Science.gov

Sample records for 3d microscopy images

  1. 3D Cell Culture Imaging with Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Dimiduk, Thomas; Nyberg, Kendra; Almeda, Dariela; Koshelva, Ekaterina; McGorty, Ryan; Kaz, David; Gardel, Emily; Auguste, Debra; Manoharan, Vinothan

    2011-03-01

    Cells in higher organisms naturally exist in a three dimensional (3D) structure, a fact sometimes ignored by in vitro biological research. Confinement to a two dimensional culture imposes significant deviations from the native 3D state. One of the biggest obstacles to wider use of 3D cultures is the difficulty of 3D imaging. The confocal microscope, the dominant 3D imaging instrument, is expensive, bulky, and light-intensive; live cells can be observed for only a short time before they suffer photodamage. We present an alternative 3D imaging techinque, digital holographic microscopy, which can capture 3D information with axial resolution better than 2 μm in a 100 μm deep volume. Capturing a 3D image requires only a single camera exposure with a sub-millisecond laser pulse, allowing us to image cell cultures using five orders of magnitude less light energy than with confocal. This can be done with hardware costing ~ 1000. We use the instrument to image growth of MCF7 breast cancer cells and p. pastoras yeast. We acknowledge support from NSF GRFP.

  2. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  3. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  4. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  5. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  6. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  7. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging.

    PubMed

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-06-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  8. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  9. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  10. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  11. 3D imaging of the cleared intact murine colon with light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Zufiria, B.; Bocancea, D. I.; Gómez-Gaviro, M. V.; Vaquero, J. J.; Desco, M.; Fresno, M.; Ripoll, J.; Arranz, A.

    2016-03-01

    We here show 3D light sheet microscopy images of fixed and cleared murine colon tissue in-toto, which offer relevant cellular information without the need for physically sectioning the tissue. We have applied the recently developed CUBIC protocol (Susaki et al. Cell 157:726, 2014) for colon tissues and have found that this clearing protocol enables imaging all the way to the central part of the lumen with cellular resolution, thus opening new ways for 3D imaging of colon samples.

  12. An open-source deconvolution software package for 3-D quantitative fluorescence microscopy imaging

    PubMed Central

    SUN, Y.; DAVIS, P.; KOSMACEK, E. A.; IANZINI, F.; MACKEY, M. A.

    2010-01-01

    Summary Deconvolution techniques have been widely used for restoring the 3-D quantitative information of an unknown specimen observed using a wide-field fluorescence microscope. Deconv, an open-source deconvolution software package, was developed for 3-D quantitative fluorescence microscopy imaging and was released under the GNU Public License. Deconv provides numerical routines for simulation of a 3-D point spread function and deconvolution routines implemented three constrained iterative deconvolution algorithms: one based on a Poisson noise model and two others based on a Gaussian noise model. These algorithms are presented and evaluated using synthetic images and experimentally obtained microscope images, and the use of the library is explained. Deconv allows users to assess the utility of these deconvolution algorithms and to determine which are suited for a particular imaging application. The design of Deconv makes it easy for deconvolution capabilities to be incorporated into existing imaging applications. PMID:19941558

  13. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy

    PubMed Central

    Rennie, Monique Y.; Gahan, Curran G.; López, Claudia S.; Thornburg, Kent L.; Rugonyi, Sandra

    2015-01-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three dimensional (3D), high-resolution imaging. Focused ion beam-scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a focused ion beam, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy (TEM). Up to 1100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800–1500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall. PMID:24742339

  14. A 3D Primary Vessel Reconstruction Framework with Serial Microscopy Images

    PubMed Central

    Liang, Yanhui; Wang, Fusheng; Treanor, Darren; Magee, Derek; Teodoro, George; Zhu, Yangyang; Kong, Jun

    2015-01-01

    Three dimensional microscopy images present significant potential to enhance biomedical studies. This paper presents an automated method for quantitative analysis of 3D primary vessel structures with histology whole slide images. With registered microscopy images of liver tissue, we identify primary vessels with an improved variational level set framework at each 2D slide. We propose a Vessel Directed Fitting Energy (VDFE) to provide prior information on vessel wall probability in an energy minimization paradigm. We find the optimal vessel cross-section associations along the image sequence with a two-stage procedure. Vessel mappings are first found between each pair of adjacent slides with a similarity function for four association cases. These bi-slide vessel components are further linked by Bayesian Maximum A Posteriori (MAP) estimation where the posterior probability is modeled as a Markov chain. The efficacy of the proposed method is demonstrated with 54 whole slide microscopy images of sequential sections from a human liver. PMID:26478919

  15. Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Beiderman, Yevgeny; Amsel, Avigail; Tzadka, Yaniv; Fixler, Dror; Teicher, Mina; Micó, Vicente; Garcí, Javier; Javidi, Bahram; DaneshPanah, Mehdi; Moon, Inkyu; Zalevsky, Zeev

    In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat's cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns on top of the sample and by proper decoding exceeding the diffraction as well as the geometrical-related lateral resolution limitation. In the final part of the chapter, we overview applications of digital holographic microscopy (DHM) for real-time non-invasive 3-D sensing, tracking, and recognition of living microorganisms such as single- or multiple-cell organisms and bacteria.

  16. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. PMID:26855205

  17. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  18. 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Tserevelakis, George J.; Murić, Branka D.; Filippidis, George; Pantelić, Dejan V.

    2013-05-01

    In this work, nonlinear laser scanning microscopy was employed for the characterization and three-dimensional (3D) imaging of microlenses and microlens arrays. Third-harmonic generation and two-photon excitation fluorescence (TPEF) signals were recorded and the obtained data were further processed in order to generate 3D reconstructions of the examined samples. Femtosecond laser pulses (1028 nm) were utilized for excitation. Microlenses were manufactured on Tot'hema and eosin sensitized gelatin layers using a green (532 nm) continuous wave laser beam using the direct laser writing method. The profiles of the microlens surface were obtained from the radial cross-sections, using a triple-Gaussian fit. The analytical shapes of the profiles were also used for ray tracing. Furthermore, the volumes of the microlenses were determined with high precision. The TPEF signal arising from the volume of the material was recorded and the respective 3D spatial fluorescence distribution of the samples was mapped. Nonlinear microscopy modalities have been shown to be a powerful diagnostic tool for microlens characterization as they enable in-depth investigations of the structural properties of the samples, in a nondestructive manner.

  19. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Lu, Ju; Lichtman, Jeff; Adjeroh, Donald; Wong, Stephen T C

    2008-08-01

    The morphological properties of axons, such as their branching patterns and oriented structures, are of great interest for biologists in the study of the synaptic connectivity of neurons. In these studies, researchers use triple immunofluorescent confocal microscopy to record morphological changes of neuronal processes. Three-dimensional (3D) microscopy image analysis is then required to extract morphological features of the neuronal structures. In this article, we propose a highly automated 3D centerline extraction tool to assist in this task. For this project, the most difficult part is that some axons are overlapping such that the boundaries distinguishing them are barely visible. Our approach combines a 3D dynamic programming (DP) technique and marker-controlled watershed algorithm to solve this problem. The approach consists of tracking and updating along the navigation directions of multiple axons simultaneously. The experimental results show that the proposed method can rapidly and accurately extract multiple axon centerlines and can handle complicated axon structures such as cross-over sections and overlapping objects. PMID:18336075

  20. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  1. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy.

    PubMed

    Heymann, Jurgen A W; Shi, Dan; Kim, Sang; Bliss, Donald; Milne, Jacqueline L S; Subramaniam, Sriram

    2009-04-01

    Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range. PMID:19116171

  2. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  3. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  4. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented. PMID:27046601

  5. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    PubMed Central

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens. PMID:25185543

  6. 3D resolution enhancement of deep-tissue imaging based on virtual spatial overlap modulation microscopy.

    PubMed

    Su, I-Cheng; Hsu, Kuo-Jen; Shen, Po-Ting; Lin, Yen-Yin; Chu, Shi-Wei

    2016-07-25

    During the last decades, several resolution enhancement methods for optical microscopy beyond diffraction limit have been developed. Nevertheless, those hardware-based techniques typically require strong illumination, and fail to improve resolution in deep tissue. Here we develop a high-speed computational approach, three-dimensional virtual spatial overlap modulation microscopy (3D-vSPOM), which immediately solves the strong-illumination issue. By amplifying only the spatial frequency component corresponding to the un-scattered point-spread-function at focus, plus 3D nonlinear value selection, 3D-vSPOM shows significant resolution enhancement in deep tissue. Since no iteration is required, 3D-vSPOM is much faster than iterative deconvolution. Compared to non-iterative deconvolution, 3D-vSPOM does not need a priori information of point-spread-function at deep tissue, and provides much better resolution enhancement plus greatly improved noise-immune response. This method is ready to be amalgamated with two-photon microscopy or other laser scanning microscopy to enhance deep-tissue resolution. PMID:27464077

  7. 3D Image Processing of Two-Photon Microscopy Images Depicting Nanoprobes in Skin

    NASA Astrophysics Data System (ADS)

    Bongo, Andrew E.

    Choosing a deconvolution algorithm can be beneficial when imaging nanoprobes in skin by means of two-photon microscopy. By design, deconvolution algorithms can increase the signal to noise ratio of the raw images and thus make it easier to identify discrete, subresolution nanoprobes from blurry two-photon image data. This poses the favorable benefit of knowing more precise locations of nanoprobes inside skin. This thesis demonstrates how the Expectation-Maximization deconvolution algorithm (EM algorithm) can be applied to three-dimensional, two-photon images depicting quantum dot nanoprobes inside human skin. This was accomplished in part by devising a way to deliver nanoprobes inside skin by means of low frequency ultrasound. Many nanoprobes become sparsely scattered inside skin when using this nanoprobe delivery methodology. The scattered nanoprobes resulting from the nanoprobe delivery pose a unique benefit in acquiring an experimental point spread function of the imaging system. This in turn gives an accurate representation of the point spread function that can be used as an input to the EM algorithm. The methodology of utilizing the EM algorithm in this manner is presented.

  8. Multimodal interferometric microscopy for label-free 3D imaging of live cells in flow (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shaked, Natan Tzvi

    2016-03-01

    I present multimodal wide-field interferometric microscopy platform for label-free 3-D imaging of live cells during fast flow. Using holographic optical tweezers, multiple cells can be optically trapped and rapidity rotated on all axes, while acquired using an external off-axis wide-field interferometric module developed in our lab. The interferometric projections are rapidly processed into the 3-D refractive-index profile of the cells using a tomographic phase microscopy algorithms that take into consideration optical diffraction effects. The algorithms for the 3-D refractive-index reconstruction, and for calculating various morphological parameters that should serve for online sorting of cells, are efficiently implemented in a nearly real-time manner. The potential of this new high-throughput imaging technique is for label-free image analysis and sorting of cells during flow, to substitute current cell sorting devices, which are based on external labeling that eventually damages the cell sample.

