or tori on the obtained partition where relevant. Experiments on real meshes, depth maps and synthetic surfaces show good potential for the proposed approach. PMID:20236893
DISCO: 3-D moving-mesh magnetohydrodynamics package
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-05-01
DISCO evolves orbital fluid motion in two and three dimensions, especially at high Mach number, for studying astrophysical disks. The software uses a moving-mesh approach with a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas, thus removing diffusive advection errors and permitting longer timesteps than a static grid. DISCO uses an HLLD Riemann solver and a constrained transport scheme compatible with the mesh motion to implement magnetohydrodynamics.
Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.
2016-06-01
Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.
Software for Automated Generation of Cartesian Meshes
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Melton, John E.; Berger, Marshal J.
2006-01-01
Cart3D is a collection of computer programs for generating Cartesian meshes [for computational fluid dynamics (CFD) and other applications] in volumes bounded by solid objects. Aspects of Cart3D at earlier stages of development were reported in "Robust and Efficient Generation of Cartesian Meshes for CFD" (ARC-14275), NASA Tech Briefs, Vol. 23, No. 8 (August 1999), page 30. The geometric input to Cart3D comprises surface triangulations like those commonly generated by computer-aided-design programs. Complexly shaped objects can be represented as assemblies of simpler ones. Cart3D deletes all portions of such an assembled object that are not on the exterior surface. Intersections between components are preserved in the resulting triangulation. A tie-breaking routine unambiguously resolves geometric degeneracies. Then taking the intersected surface triangulation as input, the volume mesh is generated through division of cells of an initially coarse hexahedral grid. Cells are subdivided to refine the grid in regions of increased surface curvature and/or increased flow gradients. Cells that become split into multiple unconnected regions by thin pieces of surface are identified.
TRANSL8GDECIM8. Data Translation and Filtering for Large 3D Triangle Mesh Models
Janucik, F.X.; Ross, D.M.
1993-09-01
The TRANSL8GDECIM8 system consists of two programs: TRANSL8G and DECIM8. The TRANSL8G program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model enhancement features include common vertex joining, consistent triangle vertex ordering, vertex normal vector averaging, and triangle strip generation. Many of the traditional O(n squared) algorithms required to provide the above features have been recast and are O(n) which support large mesh sizes. The DECIM8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent three dimensional (3D) models of geometry, scientific visualization results, and discretely sampled data. The algorithm uses a combined incremental and iterative strategy. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations.
Feature edge extraction from 3D triangular meshes using a thinning algorithm
NASA Astrophysics Data System (ADS)
Nomura, Masaru; Hamada, Nozomu
2001-11-01
Highly detailed geometric models, which are represented as dense triangular meshes are becoming popular in computer graphics. Since such 3D meshes often have huge information, we require some methods to treat them efficiently in the 3D mesh processing such as, surface simplification, subdivision surface, curved surface approximation and morphing. In these applications, we often extract features of 3D meshes such as feature vertices and feature edges in preprocessing step. An automatic extraction method of feature edges is treated in this study. In order to realize the feature edge extraction method, we first introduce the concavity and convexity evaluation value. Then the histogram of the concavity and convexity evaluation value is used to separate the feature edge region. We apply a thinning algorithm, which is used in 2D binary image processing. It is shown that the proposed method can extract appropriate feature edges from 3D meshes.
A preliminary evaluation of 3D mesh animation coding techniques
NASA Astrophysics Data System (ADS)
Mamou, Khaled; Zaharia, Titus; Preteux, Francoise
2005-08-01
This paper provides an overview of the state-of-the-art techniques recently developed within the emerging field of dynamic mesh compression. Static encoders, wavelet-based schemes, PCA-based approaches, differential temporal and spatio-temporal predictive techniques, and clustering-based representations are considered, presented, analyzed, and objectively compared in terms of compression efficiency, algorithmic and computational aspects and offered functionalities (such as progressive transmission, scalable rendering, computational and algorithmic aspects, field of applicability...). The proposed comparative study reveals that: (1) clustering-based approaches offer the best compromise between compression performances and computational complexity; (2) PCA-based representations are highly efficient on long animated sequences (i.e. with number of mesh vertices much smaller than the number of frames) at the price of prohibitive computational complexity of the encoding process; (3) Spatio-temporal Dynapack predictors provides simple yet effective predictive schemes that outperforms simple predictors such as those considered within the interpolator compression node adopted by the MPEG-4 within the AFX standard; (4) Wavelet-based approaches, which provide the best compression performances for static meshes show here again good results, with the additional advantage of a fully progressive representation, but suffer from an applicability limited to large meshes with at least several thousands of vertices per connected component.
Nanowire mesh solar fuels generator
Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin
2016-05-24
This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
3D unstructured-mesh radiation transport codes
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.
Graphical postprocessing for 3-D mesh quality evaluation
NASA Technical Reports Server (NTRS)
Panthaki, M. J.; Abel, J. F.; Wawrzynek, P. A.
1989-01-01
An important objective of three-dimensional graphical finite-element postprocessing is to indicate to the engineer the accuracy of analysis results. The inclusion of mesh quality sensors permits a subjective evaluation of the adequacy of a single analysis being interpreted. For graphical approaches, both strain-energy-density gradients and discontinuities of unsmoothed responses and their gradients have proved to be effective sensors. Interactive graphical tools which can display discontinuity information effectively are described; these are essentially different from the ordinary methods used for the viewing of smoothed results.
Self-Organizing Mesh Generation
1991-11-01
A set of five programs which make up a self organizing mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily shaped two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchal input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program,more » RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight node elements (with mid side nodes) may be obtained with RENUM8. QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers, An overall plot showing the position of the selected plot areas is produced.« less
Curved mesh generation and mesh refinement using Lagrangian solid mechanics
Persson, P.-O.; Peraire, J.
2008-12-31
We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes
NASA Astrophysics Data System (ADS)
Berini, Pierre; Wu, Ke
1995-05-01
This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.
Novel irregular mesh tagging algorithm for wound synthesis on a 3D face.
Lee, Sangyong; Chin, Seongah
2015-01-01
Recently, advanced visualizing techniques in computer graphics have considerably enhanced the visual appearance of synthetic models. To realize enhanced visual graphics for synthetic medical effects, the first step followed by rendering techniques involves attaching albedo textures to the region where a certain graphic is to be rendered. For instance, in order to render wound textures efficiently, the first step is to recognize the area where the user wants to attach a wound. However, in general, face indices are not stored in sequential order, which makes sub-texturing difficult. In this paper, we present a novel mesh tagging algorithm that utilizes a task for mesh traversals and level extension in the general case of a wound sub-texture mapping and a selected region deformation in a three-dimensional (3D) model. This method works automatically on both regular and irregular mesh surfaces. The approach consists of mesh selection (MS), mesh leveling (ML), and mesh tagging (MT). To validate our approach, we performed experiments for synthesizing wounds on a 3D face model and on a simulated mesh. PMID:26405904
Landmark detection from 3D mesh facial models for image-based analysis of dysmorphology.
Chendeb, Marwa; Tortorici, Claudio; Al Muhairi, Hassan; Al Safar, Habiba; Linguraru, Marius; Werghi, Naoufel
2015-01-01
Facial landmark detection is a task of interest for facial dysmorphology, an important factor in the diagnosis of genetic conditions. In this paper, we propose a framework for feature points detection from 3D face images. The method is based on 3D Constrained Local Model (CLM) which learns both global variations in the 3D facial scan and local changes around every vertex landmark. Compared to state of the art methods our framework is distinguished by the following novel aspects: 1) It operates on facial surfaces, 2) It allows fusion of shape and color information on the mesh surface, 3) It introduces the use of LBP descriptors on the mesh. We showcase our landmarks detection framework on a set of scans including down syndrome and control cases. We also validate our method through a series of quantitative experiments conducted with the publicly available Bosphorus database. PMID:26736227
Moriconi, S; Scalco, E; Broggi, S; Avuzzi, B; Valdagni, R; Rizzo, G
2015-08-01
A novel approach for three-dimensional (3D) surface reconstruction of anatomical structures in radiotherapy (RT) is presented. This is obtained from manual cross-sectional contours by combining both image voxel segmentation processing and implicit surface streaming methods using wavelets. 3D meshes reconstructed with the proposed approach are compared to those obtained from traditional triangulation algorithm. Qualitative and quantitative evaluations are performed in terms of mesh quality metrics. Differences in smoothness, detail and accuracy are observed in the comparison, considering three different anatomical districts and several organs at risk in radiotherapy. Overall best performances were recorded for the proposed approach, regardless the complexity of the anatomical structure. This demonstrates the efficacy of the proposed approach for the 3D surface reconstruction in radiotherapy and allows for further specific image analyses using real biomedical data. PMID:26737226
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
Hybrid mesh generation using advancing reduction technique
Technology Transfer Automated Retrieval System (TEKTRAN)
This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...
Accurate, finite-volume methods for 3D MHD on unstructured Lagrangian meshes
Barnes, D.C.; Rousculp, C.L.
1998-10-01
Previous 2D methods for magnetohydrodynamics (MHD) have contributed both to development of core code capability and to physics applications relevant to AGEX pulsed-power experiments. This strategy is being extended to 3D by development of a modular extension of an ASCI code. Extension to 3D not only increases complexity by problem size, but also introduces new physics, such as magnetic helicity transport. The authors have developed a method which incorporates all known conservation properties into the difference scheme on a Lagrangian unstructured mesh. Because the method does not depend on the mesh structure, mesh refinement is possible during a calculation to prevent the well known problem of mesh tangling. Arbitrary polyhedral cells are decomposed into tetrahedrons. The action of the magnetic vector potential, A {center_dot} {delta}l, is centered on the edges of this extended mesh. For ideal flow, this maintains {del} {center_dot} B = 0 to round-off error. Vertex forces are derived by the variation of magnetic energy with respect to vertex positions, F = {minus}{partial_derivative}W{sub B}/{partial_derivative}r. This assures symmetry as well as magnetic flux, momentum, and energy conservation. The method is local so that parallelization by domain decomposition is natural for large meshes. In addition, a simple, ideal-gas, finite pressure term has been included. The resistive diffusion part is calculated using the support operator method, to obtain an energy conservative, symmetric method on an arbitrary mesh. Implicit time difference equations are solved by preconditioned, conjugate gradient methods. Results of convergence tests are presented. Initial results of an annular Z-pinch implosion problem illustrate the application of these methods to multi-material problems.
3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants.
Usmani, Sadaf; Aurand, Emily Rose; Medelin, Manuela; Fabbro, Alessandra; Scaini, Denis; Laishram, Jummi; Rosselli, Federica B; Ansuini, Alessio; Zoccolan, Davide; Scarselli, Manuela; De Crescenzi, Maurizio; Bosi, Susanna; Prato, Maurizio; Ballerini, Laura
2016-07-01
In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces. PMID:27453939
3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants
Usmani, Sadaf; Aurand, Emily Rose; Medelin, Manuela; Fabbro, Alessandra; Scaini, Denis; Laishram, Jummi; Rosselli, Federica B.; Ansuini, Alessio; Zoccolan, Davide; Scarselli, Manuela; De Crescenzi, Maurizio; Bosi, Susanna; Prato, Maurizio; Ballerini, Laura
2016-01-01
In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces. PMID:27453939
A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face
NASA Astrophysics Data System (ADS)
Knupp, P.
A numerical algorithm is described for solving the free-surface groundwater flow equations in 3-D large-scale unconfined aquifers with strongly heterogeneous conductivity and surface recharge. The algorithm uses a moving mesh to track the water-table as it evolves according to kinematic and seepage face boundary conditions. Both steady-state and transient algorithms are implemented in the SECO-Flow 3-D code and demonstrated on stratigraphy based on the Delaware Basin of south-eastern New Mexico.
A flexible unstructured mesh generation algorithm suitable for block partitioning
Karamete, B.K.
1996-12-31
This paper describes the logic of a dynamic algorithm for an arbitrarily prescribed geometry. The generated meshes show Delaunay property both in 2D and 3D. The algorithm requires minimal surface information in 3D. The surface triangles appear as the direct consequence of interior tetrahedration. The adopted successive refinement scheme results in such a node distribution that it is not needed to check boundary conformity. Further computational saving is provided by using a special binary tree (ADT). The generating front can not be determined a-priori as opposed to the moving front techniques. This feature can effectively be used to partition the geometry into equal element sized blocks while generating the mesh for parallel computing purposes. The algorithm shows flexibility to split the geometry into blocks at mesh generation time.
Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Seong, Baekhoon; Yoo, Hyunwoong; Dat Nguyen, Vu; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung
2014-09-01
Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s-1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices.
Method of generating a surface mesh
Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
Bayesian Segmentation of Atrium Wall Using Globally-Optimal Graph Cuts on 3D Meshes
Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P.; Whitaker, Ross T.
2014-01-01
Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI. PMID:24684007
A novel mesh processing based technique for 3D plant analysis
2012-01-01
Background In recent years, imaging based, automated, non-invasive, and non-destructive high-throughput plant phenotyping platforms have become popular tools for plant biology, underpinning the field of plant phenomics. Such platforms acquire and record large amounts of raw data that must be accurately and robustly calibrated, reconstructed, and analysed, requiring the development of sophisticated image understanding and quantification algorithms. The raw data can be processed in different ways, and the past few years have seen the emergence of two main approaches: 2D image processing and 3D mesh processing algorithms. Direct image quantification methods (usually 2D) dominate the current literature due to comparative simplicity. However, 3D mesh analysis provides the tremendous potential to accurately estimate specific morphological features cross-sectionally and monitor them over-time. Result In this paper, we present a novel 3D mesh based technique developed for temporal high-throughput plant phenomics and perform initial tests for the analysis of Gossypium hirsutum vegetative growth. Based on plant meshes previously reconstructed from multi-view images, the methodology involves several stages, including morphological mesh segmentation, phenotypic parameters estimation, and plant organs tracking over time. The initial study focuses on presenting and validating the accuracy of the methodology on dicotyledons such as cotton but we believe the approach will be more broadly applicable. This study involved applying our technique to a set of six Gossypium hirsutum (cotton) plants studied over four time-points. Manual measurements, performed for each plant at every time-point, were used to assess the accuracy of our pipeline and quantify the error on the morphological parameters estimated. Conclusion By directly comparing our automated mesh based quantitative data with manual measurements of individual stem height, leaf width and leaf length, we obtained the mean
SHARP/PRONGHORN Interoperability: Mesh Generation
Avery Bingham; Javier Ortensi
2012-09-01
Progress toward collaboration between the SHARP and MOOSE computational frameworks has been demonstrated through sharing of mesh generation and ensuring mesh compatibility of both tools with MeshKit. MeshKit was used to build a three-dimensional, full-core very high temperature reactor (VHTR) reactor geometry with 120-degree symmetry, which was used to solve a neutron diffusion critical eigenvalue problem in PRONGHORN. PRONGHORN is an application of MOOSE that is capable of solving coupled neutron diffusion, heat conduction, and homogenized flow problems. The results were compared to a solution found on a 120-degree, reflected, three-dimensional VHTR mesh geometry generated by PRONGHORN. The ability to exchange compatible mesh geometries between the two codes is instrumental for future collaboration and interoperability. The results were found to be in good agreement between the two meshes, thus demonstrating the compatibility of the SHARP and MOOSE frameworks. This outcome makes future collaboration possible.
Newe, Axel; Ganslandt, Thomas
2013-01-01
The usefulness of the 3D Portable Document Format (PDF) for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D) file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D--it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes. PMID:24260144
Newe, Axel; Ganslandt, Thomas
2013-01-01
The usefulness of the 3D Portable Document Format (PDF) for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D) file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D – it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes. PMID:24260144
Development of an Immersive Environment to Aid in Automatic Mesh Generation LDRD Final Report
Pavlakos, Constantine J.
1998-10-01
The purpose of this work was to explore the use of immersive technologies, such as those used in synthetic environments (commordy referred to as virtual realily, or VR), in enhancing the mesh- generation process for 3-dimensional (3D) engineering models. This work was motivated by the fact that automatic mesh generation systems are still imperfect - meshing algorithms, particularly in 3D, are sometimes unable to construct a mesh to completion, or they may produce anomalies or undesirable complexities in the resulting mesh. It is important that analysts and meshing code developers be able to study their meshes effectively in order to understand the topology and qualily of their meshes. We have implemented prototype capabilities that enable such exploration of meshes in a highly visual and intuitive manner. Since many applications are making use of increasingly large meshes, we have also investigated approaches to handle large meshes while maintaining interactive response. Ideally, it would also be possible to interact with the meshing process, allowing interactive feedback which corrects problems and/or somehow enables proper completion of the meshing process. We have implemented some functionality towards this end -- in doing so, we have explored software architectures that support such an interactive meshing process. This work has incorporated existing technologies developed at SandiaNational Laboratories, including the CUBIT mesh generation system, and the EIGEN/VR (previously known as MUSE) and FLIGHT systems, which allow applications to make use of immersive technologies and advanced human computer interfaces. 1
RGG: Reactor geometry (and mesh) generator
Jain, R.; Tautges, T.
2012-07-01
The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)
Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting
NASA Astrophysics Data System (ADS)
Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein
2016-06-01
In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.
Robust Detection of Round Shaped Pits Lying on 3D Meshes: Application to Impact Crater Recognition
NASA Astrophysics Data System (ADS)
Schmidt, Martin-Pierre; Muscato, Jennifer; Viseur, Sophie; Jorda, Laurent; Bouley, Sylvain; Mari, Jean-Luc
2015-04-01
Most celestial bodies display impacts of collisions with asteroids and meteoroids. These traces are called craters. The possibility of observing and identifying these craters and their characteristics (radius, depth and morphology) is the only method available to measure the age of different units at the surface of the body, which in turn allows to constrain its conditions of formation. Interplanetary space probes always carry at least one imaging instrument on board. The visible images of the target are used to reconstruct high-resolution 3D models of its surface as a cloud of points in the case of multi-image dense stereo, or as a triangular mesh in the case of stereo and shape-from-shading. The goal of this work is to develop a methodology to automatically detect the craters lying on these 3D models. The robust extraction of feature areas on surface objects embedded in 3D, like circular pits, is a challenging problem. Classical approaches generally rely on image processing and template matching on a 2D flat projection of the 3D object (i.e.: a high-resolution photograph). In this work, we propose a full-3D method that mainly relies on curvature analysis. Mean and Gaussian curvatures are estimated on the surface. They are used to label vertices that belong to concave parts corresponding to specific pits on the surface. The surface is thus transformed into binary map distinguishing potential crater features to other types of features. Centers are located in the targeted surface regions, corresponding to potential crater features. Concentric rings are then built around the found centers. They consist in circular closed lines exclusively composed of edges of the initial mesh. The first built ring represents the nearest vertex neighborhood of the found center. The ring is then optimally expanded using a circularity constrain and the curvature values of the ring vertices. This method has been tested on a 3D model of the asteroid Lutetia observed by the ROSETTA (ESA
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Grid generation for 3D turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin; Soni, Bharat K.
1992-01-01
A numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with the FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to those required by general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical user interactions are provided in the algorithm and allow the user to design and manipulate the grid lines with a mouse.
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
3D model generation using an airborne swarm
Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Structured mesh generation with smoothness controls
Technology Transfer Automated Retrieval System (TEKTRAN)
In geometrically complex domains, the RL (Ryskin and Leal) orthogonal mesh generation system may cause mesh distortion and overlapping problems when using the “weak constraint” method with specified boundary point distribution for all boundaries. To resolve these problems, an improved RL system with...
Tanighchi, Takeo; Goda, Tomoaki; Kasper, H.; Zielke, W.
1996-12-31
Hexahedral mesh generation for composite domain is necessary for many engineering fields, and this paper includes three methods to generate hexahedral finite elements from the result of the 3D Delaunay triangulation. One of the difficulties of mesh generation of composite domain is how to adjust the meshing on common surfaces between adjacent subdomains, and very simple method is proposed in this paper. Proposed methods are directly applied for any composite domain as a fractured rock which consists of many convex subdomains.
Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion
Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael
2014-01-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.
THE GENERATION OF TETRAHEDRAL MESH MODELS FOR NEUROANATOMICAL MRI
Lederman, Carl; Joshi, Anand; Dinov, Ivo; Vese, Luminita; Toga, Arthur; Van Horn, John Darrell
2010-01-01
In this article, we describe a detailed method for automatically generating tetrahedral meshes from 3D images having multiple region labels. An adaptively sized tetrahedral mesh modeling approach is described that is capable of producing meshes conforming precisely to the voxelized regions in the image. Efficient tetrahedral construction is performed minimizing an energy function containing three terms: a smoothing term to remove the voxelization, a fidelity term to maintain continuity with the image data, and a novel elasticity term to prevent the tetrahedra from becoming flattened or inverted as the mesh deforms while allowing the voxelization to be removed entirely. The meshing algorithm is applied to structural MR image data that has been automatically segmented into 56 neuroanatomical sub-divisions as well as on two other examples. The resulting tetrahedral representation has several desirable properties such as tetrahedra with dihedral angles away from 0 and 180 degrees, smoothness, and a high resolution. Tetrahedral modeling via the approach described here has applications in modeling brain structure in normal as well as diseased brain in human and non-human data and facilitates examination of 3D object deformations resulting from neurological illness (e.g. Alzheimer’s Disease), development, and/or aging. PMID:21073968
Feature recognition applications in mesh generation
Tautges, T.J.; Liu, S.S.; Lu, Y.; Kraftcheck, J.; Gadh, R.
1997-06-01
The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders. PMID:20714011
NASA Astrophysics Data System (ADS)
Bajc, Iztok; Hecht, Frédéric; Žumer, Slobodan
2016-09-01
This paper presents a 3D mesh adaptivity strategy on unstructured tetrahedral meshes by a posteriori error estimates based on metrics derived from the Hessian of a solution. The study is made on the case of a nonlinear finite element minimization scheme for the Landau-de Gennes free energy functional of nematic liquid crystals. Newton's iteration for tensor fields is employed with steepest descent method possibly stepping in. Aspects relating the driving of mesh adaptivity within the nonlinear scheme are considered. The algorithmic performance is found to depend on at least two factors: when to trigger each single mesh adaptation, and the precision of the correlated remeshing. Each factor is represented by a parameter, with its values possibly varying for every new mesh adaptation. We empirically show that the time of the overall algorithm convergence can vary considerably when different sequences of parameters are used, thus posing a question about optimality. The extensive testings and debugging done within this work on the simulation of systems of nematic colloids substantially contributed to the upgrade of an open source finite element-oriented programming language to its 3D meshing possibilities, as also to an outer 3D remeshing module.
S3D: An interactive surface grid generation tool
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung; Pierce, Lawrence E.; Yip, David
1992-01-01
S3D, an interactive software tool for surface grid generation, is described. S3D provides the means with which a geometry definition based either on a discretized curve set or a rectangular set can be quickly processed towards the generation of a surface grid for computational fluid dynamics (CFD) applications. This is made possible as a result of implementing commonly encountered surface gridding tasks in an environment with a highly efficient and user friendly graphical interface. Some of the more advanced features of S3D include surface-surface intersections, optimized surface domain decomposition and recomposition, and automated propagation of edge distributions to surrounding grids.
A multistage mesh generator for solving the average-passage equation system
NASA Technical Reports Server (NTRS)
Mulac, Richard A.
1988-01-01
One means of numerically simulating the 3-D flow field within a multistage turbomachine is through the solution of the average-passage equation system. One requirement of a current algorithm used to solve this system of equations has been the ability to generate multiple blade row meshes which satisfy specific geometrical constraints. In addition to meeting this criterion, one desires a mesh generation code which requires minimal user input, utilizes variable mesh control parameters, generates diagnostics helpful to the user, and possesses the capability to handle widely varying geometries. A mesh generation code with these features was written and has been used in solving the inviscid form of the average-passing equation system for both ducted and unducted multiple blade row geometries. This paper serves as a user reference guide, with a description of the mesh generation algorithm, a sample input file, and examples of typical meshes generated.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
The Feasibility of 3d Point Cloud Generation from Smartphones
NASA Astrophysics Data System (ADS)
Alsubaie, N.; El-Sheimy, N.
2016-06-01
This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.
NASA Astrophysics Data System (ADS)
Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.
2016-09-01
The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
Quality of 3D Models Generated by SFM Technology
NASA Astrophysics Data System (ADS)
Marčiš, Marián
2013-12-01
Using various types of automation in digital photogrammetry is associated with questions such as the accuracy of a 3D model generated on various types of surfaces and textures, the financial costs of the equipment needed, and also the time costs of the processing. This topic deals with the actual technology of computer vision, which allows the automated exterior orientation of images, camera calibration, and the generation of 3D models directly from images of the object itself, based on the automatic detection of significant points. Detailed testing is done using the Agisoft PhotoScan system, and the camera configuration is solved with respect to the accuracy of the 3D model generated and the time consumption of the calculations for the different types of textures and the different settings for the processing.
Generation and adaptation of 3-D unstructured grids for transient problems
NASA Technical Reports Server (NTRS)
Loehner, Rainald
1990-01-01
Grid generation and adaptive refinement techniques suitable for the simulation of strongly unsteady flows past geometrically complex bodies in 3-D are described. The grids are generated using the advancing front technique. Emphasis is placed not to generate elements that are too small, as this would severely increase the cost of simulations with explicit flow solvers. The grids are adapted to an evolving flowfield using simple h-refinement. A grid change is performed every 5 to 10 timesteps, and only one level of refinement/coarsening is allowed per mesh change.
Solution of the Skyrme HF + BCS equation on a 3D mesh
NASA Astrophysics Data System (ADS)
Bonche, P.; Flocard, H.; Heenen, P. H.
2005-09-01
Over the years, the ev8 code has been a very useful tool for the study of nuclear mean-field theory. Its main characteristic is that it solves the Hartree-Fock plus BCS equations for Skyrme type functionals via a discretization of the individual wave-functions on a three-dimensional Cartesian mesh. This allows maximal flexibility in the determination of the nuclear shape by the variational process. For instance, the same mesh can be used to describe the oblate deformed, spherical, prolate deformed, superdeformed and fission configurations of a given nucleus. The quadrupole constraining operator yielding the deformation energy curve covering all these configurations is included in ev8. This version of the code is restricted to even-even nuclei. Program summaryTitle of program:ev8 Catalogue identifier:ADWA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWA Licensing provisions: none Computers on which the program has been tested: HP-RX4640, Compaq-Digital Alpha GS140, has run on several other platforms Computer for which the program is designed and others on which is has been tested:Unix, Linux Operating systems or monitors under which the program has been tested:FORTRAN-90 Programming language used:depends on problem; example given requires 60 MB Memory required to execute with typical data:yes No. of lines in distributed program, including test data, etc.:11 524 No. of bytes in distributed program, including test data, etc.:89 949 Distribution format:tar.gzip file Nature of the physical problem:By means of the Hartree-Fock plus BCS method using Skyrme type functionals, ev8 allows a study of the evolution of the binding energy of even-even nuclei for various shapes determined by the most general quadrupole constraint. Solution method:The program expands the single-particle wave-functions on a 3D Cartesian mesh. The nonlinear mean-field equations are solved by the
ON 3D, AUTOMATED, SELF-CONTAINED GRID GENERATION WITHIN THE RAGE CAMR HYDROCODE
Oakes, W.R.; Henning, P.J.; Gittings, M.L.; Weaver, R.P.
2000-06-01
We discuss using the inherent grid manipulation capability within a Continuously Adaptive Mesh Refinement hydrodynamics code, RAGE, to implement parallel, automated, self-contained grid generation. We show how arbitrarily complex 3D geometries specified in any unambiguous form can be used. The RAGE computational environment is any of several massively parallel computers being developed under the Department Of Energy's Accelerated Strategic Computing Initiative. A typical 3D RAGE analysis may contain 100 million cells and occupy 2000 processors for several weeks. RAGE grid generation is embarrassingly parallel. The RAGE computational grid is an octree decomposition of the model space. The problem domain is subdivided into as many subdomains as the number of processors assigned to the problem. The grid for each subdomain is then generated independently, except for occasional adjustments. Geometry used for initial grid generation includes CSG combinations of NURBS-based boundary representation models, stereo lithography (STL) files, implicit surfaces, and functionally perturbed surfaces.
Constrained CVT Meshes and a Comparison of Triangular Mesh Generators
Nguyen, Hoa; Burkardt, John; Gunzburger, Max; Ju, Lili; Saka, Yuki
2009-01-01
Mesh generation in regions in Euclidean space is a central task in computational science, and especially for commonly used numerical methods for the solution of partial differential equations, e.g., finite element and finite volume methods. We focus on the uniform Delaunay triangulation of planar regions and, in particular, on how one selects the positions of the vertices of the triangulation. We discuss a recently developed method, based on the centroidal Voronoi tessellation (CVT) concept, for effecting such triangulations and present two algorithms, including one new one, for CVT-based grid generation. We also compare several methods, including CVT-based methods, for triangulating planar domains. To this end, we define several quantitative measures of the quality of uniform grids. We then generate triangulations of several planar regions, including some having complexities that are representative of what one may encounter in practice. We subject the resulting grids to visual and quantitative comparisons and conclude that all the methods considered produce high-quality uniform grids and that the CVT-based grids are at least as good as any of the others.
3D Model Generation From the Engineering Drawing
NASA Astrophysics Data System (ADS)
Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav
2010-01-01
The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.
V-Man Generation for 3-D Real Time Animation. Chapter 5
NASA Technical Reports Server (NTRS)
Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang
2007-01-01
The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
NASA Astrophysics Data System (ADS)
Danilov, A. A.; Salamatova, V. Yu; Vassilevski, Yu V.
2012-12-01
Here, a workflow for high-resolution efficient numerical modeling of bioimpedance measurements is suggested that includes 3D image segmentation, adaptive mesh generation, finite-element discretization, and the analysis of simulation results. Using the adaptive unstructured tetrahedral meshes enables to decrease significantly a number of mesh elements while keeping model accuracy. The numerical results illustrate current, potential, and sensitivity field distributions for a conventional Kubicek-like scheme of bioimpedance measurements using segmented geometric model of human torso based on Visible Human Project data. The whole body VHP man computational mesh is constructed that contains 574 thousand vertices and 3.3 million tetrahedrons.
Generation of 3D Collagen Gels with Controlled Diverse Architectures.
Doyle, Andrew D
2016-01-01
Rat tail collagen solutions have been used as polymerizable in vitro three dimensional (3D) extracellular matrix (ECM) gels for single and collective cell migration assays as well as spheroid formation. Factors such as ECM concentration, pH, ionic concentration, and temperature can alter collagen polymerization and ECM architecture. This unit describes how to generate 3D collagen gels that have distinct architectures ranging from a highly reticular meshwork of short thin fibrils with small pores to a loose matrix consisting of stiff, parallel-bundled long fibrils by changing collagen polymerization temperature. This permits analysis of 3D cell migration in different ECM architectures found in vivo while maintaining a similar ECM concentration. Also included are collagen labeling techniques helpful for ECM visualization during live fluorescence imaging. © 2016 by John Wiley & Sons, Inc. PMID:27580704
Multiple footprint stereo algorithms for 3D display content generation
NASA Astrophysics Data System (ADS)
Boughorbel, Faysal
2007-02-01
This research focuses on the conversion of stereoscopic video material into an image + depth format which is suitable for rendering on the multiview auto-stereoscopic displays of Philips. The recent interest shown in the movie industry for 3D significantly increased the availability of stereo material. In this context the conversion from stereo to the input formats of 3D displays becomes an important task. In this paper we present a stereo algorithm that uses multiple footprints generating several depth candidates for each image pixel. We characterize the various matching windows and we devise a robust strategy for extracting high quality estimates from the resulting depth candidates. The proposed algorithm is based on a surface filtering method that employs simultaneously the available depth estimates in a small local neighborhood while ensuring correct depth discontinuities by the inclusion of image constraints. The resulting highquality image-aligned depth maps proved an excellent match with our 3D displays.
Quality mesh generation in higher dimensions.
Mitchell, S. A.; Vavasis, S. A.; SNL; Cornell Univ.
2000-03-06
We consider the problem of triangulating a d-dimensional region. Our mesh generation algorithm, called QMG, is a quadtree-based algorithm that can triangulate any polyhedral region including nonconvex regions with holes. Furthermore, our algorithm guarantees a bounded aspect ratio triangulation provided that the input domain itself has no sharp angles. Finally, our algorithm is guaranteed never to overrefine the domain, in the sense that the number of simplices produced by QMG is bounded above by a factor times the number produced by any competing algorithm, where the factor depends on the aspect ratio bound satisfied by the competing algorithm. The QMG algorithm has been implemented in C++ and is used as a mesh generator for the finite element method.
Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems
Prassl, Anton J.; Kickinger, Ferdinand; Ahammer, Helmut; Grau, Vicente; Schneider, Jürgen E.; Hofer, Ernst; Vigmond, Edward J.; Trayanova, Natalia A.
2010-01-01
Significant advancements in imaging technology and the dramatic increase in computer power over the last few years broke the ground for the construction of anatomically realistic models of the heart at an unprecedented level of detail. To effectively make use of high-resolution imaging datasets for modeling purposes, the imaged objects have to be discretized. This procedure is trivial for structured grids. However, to develop generally applicable heart models, unstructured grids are much preferable. In this study, a novel image-based unstructured mesh generation technique is proposed. It uses the dual mesh of an octree applied directly to segmented 3-D image stacks. The method produces conformal, boundary-fitted, and hexahedra-dominant meshes. The algorithm operates fully automatically with no requirements for interactivity and generates accurate volume-preserving representations of arbitrarily complex geometries with smooth surfaces. The method is very well suited for cardiac electrophysiological simulations. In the myocardium, the algorithm minimizes variations in element size, whereas in the surrounding medium, the element size is grown larger with the distance to the myocardial surfaces to reduce the computational burden. The numerical feasibility of the approach is demonstrated by discretizing and solving the monodomain and bidomain equations on the generated grids for two preparations of high experimental relevance, a left ventricular wedge preparation, and a papillary muscle. PMID:19203877
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
Cardiovascular and lung mesh generation based on centerlines.
Marchandise, E; Geuzaine, C; Remacle, J F
2013-06-01
We present a fully automatic procedure for the mesh generation of tubular geometries such as blood vessels or airways. The procedure is implemented in the open-source Gmsh software and relies on a centerline description of the input geometry. The presented method can generate different type of meshes: isotropic tetrahedral meshes, anisotropic tetrahedral meshes, and mixed hexahedral/tetrahedral meshes. Additionally, a multiple layered arterial wall can be generated with a variable thickness. All the generated meshes rely on a mesh size field and a mesh metric that is based on centerline descriptions, namely the distance to the centerlines and a local reference system based on the tangent and the normal directions to the centerlines. Different examples show that the proposed method is very efficient and robust and leads to high quality computational meshes. PMID:23606344
Vertical-Axis Wind Turbine Mesh Generator
2014-01-24
VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less
Vertical-Axis Wind Turbine Mesh Generator
2014-01-24
VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.
Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems
NASA Technical Reports Server (NTRS)
Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John
2010-01-01
Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.
Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique
NASA Astrophysics Data System (ADS)
Huang, S.; Guo, J.; Yang, F. X.
2013-12-01
In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
CUBIT mesh generation environment. Volume 1: Users manual
Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.
1994-05-01
The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.
Mesh generation/refinement using fractal concepts and iterated function systems
NASA Technical Reports Server (NTRS)
Bova, S. W.; Carey, G. F.
1992-01-01
A novel method of mesh generation is proposed which is based on the use of fractal concepts to derive contractive, affine transformations. The transformations are constructed in such a manner that the attractors of the resulting maps are a union of the points, lines and surfaces in the domain. In particular, the mesh nodes may be generated recursively as a sequence of points which are obtained by applying the transformations to a coarse background mesh constructed from the given boundary data. A Delaunay triangulation or similar edge connection approach can then be performed on the resulting set of nodes in order to generate the mesh. Local refinement of an existing mesh can also be performed using the procedure. The method is easily extended to three dimensions, in which case the Delaunay triangulation is replaced by an analogous 3D tesselation.
All dispenser printed flexible 3D structured thermoelectric generators
NASA Astrophysics Data System (ADS)
Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.
2015-12-01
This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.
Brief communication: Impact of mesh resolution for MISMIP and MISMIP3d experiments using Elmer/Ice
NASA Astrophysics Data System (ADS)
Gagliardini, O.; Brondex, J.; Gillet-Chaulet, F.; Tavard, L.; Peyaud, V.; Durand, G.
2016-02-01
The dynamical contribution of marine ice sheets to sea level rise is largely controlled by grounding line (GL) dynamics. Two marine ice sheet model intercomparison exercises, namely MISMIP and MISMIP3d, have been proposed to the community to test and compare the ability of models to capture the GL dynamics. Both exercises are known to present a discontinuity of the friction at the GL, which is believed to increase the model sensitivity to mesh resolution. Here, using Elmer/Ice, the only Stokes model which completed both intercomparisons, the sensitivity to the mesh resolution is studied from an extended MISMIP experiment in which the friction continuously decreases over a transition distance and equals zero at the GL. Using this MISMIP-like setup, it is shown that the sensitivity to the mesh resolution is not improved for a vanishing friction at the GL. For the original MISMIP experiment, i.e. for a discontinuous friction at the GL, we further show that the results are moreover very sensitive to the way the friction is interpolated in the close vicinity of the GL. In the light of these new insights, and thanks to increased computing resources, new results for the MISMIP3d experiments obtained for higher resolutions than previously published are made available for future comparisons as the Supplement.
NASA Astrophysics Data System (ADS)
Gansen, A.; El Hachemi, M.; Belouettar, S.; Hassan, O.; Morgan, K.
2015-12-01
In computational electromagnetics, the advantages of the standard Yee algorithm are its simplicity and its low computational costs. However, because of the accuracy losses resulting from the staircased representation of curved interfaces, it is normally not the method of choice for modelling electromagnetic interactions with objects of arbitrary shape. For these problems, an unstructured mesh finite volume time domain method is often employed, although the scheme does not satisfy the divergence free condition at the discrete level. In this paper, we generalize the standard Yee algorithm for use on unstructured meshes and solve the problem concerning the loss of accuracy linked to staircasing, while preserving the divergence free nature of the algorithm. The scheme is implemented on high quality primal Delaunay and dual Voronoi meshes. The performance of the approach was validated in previous work by simulating the scattering of electromagnetic waves by spherical 3D PEC objects in free space. In this paper we demonstrate the performance of this scheme for penetration problems in lossy dielectrics using a new averaging technique for Delaunay and Voronoi edges at the interface. A detailed explanation of the implementation of the method, and a demonstration of the quality of the results obtained for transmittance and scattering simulations by 3D objects of arbitrary shapes, are presented.
Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh
NASA Technical Reports Server (NTRS)
Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.
2010-01-01
In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.
Cubit Mesh Generation Toolkit V11.1
2009-03-25
CUBIT prepares models to be used in computer-based simulation of real-world events. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies.
Update on Development of Mesh Generation Algorithms in MeshKit
Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay
2015-09-30
MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.
Simulation of Current Generation in a 3-D Plasma Model
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Dawson, J. M.
1996-11-01
In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents. In our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. We are extending these simulations to three dimensions. A parallel 3-D electromagnetic PIC code running on the IBM SP2, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present our new results at the meeting. Research partially supported by NSF and DOE.
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
Automatic generation of alignments for 3D QSAR analyses.
Jewell, N E; Turner, D B; Willett, P; Sexton, G J
2001-01-01
Many 3D QSAR methods require the alignment of the molecules in a dataset, which can require a fair amount of manual effort in deciding upon a rational basis for the superposition. This paper describes the use of FBSS, a program for field-based similarity searching in chemical databases, for generating such alignments automatically. The CoMFA and CoMSIA experiments with several literature datasets show that the QSAR models resulting from the FBSS alignments are broadly comparable in predictive performance with the models resulting from manual alignments. PMID:11774998
NASA Astrophysics Data System (ADS)
Kaiser, Markus; John, Matthias; Borsdorf, Anja; Mountney, Peter; Ionasec, Razvan; Nöttling, Alois; Kiefer, Philipp; Seeburger, Jörg; Neumuth, Thomas
2013-03-01
For transcatheter-based minimally invasive procedures in structural heart disease ultrasound and X-ray are the two enabling imaging modalities. A live fusion of both real-time modalities can potentially improve the workflow and the catheter navigation by combining the excellent instrument imaging of X-ray with the high-quality soft tissue imaging of ultrasound. A recently published approach to fuse X-ray fluoroscopy with trans-esophageal echo (TEE) registers the ultrasound probe to X-ray images by a 2D-3D registration method which inherently provides a registration of ultrasound images to X-ray images. In this paper, we significantly accelerate the 2D-3D registration method in this context. The main novelty is to generate the projection images (DRR) of the 3D object not via volume ray-casting but instead via a fast rendering of triangular meshes. This is possible, because in the setting for TEE/X-ray fusion the 3D geometry of the ultrasound probe is known in advance and their main components can be described by triangular meshes. We show that the new approach can achieve a speedup factor up to 65 and does not affect the registration accuracy when used in conjunction with the gradient correlation similarity measure. The improvement is independent of the underlying registration optimizer. Based on the results, a TEE/X-ray fusion could be performed with a higher frame rate and a shorter time lag towards real-time registration performance. The approach could potentially accelerate other applications of 2D-3D registrations, e.g. the registration of implant models with X-ray images.
A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics
Puckett, E.G. ); Saltzman, J.S. )
1991-08-12
Adaptive Mesh Refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique. 14 refs., 4 figs.
Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan
2016-01-01
Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery. PMID:26577253
The generation of hexahedral meshes for assembly geometries: A survey
TAUTGES,TIMOTHY J.
2000-02-14
The finite element method is being used today to model component assemblies in a wide variety of application areas, including structural mechanics, fluid simulations, and others. Generating hexahedral meshes for these assemblies usually requires the use of geometry decomposition, with different meshing algorithms applied to different regions. While the primary motivation for this approach remains the lack of an automatic, reliable all-hexahedral meshing algorithm, requirements in mesh quality and mesh configuration for typical analyses are also factors. For these reasons, this approach is also sometimes required when producing other types of unstructured meshes. This paper will review progress to date in automating many parts of the hex meshing process, which has halved the time to produce all-hex meshes for large assemblies. Particular issues which have been exposed due to this progress will also be discussed, along with their applicability to the general unstructured meshing problem.
Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching.
Park, Jae-Hyeung; Yeom, Han-Ju; Kim, Hee-Jae; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo
2015-03-23
Mesh-based computer generated hologram enables realistic and efficient representation of three-dimensional scene. However, the dark line artifacts on the boundary between neighboring meshes are frequently observed, degrading the quality of the reconstruction. In this paper, we propose a simple technique to remove the dark line artifacts by matching the phase on the boundary of neighboring meshes. The feasibility of the proposed method is confirmed by the numerical and optical reconstruction of the generated hologram. PMID:25837138
Generating meshes for finite-difference analysis using a solid modeler
NASA Astrophysics Data System (ADS)
Laguna, G. W.; White, W. T.; Cabral, B. K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
Generating meshes for finite-difference analysis using a solid modeler
Laguna, G.W.; White, W.T.; Cabral, B.K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
A Case Study of Communication Optimizations on 3D Mesh Interconnects
NASA Astrophysics Data System (ADS)
Bhatelé, Abhinav; Bohm, Eric; Kalé, Laxmikant V.
Optimal network performance is critical to efficient parallel scaling for communication-bound applications on large machines. With wormhole routing, no-load latencies do not increase significantly with number of hops traveled. Yet, we, and others have recently shown that in presence of contention, message latencies can grow substantially large. Hence task mapping strategies should take the topology of the machine into account on large machines. In this paper, we present topology aware mapping as a technique to optimize communication on 3-dimensional mesh interconnects and hence improve performance.
3D Adaptive Mesh Refinement Simulations of Pellet Injection in Tokamaks
R. Samtaney; S.C. Jardin; P. Colella; D.F. Martin
2003-10-20
We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven method of refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pellet sizes relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source terms in the continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit upwinding treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the magnetic field. The Chombo framework is used for AMR. The role of the E x B drift in mass redistribution during inside and outside pellet injections is emphasized.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function. PMID:20096049
3D Boltzmann Simulation of the Io's Plasma Environment with Adaptive Mesh and Particle Refinement
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Combi, M. R.
2002-12-01
The global dynamics of the ionized and neutral components in the environment of Io plays an important role in the interaction of Jupiter's corotating magnetospheric plasma with Io [Combi et al., 2002; 1998; Kabin et al., 2001]. The stationary simulation of this problem was done in the MHD [Combi et al., 1998; Linker et al, 1998; Kabin et al., 2001] and the electrodynamic [Saur et al., 1999] approaches. In this report, we develop a method of kinetic ion-neutral simulation, which is based on a multiscale adaptive mesh, particle and algorithm refinement. This method employs the fluid description for electrons whereas for ions the drift-kinetic and particle approaches are used. This method takes into account charge-exchange and photoionization processes. The first results of such simulation of the dynamics of ions in the Io's environment are discussed in this report. ~ M R Combi et al., J. Geophys. Res., 103, 9071, 1998. M R Combi, T I Gombosi, K Kabin, Atmospheres in the Solar System: Comparative\\ Aeronomy. Geophys. Monograph Series, 130, 151, 2002. K Kabin et al., Planetary and Space Sci., 49, 337, 2001. J A Linker et al., J. Geophys. Res., 103(E9), 19867, 1998. J Saur et al., J. Geophys. Res., 104, 25105, 1999.
Amato, Giuseppe; Romano, Giorgio; Agrusa, Antonino; Marasa, Salvatore; Cocorullo, Gianfranco; Gulotta, Gaspare; Goetze, Thorsten; Puleio, Roberto
2015-01-01
Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response between the conventional static meshes and this 3D dynamically responsive implant, a histological comparison was planned. The aim of this study was to determine the quality of tissue incorporation in both types of implants excised after short, medium, and long periods post-implantation. The results showed large differences in the biologic responses between the two implant types. Histologically, the 3D dynamic implant showed development of tissue elements more similar to natural abdominal wall structures, such as the ingrowth of loose and well-hydrated connective tissue, well-formed vascular structures, elastic fibers, and mature nerves, with negligible or absent inflammatory response. All these characteristics were completely absent in the conventional static implants, where a persistent inflammatory reaction was associated with thin, hardened, and shrunken fibrotic scar formation. Consequently, as herniation is a degenerative process, the 3D dynamic implants, which induce regeneration of the typical groin components, seem to address its pathogenesis. PMID:25626584
McGhee, J.M.; Roberts, R.M.; Morel, J.E.
1997-06-01
A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.
Generation of 3D characterization databases in vector format
NASA Astrophysics Data System (ADS)
Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve
2001-09-01
We discuss the methodology and techniques employed in transforming our 3D characterization databases and 3D target models from our internal 3D format to a more universal 3D format. Currently our 3D characterization databases and target models are encoded in an internal custom file format that targets specific simulators set up to receive out data. In order to make our databases available to a wider audience within the modeling and simulation community, we have developed techniques to transform our databases into the more common Open Flight file format. We outline the steps taken to accomplish this. We discuss the methodology and show examples of backgrounds, object discretes, and target models. The developed characterization databases are used in digital simulations by various customers within the US Army Aviation and Missile Command (AMCOM). These databases are used in closed loop dynamic simulations to evaluate the performance of various missile systems.
Developments and trends in three-dimensional mesh generation
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1989-01-01
An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation.
Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images
NASA Astrophysics Data System (ADS)
Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.
2015-03-01
In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.
A new approach to automatic quadrilateral mesh generation
Zhou, J.M.; Shao, K.R.; Zhou, K.D.; Li, L.R. )
1993-03-01
This paper presents a new methodology for automatic quadrilateral mesh generation. It is based on a novel application of the Delaunay triangulation algorithm, by which quadrilateral meshes can be generated as easily as triangular meshes for complex domains. The relative element size method (RESM) has been used for effective a priori and a posterior control of the number and distribution of elements. A new adaptive quadrilateral mesh refinement technique, which allows specified solution accuracy to be achieved with one, at most two refinement cycles, is also proposed. Its robustness is demonstrated by examples.
Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality
Wang, Jun; Yu, Zeyun
2012-01-01
Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is provably guaranteed: the smallest dihedral angle is always greater than 5.71°. The meshes generated by our method are not only adaptive from the interior to the boundary, but also feature-sensitive on the surface with denser elements in high-curvature regions where geometric feature most likely reside. A variety of experimental results are presented to demonstrate the effectiveness and robustness of this algorithm. PMID:22328787
A fast approach for accurate content-adaptive mesh generation.
Yang, Yongyi; Wernick, Miles N; Brankov, Jovan G
2003-01-01
Mesh modeling is an important problem with many applications in image processing. A key issue in mesh modeling is how to generate a mesh structure that well represents an image by adapting to its content. We propose a new approach to mesh generation, which is based on a theoretical result derived on the error bound of a mesh representation. In the proposed method, the classical Floyd-Steinberg error-diffusion algorithm is employed to place mesh nodes in the image domain so that their spatial density varies according to the local image content. Delaunay triangulation is next applied to connect the mesh nodes. The result of this approach is that fine mesh elements are placed automatically in regions of the image containing high-frequency features while coarse mesh elements are used to represent smooth areas. The proposed algorithm is noniterative, fast, and easy to implement. Numerical results demonstrate that, at very low computational cost, the proposed approach can produce mesh representations that are more accurate than those produced by several existing methods. Moreover, it is demonstrated that the proposed algorithm performs well with images of various kinds, even in the presence of noise. PMID:18237961
NASA Astrophysics Data System (ADS)
Dawes, W. N.
This paper describes some recent improvements made to an unstructed mesh, solution-adaptive three-dimensional Navier-Stokes solver aimed at extending the range of geometric complexity which can be handled in the general context of turbomachinery. The methodology involves generation of a topologically cuboidal mesh, and then the detetion of cells which are not required to allow the formation of relatively complex geometries. This comparatively simple approach permits much of the benefits of an unstructured solution environment to be achieved with minimal complication. Solutions are presented for the highly three-dimensional flows associated with a truncated cylinder in a cross flow, a periodic array of coolant ejection holes, and the overtip leakage flow in an annular cascade of turbine blades.
High resolution 3D imaging of synchrotron generated microbeams
Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi
2015-12-15
Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.
Automated robust generation of compact 3D statistical shape models
NASA Astrophysics Data System (ADS)
Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo
2004-05-01
Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.
NASA Astrophysics Data System (ADS)
O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.
2016-03-01
Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.
Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes
NASA Astrophysics Data System (ADS)
Jofre, Lluís; Borrell, Ricard; Lehmkuhl, Oriol; Oliva, Assensi
2015-02-01
Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to ∼12× with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances.
3D proton transfer augments bio-photocurrent generation.
Rao, Siyuan; Guo, Zhibin; Liang, Dawei; Chen, Deliang; Li, Yuan; Xiang, Yan
2015-04-24
An enhancement of the photocurrent is achieved in a biohybrid nanocomposite consisting of nanovesicle reconstituted proteorhodopsin and potassium phosphotungstate nanoparticles. With the observation of an accelerated protein photocycle and elevated proton conductivity, this improvement of the photo-electric performance is attributed to the construction of a 3D proton-transfer framework. PMID:25786358
Gerhard, M.A.; Sommer, S.C.
1995-04-01
AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.
Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core
NASA Astrophysics Data System (ADS)
Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.
2009-12-01
One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.
Hexahedral mesh generation via the dual arrangement of surfaces
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatible hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.
Stern, R L; Fraass, B A; Gerhardsson, A; McShan, D L; Lam, K L
1992-01-01
A 3-D radiation therapy treatment planning system calculates dose to an entire volume of points and therefore requires a 3-D distribution of measured dose values for quality assurance and dose calculation verification. To measure such a volumetric distribution with a scanning ion chamber is prohibitively time consuming. A method is presented for the generation of a 3-D grid of dose values based on beam's-eye-view (BEV) film dosimetry. For each field configuration of interest, a set of BEV films at different depths is obtained and digitized, and the optical densities are converted to dose. To reduce inaccuracies associated with film measurement of megavoltage photon depth doses, doses on the different planes are normalized using an ion-chamber measurement of the depth dose. A 3-D grid of dose values is created by interpolation between BEV planes along divergent beam rays. This matrix of measurement-based dose values can then be compared to calculations over the entire volume of interest. This method is demonstrated for three different field configurations. Accuracy of the film-measured dose values is determined by 1-D and 2-D comparisons with ion chamber measurements. Film and ion chamber measurements agree within 2% in the central field regions and within 2.0 mm in the penumbral regions. PMID:1620042
Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh
NASA Technical Reports Server (NTRS)
Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.
2007-01-01
A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
NASA Astrophysics Data System (ADS)
Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.
2014-10-01
A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.
Adaptive mesh generation for viscous flows using Delaunay triangulation
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1988-01-01
A method for generating an unstructured triangular mesh in two dimensions, suitable for computing high Reynolds number flows over arbitrary configurations is presented. The method is based on a Delaunay triangulation, which is performed in a locally stretched space, in order to obtain very high aspect ratio triangles in the boundary layer and the wake regions. It is shown how the method can be coupled with an unstructured Navier-Stokes solver to produce a solution adaptive mesh generation procedure for viscous flows.