  9. Simple 3D images from fossil and recent micromaterial using light microscopy.

    PubMed

    Haug, J T; Haug, C; Maas, A; Fayers, S R; Trewin, N H; Waloszek, D

    2009-01-01

    Abstract We present a technique for extracting 3D information from small-scale fossil and Recent material and give a summary of other contemporary techniques for 3D methods of investigation. The only hardware needed for the here-presented technique is a microscope that can perform dark field and/or differential interference contrast with a mounted digital camera and a computer. Serial images are taken while the focus is successively shifted from the uppermost end of the specimen to the lowermost end, resulting in about 200 photographs. The data are then processed almost completely automatically by successive use of three freely available programs. Firstly, the stack of images is aligned by the use of CombineZM, which is used to produce a combined image with a high depth of field. Secondly, the aligned images are cropped and sharp edges extracted with the aid of ImageJ. Thirdly, although ImageJ is also capable of producing 3D representations, we preferred to process the image stack further using osirix as it has the facility to export various formats. One of the interesting export formats is a virtual Quicktime movie file (QTVR), which can be used for documentation, and stereo images can also be produced from this Quicktime VR. This method is easy to apply and can be used for documenting specimens in 3D (at least some aspects) without having to prepare them. Therefore, it is particularly useful as a safe method for documenting limited material, before using methods that may destroy the specimen of interest, or to investigate type material that cannot be treated with any preparatory technique. As light microscopes are available in most labs and free computer programs are easily accessible, this method can be readily applied. PMID:19196416

  10. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts. PMID:25703291

  11. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  12. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  13. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Meunier, Michel

    2015-05-01

    We present a new hyperspectral reflected light microscopy system with a scanned broadband supercontinuum light source. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. The presented system can be used for real-time 3D NP tracking as spectral sensors, thus providing new avenues in the spatio-temporal characterization and detection of bioanalytes. 3D image of the distribution of functionalized AuNPs attached to CD44-expressing MDA-MB-231 human cancer cells. PMID:24961507

  14. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines. PMID:19725070

  15. Quantification of fluorescent spots in time series of 3D confocal microscopy images of endoplasmic reticulum exit sites based on the HMAX transform

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Verissimo, Fatima; Wörz, Stefan; Eils, Roland; Pepperkok, Rainer; Rohr, Karl

    2010-03-01

    We present an approach for the quantification of fluorescent spots in time series of 3-D confocal microscopy images of endoplasmic reticulum exit sites of dividing cells. Fluorescent spots are detected based on extracted image regions of highest response using the HMAX transform and prior convolution of the 3-D images with a Gaussian kernel. The sensitivity of the involved parameters was studied and a quantitative evaluation using both 3-D synthetic and 3-D real data was performed. The approach was successfully applied to more than one thousand 3-D confocal microscopy images.

  16. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm.

    PubMed

    Molaei, Mehdi; Sheng, Jian

    2014-12-29

    Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  17. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  18. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  19. Image reconstruction for 3D light microscopy with a regularized linear method incorporating a smoothness prior

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; Miller, Michael I.; Conchello, Jose-Angel

    1993-07-01

    We have shown that the linear least-squares (LLS) estimate of the intensities of a 3-D object obtained from a set of optical sections is unstable due to the inversion of small and zero-valued eigenvalues of the point-spread function (PSF) operator. The LLS solution was regularized by constraining it to lie in a subspace spanned by the eigenvectors corresponding to a selected number of the largest eigenvalues. In this paper we extend the regularized LLS solution to a maximum a posteriori (MAP) solution induced by a prior formed from a 'Good's like' smoothness penalty. This approach also yields a regularized linear estimator which reduces noise as well as edge artifacts in the reconstruction. The advantage of the linear MAP (LMAP) estimate over the current regularized LLS (RLLS) is its ability to regularize the inverse problem by smoothly penalizing components in the image associated with small eigenvalues. Computer simulations were performed using a theoretical PSF and a simple phantom to compare the two regularization techniques. It is shown that the reconstructions using the smoothness prior, give superior variance and bias results compared to the RLLS reconstructions. Encouraging reconstructions obtained with the LMAP method from real microscopical images of a 10 micrometers fluorescent bead, and a four-cell Volvox embryo are shown.

  20. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  1. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  2. Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy.

    PubMed

    Vicidomini, G; Boccacci, P; Diaspro, A; Bertero, M

    2009-04-01

    The methods of image deconvolution are important for improving the quality of the detected images in the different modalities of fluorescence microscopy such as wide-field, confocal, two-photon excitation and 4Pi. Because deconvolution is an ill-posed problem, it is, in general, reformulated in a statistical framework such as maximum likelihood or Bayes and reduced to the minimization of a suitable functional, more precisely, to a constrained minimization, because non-negativity of the solution is an important requirement. Next, iterative methods are designed for approximating such a solution. In this paper, we consider the Bayesian approach based on the assumption that the noise is dominated by photon counting, so the likelihood is of the Poisson-type, and that the prior is edge-preserving, as derived from a simple Markov random field model. By considering the negative logarithm of the a posteriori probability distribution, the computation of the maximum a posteriori (MAP) estimate is reduced to the constrained minimization of a functional that is the sum of the Csiszár I-divergence and a regularization term. For the solution of this problem, we propose an iterative algorithm derived from a general approach known as split-gradient method (SGM) and based on a suitable decomposition of the gradient of the functional into a negative and positive part. The result is a simple modification of the standard Richardson-Lucy algorithm, very easily implementable and assuring automatically the non-negativity of the iterates. Next, we apply this method to the particular case of confocal microscopy for investigating the effect of several edge-preserving priors proposed in the literature using both synthetic and real confocal images. The quality of the restoration is estimated both by computation of the Kullback-Leibler divergence of the restored image from the detected one and by visual inspection. It is observed that the noise artefacts are considerably reduced and desired

  3. A modular hierarchical approach to 3D electron microscopy image segmentation.

    PubMed

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-04-15

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  4. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    PubMed Central

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2016-01-01

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. PMID:26182412

  5. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  6. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography.

    PubMed

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup; Flo, Trude Helen; Halaas, Øyvind

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  7. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  8. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    PubMed Central

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  9. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage.

    PubMed

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  10. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  11. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  12. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  13. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  14. 3D microscopy - new powerful tools in geomaterials characterization

    NASA Astrophysics Data System (ADS)

    Mauko Pranjić, Alenka; Mladenovič, Ana; Turk, Janez; Šajna, Aljoša; Čretnik, Janko

    2016-04-01

    Microtomography (microCT) is becoming more and more widely recognized in geological sciences as a powerful tool for the spatial characterization of rock and other geological materials. Together with 3D image analysis and other complementary techniques, it has the characteristics of an innovative and non-destructive 3D microscopical technique. On the other hand its main disadvantages are low availability (only a few geological laboratories are equipped with high resolution tomographs), the relatively high prices of testing connected with the use of an xray source, technical limitations connected to the resolution and imaging of certain materials, as well as timeconsuming and complex 3D image analysis, necessary for quantification of 3D tomographic data sets. In this work three examples are presented of optimal 3D microscopy analysis of geomaterials in construction such as porosity characterization of impregnated sandstone, aerated concrete and marble prone to bowing. Studies include processes of microCT imaging, 3D data analysis and fitting of data with complementary analysis, such as confocal microscopy, mercury porosimetry, gas sorption, optical/fluorescent microscopy and scanning electron microscopy. Present work has been done in the frame of national research project 3D and 4D microscopy development of new powerful tools in geosciences (ARRS J1-7148) funded by Slovenian Research Agency.

  15. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  16. Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.

    PubMed

    Wang, Hongbin; Miller, Paul C

    2014-02-01

    The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images. PMID:26270922

  17. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    PubMed Central

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  18. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice.

    PubMed

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  19. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  20. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools.

    PubMed

    Ichikawa, Takehiko; Nakazato, Kenichi; Keller, Philipp J; Kajiura-Kobayashi, Hiroko; Stelzer, Ernst H K; Mochizuki, Atsushi; Nonaka, Shigenori

    2014-03-01

    This protocol describes how to observe gastrulation in living mouse embryos by using light-sheet microscopy and computational tools to analyze the resulting image data at the single-cell level. We describe a series of techniques needed to image the embryos under physiological conditions, including how to hold mouse embryos without agarose embedding, how to transfer embryos without air exposure and how to construct environmental chambers for live imaging by digital scanned light-sheet microscopy (DSLM). Computational tools include manual and semiautomatic tracking programs that are developed for analyzing the large 4D data sets acquired with this system. Note that this protocol does not include details of how to build the light-sheet microscope itself. Time-lapse imaging ends within 12 h, with subsequent tracking analysis requiring 3-6 d. Other than some mouse-handling skills, this protocol requires no advanced skills or knowledge. Light-sheet microscopes are becoming more widely available, and thus the techniques outlined in this paper should be helpful for investigating mouse embryogenesis. PMID:24525751

  1. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  2. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    SciTech Connect

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  3. Distributed microscopy: toward a 3D computer-graphic-based multiuser microscopic manipulation, imaging, and measurement system

    NASA Astrophysics Data System (ADS)

    Sulzmann, Armin; Carlier, Jerome; Jacot, Jacques

    1996-10-01

    The aim of this project is to telecontrol the movements in 3D-space of a microscope in order to manipulate and measure microsystems or micro parts aided by multi-user virtual reality (VR) environments. Presently microsystems are gaining in interest. Microsystems are small, independent modules, incorporating various functions, such as electronic, micro mechanical, data processing, optical, chemical, medical and biological functions. Though improving the manufacturing technologies, the measurement of the small structures to insure the quality of the process is a key information for the development. So far to measure the micro structures strong microscopes are needed. The use of highly magnifying computerized microscopes is expensive. To insure high quality measurements and distribute the acquired information to multi-user our proposed system is divided into three parts: the virtual reality microscopic environment (VRME)-based user-interface on a SGI workstation to prepare the manipulations and measurements. Secondly the computerized light microscope with the vision system inspecting the scene and getting the images of the specimen. Newly developed vision algorithms are used to analyze micro structures in the scene corresponding to the known a priori model. This vision is extracting position and shape of the objects and then transmitted as feedback to the user of the VRME-system to update his virtual environment. The internet demon is the third part of the system and distributes the information about the position of the micro structures, their shape and the images to the connected users who themselves may interact with the microscope (turn and displace the specimen on the back of a moving platform, or adding their structures to the scene and compare). The key idea behind our project VRME is to use the intuitiveness and the 3D visualization of VR environments coupled with a vision system to perform measurements of micro structures at a high accuracy. The direct

  4. Stabilizing 3D in vivo intravital microscopy images with an iteratively refined soft-tissue model for immunology experiments.

    PubMed

    Gómez-Conde, Iván; Caetano, Susana S; Tadokoro, Carlos E; Olivieri, David N

    2015-09-01

    We describe a set of new algorithms and a software tool, StabiTissue, for stabilizing in vivo intravital microscopy images that suffer from soft-tissue background movement. Because these images lack predetermined anchors and are dominated by noise, we use a pixel weighted image alignment together with a correction for nonlinear tissue deformations. We call this correction a poor man׳s diffeomorphic map since it ascertains the nonlinear regions of the image without resorting to a full integral equation method. To determine the quality of the image stabilization, we developed an ensemble sampling method that quantifies the coincidence between image pairs from randomly distributed image regions. We obtain global stabilization alignment through an iterative constrained simulated annealing optimization procedure. To show the accuracy of our algorithm with existing software, we measured the misalignment error rate in datasets taken from two different organs and compared the results to a similar and popular open-source solution. Present open-source stabilization software tools perform poorly because they do not treat the specific needs of the IV-2pM datasets with soft-tissue deformation, speckle noise, full 5D inter- and intra-stack motion error correction, and undefined anchors. In contrast, the results of our tests demonstrate that our method is more immune to noise and provides better performance for datasets' possessing nonlinear tissue deformations. As a practical application of our software, we show how our stabilization improves cell tracking, where the presence of background movement would degrade track information. We also provide a qualitative comparison of our software with other open-source libraries/applications. Our software is freely available at the open source repository http://sourceforge.net/projects/stabitissue/. PMID:26232672

  5. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  6. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  7. NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks.