2011-01-01
A 63 year-old male with a huge odontogenic lesion of sinus maxillaris was treated with computer-assisted surgery. After resection of the odontogenic lesion, the sinus wall was reconstructed with a prebended 3D titanium-mesh using CAD/CAM technique. This work provides a new treatment device for maxillary reconstruction via rapid prototyping procedures. PMID:22070833
Passive intermodulation generation in wire mesh deployable reflector antennas
NASA Technical Reports Server (NTRS)
Turner, Gregory M.
1993-01-01
Deployable reflector antennas represent a proven technology with obvious benefits for mobile satellite applications. Harris Corporation has provided deployable reflector antennas for NASA's Tracking and Data Relay Satellite System (TDRSS). These antennas utilize a rigid, radial rib unfurlable reflector with a wire mesh surface. This type of mesh has been identified as a potential design risk for multichannel communications applications based on the potential for generation of Passive Intermodulation (PIM). These concerns are based on the existence of numerous, nonpermanent metal to metal contacts that are inherent to the mesh design. To address this issue, Harris has an ongoing IR&D program to characterize mesh PIM performance. This paper presents the results of the investigation into mesh PIM performance to date and provides background information on the design and performance of the Harris radial rib deployable reflector.
Extraction and applications of skeletons in finite element mesh generation.
Quadros, William Roshan
2010-05-01
This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.
The 3D Euler solutions using automated Cartesian grid generation
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.
Anisotropic adaptive mesh generation in two dimensions for CFD
Borouchaki, H.; Castro-Diaz, M.J.; George, P.L.; Hecht, F.; Mohammadi, B.
1996-12-31
This paper describes the extension of the classical Delaunay method in the case where anisotropic meshes are required such as in CFD when the modelized physic is strongly directional. The way in which such a mesh generation method can be incorporated in an adaptative loop of CFD as well as the case of multicriterium adaptation are discussed. Several concrete application examples are provided to illustrate the capabilities of the proposed method.
3D Structured Grid Generation Codes for Turbomachinery
NASA Technical Reports Server (NTRS)
Loellbach, James; Tsung, Fu-Lin
1999-01-01
This report describes the research tasks during the past year. The research was mainly in the area of computational grid generation in support of CFD analyses of turbomachinery components. In addition to the grid generation work, a numerical simulation was obtained for the flow through a centrifugal gas compressor using an unstructured Navier-Stokes solver. Other tasks involved many different turbomachinery component analyses. These analyses were performed for NASA projects or for industrial applications. The work includes both centrifugal and axial machines, single and multiple blade rows, and steady and unsteady analyses. Over the past five years, a set of structured grid generation codes were developed that allow grids to be obtained fairly quickly for the large majority of configurations we encounter. These codes do not comprise a generalized grid generation package; they are noninteractive codes specifically designed for turbomachinery blade row geometries. But because of this limited scope, the codes are small, fast, and portable, and they can be run in the batch mode on small workstations. During the past year, these programs were used to generate computational grids were modified for a wide variety of configurations. In particular, the codes or wrote supplementary codes to improve our grid generation capabilities for multiple blade row configurations. This involves generating separate grids for each blade row, and then making them match and overlap by a few grid points at their common interface so that fluid properties are communicated across the interface. Unsteady rotor/stator analyses were performed for an axial turbine, a centrifugal compressor, and a centrifugal pump. Steady-state single-blade-row analyses were made for a study of blade sweep in transonic compressors. There was also cooperation on the application of an unstructured Navier-Stokes solver for turbomachinery flow simulations. In particular, the unstructured solver was used to analyze the
Feature based volume decomposition for automatic hexahedral mesh generation
LU,YONG; GADH,RAJIT; TAUTGES,TIMOTHY J.
2000-02-21
Much progress has been made through these years to achieve automatic hexahedral mesh generation. While general meshing algorithms that can take on general geometry are not there yet; many well-proven automatic meshing algorithms now work on certain classes of geometry. This paper presents a feature based volume decomposition approach for automatic Hexahedral Mesh generation. In this approach, feature recognition techniques are introduced to determine decomposition features from a CAD model. The features are then decomposed and mapped with appropriate automatic meshing algorithms suitable for the correspondent geometry. Thus a formerly unmeshable CAD model may become meshable. The procedure of feature decomposition is recursive: sub-models are further decomposed until either they are matched with appropriate meshing algorithms or no more decomposition features are detected. The feature recognition methods employed are convexity based and use topology and geometry information, which is generally available in BREP solid models. The operations of volume decomposition are also detailed in the paper. The final section, the capability of the feature decomposer is demonstrated over some complicated manufactured parts.
PREDICTING TSUNAMIS GENERATED BY 3D GRANULAR LANDSLIDES
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.
2009-12-01
Landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region such as at Lituya Bay (1958), Papua New Guinea (1998) and Java (2006). Tsunamis generated by granular landslides were studied in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU) based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to simulate deformable granular landslides with varying geometry and kinematics. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. The landslide deformation during the impact and the subsequent underwater motion was studied by underwater cameras while the MTA provided the shapes of the slide deposits on the basin bottom. The generated waves depend on determined non-dimensional landslide and water body parameters such as the slide Froude number and relative slide shape at impact, among others. The experimental data was used to obtain predictive equations for the wave amplitudes and time periods based on landslide characteristics at impact. The partition between wave crests and troughs departed from equipartition with wave profiles dominated either by a trough or a crest depending on the source. Attenuation functions of the leading wave crest amplitude, the lateral wave runup on the hill slope, the wave length and the time period were obtained to describe the wave behavior in the near field and to quantify the wave amplitude decay away from the landslide source. The measured wave celerity of the leading wave corresponds well to the theoretical approximation of the solitary wave speed while the trailing waves are considerably
Characteristics of tsunamis generated by 3D deformable granular landslides
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.; McFall, B.
2010-12-01
Landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region. The events of 1958 Lituya Bay, 1998 Papua New Guinea and 2006 Java tsunamis are reminders of the hazards associated with impulse waves. Tsunamis generated by granular landslides were studied in the three dimensional NEES tsunami wave basin (TWB) at Oregon State University (OSU) based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to simulate landslides with varying geometry and kinematics. Granular materials were used to model deformable landslides. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. Tsunami wave generation and propagation is studied off a hill slope, in fjords and around curved headlands. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. Landslide deformation is quantified and the slide kinematics with reference to slide surface velocity distribution and slide front velocity is obtained. Empirical equations for predicting the wave amplitude, period and wavelength are obtained. The generated waves depend on determined non-dimensional landslide and water body parameters such as the slide Froude number and relative slide shape at impact, among others. Attenuation functions of the leading wave crest amplitude, the lateral wave runup on the hill slope, the wave length and the time period were obtained to describe the wave behavior in the near field and to quantify the wave amplitude decay away from the landslide source. The measured wave celerity of the leading wave corresponds well to the solitary wave speed while the trailing waves are considerably slower in propagation. The individual waves in the wave train span from
Multi Sensor Data Integration for AN Accurate 3d Model Generation
NASA Astrophysics Data System (ADS)
Chhatkuli, S.; Satoh, T.; Tachibana, K.
2015-05-01
The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
The role of the cytoskeleton in cellular force generation in 2D and 3D environments
NASA Astrophysics Data System (ADS)
Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.
2011-02-01
To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.
A simple and low-cost 3d-printed emulsion generator
NASA Astrophysics Data System (ADS)
Zhang, J. M.; Aguirre-Pablo, A. A.; Li, E. Q.; Thoroddsen, S. T.
2015-11-01
The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. Here we apply 3D printing technology to fabricate a simple and low-cost 3D printed microfluidic device for emulsion generation without the need for surface treatment on the channel walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate uniform scaling laws for emulsion droplets generated in different regimes for the first time, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in material and chemical engineering.
Computer-generated hologram for 3D scene from multi-view images
NASA Astrophysics Data System (ADS)
Chang, Eun-Young; Kang, Yun-Suk; Moon, KyungAe; Ho, Yo-Sung; Kim, Jinwoong
2013-05-01
Recently, the computer generated hologram (CGH) calculated from real existing objects is more actively investigated to support holographic video and TV applications. In this paper, we propose a method of generating a hologram of the natural 3-D scene from multi-view images in order to provide motion parallax viewing with a suitable navigation range. After a unified 3-D point source set describing the captured 3-D scene is obtained from multi-view images, a hologram pattern supporting motion-parallax is calculated from the set using a point-based CGH method. We confirmed that 3-D scenes are faithfully reconstructed using numerical reconstruction.
3D registration through pseudo x-ray image generation.
Domergue, G; Viant, W J
2000-01-01
One of the less effective processes within current Computer Assisted Surgery systems, utilizing pre-operative planning, is the registration of the plan with the intra-operative position of the patient. The technique described in this paper requires no digitisation of anatomical features or fiducial markers but instead relies on image matching between pseudo and real x-ray images generated by a virtual and a real image intensifier respectively. The technique is an extension to the work undertaken by Weese [1]. PMID:10977585
Georeferenced LiDAR 3D Vine Plantation Map Generation
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952
Georeferenced LiDAR 3D vine plantation map generation.
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-11-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-01-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
3D registration through pseudo x-ray image generation.
Viant, W J; Barnel, F
2001-01-01
Registration of a pre operative plan with the intra operative position of the patient is still a largely unsolved problem. Current techniques generally require fiducials, either artificial or anatomic, to achieve the registration solution. Invariably these fiducials require implantation and/or direct digitisation. The technique described in this paper requires no digitisation or implantation of fiducials, but instead relies on the shape and form of the anatomy through a fully automated image comparison process. A pseudo image, generated from a virtual image intensifier's view of a CT dataset, is intra operatively compared with a real x-ray image. The principle is to align the virtual with the real image intensifier. The technique is an extension to the work undertaken by Domergue [1] and based on original ideas by Weese [4]. PMID:11317805
Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera
NASA Astrophysics Data System (ADS)
Kim, H.; Yoon, W.; Kim, T.
2016-06-01
In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
A General-Purpose Mesh Generator for Finite Element Codes.
1984-02-28
Version 00 INGEN is a general-purpose mesh generator for use in conjunction with two and three dimensional finite element programs. The basic components of INGEN are surface and three-dimensional region generators that use linear-blending interpolation formulae. These generators are based on an i, j, k index scheme, which is used to number nodal points, construct elements, and develop displacement and traction boundary conditions.
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
2011-01-01
Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S
2015-01-01
Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons. PMID:26121063
NASA Astrophysics Data System (ADS)
Zehner, Björn; Börner, Jana H.; Görz, Ines; Spitzer, Klaus
2015-06-01
Subsurface processing numerical simulations require accurate discretization of the modeling domain such that the geological units are represented correctly. Unstructured tetrahedral grids are particularly flexible in adapting to the shape of geo-bodies and are used in many finite element codes. In order to generate a tetrahedral mesh on a 3D geological model, the tetrahedrons have to belong completely to one geological unit and have to describe geological boundaries by connected facets of tetrahedrons. This is especially complicated at the contact points between several units and for irregular sharp-shaped bodies, especially in case of faulted zones. This study develops, tests and validates three workflows to generate a good tetrahedral mesh from a geological basis model. The tessellation of the model needs (i) to be of good quality to guarantee a stable calculation, (ii) to include certain nodes to apply boundary conditions for the numerical solution, and (iii) support local mesh refinement. As a test case we use the simulation of a transient electromagnetic measurement above a salt diapir. We can show that the suggested workflows lead to a tessellation of the structure on which the simulation can be run robustly. All workflows show advantages and disadvantages with respect to the workload, the control the user has over the resulting mesh and the skills in software handling that are required.
A Finite Element Mesh Generation Code System with On-Line Graphic Display.
1980-05-30
Version 00 LOOM-P is a two-dimensional mesh generation program which produces a best finite element mesh network for a reactor core geometry. This is an on-line automatic mesh generating program which can produce triangular mesh elements as an edit program to QMESH-RENUM.
3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.
Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan
2016-01-01
We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative "dark" modes. These 3D conductive "dark" modes strongly interfere with the "bright" resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109
Approaches to the automatic generation and control of finite element meshes
NASA Technical Reports Server (NTRS)
Shephard, Mark S.
1987-01-01
The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.
NASA Technical Reports Server (NTRS)
Marvriplis, D. J.; Venkatakrishnan, V.
1995-01-01
An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.
A mesh generator for tetrahedral elements using Delaunay triangulation
Yuan, J.S.; Fitzsimons, C.J. )
1993-03-01
A tetrahedral mesh generator has been developed. The generator is based on the Delaunay triangulation which is implemented by employing the insertion polyhedron algorithm. In this paper some new methods to deal with the problems associated with the three-dimensional Delaunay triangulation and the insertion polyhedron algorithm are presented: degeneracy, the crossing situation, identification of the internal elements and internal point generation. The generator works both for convex and non-convex domains, including those with high aspect-ratio subdomains. Some examples are given in this paper to illustrate the capability of the generator.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. PMID:27167030
Frog: a FRee Online druG 3D conformation generator.
Leite, T Bohme; Gomes, D; Miteva, M A; Chomilier, J; Villoutreix, B O; Tufféry, P
2007-07-01
In silico screening methods based on the 3D structures of the ligands or of the proteins have become an essential tool to facilitate the drug discovery process. To achieve such process, the 3D structures of the small chemical compounds have to be generated. In addition, for ligand-based screening computations or hierarchical structure-based screening projects involving a rigid-body docking step, it is necessary to generate multi-conformer 3D models for each input ligand to increase the efficiency of the search. However, most academic or commercial compound collections are delivered in 1D SMILES (simplified molecular input line entry system) format or in 2D SDF (structure data file), highlighting the need for free 1D/2D to 3D structure generators. Frog is an on-line service aimed at generating 3D conformations for drug-like compounds starting from their 1D or 2D descriptions. Given the atomic constitution of the molecules and connectivity information, Frog can identify the different unambiguous isomers corresponding to each compound, and generate single or multiple low-to-medium energy 3D conformations, using an assembly process that does not presently consider ring flexibility. Tests show that Frog is able to generate bioactive conformations close to those observed in crystallographic complexes. Frog can be accessed at http://bioserv.rpbs.jussieu.fr/Frog.html. PMID:17485475
A finite-element mesh generator based on growing neural networks.
Triantafyllidis, D G; Labridis, D P
2002-01-01
A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance. PMID:18244543
Integration of automatic mesh generation for simulation of contaminants in soils and groundwater
Sullivan, J.M. Jr.
1994-06-18
An automatic mesh generator was modified and implemented that conforms to arbitrarily shaped two dimensional geometries. The grid generator requires no user intervention and can handle multiple component systems. The routine is well suited to dynamic situations experiencing large geometrical change such as in solidification or ground freezing processes. Additionally, the system has the option to output its results in a 2D Groundwater Modeling System format and a 3D extruded prism layer compatible with the GMS interface and the Waterways Experimental Station`s 3DFEMFAT finite element code for flow and contaminant transport in saturated and unsaturated soils. A uniform equilateral triangular grid overlays the physical domain. Increased resolution can be specified in areas of interest or in areas undergoing large geometrical change such as occurs during solidification. All elements exterior to the physical domain are eliminated. The elements closest to physical boundaries are adjusted to conform to the physical shape, and a smoothing operator is employed to assimilate these adjustments. Interior boundaries of multiple component systems are retained. This mesh generation strategy virtually eliminates user interaction which reduces the actual time required for solution substantially. The adaptive finite element mesh generator was applied to an illustrative subsurface soil situation. Therein, the multiple levels of resolution are presented as well as the various output formats.
Blacker, Teddy Dean; Staten, Matthew L.; Kerr, Robert A.; Owen, Steven James
2010-03-01
The generation of all-hexahedral finite element meshes has been an area of ongoing research for the past two decades and remains an open problem. Unconstrained plastering is a new method for generating all-hexahedral finite element meshes on arbitrary volumetric geometries. Starting from an unmeshed volume boundary, unconstrained plastering generates the interior mesh topology without the constraints of a pre-defined boundary mesh. Using advancing fronts, unconstrained plastering forms partially defined hexahedral dual sheets by decomposing the geometry into simple shapes, each of which can be meshed with simple meshing primitives. By breaking from the tradition of previous advancing-front algorithms, which start from pre-meshed boundary surfaces, unconstrained plastering demonstrates that for the tested geometries, high quality, boundary aligned, orientation insensitive, all-hexahedral meshes can be generated automatically without pre-meshing the boundary. Examples are given for meshes from both solid mechanics and geotechnical applications.
Extending a CAD-Based Cartesian Mesh Generator for the Lattice Boltzmann Method
Cantrell, J Nathan; Inclan, Eric J; Joshi, Abhijit S; Popov, Emilian L; Jain, Prashant K
2012-01-01
This paper describes the development of a custom preprocessor for the PaRAllel Thermal Hydraulics simulations using Advanced Mesoscopic methods (PRATHAM) code based on an open-source mesh generator, CartGen [1]. PRATHAM is a three-dimensional (3D) lattice Boltzmann method (LBM) based parallel flow simulation software currently under development at the Oak Ridge National Laboratory. The LBM algorithm in PRATHAM requires a uniform, coordinate system-aligned, non-body-fitted structured mesh for its computational domain. CartGen [1], which is a GNU-licensed open source code, already comes with some of the above needed functionalities. However, it needs to be further extended to fully support the LBM specific preprocessing requirements. Therefore, CartGen is being modified to (i) be compiler independent while converting a neutral-format STL (Stereolithography) CAD geometry to a uniform structured Cartesian mesh, (ii) provide a mechanism for PRATHAM to import the mesh and identify the fluid/solid domains, and (iii) provide a mechanism to visually identify and tag the domain boundaries on which to apply different boundary conditions.
Bauer, Carl A.; Werner, Gregory R.; Cary, John R.
2011-03-01
A new frequency-domain electromagnetics algorithm is developed for simulating curved interfaces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant frequencies. The algorithm is systematically derived using the finite integration formulation of Maxwell's equations on the Yee mesh. Second-order convergence of the error in resonant frequencies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show second-order convergence of frequency error; the convergence is sufficiently smooth that Richardson extrapolation yields roughly third-order convergence. The convergence of electric fields near the dielectric interface for the analytic problem is also presented.
NASA Astrophysics Data System (ADS)
Huang, Sujuan; Wang, Duocheng; He, Chao
2012-11-01
A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.
Towards a theory of automated elliptic mesh generation
NASA Technical Reports Server (NTRS)
Cordova, J. Q.
1992-01-01
The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.
RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS
Donna Post Guillen; George L. Mesina; Joshua M. Hykes
2006-06-01
RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Luo, Y.; Morency, C.; Tromp, J.
2008-12-01
Seismic-wave propagation in exploration-industry settings has seen major research and development efforts for decades, yet large-scale applications have often been limited to 2D or 3D finite-difference, (visco- )acoustic wave propagation due to computational limitations. We explore the possibility of including all relevant physical signatures in the wavefield using the spectral- element method (SPECFEM3D, SPECFEM2D), thereby accounting for acoustic, (visco-)elastic, poroelastic, anisotropic wave propagation in meshes which honor all crucial discontinuities. Mesh design is the crux of the problem, and we use CUBIT (Sandia Laboratories) to generate unstructured quadrilateral 2D and hexahedral 3D meshes for these complex background models. While general hexahedral mesh generation is an unresolved problem, we are able to accommodate most of the relevant settings (e.g., layer-cake models, salt bodies, overthrusting faults, and strong topography) with respectively tailored workflows. 2D simulations show localized, characteristic wave effects due to these features that shall be helpful in designing survey acquisition geometries in a relatively economic fashion. We address some of the fundamental issues this comprehensive modeling approach faces regarding its feasibility: Assessing geological structures in terms of the necessity to honor the major structural units, appropriate velocity model interpolation, quality control of the resultant mesh, and computational cost for realistic settings up to frequencies of 40 Hz. The solution to this forward problem forms the basis for subsequent 2D and 3D adjoint tomography within this context, which is the subject of a companion paper.
3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems
NASA Astrophysics Data System (ADS)
Kim, Chul; Rassau, Alex; Lachowicz, Stefan; Lee, Mike Myung-Ok; Eshraghian, Kamran
2006-12-01
This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D) vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch) through an indium bump interconnection array (IBIA). The configurable array processor (CAP) is an array of heterogeneous processing elements (PEs), while the intelligent configurable switch (ICS) comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA) controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.
Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.
Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M
2014-08-29
Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration. PMID:25170155
Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F
2014-04-01
A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured. PMID:24562069
Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao
2014-09-01
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989
Lee, Vivian K.; Lanzi, Alison M.; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao
2014-01-01
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns. PMID:25484989
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D
Cliff B. Davis
2010-09-01
RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.
Nava, José L; Sirés, Ignasi; Brillas, Enric
2014-01-01
This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed. PMID:24737017
A Novel Coarsening Method for Scalable and Efficient Mesh Generation
Yoo, A; Hysom, D; Gunney, B
2010-12-02
matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size
Computer generated holograms of 3D objects with reduced number of projections
NASA Astrophysics Data System (ADS)
Huang, Su-juan; Liu, Dao-jin; Zhao, Jing-jing
2010-11-01
A new method for synthesizing computer-generated holograms of 3D objects has been proposed with reduced number of projections. According to the principles of paraboloid of revolution in 3D Fourier space, spectra information of 3D objects is gathered from projection images. We record a series of real projection images of 3D objects under incoherent white-light illumination by circular scanning method, and synthesize interpolated projection images by motion estimation and compensation between adjacent real projection images, then extract the spectra information of the 3D objects from all projection images in circle form. Because of quantization error, information extraction in two circles form is better than in single circle. Finally hologram is encoded based on computer-generated holography using a conjugate-symmetric extension. Our method significantly reduces the number of required real projections without increasing much of the computing time of the hologram and degrading the reconstructed image. Numerical reconstruction of the hologram shows good results.
3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials
NASA Astrophysics Data System (ADS)
Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan
2016-06-01
We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.
3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials
Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan
2016-01-01
We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations. PMID:27296109
Unconstrained paving and plastering method for generating finite element meshes
Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert
2010-03-02
Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.
NASA Astrophysics Data System (ADS)
Casarotti, E.; Magnoni, F.; Le Goff, N.; Martin, R.; Komatitsch, D.; Plesch, A.; Nissen-Meyer, T.; Luo, Y.; Tromp, J.
2008-12-01
The Spectral Element Method (SEM) has been successfully applied to simulate ground motion in Southern California and the Los Angeles Basin for period up to 2 sec. Nowadays, simulations at shorter period are computationally feasible, but they require both a realistic geological model and a detailed unstructured hexahedral mesh. Aiming to include the effect on the seismic propagation due to subsurface geology, topography and low- velocity sedimentary basins, we have generated a 3D unstructured hexahedral mesh of Southern California suitable for shorter period simulations. The grid honors an updated description of the Salton Sea and of the sedimentary basins of Los Angeles, San Fernando and Ventura. We discuss some criteria to determine the geological details that need to be honored, analyzing 2D cross sections of the region for simulations at 10 Hz. We have focused in particular on a profile crossing the Santa Monica Mountains, investigating a possible lensing effect due to a large overthrust. The grid is nearly automatically generated on a massively parallel machine by GEOCUBIT, a Python script collection based upon CUBIT (Sandia Laboratory, www.cubit.sandia.gov). CUBIT is an advanced 3D unstructured hexahedral mesh generator that offers tremendous opportunities in assessing the quality of a mesh both in terms of geometrical complexity and numerical accuracy. For 3D simulations, we have applied SPECFEM3D, which accommodates anisotropy attenuation, free surface topography, fluid-solid boundaries and absorbing boundary conditions. For the 2D simulations we use SPECFEM2D, developed by Roland Martin, Dimitri Komatitsch, Céline Blitz and Nicolas Le Goff (2008).
Automatic generation of 3D motifs for classification of protein binding sites
Nebel, Jean-Christophe; Herzyk, Pawel; Gilbert, David R
2007-01-01
Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that these 3D patterns are not
Unified framework for generation of 3D web visualization for mechatronic systems
NASA Astrophysics Data System (ADS)
Severa, O.; Goubej, M.; Konigsmarkova, J.
2015-11-01
The paper deals with development of a unified framework for generation of 3D visualizations of complex mechatronic systems. It provides a high-fidelity representation of executed motion by allowing direct employment of a machine geometry model acquired from a CAD system. Open-architecture multi-platform solution based on latest web standards is achieved by utilizing a web browser as a final 3D renderer. The results are applicable both for simulations and development of real-time human machine interfaces. Case study of autonomous underwater vehicle control is provided to demonstrate the applicability of the proposed approach.
Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.
Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero
2016-07-01
We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams. PMID:27367071
NASA Astrophysics Data System (ADS)
Takahashi, M.; Kawabata, Y.; Washitani, T.; Tanaka, S.; Maeda, S.; Mimotogi, S.
2014-03-01
In progress of lithography technologies, the importance of Mask3D analysis has been emphasized because the influence of mask topography effects is not avoidable to be increased explosively. An electromagnetic filed simulation method, such as FDTD, RCWA and FEM, is applied to analyze those complicated phenomena. We have investigated Constrained Interpolation Profile (CIP) method, which is one of the Method of Characteristics (MoC), for Mask3D analysis in optical lithography. CIP method can reproduce the phase of propagating waves with less numerical error by using high order polynomial function. The restrictions of grid distance are relaxed with spatial grid. Therefore this method reduces the number of grid points in complex structure. In this paper, we study the feasibility of CIP scheme applying a non-uniform and spatial-interpolated grid to practical mask patterns. The number of grid points might be increased in complex layout and topological structure since these structures require a dense grid to remain the fidelity of each design. We propose a spatial interpolation method based on CIP method same as time-domain interpolation to reduce the number of grid points to be computed. The simulation results of two meshing methods with spatial interpolation are shown.
2012-01-04
GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less
FEATURE-BASED MULTIBLOCK FINITE ELEMENT MESH GENERATION
Shivanna, Kiran H.; Tadepalli, Srinivas C.; Grosland, Nicole M.
2010-01-01
Hexahedral finite element mesh development for anatomic structures and biomedical implants can be cumbersome. Moreover, using traditional meshing techniques, detailed features may be inadequately captured. In this paper, we describe methodologies to handle multi-feature datasets (i.e., feature edges and surfaces). Coupling multi-feature information with multiblock meshing techniques has enabled anatomic structures, as well as orthopaedic implants, to be readily meshed. Moreover, the projection process, node and element set creation are automated, thus reducing the user interaction during model development. To improve the mesh quality, Laplacian- and optimization-based mesh improvement algorithms have been adapted to the multi-feature datasets. PMID:21076650
Radon transform based automatic metal artefacts generation for 3D threat image projection
NASA Astrophysics Data System (ADS)
Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.; Mouton, Andre
2013-10-01
Threat Image Projection (TIP) plays an important role in aviation security. In order to evaluate human security screeners in determining threats, TIP systems project images of realistic threat items into the images of the passenger baggage being scanned. In this proof of concept paper, we propose a 3D TIP method which can be integrated within new 3D Computed Tomography (CT) screening systems. In order to make the threat items appear as if they were genuinely located in the scanned bag, appropriate CT metal artefacts are generated in the resulting TIP images according to the scan orientation, the passenger bag content and the material of the inserted threat items. This process is performed in the projection domain using a novel methodology based on the Radon Transform. The obtained results using challenging 3D CT baggage images are very promising in terms of plausibility and realism.
NASA Astrophysics Data System (ADS)
Mutapcic, Emir; Iovenitti, Pio G.; Hayes, Jason P.
2002-11-01
The purpose of this research project is to improve the capability of the laser micromachinning process, so that any desired 3D surface can be produced by taking the 3D information from a CAD system and automatically generating the NC part programs. In addition, surface quality should be able to be controlled by specifying optimised parameters. This paper presents the algorithms and a software system, which processes 3D geometry in an STL file format from a CAD system and produces the NC part program to mill the surface using the Excimer laser ablation process. Simple structures are used to demonstrate the prototype system's part programming capabilities, and an actual surface is machined.
Generation of geometric representations of 3D objects in CAD/CAM by digital photogrammetry
NASA Astrophysics Data System (ADS)
Li, Rongxing
This paper presents a method for the generation of geometric representations of 3D objects by digital photogrammetry. In CAD/CAM systems geometric modelers are usually used to create three-dimensional (3D) geometric representations for design and manufacturing purposes. However, in cases where geometric information such as dimensions and shapes of objects are not available, measurements of physically existing objects become necessary. In this paper, geometric parameters of primitives of 3D geometric representations such as Boundary Representation (B-rep), Constructive Solid Geometry (CSG), and digital surface models are determined by digital image matching techniques. An algorithm for reconstruction of surfaces with discontinuities is developed. Interfaces between digital photogrammetric data and these geometric representations are realized. This method can be applied to design and manufacturing in mechanical engineering, automobile industry, robot technology, spatial information systems and others.
The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D
Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim
2006-07-01
Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)
Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range.
Wei, Xuli; Liu, Changming; Niu, Liting; Zhang, Zhongqi; Wang, Kejia; Yang, Zhengang; Liu, Jinsong
2015-12-20
We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams. PMID:26837031
Sabhachandani, P; Motwani, V; Cohen, N; Sarkar, S; Torchilin, V; Konry, T
2016-02-01
Here we describe a robust, microfluidic technique to generate and analyze 3D tumor spheroids, which resembles tumor microenvironment and can be used as a more effective preclinical drug testing and screening model. Monodisperse cell-laden alginate droplets were generated in polydimethylsiloxane (PDMS) microfluidic devices that combine T-junction droplet generation and external gelation for spheroid formation. The proposed approach has the capability to incorporate multiple cell types. For the purposes of our study, we generated spheroids with breast cancer cell lines (MCF-7 drug sensitive and resistant) and co-culture spheroids of MCF-7 together with a fibroblast cell line (HS-5). The device has the capability to house 1000 spheroids on chip for drug screening and other functional analysis. Cellular viability of spheroids in the array part of the device was maintained for two weeks by continuous perfusion of complete media into the device. The functional performance of our 3D tumor models and a dose dependent response of standard chemotherapeutic drug, doxorubicin (Dox) and standard drug combination Dox and paclitaxel (PCT) was analyzed on our chip-based platform. Altogether, our work provides a simple and novel, in vitro platform to generate, image and analyze uniform, 3D monodisperse alginate hydrogel tumors for various omic studies and therapeutic efficiency screening, an important translational step before in vivo studies. PMID:26686985
Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation
NASA Astrophysics Data System (ADS)
Rhee, S.; Kim, T.
2016-06-01
3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.
Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.
2002-01-01
This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.
Unstructured Grid Generation for Complex 3D High-Lift Configurations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
The application of an unstructured grid methodology on a three-dimensional high-lift configuration is presented. The focus of this paper is on the grid generation aspect of an integrated effort for the development of an unstructured-grid computational fluid dynamics (CFD) capability at the NASA Langley Research Center. The meshing approach is based on tetrahedral grids generated by the advancing-front and the advancing-layers procedures. The capability of the method for solving high-lift problems is demonstrated on an aircraft model referred to as the energy efficient transport configuration. The grid generation issues, including the pros and cons of the present approach, are discussed in relation to the high-lift problems. Limited viscous flow results are presented to demonstrate the viability of the generated grids. A corresponding Navier-Stokes solution capability, along with further computations on the present grid, is presented in a companion SAE paper.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with
NASA Astrophysics Data System (ADS)
Patchimpattapong, Apisit
This dissertation develops an expert system for generating an effective spatial mesh distribution for the discrete ordinates particle transport method in a parallel environment. This expert system consists of two main parts: (1) an algorithm for generating an effective mesh distribution in a serial environment, and (2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. The mesh generation algorithm consists of four steps: creation of a geometric model as partitioned into coarse meshes, determination of an approximate flux shape, selection of appropriate differencing schemes, and generation of an effective fine mesh distribution. A geometric model was created using AutoCAD. A parallel code PENFC (Parallel Environment Neutral-Particle First Collision) has been developed to calculate an uncollided flux in a 3-D Cartesian geometry. The appropriate differencing schemes were selected based on the uncollided flux distribution using a least squares methodology. A menu-driven serial code PENXMSH has been developed to generate an effective spatial mesh distribution that preserves problem geometry and physics. The domain decomposition selection process involves evaluation of the four factors that affect parallel performance, which include number of processors and memory available per processor, load balance, granularity, and degree-of-coupling among processors. These factors are used to derive a parallel-performance-index that provides expected performance of a parallel algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems: the VENUS-3 experimental facility and the BWR core shroud.
Three-dimensional modeling and highly refined mesh generation of the aorta artery and its tunics
NASA Astrophysics Data System (ADS)
Cazotto, J. A.; Neves, L. A.; Machado, J. M.; Momente, J. C.; Shiyou, Y.; Godoy, M. F.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.
2013-02-01
This paper describes strategies and techniques to perform modeling and automatic mesh generation of the aorta artery and its tunics (adventitia, media and intima walls), using open source codes. The models were constructed in the Blender package and Python scripts were used to export the data necessary for the mesh generation in TetGen. The strategies proposed are able to provide meshes of complicated and irregular volumes, with a large number of mesh elements involved (12,000,000 tetrahedrons approximately). These meshes can be used to perform computational simulations by Finite Element Method (FEM).
Utech, Stefanie; Prodanovic, Radivoje; Mao, Angelo S; Ostafe, Raluca; Mooney, David J; Weitz, David A
2015-08-01
Monodisperse alginate microgels (10-50 μm) are created via droplet-based microfluidics by a novel crosslinking procedure. Ionic crosslinking of alginate is induced by release of chelated calcium ions. The process separates droplet formation and gelation reaction enabling excellent control over size and homogeneity under mild reaction conditions. Living mesenchymal stem cells are encapsulated and cultured in the generated 3D microenvironments. PMID:26039892
Automation of three-dimensional structured mesh generation for turbomachinery blade passages
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Prueger, George H.
1995-01-01
Hybrid tools have been developed which greatly reduce the time required to generate three-dimensional structured CFD meshes for turbomachinery blade passages. RAGGS, an existing Rockwell proprietary, general purpose mesh generation and visualization system, provides the starting point and framework for tool development. Utilities which manipulate and interface with RAGGS tools have been developed to (1) facilitate blade geometry inputs from point or CAD representations, (2) automate auxiliary surface creation, and (3) streamline and automate edge, surface, and subsequent volume mesh generation from minimal inputs. The emphasis of this approach has been to maintain all the functionality of the general purpose mesh generator while simultaneously eliminating the bulk of the repetitive and tediuos manual steps in the mesh generation process. Using this approach, mesh generation cycle times have been reduced from the order of days down to the order of hours.
NASA Astrophysics Data System (ADS)
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-01
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Generation of 3-D surface maps in waste storage silos using a structured light source
NASA Technical Reports Server (NTRS)
Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.
1992-01-01
Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.
NASA Astrophysics Data System (ADS)
Papadakis, A. P.; Georghiou, G. E.; Metaxas, A. C.
2008-12-01
A new adaptive mesh generator has been developed and used in the analysis of high-pressure gas discharges, such as avalanches and streamers, reducing computational times and computer memory needs significantly. The new adaptive mesh generator developed, uses normalized error indicators, varying from 0 to 1, to guarantee optimal mesh resolution for all carriers involved in the analysis. Furthermore, it uses h- and r-refinement techniques such as mesh jiggling, edge swapping and node addition/removal to develop an element quality improvement algorithm that improves the mesh quality significantly and a fast and accurate algorithm for interpolation between meshes. Finally, the mesh generator is applied in the characterization of the transition from a single electron to the avalanche and streamer discharges in high-voltage, high-pressure gas discharges for dc 1 mm gaps, RF 1 cm point-plane gaps and parallel-plate 40 MHz configurations, in ambient atmospheric air.
4DCBCT-based motion modeling and 3D fluoroscopic image generation for lung cancer radiotherapy
NASA Astrophysics Data System (ADS)
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Berbeco, Ross; Lewis, John
2015-03-01
A method is developed to build patient-specific motion models based on 4DCBCT images taken at treatment time and use them to generate 3D time-varying images (referred to as 3D fluoroscopic images). Motion models are built by applying Principal Component Analysis (PCA) on the displacement vector fields (DVFs) estimated by performing deformable image registration on each phase of 4DCBCT relative to a reference phase. The resulting PCA coefficients are optimized iteratively by comparing 2D projections captured at treatment time with projections estimated using the motion model. The optimized coefficients are used to generate 3D fluoroscopic images. The method is evaluated using anthropomorphic physical and digital phantoms reproducing real patient trajectories. For physical phantom datasets, the average tumor localization error (TLE) and (95th percentile) in two datasets were 0.95 (2.2) mm. For digital phantoms assuming superior image quality of 4DCT and no anatomic or positioning disparities between 4DCT and treatment time, the average TLE and the image intensity error (IIE) in six datasets were smaller using 4DCT-based motion models. When simulating positioning disparities and tumor baseline shifts at treatment time compared to planning 4DCT, the average TLE (95th percentile) and IIE were 4.2 (5.4) mm and 0.15 using 4DCT-based models, while they were 1.2 (2.2) mm and 0.10 using 4DCBCT-based ones, respectively. 4DCBCT-based models were shown to perform better when there are positioning and tumor baseline shift uncertainties at treatment time. Thus, generating 3D fluoroscopic images based on 4DCBCT-based motion models can capture both inter- and intra- fraction anatomical changes during treatment.
Advances in Parallelization for Large Scale Oct-Tree Mesh Generation
NASA Technical Reports Server (NTRS)
O'Connell, Matthew; Karman, Steve L.
2015-01-01
Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.
Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A.; Itoh, Munenari; Christiano, Angela M.
2015-01-01
The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes. PMID:26308443
Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant
Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson
2011-01-01
Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.
NASA Astrophysics Data System (ADS)
Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.
2007-05-01
Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the "Numisheet'05 Benchmark♯3", which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is
NASA Astrophysics Data System (ADS)
Zhang, Qi-Hua
2015-10-01
Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.
Optical Breast Shape Capture and Finite Element Mesh Generation for Electrical Impedance Tomography
Forsyth, J.; Borsic, A.; Halter, R.J.; Hartov, A.; Paulsen, K.D.
2011-01-01
X-Ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because Mammograms expose patients to ionizing radiation. Electrical Impedance Tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient’s breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis. PMID:21646711
Pamgen, a library for parallel generation of simple finite element meshes.
Foucar, James G.; Drake, Richard Roy; Hensinger, David M.; Gardiner, Thomas Anthony
2008-04-01
Generating finite-element meshes is a serious bottleneck for large parallel simulations. When mesh generation is limited to serial machines and element counts approach a billion, this bottleneck becomes a roadblock. Pamgen is a parallel mesh generation library that allows on-the-fly scalable generation of hexahedral and quadrilateral finite element meshes for several simple geometries. It has been used to generate more that 1.1 billion elements on 17,576 processors. Pamgen generates an unstructured finite element mesh on each processor at the start of a simulation. The mesh is specified by commands passed to the library as a 'C'-programming language string. The resulting mesh geometry, topology, and communication information can then be queried through an API. pamgen allows specification of boundary condition application regions using sidesets (element faces) and nodesets (collections of nodes). It supports several simple geometry types. It has multiple alternatives for mesh grading. It has several alternatives for the initial domain decomposition. Pamgen makes it easy to change details of the finite element mesh and is very useful for performance studies and scoping calculations.
Inflight performance of a second-generation photon-counting 3D imaging lidar
NASA Astrophysics Data System (ADS)
Degnan, John; Machan, Roman; Leventhal, Ed; Lawrence, David; Jodor, Gabriel; Field, Christopher
2008-04-01
Sigma Space Corporation has recently developed a compact 3D imaging and polarimetric lidar suitable for use in a small aircraft or mini-UAV. A frequency-doubled Nd:YAG microchip laser generates 6 microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the 532 nm beam into a 10x10 array of Gaussian beamlets, each containing about 1 mW of laser power (50 nJ @ 20 kHz). The reflected radiation in each beamlet is imaged by the receive optics onto individual pixels of a high efficiency, 10x10 pixel, multistop detector. Each pixel is then input to one channel of a 100 channel, multistop timer demonstrated to have a 93 picosecond timing (1.4 cm range) resolution and an event recovery time of only 1.6 nsec. Thus, each green laser pulse produces a 100 pixel volumetric 3D image. The residual infrared energy at 1064 nm is used for polarimetry. The scan pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight. In both rooftop and preliminary flight tests, the lidar has produced high spatial resolution 3D images of terrain, buildings, tree structures, power lines, and bridges with a data acquisition rate up to 2.2 million multistop 3D pixels per second. Current tests are aimed at defining the lidar's ability to image through water columns and tree canopies.
Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan
2012-02-01
Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties. PMID:22629879
A new pillared-layer 3D coordination polymer involving in situ generated formate
NASA Astrophysics Data System (ADS)
Xia, Yu-Pei; Li, Yun-Wu; Li, Da-Cheng; Du, Yu-Chang; Yao, Qing-Xia; Dou, Jian-Min
2015-02-01
A new Cd-based coordination polymer, [Cd(cpt)(HCOO)]n (1), has been synthesized from 1-(4-carboxyphenyl)-1,2,4-triazole) ligand (Hcpt). The structure was characterized through X-ray crystallography, elemental analysis, and IR spectrum. Compound 1 presents a three-dimensional (3D) pillared-layer structure constructed by metal-formate layers and cpt- ligands. Moreover, the unusual formate anions are generated in situ from the decomposition of DMF precursors. The fluorescence property of 1 in solid state was also researched.
Monte Carlo generators for studies of the 3D structure of the nucleon
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
CC-Modeler: a topology generator for 3-D city models
NASA Astrophysics Data System (ADS)
Gruen, Armin; Wang, Xinhua
In this paper, we introduce a semi-automated topology generator for 3-D objects, CC-Modeler (CyberCity Modeler). Given the data as point clouds measured on Analytical Plotters or Digital Stations, we present a new method for fitting planar structures to the measured sets of point clouds. While this topology generator has been originally designed to model buildings, it can also be used for other objects, which may be approximated by polyhedron surfaces. We have used it so far for roads, rivers, parking lots, ships, etc. The CC-Modeler is a generic topology generator. The problem of fitting planar faces to point clouds is treated as a Consistent Labelling problem, which is solved by probabilistic relaxation. Once the faces are defined and the related points are determined, we apply a simultaneous least-squares adjustment in order to fit the faces jointly to the given measurements in an optimal way. We first present the processing flow of the CC-Modeler. Then, the algorithm of structuring the 3-D point data is outlined. Finally, we show the results of several data sets that have been produced with the CC-Modeler.
Efficient and Robust Cartesian Mesh Generation for Building-Cube Method
NASA Astrophysics Data System (ADS)
Ishida, Takashi; Takahashi, Shun; Nakahashi, Kazuhiro
In this study, an efficient and robust Cartesian mesh generation method for Building-Cube Method (BCM) is proposed. It can handle “dirty” geometry data whose surface has cracks, overlaps, and reverse of triangle. BCM mesh generation is implemented by two procedures; cube generation and cell generation in each cube. The cell generation procedure in this study is managed in each cube individually, and parallelized by OpenMP. Efficiency of the parallelized BCM mesh generation is demonstrated for several three-dimensional test cases using a multi-core PC.
Composite structured mesh generation with automatic domain decomposition in complex geometries
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a novel automatic domain decomposition method to generate quality composite structured meshes in complex domains with arbitrary shapes, in which quality structured mesh generation still remains a challenge. The proposed decomposition algorithm is based on the analysis of an initi...
A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids
NASA Astrophysics Data System (ADS)
Theodoropoulos, T.; Bergeles, G. C.
1989-06-01
A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.
2014-08-01
Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.
Cubit Adaptive Meshing Algorithm Library
2004-09-01
CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMALs triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandias patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less
GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H
2012-09-01
Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-04-01
Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies.
Tactical 3D model generation using structure-from-motion on video from unmanned systems
NASA Astrophysics Data System (ADS)
Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren
2015-05-01
Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.
A second generation of physical anthropomorphic 3D breast phantoms based on human subject data
NASA Astrophysics Data System (ADS)
Nolte, Adam; Kiarashi, Nooshin; Samei, Ehsan; Segars, W. P.; Lo, Joseph Y.
2014-03-01
Previous fabrication of anthropomorphic breast phantoms has demonstrated their viability as a model for 2D (mammography) and 3D (tomosynthesis) breast imaging systems. Further development of these models will be essential for the evaluation of breast x-ray systems. There is also the potential to use them as the ground truth in virtual clinical trials. The first generation of phantoms was segmented from human subject dedicated breast computed tomography data and fabricated into physical models using highresolution 3D printing. Two variations were made. The first was a multi-material model (doublet) printed with two photopolymers to represent glandular and adipose tissues with the greatest physical contrast available, mimicking 75% and 35% glandular tissue. The second model was printed with a single 75% glandular equivalent photopolymer (singlet) to represent glandular tissue, which can be filled independently with an adipose-equivalent material such as oil. For this study, we have focused on improving the latter, the singlet phantom. First, the temporary oil filler has been replaced with a permanent adipose-equivalent urethane-based polymer. This offers more realistic contrast as compared to the multi-material approach at the expense of air bubbles and pockets that form during the filling process. Second, microcalcification clusters have been included in the singlet model via crushed eggshells, which have very similar chemical composition to calcifications in vivo. The results from these new prototypes demonstrate significant improvement over the first generation of anthropomorphic physical phantoms.
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-01-01
Oceanic mesoscale eddies with horizontal scales of 50-300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies. PMID:27074710
Zhang, Zhiwei; Tian, Jiwei; Qiu, Bo; Zhao, Wei; Chang, Ping; Wu, Dexing; Wan, Xiuquan
2016-01-01
Oceanic mesoscale eddies with horizontal scales of 50–300 km are the most energetic form of flows in the ocean. They are the oceanic analogues of atmospheric storms and are effective transporters of heat, nutrients, dissolved carbon, and other biochemical materials in the ocean. Although oceanic eddies have been ubiquitously observed in the world oceans since 1960s, our understanding of their three-dimensional (3D) structure, generation, and dissipation remains fragmentary due to lack of systematic full water-depth measurements. To bridge this knowledge gap, we designed and conducted a multi-months field campaign, called the South China Sea Mesoscale Eddy Experiment (S-MEE), in the northern South China Sea in 2013/2014. The S-MEE for the first time captured full-depth 3D structures of an anticyclonic and cyclonic eddy pair, which are characterized by a distinct vertical tilt of their axes. By observing the eddy evolution at an upstream versus downstream location and conducting an eddy energy budget analysis, the authors further proposed that generation of submesoscale motions most likely constitutes the dominant dissipation mechanism for the observed eddies. PMID:27074710
3D molecular models of whole HIV-1 virions generated with cellPACK
Goodsell, David S.; Autin, Ludovic; Forli, Stefano; Sanner, Michel F.; Olson, Arthur J.
2014-01-01
As knowledge of individual biological processes grows, it becomes increasingly useful to frame new findings within their larger biological contexts in order to generate new systems-scale hypotheses. This report highlights two major iterations of a whole virus model of HIV-1, generated with the cellPACK software. cellPACK integrates structural and systems biology data with packing algorithms to assemble comprehensive 3D models of cell-scale structures in molecular detail. This report describes the biological data, modeling parameters and cellPACK methods used to specify and construct editable models for HIV-1. Anticipating that cellPACK interfaces under development will enable researchers from diverse backgrounds to critique and improve the biological models, we discuss how cellPACK can be used as a framework to unify different types of data across all scales of biology. PMID:25253262
NASA Astrophysics Data System (ADS)
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto
A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids
Foty, Ramsey
2011-01-01
Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels1or in biomaterial scaffolds2. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of
Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro
2015-03-01
Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability. PMID:25465067
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
3D printer generated thorax phantom with mobile tumor for radiation dosimetry.
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
NASA Astrophysics Data System (ADS)
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-01
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
3D printer generated thorax phantom with mobile tumor for radiation dosimetry
Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.
2015-07-15
This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
NASA Astrophysics Data System (ADS)
Jouan, M.; Debreu, L.; Dumas, F.
2003-04-01
In order to study the spreading of the big river discharges over the continental shelf in the bay of Biscay, a 3D model that solves the primitive equations has been developped. Following Blumberg and Mellor (1987), it is a split-implicit free-surface version for the sigma coordinates system based on a finite difference approximation. For the bay of Biscay continental shelf implementation, the domain covers the two main estuaries of Loire and Gironde with a 5km resolution. An enhancement of local resolution must significantly improve the results. As the gradients apart from thess particular areas are weaker, we focus on both areas and increase resolution up to 1.5km. For this purpose, a mesh refinement technique has been implemented in the 5km resolution configuration ; it is based on Berger-Oliger technique (i.e. domain decomposition with full overlapping). The AGRIF software library allows two computational modes : - one way : at each step on the fine grid, open boundary conditions are interpolated in time and space from the upper level - two way : in addition to the previous mode, a retroactive forcing updates some state variables on the coarser grid from the fine grid values. In one way mode, results on the fine grid can vary depending on type of prescribed variables at the interface. Results of the two way mode tend to prove the necessity to update the upper level to reproduce as fine as possible density structure and therefore improve the global solution, hence the boundary conditions of the fine grid itself. Paying attention to particular features (consistancy of the bathymetry), the system is rather stable. This configuration is then used to follow the low salinity lenses and to determine under which conditions these appear.
NASA Astrophysics Data System (ADS)
Jouan, M.; Debreu, L.; Dumas, F.
2003-04-01
In order to study the spreading of the big river discharges over the continental shelf in the bay of Biscay, a 3D model that solves the primitive equations has been developped. Following Blumberg and Mellor (1987), it is a split-implicit free-surface version for the sigma coordinates system based on a finite difference approximation. For the bay of Biscay continental shelf implementation, the domain covers the two main estuaries of Loire and Gironde with a 5km resolution. An enhancement of local resolution must significantly improve the results. As the gradients apart from thess particular areas are weaker, we focus on both areas and increase resolution up to 1.5km. For this purpose, a mesh refinement technique has been implemented in the 5km resolution configuration ; it is based on Berger-Oliger technique (i.e. domain decomposition with full overlapping). The AGRIF software library allows two computational modes : - one way : at each step on the fine grid, open boundary conditions are interpolated in time and space from the upper level - two way : in addition to the previous mode, a retroactive forcing updates some state variables on the coarser grid from the fine grid values. In one way mode, results on the fine grid can vary depending on type of prescribed variables at the interface. Results of the two way mode tend to prove the necessity to update the upper level to reproduce as fine as possible density structure and therefore improve the global solution, hence the boundary conditions of the fine grid itself. Paying attention to particular features (consistancy of the bathymetry), the system is rather stable. This configuration is then used to follow the low salinity lenses and to determine under which conditions these appear.
3D numerical investigation on landslide generated tsunamis around a conical island
NASA Astrophysics Data System (ADS)
Montagna, Francesca; Bellotti, Giorgio
2010-05-01
This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we
Unstructured and adaptive mesh generation for high Reynolds number viscous flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1991-01-01
A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.
2D nearly orthogonal mesh generation with controls on distortion functions
Technology Transfer Automated Retrieval System (TEKTRAN)
A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is presented. The proposed method considers the effects from not only the local orthogonal condition but also the local smoothness condition (the geometry and the mesh size) on the distortion fu...
NASA Astrophysics Data System (ADS)
Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.
2006-12-01
In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.
Design Curve Generation for 3D SiC Fiber Architecture
NASA Technical Reports Server (NTRS)
Lang, Jerry; Dicarlo, James A.
2014-01-01
The design tool provides design curves that allow a simple and quick way to examine multiple factors that can influence the processing and key properties of the preforms and their final SiC-reinforced ceramic composites without over obligating financial capital for the fabricating of materials. Tool predictions for process and fiber fraction properties have been validated for a HNS 3D preform.The virtualization aspect of the tool will be used to provide a quick generation of solid models with actual fiber paths for finite element evaluation to predict mechanical and thermal properties of proposed composites as well as mechanical displacement behavior due to creep and stress relaxation to study load sharing characteristic between constitutes for better performance.Tool predictions for the fiber controlled properties of the SiCSiC CMC fabricated from the HNS preforms will be valuated and up-graded from the measurements on these CMC
Fast phase-added stereogram algorithm for generation of photorealistic 3D content.
Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi
2016-01-20
A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945
Sundararaghavan, Harini G.; Masand, Shirley N.
2011-01-01
Abstract We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons. PMID:21473683
Carbon nanotubes leading the way forward in new generation 3D tissue engineering.
Hopley, Erin Leigh; Salmasi, Shima; Kalaskar, Deepak M; Seifalian, Alexander M
2014-01-01
Statistics from the NHS Blood and Transplant Annual Review show that total organ transplants have increased to 4213 in 2012, while the number of people waiting to receive an organ rose to 7613 that same year. Human donors as the origin of transplanted organs no longer meet the ever-increasing demand, and so interest has shifted to synthetic organ genesis as a form of supply. This focus has given rise to new generation tissue and organ engineering, in the hope of one day designing 3D organs in vitro. While research in this field has been conducted for several decades, leading to the first synthetic trachea transplant in 2011, scaffold design for optimising complex tissue growth is still underexplored and underdeveloped. This is mostly the result of the complexity required in scaffolds, as they need to mimic the cells' native extracellular matrix. This is an intricate nanostructured environment that provides cells with physical and chemical stimuli for optimum cell attachment, proliferation and differentiation. Carbon nanotubes are a popular addition to synthetic scaffolds and have already begun to revolutionise regenerative medicine. Discovered in 1991, these are traditionally used in various areas of engineering and technology; however, due to their excellent mechanical, chemical and electrical properties their potential is now being explored in areas of drug delivery, in vivo biosensor application and tissue engineering. The incorporation of CNTs into polymer scaffolds displays a variety of structural and chemical enhancements, some of which include: increased scaffold strength and flexibility, improved biocompatibility, reduction in cancerous cell division, induction of angiogenesis, reduced thrombosis, and manipulation of gene expression in developing cells. Moreover CNTs' tensile properties open doors for dynamic scaffold design, while their thermal and electrical properties provide opportunities for the development of neural, bone and cardiac tissue constructs
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.; Horrillo, J. J.; Mohammed, F.