    PubMed

    Jorstad, Anne; Nigro, Biagio; Cali, Corrado; Wawrzyniak, Marta; Fua, Pascal; Knott, Graham

    2015-01-01

    Serialelectron microscopy imaging is crucial for exploring the structure of cells and tissues. The development of block face scanning electron microscopy methods and their ability to capture large image stacks, some with near isotropic voxels, is proving particularly useful for the exploration of brain tissue. This has led to the creation of numerous algorithms and software for segmenting out different features from the image stacks. However, there are few tools available to view these results and make detailed morphometric analyses on all, or part, of these 3D models. We have addressed this issue by constructing a collection of software tools, called NeuroMorph, with which users can view the segmentation results, in conjunction with the original image stack, manipulate these objects in 3D, and make measurements of any region. This approach to collecting morphometric data provides a faster means of analysing the geometry of structures, such as dendritic spines and axonal boutons. This bridges the gap that currently exists between rapid reconstruction techniques, offered by computer vision research, and the need to collect measurements of shape and form from segmented structures that is currently done using manual segmentation methods. PMID:25240318

  8. Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM

    NASA Astrophysics Data System (ADS)

    King, Sharon V.; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2014-03-01

    Wavefront coding techniques are currently used to engineer unique point spread functions (PSFs) that enhance existing microscope modalities or create new ones. Previous work in this field demonstrated that simulated intensity PSFs encoded with a generalized cubic phase mask (GCPM) are invariant to spherical aberration or misfocus; dependent on parameter selection. Additional work demonstrated that simulated PSFs encoded with a squared cubic phase mask (SQUBIC) produce a depth invariant focal spot for application in confocal scanning microscopy. Implementation of PSF engineering theory with a liquid crystal on silicon (LCoS) spatial light modulator (SLM) enables validation of WFC phase mask designs and parameters by manipulating optical wavefront properties with a programmable diffractive element. To validate and investigate parameters of the GCPM and SQUBIC WFC masks, we implemented PSF engineering in an upright microscope modified with a dual camera port and a LCoS SLM. We present measured WFC PSFs and compare them to simulated PSFs through analysis of their effect on the microscope imaging system properties. Experimentally acquired PSFs show the same intensity distribution as simulation for the GCPM phase mask, the SQUBIC-mask and the well-known and characterized cubic-phase mask (CPM), first applied to high NA microscopy by Arnison et al.10, for extending depth of field. These measurements provide experimental validation of new WFC masks and demonstrate the use of the LCoS SLM as a WFC design tool. Although efficiency improvements are needed, this application of LCoS technology renders the microscope capable of switching among multiple WFC modes.

  9. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    PubMed

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. PMID:25515433

  10. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks

    PubMed Central

    Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L.

    2016-01-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. PMID:25515433

  11. Holography, tomography and 3D microscopy as linear filtering operations

    NASA Astrophysics Data System (ADS)

    Coupland, J. M.; Lobera, J.

    2008-07-01

    In this paper, we characterize 3D optical imaging techniques as 3D linear shift-invariant filtering operations. From the Helmholtz equation that is the basis of scalar diffraction theory, we show that the scattered field, or indeed a holographic reconstruction of this field, can be considered to be the result of a linear filtering operation applied to a source distribution. We note that if the scattering is weak, the source distribution is independent of the scattered field and a holographic reconstruction (or in fact any far-field optical imaging system) behaves as a 3D linear shift-invariant filter applied to the refractive index contrast (which effectively defines the object). We go on to consider tomographic techniques that synthesize images from recordings of the scattered field using different illumination conditions. In our analysis, we compare the 3D response of monochromatic optical tomography with the 3D imagery offered by confocal microscopy and scanning white light interferometry (using quasi-monochromatic illumination) and explain the circumstances under which these approaches are equivalent. Finally, we consider the 3D response of polychromatic optical tomography and in particular the response of spectral optical coherence tomography and scanning white light interferometry.

  12. Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

    PubMed Central

    Jun, Sangmi; Zhao, Gongpu; Ning, Jiying; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2013-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state1. However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging2, due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-13-7, the resolution afforded by live-cell microscopy is limited (~ 200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes. PMID:23852318

  13. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  14. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    PubMed

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  15. Applied 3D printing for microscopy in health science research

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Zareinia, Kourosh; Stys, Peter

    2015-03-01

    The rapid prototyping capability offered by 3D printing is considered advantageous for commercial applications. However, the ability to quickly produce precision custom devices is highly beneficial in the research laboratory setting as well. Biological laboratories require the manipulation and analysis of delicate living samples, thus the ability to create custom holders, support equipment, and adapters allow the extension of existing laboratory machines. Applications include camera adapters and stage sample holders for microscopes, surgical guides for tissue preparation, and small precision tools customized to unique specifications. Where high precision is needed, especially the reproduction of fine features, a printer with a high resolution is needed. However, the introduction of cheaper, lower resolution commercial printers have been shown to be more than adequate for less demanding projects. For direct manipulation of delicate samples, biocompatible raw materials are often required, complicating the printing process. This paper will examine some examples of 3D-printed objects for laboratory use, and provide an overview of the requirements for 3D printing for this application. Materials, printing resolution, production, and ease of use will all be reviewed with an eye to producing better printers and techniques for laboratory applications. Specific case studies will highlight applications for 3D-printed devices in live animal imaging for both microscopy and Magnetic Resonance Imaging.

  16. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  17. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  18. Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    SciTech Connect

    O'Keefe, Michael A.; Downing, Kenneth H.; Wenk, Hans-Rudolf; Meisheng, Hu

    2005-02-15

    Achievement of atomic-resolution electron-beam tomography will allow determination of the three-dimensional structure of nanoparticles (and other suitable specimens) at atomic resolution. Three-dimensional reconstructions will yield ''section'' images that resolve atoms overlapped in normal electron microscope images (projections), resolving lighter atoms such as oxygen in the presence of heavier atoms, and atoms that lie on non-lattice sites such as those in non-periodic defect structures. Lower-resolution electron microscope tomography has been used to produce reconstructed 3D images of nanoparticles [1] but extension to atomic resolution is considered not to be straightforward. Accurate three-dimensional reconstruction from two-dimensional projections generally requires that intensity in the series of 2-D images be a monotonic function of the specimen structure (often specimen density, but in our case atomic potential). This condition is not satisfied in electron microscopy when specimens with strong periodicity are tilted close to zone-axis orientation and produce ''anomalous'' image contrast because of strong dynamic diffraction components. Atomic-resolution reconstructions from tilt series containing zone-axis images (with their contrast enhanced by strong dynamical scattering) can be distorted when the stronger zone-axis images overwhelm images obtained in other ''random'' orientations in which atoms do not line up in neat columns. The first demonstrations of 3-D reconstruction to atomic resolution used five zone-axis images from test specimens of staurolite consisting of a mix of light and heavy atoms [2,3]. Initial resolution was to the 1.6{angstrom} Scherzer limit of a JEOL-ARM1000. Later experiments used focal-series reconstruction from 5 to 10 images to produce staurolite images from the ARM1000 with resolution extended beyond the Scherzer limit to 1.38{angstrom} [4,5]. To obtain a representation of the three-dimensional structure, images were obtained

  19. Quantifying cellular interaction dynamics in 3-D fluorescence microscopy data

    PubMed Central

    Klauschen, Frederick; Ishii, Masaru; Qi, Hai; Bajénoff, Marc; Egen, Jackson G.; Germain, Ronald N.; Meier-Schellersheim, Martin

    2012-01-01

    The wealth of information available from advanced fluorescence imaging techniques used to analyze biological processes with high spatial and temporal resolution calls for high-throughput image analysis methods. Here, we describe a fully automated approach to analyzing cellular interaction behavior in 3-D fluorescence microscopy images. As example application we present the analysis of drug-induced and S1P1-knock-out-related changes in bone-osteoclast interactions. Moreover, we apply our approach to images showing the spatial association of dendritic cells with the fibroblastic reticular cell network within lymph nodes and to microscopy data about T-B lymphocyte synapse formation. Such analyses that yield important information about the molecular mechanisms determining cellular interaction behavior would be very difficult to perform with approaches that rely on manual/semi-automated analyses. This protocol integrates adaptive threshold segmentation, object detection, adaptive color channel merging and neighborhood analysis and permits rapid, standardized, quantitative analysis and comparison of the relevant features in large data sets. PMID:19696749

  20. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  1. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  2. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  3. Resolution improvement by 3D particle averaging in localization microscopy

    PubMed Central

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P.J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-01-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on three-dimensional super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision. PMID:25866640

  4. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  5. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    PubMed

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-01-01

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  6. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x

  7. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  8. Evaluation of 3D imaging.

    PubMed

    Vannier, M W

    2000-10-01

    Interactive computer-based simulation is gaining acceptance for craniofacial surgical planning. Subjective visualization without objective measurement capability, however, severely limits the value of simulation since spatial accuracy must be maintained. This study investigated the error sources involved in one method of surgical simulation evaluation. Linear and angular measurement errors were found to be within +/- 1 mm and 1 degree. Surface match of scanned objects was slightly less accurate, with errors up to 3 voxels and 4 degrees, and Boolean subtraction methods were 93 to 99% accurate. Once validated, these testing methods were applied to objectively compare craniofacial surgical simulations to post-operative outcomes, and verified that the form of simulation used in this study yields accurate depictions of surgical outcome. However, to fully evaluate surgical simulation, future work is still required to test the new methods in sufficient numbers of patients to achieve statistically significant results. Once completely validated, simulation cannot only be used in pre-operative surgical planning, but also as a post-operative descriptor of surgical and traumatic physical changes. Validated image comparison methods can also show discrepancy of surgical outcome to surgical plan, thus allowing evaluation of surgical technique. PMID:11098409

  9. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  10. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  11. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  12. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  13. 3D EIT image reconstruction with GREIT.