2014-12-01
Landslide generated tsunamis such as Lituya Bay, Alaska 1958 account for some of highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models. Two 3D Navier-Stokes models were tested, the commercial code FLOW-3D
Lift and thrust generation by a butterfly-like 3D flapping wing model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Inamuro, Takaji
2013-11-01
The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.
General application of rapid 3-D digitizing and tool path generation for complex shapes
Kwok, K.S.; Loucks, C.S.; Driessen, B.J.
1997-09-01
A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation and experimental results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm in simulation studies. In actual experiments, a nose cone and a turbine blade were successfully scanned. A complex shaped turbine blade was successfully scanned and finished machined using these algorithms.
3D Simulation of the Entire Process of Earthquake Generation at Subduction-Zone Plate Boundaries
NASA Astrophysics Data System (ADS)
Matsu'Ura, M.; Hashimoto, C.; Fukuyama, E.
2003-12-01
In general, the entire process of earthquake generation consists of tectonic loading due to relative plate motion, quasi-static rupture nucleation, dynamic rupture propagation and stop, and restoration of fault strength. This process can be completely described by a coupled nonlinear system, which consists of an elastic/viscoelastic slip-response function that relates fault slip to shear stress change and a fault constitutive law that prescribes change in shear strength with fault slip and contact time. The shear stress and the shear strength are related with each other through boundary conditions on the fault. The driving force of this system is observed relative plate motion. The system to describe the earthquake generation cycle is conceptually quite simple. The complexity in practical modelling mainly comes from complexity in structure of the real earth. As a product of Crustal Activity Modelling Program (CAMP), which is one of the three main programs composing the Solid Earth Simulator project (1998-2003) promoted by MEXT, we have completed a physics-based predictive simulation model for the entire process of earthquake generation cycles in and around Japan, where the four plates of Pacific, North American, Philippine Sea and Eurasian are interacting with each other in a very complicated way. The total simulation system consists of a crust-mantle structure model, a tectonic loading model and a dynamic rupture model. First, we constructed a realistic 3D standard model of plate interfaces in and around Japan by applying an inversion technique to ISC hypocenter distribution data, and computed viscoelastic slip-response functions for this structure model. Second, we introduced the slip- and time-dependent fault constitutive law with an inherent strength-restoration mechanism as a basic equation governing the entire process of earthquake generation. Third, combining all these elements, we developed a simulation model for quasi-static stress accumulation due to
ESCHER: An interactive mesh-generating editor for preparing finite-element input
NASA Technical Reports Server (NTRS)
Oakes, W. R., Jr.
1984-01-01
ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.
NASA Astrophysics Data System (ADS)
Shalbaf, Farzaneh; Dokos, Socrates; Lovell, Nigel H.; Turuwhenua, Jason; Vaghefi, Ehsan
2015-12-01
Retinal prosthesis has been proposed to restore vision for those suffering from the retinal pathologies that mainly affect the photoreceptors layer but keep the inner retina intact. Prior to costly risky experimental studies computational modelling of the retina will help to optimize the device parameters and enhance the outcomes. Here, we developed an anatomically detailed computational model of the retina based on OCT data sets. The consecutive OCT images of individual were subsequently segmented to provide a 3D representation of retina in the form of finite elements. Thereafter, the electrical properties of the retina were modelled by implementing partial differential equation on the 3D mesh. Different electrode configurations, that is bipolar and hexapolar configurations, were implemented and the results were compared with the previous computational and experimental studies. Furthermore, the possible effects of the curvature of retinal layers on the current steering through the retina were proposed and linked to the clinical observations.
Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing
Dyedov, Volodymyr; Einstein, Daniel; Jiao, Xiangmin; Kuprat, Andrew; Carson, James; Pin, Facundo del
2009-01-01
SUMMARY Boundary-layer meshes are important for numerical simulations in computational fluid dynamics, including computational biofluid dynamics of air flow in lungs and blood flow in hearts. Generating boundary-layer meshes is challenging for complex biological geometries. In this paper, we propose a novel technique for generating prismatic boundary-layer meshes for such complex geometries. Our method computes a feature size of the geometry, adapts the surface mesh based on the feature size, and then generates the prismatic layers by propagating the triangulated surface using the face-offsetting method. We derive a new variational method to optimize the prismatic layers to improve the triangle shapes and edge orthogonality of the prismatic elements and also introduce simple and effective measures to guarantee the validity of the mesh. Coupled with a high-quality tetrahedral mesh generator for the interior of the domain, our method generates high-quality hybrid meshes for accurate and efficient numerical simulations. We present comparative study to demonstrate the robustness and quality of our method for complex biomedical geometries. PMID:20161102
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Fast DRR generation for 2D to 3D registration on GPUs
Tornai, Gabor Janos; Cserey, Gyoergy
2012-08-15
Purpose: The generation of digitally reconstructed radiographs (DRRs) is the most time consuming step on the CPU in intensity based two-dimensional x-ray to three-dimensional (CT or 3D rotational x-ray) medical image registration, which has application in several image guided interventions. This work presents optimized DRR rendering on graphical processor units (GPUs) and compares performance achievable on four commercially available devices. Methods: A ray-cast based DRR rendering was implemented for a 512 Multiplication-Sign 512 Multiplication-Sign 72 CT volume. The block size parameter was optimized for four different GPUs for a region of interest (ROI) of 400 Multiplication-Sign 225 pixels with different sampling ratios (1.1%-9.1% and 100%). Performance was statistically evaluated and compared for the four GPUs. The method and the block size dependence were validated on the latest GPU for several parameter settings with a public gold standard dataset (512 Multiplication-Sign 512 Multiplication-Sign 825 CT) for registration purposes. Results: Depending on the GPU, the full ROI is rendered in 2.7-5.2 ms. If sampling ratio of 1.1%-9.1% is applied, execution time is in the range of 0.3-7.3 ms. On all GPUs, the mean of the execution time increased linearly with respect to the number of pixels if sampling was used. Conclusions: The presented results outperform other results from the literature. This indicates that automatic 2D to 3D registration, which typically requires a couple of hundred DRR renderings to converge, can be performed quasi on-line, in less than a second or depending on the application and hardware in less than a couple of seconds. Accordingly, a whole new field of applications is opened for image guided interventions, where the registration is continuously performed to match the real-time x-ray.
Towards the Next Generation Upper-Mantle 3D Anelastic Tomography
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2015-12-01
In order to distinguish the thermal and compositional heterogeneities in the mantle, it is crucial to resolve the lateral variations not only in seismic velocities but also in intrinsic attenuation. Indeed, the high sensitivity of intrinsic attenuation to temperature and water content, governed by a form of Arrhenius equation, contrasts with the quasi-linear dependence of velocities on both temperature and major element composition. The major challenge in imaging attenuation lies in separating its effects on seismic waves from the elastic ones. The latter originate from the wave propagation in media with strong lateral elastic gradients causing (de)focusing and scattering. We have previously developed a 3D upper-mantle shear attenuation model based on time domain waveform inversion of long period (T > 60s) fundamental and overtone surface wave data (Gung & Romanowicz, 2004). However, at that time, resolution was limited to very long wavelength structure, because elastic models were still rather smooth, and the effects of focusing could only be estimated approximately, using asymptotic normal mode perturbation theory.With recent progress in constraining global mantle shear velocity from waveform tomography based on the Spectral Element Method (e.g. SEMUCB_WM1, French & Romanowicz, 2014), we are now in a position to develop an improved global 3D model of shear attenuation in the upper mantle. In doing so, we use a similar time domain waveform inversion approach, but (1) start with a higher resolution elastic model with better constraints on lateral elastic gradients and (2) jointly invert, in an iterative fashion, for shear attenuation and elastic parameters. Here, we present the results of synthetic tests that confirm our inversion strategy, as well as preliminary results towards the construction of the next generation upper-mantle anelastic model.
3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.
Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana
2016-05-01
Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. PMID:26992060
McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.
2006-11-01
This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.
Boundary treatments for 2D elliptic mesh generation in complex geometries
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a boundary treatment method for 2D elliptic mesh generation in complex geometries. Corresponding to Neumann- Dirichlet boundary conditions (sliding boundary conditions), the proposed method aims at achieving orthogonal and smooth nodal distribution along irregular boundaries. In ...
A simple adaptive mesh generator for 2-D finite element calculations
Fernandez, F.A.; Yong, Y.C.; Ettinger, R.D. )
1993-03-01
A strategy for adaptive mesh generation is proposed. The method consists of the use of a suitably defined density function', which can either be defined by the user or be calculated from a previous approximate solution, to guide the generation of a new mesh. This new mesh is built starting from a minimal number of triangular elements which are then in several sweeps, repeatedly refined according to the density function. The Delaunay algorithm is used in each stage to keep the shape of the triangles as equilateral as possible.
Real-time 3D ultrasound imaging on a next-generation media processor
NASA Astrophysics Data System (ADS)
Pagoulatos, Niko; Noraz, Frederic; Kim, Yongmin
2001-05-01
3D ultrasound (US) provides physicians with a better understanding of human anatomy. By manipulating the 3D US data set, physicians can observe the anatomy in 3D from a number of different view directions and obtain 2D US images that would not be possible to directly acquire with the US probe. In order for 3D US to be in widespread clinical use, creation and manipulation of the 3D US data should be done at interactive times. This is a challenging task due to the large amount of data to be processed. Our group previously reported interactive 3D US imaging using a programmable mediaprocessor, Texas Instruments TMS320C80, which has been in clinical use. In this work, we present the algorithms we have developed for real-time 3D US using a newer and more powerful mediaprocessor, called MAP-CA. MAP-CA is a very long instruction word (VLIW) processor developed for multimedia applications. It has multiple execution units, a 32-kbyte data cache and a programmable DMA controller called the data streamer (DS). A forward mapping 6 DOF (for a freehand 3D US system based on magnetic position sensor for tracking the US probe) reconstruction algorithm with zero- order interpolation is achieved in 11.8 msec (84.7 frame/sec) per 512x512 8-bit US image. For 3D visualization of the reconstructed 3D US data sets, we used volume rendering and in particular the shear-warp factorization with the maximum intensity projection (MIP) rendering. 3D visualization is achieved in 53.6 msec (18.6 frames/sec) for a 128x128x128 8-bit volume and in 410.3 msec (2.4 frames/sec) for a 256x256x256 8-bit volume.
Drag and lift reduction of a 3D bluff-body using active vortex generators
NASA Astrophysics Data System (ADS)
Aider, Jean-Luc; Beaudoin, Jean-François; Wesfreid, José Eduardo
2010-05-01
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429-434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices
TOBAGO — a semi-automated approach for the generation of 3-D building models
NASA Astrophysics Data System (ADS)
Gruen, Armin
3-D city models are in increasing demand for a great number of applications. Photogrammetry is a relevant technology that can provide an abundance of geometric, topologic and semantic information concerning these models. The pressure to generate a large amount of data with high degree of accuracy and completeness poses a great challenge to phtogrammetry. The development of automated and semi-automated methods for the generation of those data sets is therefore a key issue in photogrammetric research. We present in this article a strategy and methodology for an efficient generation of even fairly complex building models. Within this concept we request the operator to measure the house roofs from a stereomodel in form of an unstructured point cloud. According to our experience this can be done very quickly. Even a non-experienced operator can measure several hundred roofs or roof units per day. In a second step we fit generic building models fully automatically to these point clouds. The structure information is inherently included in these building models. In such a way geometric, topologic and even semantic data can be handed over to a CAD-system, in our case AutoCad, for further visualization and manipulation. The structuring is achieved in three steps. In a first step a classifier is initiated which recognizes the class of houses a particular roof point cloud belongs to. This recognition step is primarily based on the analysis of the number of ridge points. In the second and third steps the concrete topological relations between roof points are investigated and generic building models are fitted to the point clouds. Based on the technique of constraint-based reasoning two geometrical parsers are solving this problem. We have tested the methodology under a variety of different conditions in several pilot projects. The results will indicate the good performance of our approach. In addition we will demonstrate how the results can be used for visualization (texture
NASA Astrophysics Data System (ADS)
Kwak, E.; Al-Durgham, M.; Habib, A.
2012-07-01
Digital Building Model is an important component in many applications such as city modelling, natural disaster planning, and aftermath evaluation. The importance of accurate and up-to-date building models has been discussed by many researchers, and many different approaches for efficient building model generation have been proposed. They can be categorised according to the data source used, the data processing strategy, and the amount of human interaction. In terms of data source, due to the limitations of using single source data, integration of multi-senor data is desired since it preserves the advantages of the involved datasets. Aerial imagery and LiDAR data are among the commonly combined sources to obtain 3D building models with good vertical accuracy from laser scanning and good planimetric accuracy from aerial images. The most used data processing strategies are data-driven and model-driven ones. Theoretically one can model any shape of buildings using data-driven approaches but practically it leaves the question of how to impose constraints and set the rules during the generation process. Due to the complexity of the implementation of the data-driven approaches, model-based approaches draw the attention of the researchers. However, the major drawback of model-based approaches is that the establishment of representative models involves a manual process that requires human intervention. Therefore, the objective of this research work is to automatically generate building models using the Minimum Bounding Rectangle algorithm and sequentially adjusting them to combine the advantages of image and LiDAR datasets.
NASA Astrophysics Data System (ADS)
Hashimoto, Chihiro; Fukuyama, Eiichi; Matsu'ura, Mitsuhiro
2014-08-01
The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic
Bas-Relief Generation and Shape Editing through Gradient-Based Mesh Deformation.
Zhang, Yu-Wei; Zhou, Yi-Qi; Li, Xue-Lin; Liu, Hui; Zhang, Li-Li
2015-03-01
In this paper, we introduce a novel approach to bas-relief generation and shape editing that uses gradient-based mesh deformation as the theoretical foundation. Our approach differs from image-based methods in that it operates directly on the triangular mesh, and ensures that the mesh topology remains unchanged during geometric processing. By implicitly deforming the input mesh through gradient manipulation, our approach is applicable to both plane surface bas-relief generation and curved surface bas-relief generation. We propose a series of gradient-based algorithms, such as height field deformation, high slope optimization, fine detail preservation, curved surface flattening and relief mapping. Additionally, we present two types of shape editing tools that allow the user to interactively modify the bas-relief to exhibit a desired shape. Experimental results indicate that the proposed approach is effective in producing plausible and impressive bas-reliefs. PMID:26357065
Sensitivity of an asymmetric 3D diffuser to vortex-generator induced inlet condition perturbations
NASA Astrophysics Data System (ADS)
Grundmann, S.; Sayles, E. L.; Elkins, Christopher J.; Eaton, J. K.
2012-01-01
Modifications of the turbulent separated flow in an asymmetric three-dimensional diffuser due to inlet condition perturbations were investigated using conventional static pressure measurements and velocity data acquired using magnetic resonance velocimetry (MRV). Previous experiments and simulations revealed a strong sensitivity of the diffuser performance to weak secondary flows in the inlet. The present, more detailed experiments were conducted to obtain a better understanding of this sensitivity. Pressure data were acquired in an airflow apparatus at an inlet Reynolds number of 10,000. The diffuser pressure recovery was strongly affected by a pair of longitudinal vortices injected along one wall of the inlet channel using either dielectric barrier discharge plasma actuators or conventional half-delta wing vortex generators. MRV measurements were obtained in a water flow apparatus at matched Reynolds number for two different cases with passive vortex generators. The first case had a pair of counter-rotating longitudinal vortices embedded in the boundary layer near the center of the expanding wall of the diffuser such that the flow on the outsides of the vortices was directed toward the wall. The MRV data showed that the three-dimensional separation bubble initially grew much slower causing a rapid early reduction in the core flow velocity and a consequent reduction of total pressure losses due to turbulent mixing. This produced a 13% increase in the overall pressure recovery. For the second case, the vortices rotated in the opposite sense, and the image vortices pushed them into the corners. This led to a very rapid initial growth of the separation bubble and formation of strong swirl at the diffuser exit. These changes resulted in a 17% reduction in the overall pressure recovery for this case. The results emphasize the extreme sensitivity of 3D separated flows to weak perturbations.
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data.
Kuprat, Andrew P; Einstein, Daniel R
2009-02-20
We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is "scale-invariant" in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size L(min) and a maximum scale size L(max). We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data
Kuprat, Andrew P.; Einstein, Daniel R.
2009-01-01
We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is “scale-invariant” in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size Lmin and a maximum scale size Lmax. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397
Next generation 3-D OFDM based optical access networks using FEC under various system impairments
NASA Astrophysics Data System (ADS)
Kumar, Pravindra; Srivastava, Anand
2013-12-01
Passive optical network based on orthogonal frequency division multiplexing (OFDM-PON) exhibits excellent performance in optical access networks due to its greater resistance to fiber dispersion, high spectral efficiency and exibility on both multiple services and dynamic bandwidth allocation. The major elements of conventional OFDM communication system are two-dimensional (2-D) signal mapper and one-dimensional (1-D) inverse fast fourier transform (IFFT). Three dimensional (3-D) OFDM use the concept of 3-D signal mapper and 2-D IFFT. With 3-D OFDM, minimum Euclidean distance (MED) is increased which results in BER performance improvement. As bit error rate (BER) depends on minimum Euclidean distance (MED) which is 15.46 % more in case of 3-D OFDM as compared to 2-D OFDM. Forward error correction (FEC) coding is a technique where redundancy is added to original bit sequence to increase the reliability of communication system. In this paper, we propose and analytically analyze a new PON architecture based on 3-D OFDM with convolutional coding and Viterbi decoding and is compared with conventional 2-D OFDM under various system impairments for coherent optical orthogonal frequency division multiplexing (CO-OFDM) without using any optical dispersion compensation. Analytical result show that at BER of 10-9, there is 2.7 dB, 3.8 dB and 9.3 dB signal-to-noise ratio (SNR) gain with 3-D OFDM, 3-D OFDM combined with convolutional coding and Viterbi hard decision decoding (CC-HDD) and 3-D OFDM combined with convolutional coding and Viterbi soft decision decoding (CC-SDD) respectively as compared to 2-D OFDM-PON. At BER of 10-9, 3-D OFDM-PON with CC-HDD gives 2.8 dB improvement in optical budget for both upstream and downstream path and gives 5.7 dB improvement in optical budget using 3-D OFDM-PON combined with CC-SDD as compared to conventional OFDM-PON system.
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
NASA Astrophysics Data System (ADS)
Yang, Bin; Xu, Canhua; Dai, Meng; Fu, Feng; Dong, Xiuzhen
2013-07-01
For electrical impedance tomography (EIT) of brain, the use of anatomically accurate and patient-specific finite element (FE) mesh has been shown to confer significant improvements in the quality of image reconstruction. But, given the lack of a rapid method to achieve the accurate anatomic geometry of the head, the generation of patient-specifc mesh is time-comsuming. In this paper, a modified fuzzy c-means algorithm based on non-local means method is performed to implement the segmentation of different layers in the head based on head CT images. This algorithm showed a better effect, especially an accurate recognition of the ventricles and a suitable performance dealing with noise. And the FE mesh established according to the segmentation results is validated in computational simulation. So a rapid practicable method can be provided for the generation of patient-specific FE mesh of the human head that is suitable for brain EIT.
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Liu, Juan; Jia, Jia; Li, Xin; Pan, Yijie; Han, Jian; Hu, Bin; Wang, Yongtian
2013-12-01
The real-time holographic display encounters heavy computational load of computer-generated holograms and precisely intensity modulation of 3D images reconstructed by phase-only holograms. In this study, we demonstrate a method for reducing memory usage and modulating the intensity in 3D holographic display. The proposed method can eliminate the redundant information of holograms by employing the non-uniform sampling technique. By combining with the novel look-up table method, 70% reduction in the storage amount can be reached. The gray-scale modulation of 3D images reconstructed by phase-only holograms can be extended either. We perform both numerical simulations and optical experiments to verify the practicability of this method, and the results match well with each other. It is believed that the proposed method can be used in 3D dynamic holographic display and design of the diffractive phase elements.
Marsano, Anna; Conficconi, Chiara; Lemme, Marta; Occhetta, Paola; Gaudiello, Emanuele; Votta, Emiliano; Cerino, Giulia; Redaelli, Alberto; Rasponi, Marco
2016-02-01
In the past few years, microfluidic-based technology has developed microscale models recapitulating key physical and biological cues typical of the native myocardium. However, the application of controlled physiological uniaxial cyclic strains on a defined three-dimension cellular environment is not yet possible. Two-dimension mechanical stimulation was particularly investigated, neglecting the complex three-dimensional cell-cell and cell-matrix interactions. For this purpose, we developed a heart-on-a-chip platform, which recapitulates the physiologic mechanical environment experienced by cells in the native myocardium. The device includes an array of hanging posts to confine cell-laden gels, and a pneumatic actuation system to induce homogeneous uniaxial cyclic strains to the 3D cell constructs during culture. The device was used to generate mature and highly functional micro-engineered cardiac tissues (μECTs), from both neonatal rat and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), strongly suggesting the robustness of our engineered cardiac micro-niche. Our results demonstrated that the cyclic strain was effectively highly uniaxial and uniformly transferred to cells in culture. As compared to control, stimulated μECTs showed superior cardiac differentiation, as well as electrical and mechanical coupling, owing to a remarkable increase in junction complexes. Mechanical stimulation also promoted early spontaneous synchronous beating and better contractile capability in response to electric pacing. Pacing analyses of hiPSC-CM constructs upon controlled administration of isoprenaline showed further promising applications of our platform in drug discovery, delivery and toxicology fields. The proposed heart-on-a-chip device represents a relevant step forward in the field, providing a standard functional three-dimensional cardiac model to possibly predict signs of hypertrophic changes in cardiac phenotype by mechanical and biochemical co
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma.
Marrero, Bernadette; Messina, Jane L; Heller, Richard
2009-10-01
An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques used to develop the first known large, free-floating 3D tissue model used to establish tumor spheroids. The bioreactor system known as the High Aspect Ratio Vessel (HARVs) was used to provide a microgravity environment. The HARVs promoted aggregation of keratinocytes (HaCaT) that formed a construct that served as scaffolding for the growth of mouse melanoma. Although there is an emphasis on building a 3D model with the proper extracellular matrix and stroma, we were able to develop a model that excluded the use of matrigel. Immunohistochemistry and apoptosis assays provided evidence that this 3D model supports B16.F10 cell growth, proliferation, and synthesis of extracellular matrix. Immunofluorescence showed that melanoma cells interact with one another displaying observable cellular morphological changes. The goal of engineering a 3D tissue model is to collect new information about cancer development and develop new potential treatment regimens that can be translated to in vivo models while reducing the use of laboratory animals. PMID:19533253
Modeling, mesh generation, and adaptive numerical methods for partial differential equations
Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T.
1995-12-31
Mesh generation is one of the most time consuming aspects of computational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh generation must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and solution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions. A 3-week program was held from July 5 to July 23, 1993 with 173 participants and 66 keynote, invited, and contributed presentations. This volume represents written versions of 21 of these lectures. These proceedings are organized roughly in order of their presentation at the workshop. Thus, the initial papers are concerned with geometry and mesh generation and discuss the representation of physical objects and surfaces on a computer and techniques to use this data to generate, principally, unstructured meshes of tetrahedral or hexahedral elements. The remainder of the papers cover adaptive strategies, error estimation, and applications. Several submissions deal with high-order p- and hp-refinement methods where mesh refinement/coarsening (h-refinement) is combined with local variation of method order (p-refinement). Combinations of mathematically verified and physically motivated approaches to error estimation are represented. Applications center on fluid mechanics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Lithographically-generated 3D lamella layers and their structural color
NASA Astrophysics Data System (ADS)
Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen
2016-04-01
Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.
Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating
NASA Astrophysics Data System (ADS)
Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.
2016-05-01
A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.
Lithographically-generated 3D lamella layers and their structural color.
Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen
2016-04-28
Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ∼ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc. PMID:27087577
The sinogram polygonizer for reconstructing 3D shapes.
Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa
2013-11-01
This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:24029910
The Sinogram Polygonizer for Reconstructing 3D Shapes.
Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa
2013-05-24
This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:23712999
Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T. III
2013-04-15
Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human
Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T.
2013-01-01
Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n = 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the “base” and “target” for morphing. Several combinations of transformations were applied to morph between the “base’ and “target” datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing
Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok
2013-10-21
Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure. PMID:23921454
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhang, Jian; Xia, Yang; Wang, Hao
2012-10-01
An improved multiple independent iterative plane algorithm, based on a projection optimization idea, is proposed for the independent and arbitrary generation of one spot or multiple spots in a speckle-suppressed 3D work-area. Details of the mathematical expressions of the algorithm are given to theoretically show how it is improved for 3D spot generation. Both simulations and experiments are conducted to investigate the performance of the algorithm for independent and arbitrary 3D spot generation in several different cases. Simulation results agree well with experimental results, which validates the effectiveness of the algorithm proposed. Several additional experiments are demonstrated for fast and independent generation of four or more spots in the 3D space domain, which confirms the capabilities and practicalities of the algorithm further.
Detecting Translation Errors in CAD Surfaces and Preparing Geometries for Mesh Generation
Petersson, N Anders; Chand, K K
2001-08-27
The authors have developed tools for the efficient preparation of CAD geometries for mesh generation. Geometries are read from IGES files and then maintained in a boundary-representation consisting of a patchwork of trimmed and untrimmed surfaces. Gross errors in the geometry can be identified and removed automatically while a user interface is provided for manipulating the geometry (such as correcting invalid trimming curves or removing unwanted details). Modifying the geometry by adding or deleting surfaces and/or sectioning it by arbitrary planes (e.g. symmetry planes) is also supported. These tools are used for robust and accurate geometry models for initial mesh generation and will be applied to in situ mesh generation requirements of moving and adaptive grid simulations.
Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur
2012-11-15
Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.
NASA Astrophysics Data System (ADS)
Cherry, Matthew R.; Aldrin, John C.; Boehnlein, Thomas; Blackshire, James L.
2013-01-01
In this work, a combined grid/FEM method that is capable of using parallelepiped or tetragonal mesh elements, as well as a combination of the two, is investigated. A formulation was developed that leverages the architecture of GPUs with irregular grids to efficiently address complex structures and heterogeneous materials. Benchmark studies are presented comparing the computational time, memory requirements, and simulation accuracy for GPU and CPU solvers with several challenge NDE problems.
Automated and integrated mask generation from a CAD constructed 3D model.
Schiek, Richard Louis; Schmidt, Rodney Cannon
2005-03-01
We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micromachining. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology to the model. The 3D model is first separated into bodies that are non-intersecting, made from different materials or only linked through a ground plane. Next, for each body unique horizontal cross sections are located and arranged into a tree based on their topological relationship. A branch-wise search of the tree uncovers locations where deposition boundaries must lie and identifies candidate masks creating a generic mask set for the 3D model. Finally, in the last step specific process requirements are considered that may constrain the generic mask set.
Rebay, S. )
1993-05-01
This work is devoted to the description of an efficient unstructured mesh generation method entirely based on the Delaunay triangulation. The distinctive characteristic of the proposed method is that point positions and connections are computed simultaneously. This result is achieved by taking advantage of the sequential way in which the Bowyer-Watson algorithm computes the Delaunay triangulation. Two methods are proposed which have great geometrical flexibility, in that they allow us to treat domains of arbitrary shape and topology and to generate arbitrarily nonuniform meshes. The methods are computationally efficient and are applicable both in two and three dimensions. 11 refs., 20 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Bader, Joachim; Kastner, S.; Wiesemann, Thorsten; von Viebahn, Harro
2002-07-01
Next generation of cockpit display systems will display mass data. Mass data includes terrain, obstacle, and airport databases. Display formats will be two and eventually 3D. A prerequisite for the introduction of these new functions is the availability of certified graphics hardware. The paper describes functionality and required features of an aviation certified 2D/3D graphics board. This graphics board should be based on low-level and hi-level API calls. These graphic calls should be very similar to OpenGL. All software and the API must be aviation certified. As an example application, a 2D airport navigation function and a 3D terrain visualization is presented. The airport navigation format is based on highly precise airport database following EUROCAE ED-99/RTCA DO-272 specifications. Terrain resolution is based on EUROCAE ED-98/RTCA DO-276 requirements.
NASA Astrophysics Data System (ADS)
Bayona, Victor; Kindelan, Manuel
2013-10-01
Laminar flame propagation is an important problem in combustion modelling for which great advances have been achieved both in its theoretical understanding and in the numerical solution of the governing equations in 2D and 3D. Most of these numerical simulations use finite difference techniques on simple geometries (channels, ducts, ...) with equispaced nodes. The objective of this work is to explore the applicability of the radial basis function generated finite difference (RBF-FD) method to laminar flame propagation modelling. This method is specially well suited for the solution of problems with complex geometries and irregular boundaries. Another important advantage is that the method is independent of the dimension of the problem and, therefore, it is very easy to apply in 3D problems with complex geometries. In this work we use the RBF-FD method to compute 2D and 3D numerical results that simulate premixed laminar flames with different Lewis numbers propagating in open ducts.
3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.
Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi
2015-01-01
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414
Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing
2014-01-01
Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods. PMID:24886511
3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation
Yang, Fan; Bhutani, Nidhi
2015-01-01
Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414
Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography.
Jandt, Uwe; Schäfer, Dirk; Grass, Michael; Rasche, Volker
2009-12-01
A fully automated 3D centerline modeling algorithm for coronary arteries is presented. It utilizes a subset of standard rotational X-ray angiography projections that correspond to one single cardiac phase. The algorithm is based on a fast marching approach, which selects voxels in 3D space that belong to the vascular structure and introduces a hierarchical order. The local 3D propagation speed is determined by a combination of corresponding 2D projections filtered with a vessel enhancing kernel. The best achievable accuracy of the algorithm is evaluated on simulated projections of a virtual heart phantom, showing that it is capable of extracting coronary centerlines with an accuracy that is mainly limited by projection and volume quantization (0.25 mm). The algorithm is reasonably insensitive to residual motion, which means that it is able to cope with inconsistencies within the projection data set caused by limited gating accuracy and respiration. Its accuracy on clinical data is evaluated based on expert ratings of extracted models of 17 consecutive clinical cases (10 LCA, 7 RCA). A success rate of 93.5% (i.e. with no or slight deviations) is achieved compared to 58.8% success rate of semi-automatically extracted models. PMID:19713148
NASA Astrophysics Data System (ADS)
Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso
2013-04-01
Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the
Towards the next generation of global 3D upper mantle Q models
NASA Astrophysics Data System (ADS)
Gung, Y.; Romanowicz, B.; Capdeville, Y.
2003-12-01
Global anelastic tomography can bring important constraints on the thermal structure of the mantle and therefore is dynamics, complementing those provided by elastic tomography. Progress in anelastic tomography has been slow, because of the inherent technical difficulties encountered in discriminating anelastic signal from elastic effects on amplitude data. It has been shown that while the elastic focusing/defocusing effects are not significant at low degrees ( ˜ 8) (e.g. Selby and Woodhouse, 2002; Gung and Romanowicz, 2003), they need to be included to achieve a higher resolution Q model. Ideally, one would use an exact method, such as the Spectral Element Method (SEM) for predicting the focusing effects. SEM is however very heavy computationally. We present a procedure to better constrain the 3D upper mantle Q from 3 component long-period seismic waveforms. In this procedure, the amplitude and phase perturbations due to the 3D elastic structure are corrected for using higher order normal mode asymptotic theory, and applying it to current elastic models. We first evaluate the normal mode asymptotic approach by comparing the corresponding 3D synthetics with those computed using the coupled spectral element/normal mode method (CSEM). 3 normal mode based asymptotic approaches are compared: path average approximation (PAVA), non-linear asymptotic coupling theory (NACT) and NACT+F, an extension of NACT with focusing terms computed using higher order asymptotic theory. Systematic waveform comparison and inversion experiments are implemented. We find that (1) when the anomaly lies on the source-receiver great circle path, the 3 techniques are fairly accurate for fundamental mode surface waves, but NACT and NACT+F provide much better fit for overtone phases and are therefore more powerful in resolving 3D structure in the mid and lower mantle; and (2) the off-great-circle effects, which result in focusing/defocusing and not seen by PAVA or NACT, are well explained by NACT
NASA Astrophysics Data System (ADS)
Rinaldi, Renaud G.; Blacklock, Matthew; Bale, Hrishikesh; Begley, Matthew R.; Cox, Brian N.
2012-08-01
Recent work presented a Monte Carlo algorithm based on Markov Chain operators for generating replicas of textile composite specimens that possess the same statistical characteristics as specimens imaged using high resolution x-ray computed tomography. That work represented the textile reinforcement by one-dimensional tow loci in three-dimensional space, suitable for use in the Binary Model of textile composites. Here analogous algorithms are used to generate solid, three-dimensional (3D) tow representations, to provide geometrical models for more detailed failure analyses. The algorithms for generating 3D models are divided into those that refer to the topology of the textile and those that deal with its geometry. The topological rules carry all the information that distinguishes textiles with different interlacing patterns (weaves, braids, etc.) and provide instructions for resolving interpenetrations or ordering errors among tows. They also simplify writing a single computer program that can accept input data for generic textile cases. The geometrical rules adjust the shape and smoothness of the generated virtual specimens to match data from imaged specimens. The virtual specimen generator is illustrated using data for an angle interlock weave, a common 3D textile architecture.
Wood, Scott T.; Dean, Brian C.; Dean, Delphine
2013-01-01
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. PMID:23395283
Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo
2014-01-01
A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496
A Novel 3D Fibril Force Assay Implicates Src in Tumor Cell Force Generation in Collagen Networks
Polackwich, Robert J.; Koch, Daniel; Arevalo, Richard; Miermont, Anne M.; Jee, Kathleen J.; Lazar, John; Urbach, Jeffrey; Mueller, Susette C.; McAllister, Ryan G.
2013-01-01
New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments. The assay consists of a controlled-density fibrillar collagen gel atop a controlled-stiffness polyacrylamide (PAA) surface. Forces generated by living cells and their migration in the 3D collagen gel were measured with the 3D motion of tracer beads within the PAA layer. Here, this 3D fibril force assay is used to study the role of the invasion-associated protein kinase Src in mechanotransduction and motility. Src expression and activation are linked with proliferation, invasion, and metastasis, and have been shown to be required in 2D for invadopodia membranes to direct and mediate invasion. Breast cancer cell line MDA-MD-231 was stably transfected with GFP-tagged constitutively active Src or wild-type Src. In 3D fibrillar collagen matrices we found that, relative to wild-type Src, constitutively active Src: 1) increased the strength of cell-induced forces on the ECM, 2) did not significantly change migration speed, and 3) increased both the duration and the length, but not the number, of long membrane protrusions. Taken together, these results support the hypothesis that Src controls invasion by controlling the ability of the cell to form long lasting cellular protrusions to enable penetration through tissue barriers, in addition to its role in promoting invadopodia matrix-degrading activity. PMID:23536784
Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.
2016-01-01
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594
A procedure for generating quantitative 3-D camera views of tokamak divertors
Edmonds, P.H.; Medley, S.S.
1996-05-01
A procedure is described for precision modeling of the views for imaging diagnostics monitoring tokamak internal components, particularly high heat flux divertor components. These models are required to enable predictions of resolution and viewing angle for the available viewing locations. Because of the oblique views expected for slot divertors, fully 3-D perspective imaging is required. A suite of matched 3-D CAD, graphics and animation applications are used to provide a fast and flexible technique for reproducing these views. An analytic calculation of the resolution and viewing incidence angle is developed to validate the results of the modeling procedures. The calculation is applicable to any viewed surface describable with a coordinate array. The Tokamak Physics Experiment (TPX) diagnostics for infrared viewing are used as an example to demonstrate the implementation of the tools. For the TPX experiment the available locations are severely constrained by access limitations at the end resulting images are marginal in both resolution and viewing incidence angle. Full coverage of the divertor is possible if an array of cameras is installed at 45 degree toroidal intervals. Two poloidal locations are required in order to view both the upper and lower divertors. The procedures described here provide a complete design tool for in-vessel viewing, both for camera location and for identification of viewed surfaces. Additionally these same tools can be used for the interpretation of the actual images obtained by the actual diagnostic.
Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph
2016-01-01
Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display
NASA Astrophysics Data System (ADS)
Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Bove, V. Michael; Smalley, Daniel
2016-03-01
Waveguide holography refers to the use of holographic techniques for the control of guided-wave light in integrated optical devices (e.g., off-plane grating couplers and in-plane distributed Bragg gratings for guided-wave optical filtering). Off-plane computer-generated waveguide holography (CGWH) has also been employed in the generation of simple field distributions for image display. We have previously depicted the design and fabrication of a binary-phase CGWH operating in the Raman-Nath regime for the purposes of near-to-eye 3-D display and as a precursor to a dynamic, transparent flat-panel guided-wave holographic video display. In this paper, we describe design algorithms and fabrication techniques for multilevel phase CGWHs for near-to-eye 3-D display.
Zheng, Yian; Zhu, Yongfeng; Tian, Guangyan; Wang, Aiqin
2015-02-01
The direct use of guar gum (GG) as a green reducing agent for the facile production of highly stable silver nanoparticles (Ag NPs) within this biopolymer and subsequent crosslinking with borax to form crosslinked Ag@GG beads with a 3D-structured network are presented here. These crosslinked Ag@GG beads were characterized using UV-vis absorption spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy, and then tested as a solid-phase heterogenerous catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess borohydride. The results indicate that these crosslinked Ag@GG beads show excellent catalytic performance for the reduction of 4-NP within 20 min and can be readily used for 10 successive cycles. PMID:25445685
NASA Astrophysics Data System (ADS)
Yao, Hepeng; Luan, Tian; Li, Chen; Zhang, Yin; Ma, Zhaoyuan; Chen, Xuzong
2016-01-01
Pursuing ultralow temperature 3D atom gas under microgravity conditions is one of the popular topics in the field of ultracold research. Many groups around the world are using, or are planning to use, delta-kick cooling (DKC) in microgravity. Our group has also proposed a two-stage crossed beam cooling (TSCBC) method that also provides a path to picokelvin temperatures. In this paper, we compare the characteristics of TSCBC and DKC for producing a picokelvin system in microgravity. Using a direct simulation Monte Carlo (DSMC) method, we simulate the cooling process of 87Rb using the two different cooling techniques. Under the same initial conditions, 87Rb can reach 7 pK in 15 s using TSCBC and 75 pK in 5.1 s with DKC. The simulation results show that TSCBC can reach lower temperatures compared with DKC, but needs more time and a more stable laser.
Generation of 3D Spatially Variable Anisotropy for Groundwater Flow Simulations.
Borghi, Andrea; Renard, Philippe; Courrioux, Gabriel
2015-01-01
Sedimentary units generally present anisotropy in their hydraulic properties, with higher hydraulic conductivity along bedding planes, rather than perpendicular to them. This common property leads to a modeling challenge if the sedimentary structure is folded. In this paper, we show that the gradient of the geological potential used by implicit geological modeling techniques can be used to compute full hydraulic conductivity tensors varying in space according to the geological orientation. For that purpose, the gradient of the potential, a vector normal to the bedding, is used to construct a rotation matrix that allows the estimation of the 3D hydraulic conductivity tensor in a single matrix operation. A synthetic 2D cross section example is used to illustrate the method and show that flow simulations performed in such a folded environment are highly influenced by this rotating anisotropy. When using the proposed method, the streamlines follow very closely the folded formation. This is not the case with an isotropic model. PMID:25648610
Contributions for the next generation of 3D metal printing machines
NASA Astrophysics Data System (ADS)
Pereira, M.; Thombansen, U.
2015-03-01
The 3D metal printing processes are key technologies for the new industry manufacturing requirements, as small lot production associated with high design complexity and high flexibility are needed towards personalization and customization. The main challenges for these processes are associated to increasing printing volumes, maintaining the relative accuracy level and reducing the global manufacturing time. Through a review on current technologies and solutions proposed by global patents new design solutions for 3D metal printing machines can be suggested. This paper picks up current technologies and trends in SLM and suggests some design approaches to overcome these challenges. As the SLM process is based on laser scanning, an increase in printing volume requires moving the scanner over the work surface by motion systems if printing accuracy has to be kept constant. This approach however does not contribute to a reduction in manufacturing time, as only one laser source will be responsible for building the entire work piece. With given technology limits in galvo based laser scanning systems, the most obvious solution consists in using multiple beam delivery systems in series, in parallel or both. Another concern is related to the weight of large work pieces. A new powder recoater can control the layer thickness and uniformity and eliminate or diminish fumes. To improve global accuracy, the use of a pair of high frequency piezoelectric actuators can help in positioning the laser beam. The implementation of such suggestions can contribute to SLM productivity. To do this, several research activities need to be accomplished in areas related to design, control, software and process fundamentals.
NASA Astrophysics Data System (ADS)
Olsen, K. B.
2003-12-01
Synthetic time histories from large-scale 3D ground motion simulations generally constitute large 'data' sets which typically require 100's of Mbytes or Gbytes of storage capacity. For the same reason, getting access to a researchers simulation output, for example for an earthquake engineer to perform site analysis, or a seismologist to perform seismic hazard analysis, can be a tedious procedure. To circumvent this problem we have developed a web-based ``community model'' (websim3D) for the generation, storage, and dissemination of ground motion simulation results. Websim3D allows user-friendly and fast access to view and download such simulation results for an earthquake-prone area. The user selects an earthquake scenario from a map of the region, which brings up a map of the area where simulation data is available. Now, by clicking on an arbitrary site location, synthetic seismograms and/or soil parameters for the site can be displayed at fixed or variable scaling and/or downloaded. Websim3D relies on PHP scripts for the dynamic plots of synthetic seismograms and soil profiles. Although not limited to a specific area, we illustrate the community model for simulation results from the Los Angeles basin, Wellington (New Zealand), and Mexico.
Generation and Comparison of Tls and SFM Based 3d Models of Solid Shapes in Hydromechanic Research
NASA Astrophysics Data System (ADS)
Zhang, R.; Schneider, D.; Strauß, B.
2016-06-01
The aim of a current study at the Institute of Hydraulic Engineering and Technical Hydromechanics at TU Dresden is to develop a new injection method for quick and economic sealing of dikes or dike bodies, based on a new synthetic material. To validate the technique, an artificial part of a sand dike was built in an experimental hall. The synthetic material was injected, which afterwards spreads in the inside of the dike. After the material was fully solidified, the surrounding sand was removed with an excavator. In this paper, two methods, which applied terrestrial laser scanning (TLS) and structure from motion (SfM) respectively, for the acquisition of a 3D point cloud of the remaining shapes are described and compared. Combining with advanced software packages, a triangulated 3D model was generated and subsequently the volume of vertical sections of the shape were calculated. As the calculation of the volume revealed differences between the TLS and the SfM 3D model, a thorough qualitative comparison of the two models will be presented as well as a detailed accuracy assessment. The main influence of the accuracy is caused by generalisation in case of gaps due to occlusions in the 3D point cloud. Therefore, improvements for the data acquisition with TLS and SfM for such kind of objects are suggested in the paper.
A unified approach for a posteriori high-order curved mesh generation using solid mechanics
NASA Astrophysics Data System (ADS)
Poya, Roman; Sevilla, Ruben; Gil, Antonio J.
2016-06-01
The paper presents a unified approach for the a posteriori generation of arbitrary high-order curvilinear meshes via a solid mechanics analogy. The approach encompasses a variety of methodologies, ranging from the popular incremental linear elastic approach to very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally linearised approach is also presented and applied for the first time in this context. Utilising a consistent derivation from energy principles, a theoretical comparison of the various approaches is presented which enables a detailed discussion regarding the material characterisation (calibration) employed for the different solid mechanics formulations. Five independent quality measures are proposed and their relations with existing quality indicators, used in the context of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical examples, both in two and three dimensions, including challenging geometries of interest to the solids, fluids and electromagnetics communities, are shown in order to illustrate and thoroughly compare the performance of the different methodologies. This comparison considers the influence of material parameters and number of load increments on the quality of the generated high-order mesh, overall computational cost and, crucially, the approximation properties of the resulting mesh when considering an isoparametric finite element formulation.
A unified approach for a posteriori high-order curved mesh generation using solid mechanics
NASA Astrophysics Data System (ADS)
Poya, Roman; Sevilla, Ruben; Gil, Antonio J.
2016-09-01
The paper presents a unified approach for the a posteriori generation of arbitrary high-order curvilinear meshes via a solid mechanics analogy. The approach encompasses a variety of methodologies, ranging from the popular incremental linear elastic approach to very sophisticated non-linear elasticity. In addition, an intermediate consistent incrementally linearised approach is also presented and applied for the first time in this context. Utilising a consistent derivation from energy principles, a theoretical comparison of the various approaches is presented which enables a detailed discussion regarding the material characterisation (calibration) employed for the different solid mechanics formulations. Five independent quality measures are proposed and their relations with existing quality indicators, used in the context of a posteriori mesh generation, are discussed. Finally, a comprehensive range of numerical examples, both in two and three dimensions, including challenging geometries of interest to the solids, fluids and electromagnetics communities, are shown in order to illustrate and thoroughly compare the performance of the different methodologies. This comparison considers the influence of material parameters and number of load increments on the quality of the generated high-order mesh, overall computational cost and, crucially, the approximation properties of the resulting mesh when considering an isoparametric finite element formulation.
Applications of automatic mesh generation and adaptive methods in computational medicine
Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.
1995-12-31
Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.
Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.
Staten, Matthew L.; Owen, Steven James
2010-09-01
Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
2013-01-01
Background Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions. Results We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/. Conclusions Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods. PMID:24373308
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates.
Nys, I; Beeckman, J; Neyts, K
2015-10-21
A planar liquid crystal (LC) cell is developed in which two photo-alignment layers have been illuminated with respectively a horizontal and a vertical diffraction pattern of interfering left- and right-handed circularly polarized light. In the bulk of the cell, a complex LC configuration is obtained with periodicity in two dimensions. Remarkably, the period of the structure is larger than the period of the interference pattern, indicating that lowering of the symmetry allows a reduction in the elastic energy. The liquid crystal configuration depends on the periodicity of the alignment but also on the thickness of the cell. By applying a voltage over the electrodes, the power going into the different diffracted orders can be tuned. Finite element (FE) simulations based on Q-tensor theory are used to find the 3D equilibrium director distribution, which is used to simulate the near-field transmission profile based on the Jones calculus. A 2D Fourier transform is performed for both the x- and y-component of the transmitted wave to find the diffraction efficiency. PMID:26313442
Generating 3D Images of Sub-glacial Landscapes: Three Antarctic Case Studies
NASA Astrophysics Data System (ADS)
King, E. C.
2011-12-01
The formation mechanism of subglacial landforms such as drumlins and mega-scale glacial lineations remains controversial. Factors include the type and properties of subglacial sediments; the availability and pressurization of water; and the thickness and flow speed of the overlying ice. While new survey techniques have allowed increasingly sophisticated quantification of the morphology of palaeo-bedforms, observation of contemporary examples has remained difficult, thus inhibiting the development of viable models of formation. I have undertaken ground-radar surveys of three currently-active Antarctic ice streams (Rutford Ice Stream, Talutis Inlet and Pine Island Glacier) to map the type and distribution of subglacial landforms to provide primary observations to inform this debate. Each survey used a low frequency (2-4 MHz) impulse radar towed behind a snowmobile. Line spacing was 500 m and along-track trace interval was c. 7.5 m. The processing techniques used to turn raw profile data into 3D landscape images will be described. The technique works well for elongate sub-glacial bedforms but has limitations in accurately mapping bedform terminations and complex bedrock outcrop landscapes. Developments underway for the future include using a robot snowmobile for data acquisition and airborne survey with similar geometry.
An Anisotropic Scale-Invariant Unstructured Mesh Generator Auitable for Volumetric Imaging Data
Kuprat, Andrew P.; Einstein, Daniel R.
2009-02-20
Mesh generation algorithms must consider the computational physics schemes to be adopted insomuch as tessellation should attempt to minimize discretization error metrics a priori, while placing elements judiciously yet economically. Basing local element size and shape on local geometric feature size is a promising approach, as the underlying physics may either be scale-invariant or may vary with scale in a predictable way. We present a boundary-fitted scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local geometric scale, given a triangulated mesh surface. The resulting tetrahedra are well-shaped and nearly orthogonal to the boundary. Unlike previous feature-based approaches, our algorithm does not require a background mesh, nor does it rely on the medial-axis. In contrast, as a first step, our algorithm produces a gradientlimited feature-size field over the input surface based on efficient ray casting. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[6].
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
ZONE - a finite element mesh generator. [2-D, for CDC 7600
Burger, M.J.
1980-03-12
The ZONE computer program is a finite element mesh generator that produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated for slide lines and to describe pressure boundary conditions. The mesh that is generated can be used as input to any two dimensional as well as any axisymmetrical structure program. The following points are taken up: program concept and characteristics; regions; layers; meridians (offset, circular arc, ellipse); rays; common characterstics - rays and meridians, ZONE input description; output files; examples; and program availability. Also generated is the input to the program PLOT. 15 figures. (RWR)
Prediction of Tsunami Waves and Runup Generated by 3d Granular Landslides
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.
2008-12-01
Subaerial and submarine landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region. The 50th anniversary of the Lituya Bay 1958 landslide impact generated mega tsunami recalls the largest tsunami runup of 524m in recorded history. In contrast to earthquake generated tsunamis, landslide generated tsunami sources are not confined to active tectonic regions and therefore are of particular importance for the Atlantic Ocean. Landslide generated tsunamis were studied in the three dimensional NEES tsunami wave basin TWB at OSU based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to control the landslide geometry and kinematics. Granular materials were used to model deformable landslides. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. The underwater cameras and the MTA provide data on the landslide deformation as it impacts the water surface, penetrates the water and finally deposits on the bottom of the basin. The influence of the landslide volume, shape and the impact speed on the generated tsunami wave characteristics were extensively studied. The experimental data provides prediction models for the generated tsunami wave characteristics based on the initial landslide characteristics and the final slide deposits. PIV provided instantaneous surface velocity vector fields, which gave insight into the kinematics of the landslide and wave generation process. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater. The recorded wave profiles yielded information on the wave propagation and
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact withmore » iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.« less
2010-10-05
MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact with iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.
Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing
NASA Astrophysics Data System (ADS)
Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.
1992-09-01
This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.
Numerical modelling of tsunami generation by deformable submarine slides using mesh adaptivity
NASA Astrophysics Data System (ADS)
Smith, Rebecca; Parkinson, Samuel; Hill, Jon; Collins, Gareth; Piggott, Matthew
2014-05-01
Tsunamis generated by submarine slides are often under considered in comparison to earthquake generated tsunami, despite several recent examples. Tsunamigenic slides have generated waves that have caused significant damage and loss of life, for example the 1998 Papua New Guinea submarine mass failure resulted in a tsunami that devastated coastal villages and killed over 2,100 people. Numerical simulations of submarine slide generated waves can help us understand the nature of the waves that are generated, and identify the important factors in determining wave characteristics. There have not been many studies of tsunami generation by deformable submarine slides, largely because of the complexities and computational expense involved in modelling these large scale events. At large, real world, scales modelling of tsunami waves by the generation of slides is computationally challenging. Fluidity is an open source finite element code that is ideally suited to tackle this type of problem as it uses unstructured, adaptive meshes, which help to reduce the computational expense without losing accuracy in the results. Adaptive meshes change topology and resolution based on the current simulation state and as such can focus or reduce resolution when and where it is required. The model also allows a number of different numerical approaches to be taken to simulate the same problem within the same numerical framework. In this example we use multi-material approach, with both two materials (slide and water) and three materials (slide, water and air), alongside a density-driven sediment model approach. We will present results of validating Fluidity against benchmarks from experimental and other numerical studies, at different scales, for deformable underwater slides, and consider the utility of mesh adaptivity. We show good agreement to both laboratory results and other numerical models, both with a fixed mesh and a dynamically adaptive mesh, tracking important features of the
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping
NASA Astrophysics Data System (ADS)
Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.
2016-06-01
During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable
Learning to use the finite-element mesh generator, ESCHER 3. 2
Oakes, W.R. Jr.
1989-08-01
ESCHER is a finite-element mesh generator designed to generate valid and well proportioned two-dimensional and three-dimensional meshes. It is intended for use in a loosely integrated analysis system. Edge-geometry data can be input to ESCHER from almost any computer-aided drafting program used today. ESCHER produces a finite-element model in a neutral file format that can be translated for input to specific finite-element analysis codes. This report describes how to use ESCHER. It explains what constitutes a valid geometrical model, how to construct one from edge geometry, how to define a finite-element model given a geometrical model, and how to verify that the created model is valid. The computer-hardware system required is explained, and ESCHER's relationship to other computer codes in the Integrated Design Engineering Analysis Library, IDEAL, is discussed. 5 refs., 11 figs.
Shepherd, Jason; Mitchell, Scott A.; Jankovich, Steven R.; Benzley, Steven E.