    PubMed

    Grychtol, Bartłomiej; Müller, Beat; Adler, Andy

    2016-06-01

    Most applications of thoracic EIT use a single plane of electrodes on the chest from which a transverse image 'slice' is calculated. However, interpretation of EIT images is made difficult by the large region above and below the electrode plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode planes should help compensate, but are little used currently. The Graz consensus reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One shortcoming of the original formulation of GREIT is its restriction to reconstruction onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and develop open-source tools to evaluate its performance as a function of the choice of stimulation and measurement pattern. Results show 3D GREIT using two electrode layers has significantly more uniform sensitivity profiles through the chest region. Overall, the advantages of 3D EIT are compelling. PMID:27203184

  14. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    PubMed Central

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Background Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Materials and methods Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. Results MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. Conclusions This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment. PMID:22933973

  15. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  16. Single Cell Traction Microscopy within 3D Collagen Matrices

    NASA Astrophysics Data System (ADS)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  17. The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal & Electron Microscopy Imaging

    PubMed Central

    O’Connell, Mary K; Murthy, Sushila; Phan, Samson; Xu, Chengpei; Buchanan, JoAnn; Spilker, Ryan; Dalman, Ronald L; Zarins, Christopher K; Denk, Winfried; Taylor, Charles A

    2009-01-01

    Changes in arterial wall composition and function underlie all forms of vascular disease. The fundamental structural and functional unit of the aortic wall is the medial lamellar unit (MLU). While the basic composition and organization of the MLU is known, three-dimensional (3D) microstructural details are tenuous, due (in part) to lack of three-dimensional data at micro- and nano-scales. We applied novel electron and confocal microscopy techniques to obtain 3D volumetric information of aortic medial microstructure at micro- and nano-scales with all constituents present. For the rat abdominal aorta, we show that medial elastin has three primary forms: with approximately 71% of total elastin as thick, continuous lamellar sheets, 27% as thin, protruding interlamellar elastin fibers (IEFs), and 2% as thick radial struts. Elastin pores are not simply holes in lamellar sheets, but are indented and gusseted openings in lamellae. Smooth Muscle Cells (SMCs) weave throughout the interlamellar elastin framework, with cytoplasmic extensions abutting IEFs, resulting in approximately 20° radial tilt (relative to the lumen surface) of elliptical SMC nuclei. Collagen fibers are organized as large, parallel bundles tightly enveloping SMC nuclei. Quantification of the orientation of collagen bundles, SMC nuclei, and IEFs reveal that all three primary medial constituents have predominantly circumferential orientation, correlating with reported circumferentially dominant values of physiological stress, collagen fiber recruitment, and tissue stiffness. This high resolution three-dimensional view of the aortic media reveals MLU microstructure details that suggest a highly complex and integrated mural organization that correlates with aortic mechanical properties. PMID:18248974

  18. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  19. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  20. 3D camera tracking from disparity images

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  1. High definition 3D ultrasound imaging.

    PubMed

    Morimoto, A K; Krumm, J C; Kozlowski, D M; Kuhlmann, J L; Wilson, C; Little, C; Dickey, F M; Kwok, K S; Rogers, B; Walsh, N

    1997-01-01

    We have demonstrated high definition and improved resolution using a novel scanning system integrated with a commercial ultrasound machine. The result is a volumetric 3D ultrasound data set that can be visualized using standard techniques. Unlike other 3D ultrasound images, image quality is improved from standard 2D data. Image definition and bandwidth is improved using patent pending techniques. The system can be used to image patients or wounded soldiers for general imaging of anatomy such as abdominal organs, extremities, and the neck. Although the risks associated with x-ray carcinogenesis are relatively low at diagnostic dose levels, concerns remain for individuals in high risk categories. In addition, cost and portability of CT and MRI machines can be prohibitive. In comparison, ultrasound can provide portable, low-cost, non-ionizing imaging. Previous clinical trials comparing ultrasound to CT were used to demonstrate qualitative and quantitative improvements of ultrasound using the Sandia technologies. Transverse leg images demonstrated much higher clarity and lower noise than is seen in traditional ultrasound images. An x-ray CT scan was provided of the same cross-section for comparison. The results of our most recent trials demonstrate the advantages of 3D ultrasound and motion compensation compared with 2D ultrasound. Metal objects can also be observed within the anatomy. PMID:10168958

  2. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. PMID:25453259

  3. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  4. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  5. Backhoe 3D "gold standard" image

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  6. Confocal scanning laser microscopy with complementary 3D image analysis allows quantitative studies of functional state of ionoregulatory cells in the Nile tilapia (Oreochromis niloticus) following salinity challenge.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-04-01

    The development of a novel three-dimensional image analysis technique of stacks generated by confocal laser scanning microscopy is described allowing visualization of mitochondria-rich cells (MRCs) in the seawater-adapted Nile tilapia in relation to their spatial location. This method permits the assessment and classification of both active and nonactive MRCs based on the distance of the top of the immunopositive cell from the epithelial surface. In addition, this technique offers the potential for informative and quantitative studies, for example, densitometric and morphometric measurements based on MRC functional state. Confocal scanning laser microscopy used with triple staining whole-mount immunohistochemistry was used to detect integumental MRCs in the yolk-sac larvae tail of the Nile tilapia following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt. Mean active MRC volume was always significantly larger and displayed a greater staining intensity (GLM; P<0.05) than nonactive MRCs. Following transfer, the percentage of active MRCs was seen to increase as did MRC volume (GLM; P<0.05). PMID:23390074

  7. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  8. 3D MR imaging in real time

    NASA Astrophysics Data System (ADS)

    Guttman, Michael A.; McVeigh, Elliot R.

    2001-05-01

    A system has been developed to produce live 3D volume renderings from an MR scanner. Whereas real-time 2D MR imaging has been demonstrated by several groups, 3D volumes are currently rendered off-line to gain greater understanding of anatomical structures. For example, surgical planning is sometimes performed by viewing 2D images or 3D renderings from previously acquired image data. A disadvantage of this approach is misregistration which could occur if the anatomy changes due to normal muscle contractions or surgical manipulation. The ability to produce volume renderings in real-time and present them in the magnet room could eliminate this problem, and enable or benefit other types of interventional procedures. The system uses the data stream generated by a fast 2D multi- slice pulse sequence to update a volume rendering immediately after a new slice is available. We demonstrate some basic types of user interaction with the rendering during imaging at a rate of up to 20 frames per second.

  9. Geomatics for precise 3D breast imaging.

    PubMed

    Alto, Hilary

    2005-02-01

    Canadian women have a one in nine chance of developing breast cancer during their lifetime. Mammography is the most common imaging technology used for breast cancer detection in its earliest stages through screening programs. Clusters of microcalcifications are primary indicators of breast cancer; the shape, size and number may be used to determine whether they are malignant or benign. However, overlapping images of calcifications on a mammogram hinder the classification of the shape and size of each calcification and a misdiagnosis may occur resulting in either an unnecessary biopsy being performed or a necessary biopsy not being performed. The introduction of 3D imaging techniques such as standard photogrammetry may increase the confidence of the radiologist when making his/her diagnosis. In this paper, traditional analytical photogrammetric techniques for the 3D mathematical reconstruction of microcalcifications are presented. The techniques are applied to a specially designed and constructed x-ray transparent Plexiglas phantom (control object). The phantom was embedded with 1.0 mm x-ray opaque lead pellets configured to represent overlapping microcalcifications. Control points on the phantom were determined by standard survey methods and hand measurements. X-ray films were obtained using a LORAD M-III mammography machine. The photogrammetric techniques of relative and absolute orientation were applied to the 2D mammographic films to analytically generate a 3D depth map with an overall accuracy of 0.6 mm. A Bundle Adjustment and the Direct Linear Transform were used to confirm the results. PMID:15649085

  10. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  11. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery

    PubMed Central

    Mendez, Bernardino M.; Chiodo, Michael V.; Vandevender, Darl

    2016-01-01

    Summary: Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  12. Pattern based 3D image Steganography

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.

    2013-03-01

    This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.

  13. Teat Morphology Characterization With 3D Imaging.

    PubMed

    Vesterinen, Heidi M; Corfe, Ian J; Sinkkonen, Ville; Iivanainen, Antti; Jernvall, Jukka; Laakkonen, Juha

    2015-07-01

    The objective of this study was to visualize, in a novel way, the morphological characteristics of bovine teats to gain a better understanding of the detailed teat morphology. We applied silicone casting and 3D digital imaging in order to obtain a more detailed image of the teat structures than that seen in previous studies. Teat samples from 65 dairy cows over 12 months of age were obtained from cows slaughtered at an abattoir. The teats were classified according to the teat condition scoring used in Finland and the lengths of the teat canals were measured. Silicone molds were made from the external teat surface surrounding the teat orifice and from the internal surface of the teat consisting of the papillary duct, Fürstenberg's rosette, and distal part of the teat cistern. The external and internal surface molds of 35 cows were scanned with a 3D laser scanner. The molds and the digital 3D models were used to evaluate internal and external teat surface morphology. A number of measurements were taken from the silicone molds. The 3D models reproduced the morphology of the teats accurately with high repeatability. Breed didn't correlate with the teat classification score. The rosette was found to have significant variation in its size and number of mucosal folds. The internal surface morphology of the rosette did not correlate with the external surface morphology of the teat implying that it is relatively independent of milking parameters that may impact the teat canal and the external surface of the teat. PMID:25382725

  14. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.

    PubMed

    Štěpka, Karel; Matula, Pavel; Matula, Petr; Wörz, Stefan; Rohr, Karl; Kozubek, Michal

    2015-08-01

    Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive. PMID:26033916

  15. 3D seismic image processing for interpretation

    NASA Astrophysics Data System (ADS)

    Wu, Xinming

    Extracting fault, unconformity, and horizon surfaces from a seismic image is useful for interpretation of geologic structures and stratigraphic features. Although interpretation of these surfaces has been automated to some extent by others, significant manual effort is still required for extracting each type of these geologic surfaces. I propose methods to automatically extract all the fault, unconformity, and horizon surfaces from a 3D seismic image. To a large degree, these methods just involve image processing or array processing which is achieved by efficiently solving partial differential equations. For fault interpretation, I propose a linked data structure, which is simpler than triangle or quad meshes, to represent a fault surface. In this simple data structure, each sample of a fault corresponds to exactly one image sample. Using this linked data structure, I extract complete and intersecting fault surfaces without holes from 3D seismic images. I use the same structure in subsequent processing to estimate fault slip vectors. I further propose two methods, using precomputed fault surfaces and slips, to undo faulting in seismic images by simultaneously moving fault blocks and faults themselves. For unconformity interpretation, I first propose a new method to compute a unconformity likelihood image that highlights both the termination areas and the corresponding parallel unconformities and correlative conformities. I then extract unconformity surfaces from the likelihood image and use these surfaces as constraints to more accurately estimate seismic normal vectors that are discontinuous near the unconformities. Finally, I use the estimated normal vectors and use the unconformities as constraints to compute a flattened image, in which seismic reflectors are all flat and vertical gaps correspond to the unconformities. Horizon extraction is straightforward after computing a map of image flattening; we can first extract horizontal slices in the flattened space

  16. 3D GPR Imaging of Wooden Logs

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Pyakurel, Sandeep

    2007-03-01

    There has been a lack of an effective NDE technique to locate internal defects within wooden logs. The few available elastic wave propagation based techniques are limited to predicting E values. Other techniques such as X-rays have not been very successful in detecting internal defects in logs. If defects such as embedded metals could be identified before the sawing process, the saw mills could significantly increase their production by reducing the probability of damage to the saw blade and the associated downtime and the repair cost. Also, if the internal defects such as knots and decayed areas could be identified in logs, the sawing blade can be oriented to exclude the defective portion and optimize the volume of high valued lumber that can be obtained from the logs. In this research, GPR has been successfully used to locate internal defects (knots, decays and embedded metals) within the logs. This paper discusses GPR imaging and mapping of the internal defects using both 2D and 3D interpretation methodology. Metal pieces were inserted in a log and the reflection patterns from these metals were interpreted from the radargrams acquired using 900 MHz antenna. Also, GPR was able to accurately identify the location of knots and decays. Scans from several orientations of the log were collected to generate 3D cylindrical volume. The actual location of the defects showed good correlation with the interpreted defects in the 3D volume. The time/depth slices from 3D cylindrical volume data were useful in understanding the extent of defects inside the log.

  17. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  18. 3-D Optical Interference Microscopy at the Lateral Resolution

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter; Niehues, Jan; Tereschenko, Stanislav

    2014-10-01

    For applications in micro- and nanotechnologies the lateral resolution of optical 3-D microscopes becomes an issue of increasing relevance. However, lateral resolution of 3-D microscopes is hard to define in a satisfying way. Therefore, we first study the measurement capabilities of a highly resolving white-light interference (WLI) microscope close to the limit of lateral resolution. Results of measurements and simulations demonstrate that better lateral resolution seems to be achievable based on the envelope evaluation of a WLI signal. Unfortunately, close to the lateral resolution limit errors in the measured amplitude of micro-structures appear. On the other hand, results of interferometric phase evaluation seem to be strongly low-pass filtered in this case. Furthermore, the instrument transfer characteristics and the lateral resolution capabilities of WLI instruments are also affected by polarization. TM polarized light is less sensitive to edge diffraction and thus systematic errors can be avoided. However, apart from ghost steps due to fringe order errors, the results of phase evaluation seem to be closer to the real surface topography if TE polarized light is used. The lateral resolution can be further improved by combining WLI and structured illumination microscopy. Since the measured height of rectangular profiles close to the lateral resolution limit is generally too small compared to the real height, we introduce a method based on phase evaluation which characterizes the heights of barely laterally resolved rectangular gratings correctly.

  19. 3-D SAR image formation from sparse aperture data using 3-D target grids

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  20. Rapid 360 degree imaging and stitching of 3D objects using multiple precision 3D cameras

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Yin, Stuart; Zhang, Jianzhong; Li, Jiangan; Wu, Frank

    2008-02-01

    In this paper, we present the system architecture of a 360 degree view 3D imaging system. The system consists of multiple 3D sensors synchronized to take 3D images around the object. Each 3D camera employs a single high-resolution digital camera and a color-coded light projector. The cameras are synchronized to rapidly capture the 3D and color information of a static object or a live person. The color encoded structure lighting ensures the precise reconstruction of the depth of the object. A 3D imaging system architecture is presented. The architecture employs the displacement of the camera and the projector to triangulate the depth information. The 3D camera system has achieved high depth resolution down to 0.1mm on a human head sized object and 360 degree imaging capability.

  1. 3D Buildings Extraction from Aerial Images

    NASA Astrophysics Data System (ADS)

    Melnikova, O.; Prandi, F.

    2011-09-01

    This paper introduces a semi-automatic method for buildings extraction through multiple-view aerial image analysis. The advantage of the used semi-automatic approach is that it allows processing of each building individually finding the parameters of buildings features extraction more precisely for each area. On the early stage the presented technique uses an extraction of line segments that is done only inside of areas specified manually. The rooftop hypothesis is used further to determine a subset of quadrangles, which could form building roofs from a set of extracted lines and corners obtained on the previous stage. After collecting of all potential roof shapes in all images overlaps, the epipolar geometry is applied to find matching between images. This allows to make an accurate selection of building roofs removing false-positive ones and to identify their global 3D coordinates given camera internal parameters and coordinates. The last step of the image matching is based on geometrical constraints in contrast to traditional correlation. The correlation is applied only in some highly restricted areas in order to find coordinates more precisely, in such a way significantly reducing processing time of the algorithm. The algorithm has been tested on a set of Milan's aerial images and shows highly accurate results.

  2. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  3. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    PubMed Central

    Khorshed, Reema A.; Hawkins, Edwin D.; Duarte, Delfim; Scott, Mark K.; Akinduro, Olufolake A.; Rashidi, Narges M.; Spitaler, Martin; Lo Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components. PMID:26120058

  4. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  5. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  6. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  7. Ultra-High Resolution 3D Imaging of Whole Cells.

    PubMed

    Huang, Fang; Sirinakis, George; Allgeyer, Edward S; Schroeder, Lena K; Duim, Whitney C; Kromann, Emil B; Phan, Thomy; Rivera-Molina, Felix E; Myers, Jordan R; Irnov, Irnov; Lessard, Mark; Zhang, Yongdeng; Handel, Mary Ann; Jacobs-Wagner, Christine; Lusk, C Patrick; Rothman, James E; Toomre, Derek; Booth, Martin J; Bewersdorf, Joerg

    2016-08-11

    Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes. PMID:27397506

  8. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  9. Towards magnetic 3D x-ray imaging

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Streubel, R.; Im, M.-Y.; Parkinson, D.; Hong, J.-I.; Schmidt, O. G.; Makarov, D.

    2014-03-01

    Mesoscale phenomena in magnetism will add essential parameters to improve speed, size and energy efficiency of spin driven devices. Multidimensional visualization techniques will be crucial to achieve mesoscience goals. Magnetic tomography is of large interest to understand e.g. interfaces in magnetic multilayers, the inner structure of magnetic nanocrystals, nanowires or the functionality of artificial 3D magnetic nanostructures. We have developed tomographic capabilities with magnetic full-field soft X-ray microscopy combining X-MCD as element specific magnetic contrast mechanism, high spatial and temporal resolution due to the Fresnel zone plate optics. At beamline 6.1.2 at the ALS (Berkeley CA) a new rotation stage allows recording an angular series (up to 360 deg) of high precision 2D projection images. Applying state-of-the-art reconstruction algorithms it is possible to retrieve the full 3D structure. We will present results on prototypic rolled-up Ni and Co/Pt tubes and glass capillaries coated with magnetic films and compare to other 3D imaging approaches e.g. in electron microscopy. Supported by BES MSD DOE Contract No. DE-AC02-05-CH11231 and ERC under the EU FP7 program (grant agreement No. 306277).

  10. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  11. Progress in 3D imaging and display by integral imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Pons, A.; Javidi, B.

    2009-05-01

    Three-dimensionality is currently considered an important added value in imaging devices, and therefore the search for an optimum 3D imaging and display technique is a hot topic that is attracting important research efforts. As main value, 3D monitors should provide the observers with different perspectives of a 3D scene by simply varying the head position. Three-dimensional imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging (InI), which can capture true 3D color images, has been seen as the right technology to 3D viewing to audiences of more than one person. Due to the advanced degree of development, InI technology could be ready for commercialization in the coming years. This development is the result of a strong research effort performed along the past few years by many groups. Since Integral Imaging is still an emerging technology, the first aim of the "3D Imaging and Display Laboratory" at the University of Valencia, has been the realization of a thorough study of the principles that govern its operation. Is remarkable that some of these principles have been recognized and characterized by our group. Other contributions of our research have been addressed to overcome some of the classical limitations of InI systems, like the limited depth of field (in pickup and in display), the poor axial and lateral resolution, the pseudoscopic-to-orthoscopic conversion, the production of 3D images with continuous relief, or the limited range of viewing angles of InI monitors.

  12. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  13. Concurrent 3-D motion segmentation and 3-D interpretation of temporal sequences of monocular images.

    PubMed

    Sekkati, Hicham; Mitiche, Amar

    2006-03-01

    The purpose of this study is to investigate a variational method for joint multiregion three-dimensional (3-D) motion segmentation and 3-D interpretation of temporal sequences of monocular images. Interpretation consists of dense recovery of 3-D structure and motion from the image sequence spatiotemporal variations due to short-range image motion. The method is direct insomuch as it does not require prior computation of image motion. It allows movement of both viewing system and multiple independently moving objects. The problem is formulated following a variational statement with a functional containing three terms. One term measures the conformity of the interpretation within each region of 3-D motion segmentation to the image sequence spatiotemporal variations. The second term is of regularization of depth. The assumption that environmental objects are rigid accounts automatically for the regularity of 3-D motion within each region of segmentation. The third and last term is for the regularity of segmentation boundaries. Minimization of the functional follows the corresponding Euler-Lagrange equations. This results in iterated concurrent computation of 3-D motion segmentation by curve evolution, depth by gradient descent, and 3-D motion by least squares within each region of segmentation. Curve evolution is implemented via level sets for topology independence and numerical stability. This algorithm and its implementation are verified on synthetic and real image sequences. Viewers presented with anaglyphs of stereoscopic images constructed from the algorithm's output reported a strong perception of depth. PMID:16519351

  14. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  15. Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgen

    2008-03-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using a needle-like RF button electrode is widely used to destroy tumor cells or stop bleeding. To avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment, 3D US guidance system was developed. In this paper, a new automated technique, the 3D Improved Hough Transform (3DIHT) algorithm, which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance, was presented. Based on the coarse-fine search strategy and a four parameter representation of lines in 3D space, 3DIHT algorithm can segment needles quickly, accurately and robustly. The technique was evaluated using the 3D US images acquired by scanning a water phantom. The segmentation position deviation of the line was less than 2mm and angular deviation was much less than 2°. The average computational time measured on a Pentium IV 2.80GHz PC computer with a 381×381×250 image was less than 2s.

  16. Computational optical-sectioning microscopy for 3D quantization of cell motion: results and challenges

    NASA Astrophysics Data System (ADS)

    McNally, James G.

    1994-09-01

    How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the

  17. Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2015-01-01

    This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821

  18. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  19. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    NASA Astrophysics Data System (ADS)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  20. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  1. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

    PubMed Central

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-01-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity. PMID:26429501

  2. Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array

    PubMed Central

    Song, Liang; Maslov, Konstantin; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2009-01-01

    We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional (B-scan) imaging at 50 Hz with realtime beamforming and 3D imaging consisting of 166 B-scan frames at 1 Hz with post-beamforming. To our knowledge, this speed is currently the fastest in photoacoustic imaging. A custom-designed light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field reflection-mode imaging. Linear mechanical scanning of the array produces 3D images. The system has axial, lateral, and elevational resolutions of 25, 70, and 200 μm, respectively, and can image 3 mm deep in scattering biological tissues. Volumetric images of subcutaneous vasculature in rats are demonstrated in vivo. Fast 3D photoacoustic microscopy is anticipated to facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and clinical procedures that demand immediate diagnosis. PMID:19021408

  3. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    PubMed

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  4. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  5. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  6. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  7. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  8. Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.

    PubMed

    de la Rosa-Trevín, J M; Quintana, A; Del Cano, L; Zaldívar, A; Foche, I; Gutiérrez, J; Gómez-Blanco, J; Burguet-Castell, J; Cuenca-Alba, J; Abrishami, V; Vargas, J; Otón, J; Sharov, G; Vilas, J L; Navas, J; Conesa, P; Kazemi, M; Marabini, R; Sorzano, C O S; Carazo, J M

    2016-07-01

    In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and methodology. One of the central players in this wide-reaching change is the continuous development of image processing software. Here we present Scipion, a software framework for integrating several 3DEM software packages through a workflow-based approach. Scipion allows the execution of reusable, standardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from different programs while providing full interoperability among them. Scipion is an open-source project that can be downloaded from http://scipion.cnb.csic.es. PMID:27108186

  9. 3D single molecule tracking in thick cellular specimens using multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Ram, Sripad; Ward, E. Sally; Ober, Raimund J.