2007-05-15
The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.
NASA Astrophysics Data System (ADS)
Zhong, Huiying; Guo, Jing; Feng, Wei; Li, Peng-Cheng; Liu, Xue-Shen
2016-01-01
The high harmonic generation (HHG) from 3D hydrogen (H) atom in three kinds of inhomogeneous fields are investigated by solving the time-dependent Schrödinger equation (TDSE) accurately with time-dependent generalized pseudospectral method (TDGPS), and compared together. The corresponding time-frequency and three-step model is also presented to explain the differences between three cases. We will also calculate the ionization probability and electron wavepacket as functions of time to further illustrate this phenomenon. By superposing a series of properly selected harmonics, the isolated attosecond pulses can be obtained straightforwards the shortest of which is 64 as.
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J.
2012-07-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
Automatic Texture Reconstruction of 3d City Model from Oblique Images
NASA Astrophysics Data System (ADS)
Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang
2016-06-01
In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.
The 3D Recognition, Generation, Fusion, Update and Refinement (RG4) Concept
NASA Technical Reports Server (NTRS)
Maluf, David A.; Cheeseman, Peter; Smelyanskyi, Vadim N.; Kuehnel, Frank; Morris, Robin D.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an active (real time) recognition strategy whereby information is inferred iteratively across several viewpoints in descent imagery. We will show how we use inverse theory within the context of parametric model generation, namely height and spectral reflection functions, to generate model assertions. Using this strategy in an active context implies that, from every viewpoint, the proposed system must refine its hypotheses taking into account the image and the effect of uncertainties as well. The proposed system employs probabilistic solutions to the problem of iteratively merging information (images) from several viewpoints. This involves feeding the posterior distribution from all previous images as a prior for the next view. Novel approaches will be developed to accelerate the inversion search using novel statistic implementations and reducing the model complexity using foveated vision. Foveated vision refers to imagery where the resolution varies across the image. In this paper, we allow the model to be foveated where the highest resolution region is called the foveation region. Typically, the images will have dynamic control of the location of the foveation region. For descent imagery in the Entry, Descent, and Landing (EDL) process, it is possible to have more than one foveation region. This research initiative is directed towards descent imagery in connection with NASA's EDL applications. Three-Dimensional Model Recognition, Generation, Fusion, Update, and Refinement (RGFUR or RG4) for height and the spectral reflection characteristics are in focus for various reasons, one of which is the prospect that their interpretation will provide for real time active vision for automated EDL.
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-11-01
The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.
Computer-generated 3D ultrasound images of the carotid artery
NASA Technical Reports Server (NTRS)
Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.
1989-01-01
A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.
Rigas, Fotis; Sklavounos, Spyros
2005-05-20
Accidental blast wave generation and propagation in the surroundings poses severe threats for people and property. The prediction of overpressure maxima and its change with time at specified distances can lead to useful conclusions in quantitative risk analysis applications. In this paper, the use of a computational fluid dynamics (CFD) code CFX-5.6 on dense explosive detonation events is described. The work deals with the three-dimensional simulation of overpressure wave propagation generated by the detonation of a dense explosive within a small-scale branched tunnel. It also aids at validating the code against published experimental data as well as to study the way that the resulting shock wave propagates in a confined space configuration. Predicted overpressure histories were plotted and compared versus experimental measurements showing a reasonably good agreement. Overpressure maxima and corresponding times were found close to the measured ones confirming that CFDs may constitute a useful tool in explosion hazard assessment procedures. Moreover, it was found that blast wave propagates preserving supersonic speed along the tunnel accompanied by high overpressure levels, and indicating that space confinement favors the formation and maintenance of a shock rather than a weak pressure wave. PMID:15885402
Validation of "AW3D" Global Dsm Generated from Alos Prism
NASA Astrophysics Data System (ADS)
Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi
2016-06-01
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).
Finite-element 3D simulation tools for high-current relativistic electron beams
NASA Astrophysics Data System (ADS)
Humphries, Stanley; Ekdahl, Carl
2002-08-01
The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.
Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Fritz, Hermann M.
2014-05-01
Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
Second generation airborne 3D imaging lidars based on photon counting
NASA Astrophysics Data System (ADS)
Degnan, John J.; Wells, David; Machan, Roman; Leventhal, Edward
2007-09-01
The first successful photon-counting airborne laser altimeter was demonstrated in 2001 under NASA's Instrument Incubator Program (IIP). This "micro-altimeter" flew at altitudes up to 22,000 ft (6.7 km) and, using single photon returns in daylight, successfully recorded high resolution images of the underlying topography including soil, low-lying vegetation, tree canopies, water surfaces, man-made structures, ocean waves, and moving vehicles. The lidar, which operated at a wavelength of 532 nm near the peak of the solar irradiance curve, was also able to see the underlying terrain through trees and thick atmospheric haze and performed shallow water bathymetry to depths of a few meters over the Atlantic Ocean and Assawoman Bay off the Virginia coast. Sigma Space Corporation has recently developed second generation systems suitable for use in a small aircraft or mini UAV. A frequency-doubled Nd:YAG microchip laser generates few microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the transmit beam into a 10x10 array of quasi-uniform spots which are imaged by the receive optics onto individual anodes of a high efficiency 10x10 GaAsP segmented anode microchannel plate photomultiplier. Each anode is input to one channel of a 100 channel, multistop timer demonstrated to have a 100 picosecond timing (1.5 cm range) resolution and an event recovery time less than 2 nsec. The pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight.
Tsunamis generated by 3D granular landslides in various scenarios from fjords to conical islands
NASA Astrophysics Data System (ADS)
McFall, Brian C.; Fritz, Hermann M.
2015-04-01
Landslide generated tsunamis such as in Lituya Bay, Alaska 1958 account for some of the highest recorded tsunami runup heights. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by pneumatic pistons down slope. Two different landslide materials are used to study the granulometry effects: naturally rounded river gravel and cobble mixtures. Water surface elevations are recorded by an array of resistance wave gauges. The landslide deformation is measured from above and underwater camera recordings. The landslide deposit is measured on the basin floor with a multiple transducer acoustic array (MTA). Landslide surface reconstruction and kinematics are determined with a stereo particle image velocimetry (PIV) system. Wave runup is recorded with resistance wave gauges along the slope and verified with video image processing. The measured landslide and wave parameters are compared between the planar hill slope used in various scenarios and the convex hill slope of the conical island. The energy conversion rates from the landslide motion to the wave train is quantified for the planar and convex hill slopes. The wave runup data on the opposing headland is analyzed and evaluated with wave theories. The measured landslide and tsunami data serve to validate and advance three-dimensional numerical landslide tsunami prediction models.
Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data
NASA Astrophysics Data System (ADS)
van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.
2011-02-01
Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
Automated Generation of 3D Volcanic Gas Plume Models for Geobrowsers
NASA Astrophysics Data System (ADS)
Wright, T. E.; Burton, M.; Pyle, D. M.
2007-12-01
A network of five UV spectrometers on Etna automatically gathers column amounts of SO2 during daylight hours. Near-simultaneous scans from adjacent spectrometers, comprising 210 column amounts in total, are then converted to 2D slices showing the spatial distribution of the gas by tomographic reconstruction. The trajectory of the plume is computed using an automatically-submitted query to NOAA's HYSPLIT Trajectory Model. This also provides local estimates of air temperature, which are used to determine the atmospheric stability and therefore the degree to which the plume is dispersed by turbulence. This information is sufficient to construct an animated sequence of models which show how the plume is advected and diffused over time. These models are automatically generated in the Collada Digital Asset Exchange format and combined into a single file which displays the evolution of the plume in Google Earth. These models are useful for visualising and predicting the shape and distribution of the plume for civil defence, to assist field campaigns and as a means of communicating some of the work of volcano observatories to the public. The Simultaneous Algebraic Reconstruction Technique is used to create the 2D slices. This is a well-known method, based on iteratively updating a forward model (from 2D distribution to column amounts). Because it is based on a forward model, it also provides a simple way to quantify errors.
Symmetry breaking in 3D wake of a bluff body generates rotation and drift
NASA Astrophysics Data System (ADS)
Lacis, Ugis; Brosse, Nicolas; Bagheri, Shervin; Lundell, Fredrik; Mazzino, Andrea; Olivieri, Stefano; Kellay, Hamid
2014-11-01
Bluff body wakes have historically been important for understanding nature and aiding industry. For Reynolds numbers above approximately Re ~ 10 , a recirculation bubble develops behind the bluff body. If a solid or elastic appendage is attached to the bluff body, it may exert a torque and a side force on the body. Previously we have used theory, numerical simulations and experiments to investigate and explain this phenomenon in two dimensions. Now we advance our investigation to three dimensional objects. More specifically, we consider a sphere and attach a sheet of given shape behind it for Re = 200 . We investigate the problem using numerical simulations and extend our theoretical model developed in two dimensions. Then we complement our findings with water tank experiments of freely falling cylinder with sheet of various mass behind it. We show that the torque and side force can be greatly changed if the density of the sheet is different compared to the cylinder. Finally we discuss the possibility of optimal configurations for propulsion generation.
Numerical modeling of landslide-generated tsunami using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Wilson, Cian; Collins, Gareth; Desousa Costa, Patrick; Piggott, Matthew
2010-05-01
Landslides impacting into or occurring under water generate waves, which can have devastating environmental consequences. Depending on the characteristics of the landslide the waves can have significant amplitude and potentially propagate over large distances. Linear models of classical earthquake-generated tsunamis cannot reproduce the highly nonlinear generation mechanisms required to accurately predict the consequences of landslide-generated tsunamis. Also, laboratory-scale experimental investigation is limited to simple geometries and short time-scales before wave reflections contaminate the data. Computational fluid dynamics models based on the nonlinear Navier-Stokes equations can simulate landslide-tsunami generation at realistic scales. However, traditional chessboard-like structured meshes introduce superfluous resolution and hence the computing power required for such a simulation can be prohibitively high, especially in three dimensions. Unstructured meshes allow the grid spacing to vary rapidly from high resolution in the vicinity of small scale features to much coarser, lower resolution in other areas. Combining this variable resolution with dynamic mesh adaptivity allows such high resolution zones to follow features like the interface between the landslide and the water whilst minimising the computational costs. Unstructured meshes are also better suited to representing complex geometries and bathymetries allowing more realistic domains to be simulated. Modelling multiple materials, like water, air and a landslide, on an unstructured adaptive mesh poses significant numerical challenges. Novel methods of interface preservation must be considered and coupled to a flow model in such a way that ensures conservation of the different materials. Furthermore this conservation property must be maintained during successive stages of mesh optimisation and interpolation. In this paper we validate a new multi-material adaptive unstructured fluid dynamics model
Lovejoy, S.C.; Whirley, R.G.
1990-10-10
This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
Highly Symmetric and Congruently Tiled Meshes for Shells and Domes
Rasheed, Muhibur; Bajaj, Chandrajit
2016-01-01
We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368
Scalable Multi-Platform Distribution of Spatial 3d Contents
NASA Astrophysics Data System (ADS)
Klimke, J.; Hagedorn, B.; Döllner, J.
2013-09-01
Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.
An elliptic calculation procedure for 3-D viscous flow
NASA Astrophysics Data System (ADS)
Moore, J. G.
1985-05-01
The computation of 3-D internal transonic flows by means of a 3-D Euler Code is discussed. A multidomain approach for time hyperbolic system is presented. This technique, based on the decomposition of the computational domain into several subdomains which may overlap one another, makes it possible to simplify some mesh generation problems and to fit discontinuities such as shocks and slip surfaces. A description of the 3-D Euler Code is given. The space discretization method and the treatment of boundary conditions are emphasized. Various applications of this code in turbomachinery are discussed.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-08-01
Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.
Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-02-01
Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.
NASA Technical Reports Server (NTRS)
Kumar, D.
1980-01-01
The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.
NASA Astrophysics Data System (ADS)
Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.
2008-12-01
Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that
Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Chen, Ningxin; Lu, Jian
1995-01-01
The design and generation of modified involute helical gears that have a localized and stable bearing contact, and reduced noise and vibration characteristics are described. The localization of the bearing contact is achieved by the mismatch of the two generating surfaces that are used for generation of the pinion and the gear. The reduction of noise and vibration will be achieved by application of a parabolic function of transmission errors that is able to absorb the almost linear function of transmission errors caused by gear misalignment. The meshing and contact of misaligned gear drives can be analyzed by application of computer programs that have been developed. The computations confirmed the effectiveness of the proposed modification of the gear geometry. A numerical example that illustrates the developed theory is provided.
NASA Technical Reports Server (NTRS)
Ashford, Gregory A.; Powell, Kenneth G.
1995-01-01
A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.
NASA Astrophysics Data System (ADS)
Ashford, Gregory A.; Powell, Kenneth G.
1995-10-01
A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
NASA Astrophysics Data System (ADS)
Kim, YoungJin; Yoo, Min-Gu; Kim, S. H.; Na, Yong-Su
2015-01-01
A field-based new adaptive mesh generator, VEGA (VEctor-following Grid generator for Adaptive mesh), is developed for 2-D core-edge coupled tokamak plasma transport simulations. VEGA can generate time-varying and spatially non-uniform grids by using a stretching function. It provides two operation modes for generating non-uniform radial distributions. One is so-called ion mode where the grid is automatically generated by considering the ion temperature gradient which plays an important role in the ion and the momentum transport mechanism of a tokamak plasma. The other is so-called high-gradient mode where the grid is produced by considering the locality of plasma profiles which appears particularly in transport barriers. VEGA is benchmarked with a conventional code for a reference double null (DN) KSTAR divertor configuration. Three factors are newly introduced in this work to evaluate the quality of a grid. It is found that VEGA is particularly suitable for delicate integrated simulations of the plasma edge and the scrape off layer (SOL) due to its high cell orthogonality and low radial flux deviation. Quality of non-uniform grids generated by the two operation modes of VEGA, the ion mode and the high-gradient mode is examined. A more refined grid is found near the edge region characterized with steeper gradients whereas coarser one in the core region. Such fine grids at the edge region can result in highly reduced radial flux deviation, which is indeed important for analysis of edge-SOL physics with time-varying simulations.
NASA Astrophysics Data System (ADS)
Wang, S.
2012-07-01
An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS), camera, global positioning system (GPS), and gyroscope (G-sensors) can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF) algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.
Raut, Samarth S; Liu, Peng; Finol, Ender A
2015-07-16
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be sufficiently robust to handle aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; and mean wall thickness 1.401±0.120 mm), the average wall thickness in the mesh was 1.459±0.123 mm. The absolute error in average wall thickness was 0.060±0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks. PMID:25976018
Raut, Samarth S.; Liu, Peng; Finol, Ender A.
2015-01-01
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be robust by handling aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; mean wall thickness 1.401 ± 0.120 mm), the average wall thickness in the mesh was 1.459 ± 0.123 mm. The absolute error in average wall thickness was 0.060 ± 0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks. PMID:25976018
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Tsung, W.-J.; Coy, J. J.
1985-01-01
There is proposed a method for generation of Gleason's spiral bevel gears which provides the following properties of meshing and contact: (1) the contact normal keeps its original direction within the neighborhood of the main contact point; (2) the contact ellipse moves along the gear tooth surface; and (3) the kinematical errors caused by Gleason's method of cutting are almost zero. Computer programs for the simulation of meshing and bearing contact are developed.
Simulation of 3D infrared scenes using random fields model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Zhang, Jianqi
2001-09-01
Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
SU-E-J-251: Fast MR-Based DRR Generation Using Highly Undersampled 3D Radial Trajectories
Pereira, G; Traughber, B; Traughber, M; Hu, L; Su, K; Muzic, R
2014-06-01
Purpose: The construction of a digitally reconstructed radiograph (DRR) from a magnetic resonance image (MRI) is possible if the cortical bone signal can be acquired and separated from air and soft tissue. This may be accomplished by subtracting a long echo-time, in-phase, gradient echo (GRE) image volume from an ultra-short echo time free induction decay (FID) image to produce a bone-enhanced (BE) image that reveals cortical bone. One limitation of this approach is the length of time required for data acquisition, which can limit the quality of the DRRs due to patient and organ motion. This study aimed to significantly reduce the acquisition time without compromising DRR quality. Methods: Brain data were acquired from two volunteers using a 3T MR scanner (Ingenia, Philips Healthcare). The FID and GRE images were acquired in a single acquisition using a 3D radial readout sequence with the following parameters: TE1=0.142ms (ultra-short), TE2=2.197ms (nearly in-phase), 2*2*2mm3 isotropic voxels, 250*250*250mm3 FOV. To reduce the acquisition time, k-space was sampled at 75, 50 and 25% of a full 3D sphere . The TE2 image was subtracted from the TE1 image to generate the BE images. The BE images were used to generate DRRs using the Pinnacle treatment planning system (Philips-version 9.2). The quality of the DRRs was evaluated qualitatively by 5 board certified medical physicists for clinical usefulness. Results: The acquisition time for 75, 50 and 25% sampling schemes were 219s, 146s, and 73s, respectively, the latter of which was a four-fold reduction in scan time compared to a 300s fully-sampled acquisition. All DRRs obtained were of acceptable quality and were shown to have sufficient information for clinical 2D image matching. Conclusion: Undersampling k-space while maintaining the same range of frequency information results in significantly reduced scan time and clinically acceptable DRR image quality. Drs. B Traughber and R Muzic have research support from Philips
Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung
2015-10-01
A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation. PMID:26327311
NASA Astrophysics Data System (ADS)
Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman
2013-11-01
The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.
Evaluating the presentation and usability of 2D and 3D maps generated by unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Gregory, Jason; Baran, David; Evans, A. W.
2013-05-01
Currently fielded small unmanned ground vehicles (SUGVs) are operated via teleoperation. This method of operation requires a high level of operator involvement within, or near within, line of sight of the robot. As advances are made in autonomy algorithms, capabilities such as automated mapping can be developed to allow SUGVs to be used to provide situational awareness with an increased standoff distance while simultaneously reducing operator involvement. In order to realize these goals, it is paramount the data produced by the robot is not only accurate, but also presented in an intuitive manner to the robot operator. The focus of this paper is how to effectively present map data produced by a SUGV in order to drive the design of a future user interface. The effectiveness of several 2D and 3D mapping capabilities was evaluated by presenting a collection of pre-recorded data sets of a SUGV mapping a building in an urban environment to a user panel of Soldiers. The data sets were presented to each Soldier in several different formats to evaluate multiple factors, including update frequency and presentation style. Once all of the data sets were presented, a survey was administered. The questions in the survey were designed to gauge the overall usefulness of the mapping algorithm presentations as an information generating tool. This paper presents the development of this test protocol along with the results of the survey.
Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.
2013-01-01
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002
NASA Astrophysics Data System (ADS)
Kim, Jaewook; Ghim, Young-Chul; Nuclear Fusion and Plasma Lab Team
2014-10-01
A BES (beam emission spectroscopy) system and an MIR (Microwave Imaging Reflectometer) system installed in KSTAR measure 2D (radial and poloidal) density fluctuations at two different toroidal locations. This gives a possibility of measuring the parallel correlation length of ion-scale turbulence in KSTAR. Due to lack of measurement points in toroidal direction and shorter separation distance between the diagnostics compared to an expected parallel correlation length, it is necessary to confirm whether a conventional statistical method, i.e., using a cross-correlation function, is valid for measuring the parallel correlation length. For this reason, we generated synthetic 3D density fluctuation data following Gaussian random field in a toroidal coordinate system that mimic real density fluctuation data. We measure the correlation length of the synthetic data by fitting a Gaussian function to the cross-correlation function. We observe that there is disagreement between the measured and actual correlation lengths, and the degree of disagreement is a function of at least, correlation length, correlation time and advection velocity of synthetic data. We identify the cause of disagreement and propose an appropriate method to measure correct correlation length.
Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant
Not Available
2010-12-01
The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
NASA Astrophysics Data System (ADS)
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-02-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
NASA Technical Reports Server (NTRS)
Jou, W.-H.
1982-01-01
An attempt is made to develop a three-dimensional, finite volume computational code for highly swept, twisted, small aspect ratio propeller blades with supersonic tip speeds, in a way that accounts for cascade effects, hub-induced flow, and nonlinear transonic effects. Attention is presently given to the generation of a computational mesh for such a complex propeller configuration, with the aim of sharing developmental process experience. The problem treated is unique, in that blade chord, blade length, hub length and blade-to-blade distance represent several characteristic length scales among which there is considerable disparity. An ad hoc mesh-generation scheme is accordingly developed.
NASA Astrophysics Data System (ADS)
Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe
1999-07-01
In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite
NASA Astrophysics Data System (ADS)
Rajpriya, N. R.; Vyas, A.; Sharma, S. A.
2014-11-01
Urban design is a subject that is concerned with the shape, the surface and its physical arrangement of all kinds of urban elements. Although urban design is a practice process and needs much detailed and multi-dimensional description. 3D city models based spatial analysis gives the possibility of solving these problems. Ahmedabad is third fastest growing cities in the world with large amount of development in infrastructure and planning. The fabric of the city is changing and expanding at the same time, which creates need of 3d visualization of the city to develop a sustainable planning for the city. These areas have to be monitored and mapped on a regular basis and satellite remote sensing images provide a valuable and irreplaceable source for urban monitoring. With this, the derivation of structural urban types or the mapping of urban biotopes becomes possible. The present study focused at development of technique for 3D modeling of buildings for urban area analysis and to implement encoding standards prescribed in "OGC City GML" for urban features. An attempt has been to develop a 3D city model with level of details 1 (LOD 1) for part of city of Ahmedabad in State of Gujarat, India. It shows the capability to monitor urbanization in 2D and 3D.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080
NASA Astrophysics Data System (ADS)
Bolick, Leslie; Harguess, Josh
2016-05-01
An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.
MHD simulations on an unstructured mesh
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Cho, Eunbi; Song, Kyeongse; Park, Mi Hui; Nam, Kyung-Wan; Kang, Yong-Mook
2016-05-01
Tin sulfide (SnS) 3D flowers containing hierarchical nanosheet subunits are synthesized using a simple polyol process. The Li ion cells incorporating SnS 3D flowers exhibit an excellent rate capability, as well as good cycling stability, compared to SnS bulks and Sn nanoparticles. These desirable properties can be attributed to their unique morphology having not only large surface reaction area but also enough space between individual 2D nanosheets, which alleviates the pulverization of SnS. PMID:27008436
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark
2010-11-01
Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase
2009-01-01
Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods. PMID:19912625
Vibrating-mesh nebulization of liposomes generated using an ethanol-based proliposome technology.
Elhissi, Abdelbary; Gill, Hardyal; Ahmed, Waqar; Taylor, Kevin
2011-06-01
This is the first study that evaluates the influence of the compartmental design of the micropump Aeroneb Go nebulizer and the viscosity of a proliposome hydration medium on vibrating-mesh aerosolization of liposomes. Ethanol-based proliposomes comprising soya phosphatidylcholine and cholesterol (1:1 mole ratio) were hydrated by using isotonic NaCl (0.9%) or sucrose (9.25%) solutions to generate liposomes that entrapped approximately 61% of the hydrophilic drug, salbutamol sulphate. Liposomes were aerosolized by the nebulizer to a two-stage impinger. For both formulations, the aerosol mass output was higher than the phospholipid output, indicating some accumulation of large liposomes or liposome aggregate within the nebulizer. Using NaCl (0.9%) solution as the dispersion medium, aerosol droplet size was much smaller and aerosol mass and phospholipid outputs were higher. This was attributed to the lower viscosity of the NaCl solution, resulting in a reduced retention of the aerosols in the "trap" of the nebulizer. For the entrapped salbutamol sulphate, although the "fine particle fraction" was relatively high (57.44%), size reduction of the liposomes during nebulization caused marked losses of the drug originally entrapped. Overall, liposomes generated from proliposomes when using this nebulizer showed high nebulization output and small droplet size. However, further work is required to reduce the losses of the originally entrapped drug from liposomes. PMID:20684671
Curved Mesh Correction And Adaptation Tool to Improve COMPASS Electromagnetic Analyses
Luo, X.; Shephard, M.; Lee, L.Q.; Ng, C.; Ge, L.; /SLAC
2011-11-14
SLAC performs large-scale simulations for the next-generation accelerator design using higher-order finite elements. This method requires using valid curved meshes and adaptive mesh refinement in complex 3D curved domains to achieve its fast rate of convergence. ITAPS has developed a procedure to address those mesh requirements to enable petascale electromagnetic accelerator simulations by SLAC. The results demonstrate that those correct valid curvilinear meshes can not only make the simulation more reliable but also improve computational efficiency up to 30%. This paper presents a procedure to track moving adaptive mesh refinement in curved domains. The procedure is capable of generating suitable curvilinear meshes to enable large-scale accelerator simulations. The procedure can generate valid curved meshes with substantially fewer elements to improve the computational efficiency and reliability of the COMPASS electromagnetic analyses. Future work will focus on the scalable parallelization of all steps for petascale simulations.
Blacker, Teddy D.
1994-01-01
An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.
Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells
NASA Astrophysics Data System (ADS)
Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.
An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.
Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Obregón, Raquel; Shiku, Hitoshi; Matsue, Tomokazu
2014-09-15
We propose a novel application of dielectrophoresis (DEP) to make three-dimensional (3D) methacrylated gelatin (GelMA) hydrogels with gradients of micro- and nanoparticles. DEP forces were able to manipulate micro- and nanoparticles of different sizes and materials (i.e., C2C12 myoblasts, polystyrene beads, gold microparticles, and carbon nanotubes) within GelMA hydrogels in a rapid and facile way and create 3D gradients of these particles in a microchamber. Immobilization of drugs, such as fluorescein isothiocyanate-dextran (FITC-dextran) and 6-hydroxydopamine (6-OHDA), on gold microparticles allowed us to investigate the high-throughput release of these drugs from GelMA-gold microparticle gradient systems. The latter gradient constructs were incubated with C2C12 myoblasts for 24h to examine the cell viability through the release of 6-OHDA. The drug was released from the microparticles in a gradient manner, inducing a cell viability gradient. This novel approach to create 3D chemical gradients within hydrogels is scalable to any arbitrary length scale. It is useful for making anisotropic biomimetic materials and high-throughput platforms to investigate cell-microenvironment interactions in a rapid, simple, cost-effective, and reproducible manner. PMID:24727602
NASA Astrophysics Data System (ADS)
Khan, Ziyauddin; Chetia, Tridip Ranjan; Qureshi, Mohammad
2012-05-01
Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity.Hyperbranched 3D SrS/CdS nanostructures were synthesized using a one pot hydrothermal method. Transmission Electron Microscopy (TEM) and Field Emission-Scanning Electron Microscopy (FE-SEM) analysis showed the formation of flower-like structure and the crystalline phase was confirmed by powder X-ray diffraction. The prepared 3D SrS/CdS exhibited improved photocatalytic activity for water splitting leading to H2 generation (AQY 10%) and nearly complete degradation of methyl orange (MO) dye. The dye degradation followed first order kinetics and the apparent reaction rate constant (kapp) was 0.136 min-1. The present 3D SrS/CdS structure promise to be efficient photocatalysts due to (i) the facile intersystem charge transfer resulting from their band alignment (ii) enhanced specific surface area and (iii) crystallinity. Electronic supplementary information (ESI) available: Schematic experimental setup for photocatalytic hydrogen generation, TEM of CdS NWs and SrS NPs, FESEM images of 3D SrS/CdS, Low resolution TEM images for 3D SrS/CdS, EDX and SAED, SEM of SrS/CdS at different ratios, progress of hydrogen production at different time interval, different UV
Waldrep, J C; Dhand, R
2008-04-01
Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available. PMID:18393813
NASA Astrophysics Data System (ADS)
Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung
2015-09-01
A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation.A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad
Mesh Quality Improvement Toolkit
2002-11-15
MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Becker, Reinard
2012-02-15
The plasma-beam interface (meniscus) is highly nonlinear and its correct simulation needs a mesh resolution of the order of the Debye length. In high intensity ion sources, the plasma density is usually too high and the Debye length is too small for a sufficient mesh resolution. A well established method to overcome this dilemma is the use of a field line and an equipotential line to be created in a first run, in order to dissect the simulation problem into a plasma part with much higher mesh resolution and a transport part with usual resolution. In the past many users of IGUN have found it difficult to perform this dissection. Therefore, a new feature has been added to IGUN to automatically write new input files for the dissected areas. For this a field line starting point needs to be defined as well as the potential of a pseudo electrode. The field line then is used for the plasma part as a slanted and curved Neumann boundary, while the pseudo electrode will act as the extraction electrode. The trajectory end data then are used in the automatically generated concatenating run as ion starting input without any need for the user to adjust for positions or different mesh resolutions. Here we show as an example the simulation of the well-known CHORDIS ion source, the calculated field line, the pseudo equipotential line, and the resulting simulations for the automatically generated input files for the plasma and the transport parts.
NASA Astrophysics Data System (ADS)
Malesa, M.; Kujawińska, M.; Malowany, K.; Siwek, B.
2013-04-01
In the paper we present implementation of 3D DIC method for in-situ diagnostic measurements of expansion bellows in heating chambers. The simultaneous measurements of a supply and a return pipeline were carried out in a heating chamber in Warsaw at the peak of the heating season in cooperation with Dalkia Warszawa. Results of the measurements enabled assessment of the risk of failure of expansion bellows. In-situ measurements were preceded by feasibility tests carried out in the Institute of Heat Engineering of Warsaw University of Technology. Potential implementations and a direction of future works are discussed in conclusions.
The geometry of r-adaptive meshes generated using optimal transport methods
NASA Astrophysics Data System (ADS)
Budd, C. J.; Russell, R. D.; Walsh, E.
2015-02-01
The principles of mesh equidistribution and alignment play a fundamental role in the design of adaptive methods, and a metric tensor and mesh metric are useful theoretical tools for understanding a method's level of mesh alignment, or anisotropy. We consider a mesh redistribution method based on the Monge-Ampère equation which combines equidistribution of a given scalar density function with optimal transport. It does not involve explicit use of a metric tensor, although such a tensor must exist for the method, and an interesting question to ask is whether or not the alignment produced by the metric gives an anisotropic mesh. For model problems with a linear feature and with a radially symmetric feature, we derive the exact form of the metric, which involves expressions for its eigenvalues and eigenvectors. The eigenvectors are shown to be orthogonal and tangential to the feature, and the ratio of the eigenvalues (corresponding to the level of anisotropy) is shown to depend, both locally and globally, on the value of the density function and the amount of curvature. We thereby demonstrate how the optimal transport method produces an anisotropic mesh along a given feature while equidistributing a suitably chosen scalar density function. Numerical results are given to verify these results and to demonstrate how the analysis is useful for problems involving more complex features, including for a non-trivial time dependant nonlinear PDE which evolves narrow and curved reaction fronts.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, T.J.; Mitchell, S.A.; Blacker, T.D.; Murdoch, P.
1998-06-16
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as ``whisker chords.`` This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method. 79 figs.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, Timothy James; Mitchell, Scott A.; Blacker, Ted D.; Murdoch, Peter
1998-01-01
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as "whisker chords." This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method.
Ataei, Sanaz; Yilmaz, Serap; Ertan-Bolelli, Tugba; Yildiz, Ilkay
2015-07-01
The continued interest in designing novel topoisomerase I (Topo I) inhibitors and the lack of adequate ligand-based computer-aided drug discovery efforts combined with the drawbacks of structure-based design prompted us to explore the possibility of developing ligand-based three-dimensional (3D) pharmacophore(s). This approach avoids the pitfalls of structure-based techniques because it only focuses on common features among known ligands; furthermore, the pharmacophore model can be used as 3D search queries to discover new Topo I inhibitory scaffolds. In this article, we employed the HipHop module using Discovery Studio to construct plausible binding hypotheses for clinically used Topo I inhibitors, such as camptothecin, topotecan, belotecan, and SN-38, which is an active metabolite of irinotecan. The docked pose of topotecan was selected as a reference compound. The first hypothesis (Hypo 01) among the obtained 10 hypotheses was chosen for further analysis. Hypo 01 had six features, which were two hydrogen-bond acceptors, one hydrogen-bond donor, one hydrophob aromatic and one hydrophob aliphatic, and one ring aromatic. Our obtained hypothesis was checked by using some of the aromathecin derivatives which were published for their Topo I inhibitory potency. Moreover, five structures were found to be possible anti-Topo I compounds from the DruglikeDiverse database. From this research, it can be suggested that our model could be useful for further studies in order to design new potent Topo I-targeting antitumor drugs. PMID:25914208
Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images
NASA Astrophysics Data System (ADS)
Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.
2006-12-01
The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.
Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images
Babu, S; Liao, P; Shin, M C; Tsap, L V
2004-04-28
The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.
Real time 3D and heterogeneous data fusion
Little, C.Q.; Small, D.E.
1998-03-01
This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.
NASA Astrophysics Data System (ADS)
Neicu, Toni; Aljarrah, Khaled M.; Jiang, Steve B.
2005-10-01
A computer program has been developed for novel 2D/3D visualization and analysis of the phase-space parameters of Monte Carlo simulations of medical accelerator radiation beams. The software is written in the IDL language and reads the phase-space data generated in the BEAMnrc/BEAM Monte Carlo code format. Contour and colour-wash plots of the fluence, mean energy, energy fluence, mean angle, spectra distribution, energy fluence distribution, angular distribution, and slices and projections of the 3D ZLAST distribution can be calculated and displayed. Based on our experience of using it at Massachusetts General Hospital, the software has proven to be a useful tool for analysis and verification of the Monte Carlo generated phase-space files. The software is in the public domain.
NASA Astrophysics Data System (ADS)
Aasen, Helge; Burkart, Andreas; Bolten, Andreas; Bareth, Georg
2015-10-01
This paper describes a novel method to derive 3D hyperspectral information from lightweight snapshot cameras for unmanned aerial vehicles for vegetation monitoring. Snapshot cameras record an image cube with one spectral and two spatial dimensions with every exposure. First, we describe and apply methods to radiometrically characterize and calibrate these cameras. Then, we introduce our processing chain to derive 3D hyperspectral information from the calibrated image cubes based on structure from motion. The approach includes a novel way for quality assurance of the data which is used to assess the quality of the hyperspectral data for every single pixel in the final data product. The result is a hyperspectral digital surface model as a representation of the surface in 3D space linked with the hyperspectral information emitted and reflected by the objects covered by the surface. In this study we use the hyperspectral camera Cubert UHD 185-Firefly, which collects 125 bands from 450 to 950 nm. The obtained data product has a spatial resolution of approximately 1 cm for the spatial and 21 cm for the hyperspectral information. The radiometric calibration yields good results with less than 1% offset in reflectance compared to an ASD FieldSpec 3 for most of the spectral range. The quality assurance information shows that the radiometric precision is better than 0.13% for the derived data product. We apply the approach to data from a flight campaign in a barley experiment with different varieties during the growth stage heading (BBCH 52 - 59) to demonstrate the feasibility for vegetation monitoring in the context of precision agriculture. The plant parameters retrieved from the data product correspond to in-field measurements of a single date field campaign for plant height (R2 = 0.7), chlorophyll (BGI2, R2 = 0.52), LAI (RDVI, R2 = 0.32) and biomass (RDVI, R2 = 0.29). Our approach can also be applied for other image-frame cameras as long as the individual bands of the
Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images
NASA Astrophysics Data System (ADS)
Amami, Amal; Ben Azouz, Zouhour
2013-12-01
Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.
3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D
Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.
2012-07-01
As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)
NASA Astrophysics Data System (ADS)
Pederzani, Jean-Noel; Haj-Hariri, Hossein
2012-11-01
An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI.
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Kramer, S. C.; Collins, G. S.
2010-12-01
Linear wave models cannot reproduce the highly nonlinear generation mechanisms required to accurately predict the consequences of landslide-generated tsunamis. Models based on the nonlinear Navier-Stokes equations can simulate complex landslide-water interactions at realistic scales; however, the computing power required for such a simulation can be prohibitively high for large domains with realistic bathymetries. The variable resolution available with the use of unstructured adaptive meshes allows larger domains to be modeled at the same resolution for a lower computational cost than on structured meshes; they are also better at representing complex geometries and bathymetries. However, unstructured meshes introduce extra numerical challenges requiring the use of novel interface preservation techniques coupled with velocity-pressure discretisations that ensure the conservation and boundedness of all materials in the simulation. In this study we describe some of the challenges encountered extending the finite element, finite volume multiple-material fluid dynamics model Fluidity to large-scale landslide-generated tsunami simulations. In particular, we focus on the ability of the model to preserve the balance between the buoyancy and pressure gradient forces. Failure to discretely satisfy this relationship is shown to result in spurious waves that contaminate any physical tsunami signal. However, ensuring that balance is preserved in a computationally efficient manner imposes extra constraints on the dynamic mesh optimisation process. Incorporating these restrictions allows us to validate our model against multi-scale experimental simulations of landslide generated tsunami (see figure). Experimental (top, taken from Di Risio et. al. 2009, doi:10.1029/2008JC004858) and equivalent numerical simulation (bottom) of a subaerial landslide impacting into water. In the experiment the 80cm long landslide produces waves of amplitude 1-2cm around a 9m diameter island in a 50x
Bischof, C.H.; Mauer, A.; Jones, W.T.
1995-12-31
Automatic differentiation (AD) is a methodology for developing reliable sensitivity-enhanced versions of arbitrary computer programs with little human effort. It can vastly accelerate the use of advanced simulation codes in multidisciplinary design optimization, since the time for generating and verifying derivative codes is greatly reduced. In this paper, we report on the application of the recently developed ADIC automatic differentiation tool for ANSI C programs to the CSCMDO multiblock three-dimensional volume grid generator. The ADIC-generated code can easily be interfaced with Fortran derivative codes generated with the ADIFOR AD tool FORTRAN 77 programs, thus providing efficient sensitivity-enhancement techniques for multilanguage, multidiscipline problems.
Interactive 3d Landscapes on Line
NASA Astrophysics Data System (ADS)
Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.
2011-09-01
The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.
MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes
NASA Astrophysics Data System (ADS)
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2014-09-01
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro++ (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2013-09-30
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
NASA Astrophysics Data System (ADS)
Davillerd, Stephane; Sidot, Benoit; Bernard, Alain; Ris, Gabriel
1998-12-01
This paper introduces the first results of a research work carried out on the automation of digitizing process of complex part using a precision 3D laser senor. Indeed, most of the operations are generally still manual to perform digitization. In fact, redundancies, lacks or forgettings in point acquisition are possible. Moreover, digitalization time of a part, i.e. immobilization of the machine, is thus not optimized overall. After introducing the context in which evolves the reverse engineering, we quickly present non-contact sensors and machines usable to digitalize a part. Considered environment of digitization is also modeled, but in a general way in order to preserve an upgrading capability to the system. Machine and sensor actually used are then presented and their integration exposed. Current process of digitization is then detailed, after what a critical analysis from the considered point of view is carried out and some solutions are suggested. The paper concludes on the laid down prospects and the next projected developments.
Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J
2010-04-28
In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes. PMID:20308113
NASA Astrophysics Data System (ADS)
Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O.
2007-06-01
The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×1018cm-3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.
Biedron, S. G.
1999-02-26
Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.
Final Report for LDRD Project on Rapid Problem Setup for Mesh-Based Simulation (Rapsodi)
Brown, D L; Henshaw, W; Petersson, N A; Fast, P; Chand, K
2003-02-07
Under LLNL Exploratory Research LDRD funding, the Rapsodi project developed rapid setup technology for computational physics and engineering problems that require computational representations of complex geometry. Many simulation projects at LLNL involve the solution of partial differential equations in complex 3-D geometries. A significant bottleneck in carrying out these simulations arises in converting some specification of a geometry, such as a computer-aided design (CAD) drawing to a computationally appropriate 3-D mesh that can be used for simulation and analysis. Even using state-of-the-art mesh generation software, this problem setup step typically has required weeks or months, which is often much longer than required to carry out the computational simulation itself. The Rapsodi project built computational tools and designed algorithms that help to significantly reduce this setup time to less than a day for many realistic problems. The project targeted rapid setup technology for computational physics and engineering problems that use mixed-element unstructured meshes, overset meshes or Cartesian-embedded boundary (EB) meshes to represent complex geometry. It also built tools that aid in constructing computational representations of geometry for problems that do not require a mesh. While completely automatic mesh generation is extremely difficult, the amount of manual labor required can be significantly reduced. By developing novel, automated, component-based mesh construction procedures and automated CAD geometry repair and cleanup tools, Rapsodi has significantly reduced the amount of hand crafting required to generate geometry and meshes for scientific simulation codes.
Agarwal, Pranay; Zhao, Shuting; Bielecki, Peter; Rao, Wei; Choi, Jung K.; Zhao, Yi; Yu, Jianhua; Zhang, Wujie; He, Xiaoming
2013-01-01
A novel core-shell microcapsule system is developed in this study to mimic the miniaturized 3D architecture of pre-hatching embryos with an aqueous liquid core of embryonic cells and a hydrogel-shell of zona pellucida. This is done by microfabricating a non-planar microfluidic flow-focusing device that enables one-step generation of microcapsules with an alginate hydrogel shell and an aqueous liquid core of cells from two aqueous fluids. Mouse embryonic stem (ES) cells encapsulated in the liquid core are found to survive well (> 92 %). Moreover, ~ 20 ES cells in the core can proliferate to form a single ES cell aggregate in each microcapsule within 7 days while at least a few hundred cells are usually needed by the commonly used hanging-drop method to form an embryoid body (EB) in each hanging drop. Quantitative RT-PCR analyses show significantly higher expression of pluripotency marker genes in the 3D aggregated ES cells compared to the cells under 2D culture. The aggregated ES cells can be efficiently differentiated into beating cardiomyocytes using a small molecule (cardiogenol C) without complex combination of multiple growth factors. Taken together, the novel 3D microfluidic and pre-hatching embryo-like microcapsule systems are of importance to facilitate in vitro culture of pluripotent stem cells for their ever-increasing use in modern cell-based medicine. PMID:24113543
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271
Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo
2015-01-01
The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271
Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young
2016-08-01
While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future. PMID:27138846
Fatehi, Daryoush; de Bruijne, Maarten; van der Zee, Jacoba; van Rhoon, Gerard C
2006-03-01
One of the systems used by hyperthermia (HT) groups for heating tumours in the pelvic region is the BSD2000 system. Previous versions of the BSD2000 operate on a PDOS machine and the majority of the currently installed BSD2000/3D systems are still running under PDOS. Availability of the PDOS formatted treatment data provided by the BSD2000/3D has some difficulties. To facilitate analysis of the PDOS formatted treatment data generated by the BSD2000/3D a programme, called RHyThM (Rotterdam Hyperthermia Thermal Modulator) has been created. The purpose of RHyThM is first to read and check the integrity and validity of the treatment data for each measurement in time and space as provided by the BSD2000/3D and secondly to register a tissue type, based on computer tomography information, for each temperature probe position. Prior to any analyses, RHyThM shows the temperature profiles enabling the user to check on probe movement and to correct for unrealistically high temperature gradients in time and space. Subsequently, this approved data set is saved in a 'mother-file' for future on-demand thermal dose analyses. A unique feature of RHyThM is that it also shows all radiofrequency (RF) power signals for inspection. Finally, to make a quick assessment of the quality of the applied HT-treatment, RHyThM reports several temperature indices for bladder, vagina and rectum as well as RF-power related quantities. In summary, RHyThM is considered a valuable tool as it quickly provides a quality index per treatment, which serves as input for the preparation of the next treatment. Further, it makes verified and improved primary data sets accessible for further analysis with advanced statistical programmes. PMID:16754600
NASA Astrophysics Data System (ADS)
Devaux, Fabrice; Lantz, Eric; Chauvet, Mathieu
2016-04-01
We report an application of the tri-dimensional pseudo-spectral time domain algorithm, that solves with accuracy the nonlinear Maxwell's equations, to predict second harmonic generation in lithium niobate ridge-type waveguides with high index contrast. Characteristics of the nonlinear process such as conversion efficiency as well as impact of the multimode character of the waveguide are investigated as a function of the waveguide geometry in uniformly and periodically poled medium.
NASA Astrophysics Data System (ADS)
Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.
2015-01-01
Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.
NASA Astrophysics Data System (ADS)
Wu, Guangxi; Yu, Xiong
2015-06-01
Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.
NASA Astrophysics Data System (ADS)
Schilling, S.; Diefenbach, A. K.
2012-12-01
Photogrammetry has been used to generate contours and Digital Elevation Models (DEMs) to monitor change at Mount St. Helens, WA since the 1980 eruption. We continue to improve techniques to monitor topographic changes within the crater. During the 2004-2008 eruption, 26 DEMs were used to track volume and rates of growth of a lava dome and changes of Crater Glacier. These measurements constrained seismogenic extrusion models and were compared with geodetic deflation volume to constrain magma chamber behavior. We used photogrammetric software to collect irregularly spaced 3D points primarily by hand and, in reasonably flat areas, by automated algorithms, from commercial vertical aerial photographs. These models took days to months to complete and the areal extent of each surface was determined by visual inspection. Later in the eruption, we pioneered the use of different software to generate irregularly spaced 3D points manually from oblique images captured by a hand-held digital camera. In each case, the irregularly spaced points and intervening interpolated points formed regular arrays of cells or DEMs. Calculations using DEMs produced from the hand-held images duplicated volumetric and rate results gleaned from the vertical aerial photographs. This manual point capture technique from oblique hand-held photographs required only a few hours to generate a model over a focused area such as the lava dome, but would have taken perhaps days to capture data over the entire crater. Here, we present results from new photogrammetric software that uses robust image-matching algorithms to produce 3D surfaces automatically after inner, relative, and absolute orientations between overlapping photographs are completed. Measurements using scans of vertical aerial photographs taken August 10, 2005 produced dome volume estimates within two percent of those from a surface generated using the vertical aerial photograph manual method. The new August 10th orientations took less than 8
NASA Technical Reports Server (NTRS)
Volakis, John L.
1990-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).
NASA Astrophysics Data System (ADS)
McFall, B. C.; Fritz, H. M.
2013-12-01
Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1
Beam Optics Analysis - An Advanced 3D Trajectory Code
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-03
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
Beam Optics Analysis — An Advanced 3D Trajectory Code
NASA Astrophysics Data System (ADS)
Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark
2006-01-01
Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.
NASA Astrophysics Data System (ADS)
Nakamura, Yuki; Ashi, Juichiro; Morita, Sumito
2016-04-01
To clarify timing and scale of past submarine landslides is important to understand formation processes of the landslides. The study area is in a part of continental slope of the Japan Trench, where a number of large-scale submarine landslide (slump) deposits have been identified in Pliocene and Quaternary formations by analysing METI's 3D seismic data "Sanrikuoki 3D" off Shimokita Peninsula (Morita et al., 2011). As structural features, swarm of parallel dikes which are likely dewatering paths formed accompanying the slumping deformation, and slip directions are basically perpendicular to the parallel dikes. Therefore, parallel dikes are good indicator for estimation of slip directions. Slip direction of each slide was determined one kilometre grid in the survey area of 40 km x 20 km. The remarkable slip direction varies from Pliocene to Quaternary in the survey area. Parallel dike structure is also available for the distinguishment of the slump deposit and normal deposit on time slice images. By tracing outline of slump deposits at each depth, we identified general morphology of the overall slump deposits, and calculated the volume of the extracted slump deposits so as to estimate the scale of each event. We investigated temporal and spatial variation of depositional pattern of the slump deposits. Calculating the generation interval of the slumps, some periodicity is likely recognized, especially large slump do not occur in succession. Additionally, examining the relationship of the cumulative volume and the generation interval, certain correlation is observed in Pliocene and Quaternary. Key words: submarine landslides, 3D seismic data, Shimokita Peninsula
Di Buduo, Christian A.; Wray, Lindsay S.; Tozzi, Lorenzo; Malara, Alessandro; Chen, Ying; Ghezzi, Chiara E.; Smoot, Daniel; Sfara, Carla; Antonelli, Antonella; Spedden, Elise; Bruni, Giovanna; Staii, Cristian; De Marco, Luigi; Magnani, Mauro; Kaplan, David L.
2015-01-01
We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production. PMID:25575540
Tam, Matthew David; Laycock, Stephen David; Jayne, David; Babar, Judith; Noble, Brendon
2013-08-01
This report concerns a 67 year old male patient with known advanced relapsing polychondritis complicated by tracheobronchial chondromalacia who is increasingly symptomatic and therapeutic options such as tracheostomy and stenting procedures are being considered. The DICOM files from the patient's dynamic chest CT in its inspiratory and expiratory phases were used to generate stereolithography (STL) files and hence print out 3-D models of the patient's trachea and central airways. The 4 full-sized models allowed better understanding of the extent and location of any stenosis or malacic change and should aid any planned future stenting procedures. The future possibility of using the models as scaffolding to generate a new cartilaginous upper airway using regenerative medical techniques is also discussed. PMID:24421951
3D reconstruction of SEM images by use of optical photogrammetry software.
Eulitz, Mona; Reiss, Gebhard
2015-08-01
Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. PMID:26073969
[3-D ultrasound in gastroenterology].
Zoller, W G; Liess, H
1994-06-01
Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
NASA Astrophysics Data System (ADS)
Mishra, Pankaj; Li, Ruijiang; St. James, Sara; Mak, Raymond H.; Williams, Christopher L.; Yue, Yong; Berbeco, Ross I.; Lewis, John H.
2013-02-01
Accurate understanding and modeling of respiration-induced uncertainties is essential in image-guided radiotherapy. Explicit modeling of the overall lung motion and interaction among different organs promises to be a useful approach. Recently, preliminary studies on 3D fluoroscopic treatment imaging and tumor localization based on principal component analysis motion models and cost function optimization have shown encouraging results. However, the performance of this technique for varying breathing parameters and under realistic conditions remains unclear and thus warrants further investigation. In this work, we present a systematic evaluation of a 3D fluoroscopic image generation algorithm via two different approaches. In the first approach, the model's accuracy is tested for changing parameters for sinusoidal breathing. These parameters include changing respiratory motion amplitude, period and baseline shift. The effects of setup error, imaging noise and different tumor sizes are also examined. In the second approach, we test the model for anthropomorphic images obtained from a modified XCAT phantom. This set of experiments is important as all the underlying breathing parameters are simultaneously tested, as in realistic clinical conditions. Based on our simulation results for more than 250 s of breathing data for eight different lung patients, the overall tumor localization accuracies of the model in left-right, anterior-posterior and superior-inferior directions are 0.1 ± 0.1, 0.5 ± 0.5 and 0.8 ± 0.8 mm, respectively. 3D tumor centroid localization accuracy is 1.0 ± 0.9 mm.
Peiró, Joaquim; Sherwin, Spencer J; Giordana, Sergio
2008-11-01
We describe a set of procedures for the shape reconstruction and mesh generation of unstructured high-order spatial discretization of patient-specific geometries from a series of medical images and for the simulation of flows in these meshes using a high-order hp-spectral solver. The reconstruction of the shape of the boundary is based on the interpolation of an implicit function through a set of points obtained from the segmentation of the images. This approach is favoured for its ability of smoothly interpolating between sections of different topology. The boundary of the object is initially represented as an iso-surface of an implicit function defined in terms of radial basis functions. This surface is approximated by a triangulation extracted by the method of marching cubes. The triangulation is then suitably smoothed and refined to improve its quality and permit its approximation by a quilt of bi-variate spline surface patches. Such representation is often the standard input format required for state-of-the-art mesh generators. The generation of the surface patches is based on a partition of the triangulation into Voronoi regions and dual Delaunay triangulations with an even number of triangles. The quality of the triangulation is optimized by imposing that the distortion associated with the energy of deformation by harmonic maps is minimized. Patches are obtained by merging adjacent triangles and this representation is then used to generate a mesh of linear elements using standard generation techniques. Finally, a mesh of high-order elements is generated in a bottom-up fashion by creating the additional points required for the high-order interpolation and projecting them on the edges and surfaces of the quilt of patches. The methodology is illustrated by generating meshes for a by-pass graft geometry and calculating high-order CFD solutions in these meshes. PMID:18795356
An Improved Version of TOPAZ 3D
Krasnykh, Anatoly
2003-07-29
An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.
NASA Astrophysics Data System (ADS)
Gao, Jian; Katz, Joseph
2015-11-01
In studies of turbulent flows over rough walls, considerable efforts have been put on the overall effects of roughness parameters such as roughness height and spatial arrangement on the mean profiles and turbulence statistics. However there is very little experimental data on the generation, evolution, and interaction among roughness-initiated turbulent structures, which are essential for elucidating the near-wall turbulence production. As a first step, we approach this problem experimentally by applying digital holographic microscopy (DHM) to measure the flow and turbulence around a pair of cubic roughness elements embedded in the inner part of a high Reynolds number turbulent channel flow (Reτ = 2000 - 5000). The ratio of half-channel height (h) to cube height (a) is 25, and the cubes are aligned in the spanwise direction, and separated by 1.5 a. DHM provides high-resolution three-dimensional (3D) three-component (3C) velocity distributions. The presentation discusses methods to improve the data accuracy, both during the hologram acquisition and particle tracking phases. First, we compare and mutually validate velocity fields obtained from a two-view DHM system. Subsequently, during data processing, the seven criteria used for particle tracking is validated and augmented by planar tracking of particle image projections. Sample results reveal instantaneous 3D velocity fields and vortical structures resolved in fine details of several wall units. Funded by NSF and ONR.
Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge
Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui
2014-07-15
Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region,