    2011-03-01

    One of the major challenges in single molecule microscopy concerns 3D tracking of single molecules in cellular specimens. This has been a major impediment to study many fundamental cellular processes, such as protein transport across thick cellular specimens (e.g. a cell-monolayer). Here we show that multifocal plane microscopy (MUM), an imaging modality developed by our group, provides the much needed solution to this longstanding problem. While MUM was previously used for 3D single molecule tracking at shallow depths (~ 1 micron) in live-cells, the question arises if MUM can also live up to the significant challenge of tracking single molecules in thick samples. Here by substantially expanding the capabilities of MUM, we demonstrate 3D tracking of quantum-dot labeled molecules in a ~ 10 micron thick cell monolayer. In this way we have reconstructed the complete 3D intracellular trafficking itinerary of single molecules at high spatial and temporal precision in a thick cell-sample. Funding support: NIH and the National MS Society.

  10. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  11. A 3D image analysis tool for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Wang, Qiang; Megalooikonomou, Vasileios; Maurer, Alan H.; Knight, Linda C.; Kantor, Steve; Fisher, Robert S.; Simonian, Hrair P.; Parkman, Henry P.

    2005-04-01

    We have developed semi-automated and fully-automated tools for the analysis of 3D single-photon emission computed tomography (SPECT) images. The focus is on the efficient boundary delineation of complex 3D structures that enables accurate measurement of their structural and physiologic properties. We employ intensity based thresholding algorithms for interactive and semi-automated analysis. We also explore fuzzy-connectedness concepts for fully automating the segmentation process. We apply the proposed tools to SPECT image data capturing variation of gastric accommodation and emptying. These image analysis tools were developed within the framework of a noninvasive scintigraphic test to measure simultaneously both gastric emptying and gastric volume after ingestion of a solid or a liquid meal. The clinical focus of the particular analysis was to probe associations between gastric accommodation/emptying and functional dyspepsia. Employing the proposed tools, we outline effectively the complex three dimensional gastric boundaries shown in the 3D SPECT images. We also perform accurate volume calculations in order to quantitatively assess the gastric mass variation. This analysis was performed both with the semi-automated and fully-automated tools. The results were validated against manual segmentation performed by a human expert. We believe that the development of an automated segmentation tool for SPECT imaging of the gastric volume variability will allow for other new applications of SPECT imaging where there is a need to evaluate complex organ function or tumor masses.

  12. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  13. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we

  14. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  15. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features. PMID:26370826

  16. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  17. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall. PMID:27379646

  18. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  19. Full 3D microwave quasi-holographic imaging

    NASA Astrophysics Data System (ADS)

    Castelli, Juan-Carlos; Tardivel, Francois

    A full 3D quasi-holographic image processing technique developed by ONERA is described. A complex backscattering coefficient of a drone scale model was measured for discrete values of the 3D backscattered wave vector in a frequency range between 4.5-8 GHz. The 3D image processing is implemented on a HP 1000 mini-computer and will be part of LASER 2 software to be used in three RCS measurement indoor facilities.

  20. Monitoring of Apoptosis in 3D Cell Cultures by FRET and Light Sheet Fluorescence Microscopy

    PubMed Central

    Weber, Petra; Schickinger, Sarah; Wagner, Michael; Angres, Brigitte; Bruns, Thomas; Schneckenburger, Herbert

    2015-01-01

    Non-radiative cell membrane associated Förster Resonance Energy Transfer (FRET) from an enhanced cyan fluorescent protein (ECFP) to an enhanced yellow fluorescent protein (EYFP) is used for detection of apoptosis in 3-dimensional cell cultures. FRET is visualized in multi-cellular tumor spheroids by light sheet based fluorescence microscopy in combination with microspectral analysis and fluorescence lifetime imaging (FLIM). Upon application of staurosporine and to some extent after treatment with phorbol-12-myristate-13-acetate (PMA), a specific activator of protein kinase c, the caspase-3 sensitive peptide linker DEVD is cleaved. This results in a reduction of acceptor (EYFP) fluorescence as well as a prolongation of the fluorescence lifetime of the donor (ECFP). Fluorescence spectra and lifetimes may, therefore, be used for monitoring of apoptosis in a realistic 3-dimensional system, while light sheet based microscopy appears appropriate for 3D imaging at low light exposure. PMID:25761242

  1. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products. PMID:25550155

  2. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  3. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  4. Design and fabrication of a freeform prism array for 3D microscopy.

    PubMed

    Li, Lei; Yi, Allen Y

    2010-12-01

    Traditional microscopes have limitations in obtaining true 3D (three-dimensional) stereovision. Although some optical microscopes have been developed for 3D vision, many of them are complex, expensive, or limited to transparent samples. In this research, a freeform optical prism array was designed and fabricated to achieve 3D stereo imaging capability for microscope and machine vision applications. To form clear stereo images from multiple directions simultaneously, freeform optical surface design was applied to the prisms. In a ray tracing operation to determine the optical performance of the freeform prisms, Taylor series was used to calculate the surface shape. The virtual image spot diagrams were generated by using ray tracing methods for both the freeform prisms and the regular prisms. The results showed that all the light rays can be traced back to a single point for the freeform prism, and aberration was much smaller than that of the regular prism. The ray spots formed by the freeform prisms were adequate for image formation. Furthermore, the freeform prism array was fabricated by using a combined ultraprecision diamond turning and slow tool servo broaching process in a single, uninterrupted operation. The slow tool servo process ensured that the relative tolerance among prisms is guaranteed by the precision of the ultraprecision machine without the need for assembly. Finally 3D imaging tests were conducted to verify the freeform prism array's optical performance. The principle of the freeform prism array investigated in this research can be applied to microscopy, machine vision, robotic sensing, and many other areas. PMID:21119746

  5. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  6. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  7. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  8. 3D imaging using projected dynamic fringes

    NASA Astrophysics Data System (ADS)

    Shaw, Michael M.; Atkinson, John T.; Harvey, David M.; Hobson, Clifford A.; Lalor, Michael J.

    1994-12-01

    An instrument capable of highly accurate, non-contact range measurement has been developed, which is based upon the principle of projected rotating fringes. More usually known as dynamic fringe projection, it is this technique which is exploited in the dynamic automated range transducer (DART). The intensity waveform seen at the target and sensed by the detector, contains all the information required to accurately determine the fringe order. This, in turn, allows the range to be evaluated by the substitution of the fringe order into a simple algebraic expression. Various techniques for the analysis of the received intensity signals from the surface of the target have been investigated. The accuracy to which the range can be determined ultimately depends upon the accuracy to which the fringe order can be evaluated from the received intensity waveform. It is extremely important to be able to closely determine the fractional fringe order value, to achieve any meaningful results. This paper describes a number of techniques which have been used to analyze the intensity waveform, and critically appraises their suitability in terms of accuracy and required speed of operation. This work also examines the development of this instrument for three-dimensional measurements based on single or two beam systems. Using CCD array detectors, a 3-D range map of the object's surface may be produced.

  9. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  10. Highway 3D model from image and lidar data

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  11. Compression of 3D integral images using wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Mazri, Meriem; Aggoun, Amar

    2003-06-01

    This paper presents a wavelet-based lossy compression technique for unidirectional 3D integral images (UII). The method requires the extraction of different viewpoint images from the integral image. A single viewpoint image is constructed by extracting one pixel from each microlens, then each viewpoint image is decomposed using a Two Dimensional Discrete Wavelet Transform (2D-DWT). The resulting array of coefficients contains several frequency bands. The lower frequency bands of the viewpoint images are assembled and compressed using a 3 Dimensional Discrete Cosine Transform (3D-DCT) followed by Huffman coding. This will achieve decorrelation within and between 2D low frequency bands from the different viewpoint images. The remaining higher frequency bands are Arithmetic coded. After decoding and decompression of the viewpoint images using an inverse 3D-DCT and an inverse 2D-DWT, each pixel from every reconstructed viewpoint image is put back into its original position within the microlens to reconstruct the whole 3D integral image. Simulations were performed on a set of four different grey level 3D UII using a uniform scalar quantizer with deadzone. The results for the average of the four UII intensity distributions are presented and compared with previous use of 3D-DCT scheme. It was found that the algorithm achieves better rate-distortion performance, with respect to compression ratio and image quality at very low bit rates.

  12. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  13. 3D scene reconstruction from multi-aperture images

    NASA Astrophysics Data System (ADS)

    Mao, Miao; Qin, Kaihuai

    2014-04-01

    With the development of virtual reality, there is a growing demand for 3D modeling of real scenes. This paper proposes a novel 3D scene reconstruction framework based on multi-aperture images. Our framework consists of four parts. Firstly, images with different apertures are captured via programmable aperture. Secondly, we use SIFT method for feature point matching. Then we exploit binocular stereo vision to calculate camera parameters and 3D positions of matching points, forming a sparse 3D scene model. Finally, we apply patch-based multi-view stereo to obtain a dense 3D scene model. Experimental results show that our method is practical and effective to reconstruct dense 3D scene.

  14. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  15. Dedicated 3D photoacoustic breast imaging

    PubMed Central

    Kruger, Robert A.; Kuzmiak, Cherie M.; Lam, Richard B.; Reinecke, Daniel R.; Del Rio, Stephen P.; Steed, Doreen

    2013-01-01

    Purpose: To report the design and imaging methodology of a photoacoustic scanner dedicated to imaging hemoglobin distribution throughout a human breast. Methods: The authors developed a dedicated breast photoacoustic mammography (PAM) system using a spherical detector aperture based on our previous photoacoustic tomography scanner. The system uses 512 detectors with rectilinear scanning. The scan shape is a spiral pattern whose radius varies from 24 to 96 mm, thereby allowing a field of view that accommodates a wide range of breast sizes. The authors measured the contrast-to-noise ratio (CNR) using a target comprised of 1-mm dots printed on clear plastic. Each dot absorption coefficient was approximately the same as a 1-mm thickness of whole blood at 756 nm, the output wavelength of the Alexandrite laser used by this imaging system. The target was immersed in varying depths of an 8% solution of stock Liposyn II-20%, which mimics the attenuation of breast tissue (1.1 cm−1). The spatial resolution was measured using a 6 μm-diameter carbon fiber embedded in agar. The breasts of four healthy female volunteers, spanning a range of breast size from a brassiere C cup to a DD cup, were imaged using a 96-mm spiral protocol. Results: The CNR target was clearly visualized to a depth of 53 mm. Spatial resolution, which was estimated from the full width at half-maximum of a profile across the PAM image of a carbon fiber, was 0.42 mm. In the four human volunteers, the vasculature was well visualized throughout the breast tissue, including to the chest wall. Conclusions: CNR, lateral field-of-view and penetration depth of our dedicated PAM scanning system is sufficient to image breasts as large as 1335 mL, which should accommodate up to 90% of the women in the United States. PMID:24320471

  16. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  17. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  18. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  19. Image performance evaluation of a 3D surgical imaging platform

    NASA Astrophysics Data System (ADS)

    Petrov, Ivailo E.; Nikolov, Hristo N.; Holdsworth, David W.; Drangova, Maria

    2011-03-01

    The O-arm (Medtronic Inc.) is a multi-dimensional surgical imaging platform. The purpose of this study was to perform a quantitative evaluation of the imaging performance of the O-arm in an effort to understand its potential for future nonorthopedic applications. Performance of the reconstructed 3D images was evaluated, using a custom-built phantom, in terms of resolution, linearity, uniformity and geometrical accuracy. Both the standard (SD, 13 s) and high definition (HD, 26 s) modes were evaluated, with the imaging parameters set to image the head (120 kVp, 100 mAs and 150 mAs, respectively). For quantitative noise characterization, the images were converted to Hounsfield units (HU) off-line. Measurement of the modulation transfer function revealed a limiting resolution (at 10% level) of 1.0 mm-1 in the axial dimension. Image noise varied between 15 and 19 HU for the HD and SD modes, respectively. Image intensities varied linearly over the measured range, up to 1300 HU. Geometric accuracy was maintained in all three dimensions over the field of view. The present study has evaluated the performance characteristics of the O-arm, and demonstrates feasibility for use in interventional applications and quantitative imaging tasks outside those currently targeted by the manufacturer. Further improvements to the reconstruction algorithms may further enhance performance for lower-contrast applications.

  20. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  1. 3D laser imaging for concealed object identification

    NASA Astrophysics Data System (ADS)

    Berechet, Ion; Berginc, Gérard; Berechet, Stefan

    2014-09-01

    This paper deals with new optical non-conventional 3D laser imaging. Optical non-conventional imaging explores the advantages of laser imaging to form a three-dimensional image of the scene. 3D laser imaging can be used for threedimensional medical imaging, topography, surveillance, robotic vision because of ability to detect and recognize objects. In this paper, we present a 3D laser imaging for concealed object identification. The objective of this new 3D laser imaging is to provide the user a complete 3D reconstruction of the concealed object from available 2D data limited in number and with low representativeness. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different interfaces of the scene of interest and from experimental results. We show the global 3D reconstruction procedures capable to separate objects from foliage and reconstruct a threedimensional image of the considered object. In this paper, we present examples of reconstruction and completion of three-dimensional images and we analyse the different parameters of the identification process such as resolution, the scenario of camouflage, noise impact and lacunarity degree.

  2. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  3. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  4. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    PubMed Central

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  5. Critical comparison of 3D imaging approaches

    SciTech Connect

    Bennett, C L

    1999-06-03

    Currently three imaging spectrometer architectures, tunable filter, dispersive, and Fourier transform, are viable for imaging the universe in three dimensions. There are domains of greatest utility for each of these architectures. The optimum choice among the various alternative architectures is dependent on the nature of the desired observations, the maturity of the relevant technology, and the character of the backgrounds. The domain appropriate for each of the alternatives is delineated; both for instruments having ideal performance as well as for instrumentation based on currently available technology. The environment and science objectives for the Next Generation Space Telescope will be used as a specific representative case to provide a basis for comparison of the various alternatives.

  6. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  7. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  8. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  9. 3D-spectral domain computational imaging

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Ferra, Herman; Lorenser, Dirk; Frisken, Steven

    2016-03-01

    We present a proof-of-concept experiment utilizing a novel "snap-shot" spectral domain OCT technique that captures a phase coherent volume in a single frame. The sample is illuminated with a collimated beam of 75 μm diameter and the back-reflected light is analyzed by a 2-D matrix of spectral interferograms. A key challenge that is addressed is simultaneously maintaining lateral and spectral phase coherence over the imaged volume in the presence of sample motion. Digital focusing is demonstrated for 5.0 μm lateral resolution over an 800 μm axial range.

  10. Morphometrics, 3D Imaging, and Craniofacial Development.

    PubMed

    Hallgrimsson, Benedikt; Percival, Christopher J; Green, Rebecca; Young, Nathan M; Mio, Washington; Marcucio, Ralph

    2015-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  11. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  12. Probing Local Mineralogy in 3D with Dual Energy X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Gelb, J.; Yun, S.; Doerr, D.; Hunter, L.; Johnson, B.; Merkle, A.; Fahey, K.

    2013-12-01

    In recent years, 3D imaging of rock microstructures has become routine practice for determining pore-scale properties in the geosciences. X-Ray imaging techniques, such as X-Ray Microscopy (XRM), have demonstrated several unique capabilities: namely, the ability to characterize the same sample across a range of length scales and REVs (from millimeters to nanometers), and to perform these characterizations on the same sample over a range of times/treatments (e.g., to observe fluid transporting through the pore networks in a flow cell). While the XRM technique is a popular choice for structural (i.e., pore) characterization, historically it has provided little mineralogical information. This means that resulting simulations are either based on pore structure alone, or rely on correlative chemical mapping techniques for compositionally-sensitive models. Recent advancements in XRM techniques are now enabling compositional sensitivity for a variety of geological sample types. By collecting high-resolution 3D tomography data sets at two different source settings (energies), results may be mixed together to enhance the appearance (contrast) of specific materials. This approach is proving beneficial, for example, to mining applications to locate and identify precious metals, as well as for oil & gas applications to map local hydrophobicity. Here, we will introduce the technique of dual energy X-Ray microscopy, showing how it extends the capabilities of traditional XRM techniques, affording the same high resolution structural information while adding 3D compositional data. Application examples will be shown to illustrate its effectiveness at both the single to sub-micron length scale for mining applications as well as at the 150 nm length scale for shale rock analysis.

  13. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  14. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  15. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  16. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  17. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  18. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  19. Low Dose, Low Energy 3d Image Guidance during Radiotherapy

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Marchant, T.; Amer, A.; Sharrock, P.; Price, P.; Burton, D.

    2006-04-01

    Patient kilo-voltage X-ray cone beam volumetric imaging for radiotherapy was first demonstrated on an Elekta Synergy mega-voltage X-ray linear accelerator. Subsequently low dose, reduced profile reconstruction imaging was shown to be practical for 3D geometric setup registration to pre-treatment planning images without compromising registration accuracy. Reconstruction from X-ray profiles gathered between treatment beam deliveries was also introduced. The innovation of zonal cone beam imaging promises significantly reduced doses to patients and improved soft tissue contrast in the tumour target zone. These developments coincided with the first dynamic 3D monitoring of continuous body topology changes in patients, at the moment of irradiation, using a laser interferometer. They signal the arrival of low dose, low energy 3D image guidance during radiotherapy itself.

  20. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.

    PubMed

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-04-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI's ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time that the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  1. 3D thermography imaging standardization technique for inflammation diagnosis

    NASA Astrophysics Data System (ADS)

    Ju, Xiangyang; Nebel, Jean-Christophe; Siebert, J. Paul

    2005-01-01

    We develop a 3D thermography imaging standardization technique to allow quantitative data analysis. Medical Digital Infrared Thermal Imaging is very sensitive and reliable mean of graphically mapping and display skin surface temperature. It allows doctors to visualise in colour and quantify temperature changes in skin surface. The spectrum of colours indicates both hot and cold responses which may co-exist if the pain associate with an inflammatory focus excites an increase in sympathetic activity. However, due to thermograph provides only qualitative diagnosis information, it has not gained acceptance in the medical and veterinary communities as a necessary or effective tool in inflammation and tumor detection. Here, our technique is based on the combination of visual 3D imaging technique and thermal imaging technique, which maps the 2D thermography images on to 3D anatomical model. Then we rectify the 3D thermogram into a view independent thermogram and conform it a standard shape template. The combination of these imaging facilities allows the generation of combined 3D and thermal data from which thermal signatures can be quantified.

  2. SNR analysis of 3D magnetic resonance tomosynthesis (MRT) imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Oh; Kim, Dong-Hyun

    2012-03-01

    In conventional 3D Fourier transform (3DFT) MR imaging, signal-to-noise ratio (SNR) is governed by the well-known relationship of being proportional to the voxel size and square root of the imaging time. Here, we introduce an alternative 3D imaging approach, termed MRT (Magnetic Resonance Tomosynthesis), which can generate a set of tomographic MR images similar to multiple 2D projection images in x-ray. A multiple-oblique-view (MOV) pulse sequence is designed to acquire the tomography-like images used in tomosynthesis process and an iterative back-projection (IBP) reconstruction method is used to reconstruct 3D images. SNR analysis is performed and shows that resolution and SNR tradeoff is not governed as with typical 3DFT MR imaging case. The proposed method provides a higher SNR than the conventional 3D imaging method with a partial loss of slice-direction resolution. It is expected that this method can be useful for extremely low SNR cases.

  3. 3D gesture recognition from serial range image

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuyuki; Miyasaka, Takeo; Hirose, Makoto; Araki, Kazuo

    2001-10-01

    In this research, the recognition of gesture in 3D space is examined by using serial range images obtained by a real-time 3D measurement system developed in our laboratory. Using this system, it is possible to obtain time sequences of range, intensity and color data for a moving object in real-time without assigning markers to the targets. At first, gestures are tracked in 2D space by calculating 2D flow vectors at each points using an ordinal optical flow estimation method, based on time sequences of the intensity data. Then, location of each point after 2D movement is detected on the x-y plane using thus obtained 2D flow vectors. Depth information of each point after movement is then obtained from the range data and 3D flow vectors are assigned to each point. Time sequences of thus obtained 3D flow vectors allow us to track the 3D movement of the target. So, based on time sequences of 3D flow vectors of the targets, it is possible to classify the movement of the targets using continuous DP matching technique. This tracking of 3D movement using time sequences of 3D flow vectors may be applicable for a robust gesture recognition system.

  4. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    PubMed

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. PMID:25786567

  5. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy

    PubMed Central

    HÖHN, K.; FUCHS, J.; FRÖBER, A.; KIRMSE, R.; GLASS, B.; ANDERS‐ÖSSWEIN, M.; WALTHER, P.; KRÄUSSLICH, H.‐G.

    2015-01-01

    Summary In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells. PMID:25786567

  6. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  7. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  8. 3D Image Display Courses for Information Media Students.

    PubMed

    Yanaka, Kazuhisa; Yamanouchi, Toshiaki

    2016-01-01

    Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators. PMID:26960028

  9. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  10. Blind deconvolution of 3D fluorescence microscopy using depth-variant asymmetric PSF.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2016-06-01

    The 3D wide-field fluorescence microscopy suffers from depth-variant asymmetric blur. The depth-variance and axial asymmetry are due to refractive index mismatch between the immersion and the specimen layer. The radial asymmetry is due to lens imperfections and local refractive index inhomogeneities in the specimen. To obtain the PSF that has these characteristics, there were PSF premeasurement trials. However, they are useless since imaging conditions such as camera position and refractive index of the specimen are changed between the premeasurement and actual imaging. In this article, we focus on removing unknown depth-variant asymmetric blur in such an optical system under the assumption of refractive index homogeneities in the specimen. We propose finding few parameters in the mathematical PSF model from observed images in which the PSF model has a depth-variant asymmetric shape. After generating an initial PSF from the analysis of intensities in the observed image, the parameters are estimated based on a maximum likelihood estimator. Using the estimated PSF, we implement an accelerated GEM algorithm for image deconvolution. Deconvolution result shows the superiority of our algorithm in terms of accuracy, which quantitatively evaluated by FWHM, relative contrast, standard deviation values of intensity peaks and FWHM. Microsc. Res. Tech. 79:480-494, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062314

  11. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy.

    PubMed

    Latour, Gaël; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2012-10-22

    We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale. PMID:23187225

  12. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  13. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  14. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  15. 3-D Terahertz Synthetic-Aperture Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Henry, Samuel C.

    Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most practical configuration for standoff detection, especially for objects with high water content (like human tissue) which are opaque at THz frequencies. In this research, reflection-based THz synthetic-aperture (SA) imaging is investigated as a potential imaging solution. THz SA imaging results presented in this dissertation are unique in that a 2-D planar synthetic array was used to generate a 3-D image without relying on a narrow time-window for depth isolation cite [Shen 2005]. Novel THz chemical detection techniques are developed and combined with broadband THz SA capabilities to provide concurrent 3-D spectral imaging. All algorithms are tested with various objects and pressed pellets using a pulsed THz time-domain system in the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab).

  16. 3D image of protein visualization in a whole rice grain using an automatic precision microtome system

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiharu; Ohtani, Toshio; Sugiyama, Junichi; Hagiwara, Shoji; Tanaka, Kunisuke; Kudoh, Ken-ichi; Higuchi, Toshiro

    2000-05-01

    The 3D image formation technique using confocal microscopy has allows visualization of the 3D chemical structure in small parts of the bio-body. However, the large-scale 3D structure such as the distribution of chemical components throughout the whole body has not been shown. To allow such large scale visualization of the 3D internal analysis technique for bio-body has been developed.

  17. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  18. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  19. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    NASA Astrophysics Data System (ADS)

    Zeng, P.; Inkson, B. J.; Rainforth, W. M.; Stewart, T.

    2008-08-01

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  20. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    PubMed Central

    Torrano, Adriano A

    2014-01-01

    Summary Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division. PMID:25383274

  1. Imaging interferometric microscopy.

    PubMed

    Schwarz, Christian J; Kuznetsova, Yuliya; Brueck, S R J

    2003-08-15

    We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment. PMID:12943079

  2. Integrated optical 3D digital imaging based on DSP scheme

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  3. 2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction

    SciTech Connect

    Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.

    2010-11-10

    We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.

  4. 3D CARS image reconstruction and pattern recognition on SHG images

    NASA Astrophysics Data System (ADS)

    Medyukhina, Anna; Vogler, Nadine; Latka, Ines; Dietzek, Benjamin; Cicchi, Riccardo; Pavone, Francesco S.; Popp, Jürgen

    2012-06-01

    Nonlinear optical imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or second-harmonic generation (SHG) show great potential for in-vivo investigations of tissue. While the microspectroscopic imaging tools are established, automized data evaluation, i.e. image pattern recognition and automized image classification, of nonlinear optical images still bares great possibilities for future developments towards an objective clinical diagnosis. This contribution details the capability of nonlinear microscopy for both 3D visualization of human tissues and automated discrimination between healthy and diseased patterns using ex-vivo human skin samples. By means of CARS image alignment we show how to obtain a quasi-3D model of a skin biopsy, which allows us to trace the tissue structure in different projections. Furthermore, the potential of automated pattern and organization recognition to distinguish between healthy and keloidal skin tissue is discussed. A first classification algorithm employs the intrinsic geometrical features of collagen, which can be efficiently visualized by SHG microscopy. The shape of the collagen pattern allows conclusions about the physiological state of the skin, as the typical wavy collagen structure of healthy skin is disturbed e.g. in keloid formation. Based on the different collagen patterns a quantitative score characterizing the collagen waviness - and hence reflecting the physiological state of the tissue - is obtained. Further, two additional scoring methods for collagen organization, respectively based on a statistical analysis of the mutual organization of fibers and on FFT, are presented.

  5. A miniature high resolution 3-D imaging sonar.

    PubMed

    Josserand, Tim; Wolley, Jason

    2011-04-01

    This paper discusses the design and development of a miniature, high resolution 3-D imaging sonar. The design utilizes frequency steered phased arrays (FSPA) technology. FSPAs present a small, low-power solution to the problem of underwater imaging sonars. The technology provides a method to build sonars with a large number of beams without the proportional power, circuitry and processing complexity. The design differs from previous methods in that the array elements are manufactured from a monolithic material. With this technique the arrays are flat and considerably smaller element dimensions are achievable which allows for higher frequency ranges and smaller array sizes. In the current frequency range, the demonstrated array has ultra high image resolution (1″ range×1° azimuth×1° elevation) and small size (<3″×3″). The design of the FSPA utilizes the phasing-induced frequency-dependent directionality of a linear phased array to produce multiple beams in a forward sector. The FSPA requires only two hardware channels per array and can be arranged in single and multiple array configurations that deliver wide sector 2-D images. 3-D images can be obtained by scanning the array in a direction perpendicular to the 2-D image field and applying suitable image processing to the multiple scanned 2-D images. This paper introduces the 3-D FSPA concept, theory and design methodology. Finally, results from a prototype array are presented and discussed. PMID:21112066

  6. 3D reconstruction based on CT image and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxun; Zhang, Mingmin

    2004-03-01

    Reconstitute the 3-D model of the liver and its internal piping system and simulation of the liver surgical operation can increase the accurate and security of the liver surgical operation, attain a purpose for the biggest limit decrease surgical operation wound, shortening surgical operation time, increasing surgical operation succeeding rate, reducing medical treatment expenses and promoting patient recovering from illness. This text expatiated technology and method that the author constitutes 3-D the model of the liver and its internal piping system and simulation of the liver surgical operation according to the images of CT. The direct volume rendering method establishes 3D the model of the liver. Under the environment of OPENGL adopt method of space point rendering to display liver's internal piping system and simulation of the liver surgical operation. Finally, we adopt the wavelet transform method compressed the medical image data.

  7. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  8. Reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Niu, Bei; Sang, Xinzhu; Chen, Duo; Cai, Yuanfa

    2013-08-01

    Reconstruction of three-dimensional (3D) scenes is an active research topic in the field of computer vision and 3D display. It's a challenge to model 3D objects rapidly and effectively. A 3D model can be extracted from multiple images. The system only requires a sequence of images taken with cameras without knowing the parameters of camera, which provide flexibility to a high degree. We focus on quickly merging point cloud of the object from depth map sequences. The whole system combines algorithms of different areas in computer vision, such as camera calibration, stereo correspondence, point cloud splicing and surface reconstruction. The procedure of 3D reconstruction is decomposed into a number of successive steps. Firstly, image sequences are received by the camera freely moving around the object. Secondly, the scene depth is obtained by a non-local stereo matching algorithm. The pairwise is realized with the Scale Invariant Feature Transform (SIFT) algorithm. An initial matching is then made for the first two images of the sequence. For the subsequent image that is processed with previous image, the point of interest corresponding to ones in previous images are refined or corrected. The vertical parallax between the images is eliminated. The next step is to calibrate camera, and intrinsic parameters and external parameters of the camera are calculated. Therefore, The relative position and orientation of camera are gotten. A sequence of depth maps are acquired by using a non-local cost aggregation method for stereo matching. Then point cloud sequence is achieved by the scene depths, which consists of point cloud model using the external parameters of camera and the point cloud sequence. The point cloud model is then approximated by a triangular wire-frame mesh to reduce geometric complexity and to tailor the model to the requirements of computer graphics visualization systems. Finally, the texture is mapped onto the wire-frame model, which can also be used for 3

  9. Wave-CAIPI for Highly Accelerated 3D Imaging

    PubMed Central

    Bilgic, Berkin; Gagoski, Borjan A.; Cauley, Stephen F.; Fan, Audrey P.; Polimeni, Jonathan R.; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To introduce the Wave-CAIPI (Controlled Aliasing in Parallel Imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The Wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line, while modifying the 3D phase encoding strategy to incur inter-slice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high quality image reconstruction with Wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and Quantitative Susceptibility Mapping (QSM). Results Wave-CAIPI enables full-brain gradient echo (GRE) acquisition at 1 mm isotropic voxel size and R=3×3 acceleration with maximum g-factors of 1.08 at 3T, and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies 2D-CAIPI and Bunched Phase Encoding, Wave-CAIPI yields up to 2-fold reduction in maximum g-factor for 9-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. PMID:24986223

  10. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  11. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  12. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  13. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  14. Imaging thin-bed reservoirs with 3-D seismic

    SciTech Connect

    Hardage, B.A.

    1996-12-01

    This article explains how a 3-D seismic data volume, a vertical seismic profile (VSP), electric well logs and reservoir pressure data can be used to image closely stacked thin-bed reservoirs. This interpretation focuses on the Oligocene Frio reservoir in South Texas which has multiple thin-beds spanning a vertical interval of about 3,000 ft.

  15. Practical pseudo-3D registration for large tomographic images

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  16. 3D wavefront image formation for NIITEK GPR

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad; Ton, Tuan; Howard, Pete

    2009-05-01

    The U.S. Department of Defense Humanitarian Demining (HD) Research and Development Program focuses on developing, testing, demonstrating, and validating new technology for immediate use in humanitarian demining operations around the globe. Beginning in the late 1990's, the U.S. Army Countermine Division funded the development of the NIITEK ground penetrating radar (GPR) for detection of anti-tank (AT) landmines. This work is concerned with signal processing algorithms to suppress sources of artifacts in the NIITEK GPR, and formation of three-dimensional (3D) imagery from the resultant data. We first show that the NIITEK GPR data correspond to a 3D Synthetic Aperture Radar (SAR) database. An adaptive filtering method is utilized to suppress ground return and self-induced resonance (SIR) signals that are generated by the interaction of the radar-carrying platform and the transmitted radar signal. We examine signal processing methods to improve the fidelity of imagery for this 3D SAR system using pre-processing methods that suppress Doppler aliasing as well as other side lobe leakage artifacts that are introduced by the radar radiation pattern. The algorithm, known as digital spotlighting, imposes a filtering scheme on the azimuth-compressed SAR data, and manipulates the resultant spectral data to achieve a higher PRF to suppress the Doppler aliasing. We also present the 3D version of the Fourier-based wavefront reconstruction, a computationally-efficient and approximation-free SAR imaging method, for image formation with the NIITEK 3D SAR database.

  17. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  18. Domain adaptation for microscopy imaging.

    PubMed

    Becker, Carlos; Christoudias, C Mario; Fua, Pascal

    2015-05-01

    Electron and light microscopy imaging can now deliver high-quality image stacks of neural structures. However, the amount of human annotation effort required to analyze them remains a major bottleneck. While machine learning algorithms can be used to help automate this process, they require training data, which is time-consuming to obtain manually, especially in image stacks. Furthermore, due to changing experimental conditions, successive stacks often exhibit differences that are severe enough to make it difficult to use a classifier trained for a specific one on another. This means that this tedious annotation process has to be repeated for each new stack. In this paper, we present a domain adaptation algorithm that addresses this issue by effectively leveraging labeled examples across different acquisitions and significantly reducing the annotation requirements. Our approach can handle complex, nonlinear image feature transformations and scales to large microscopy datasets that often involve high-dimensional feature spaces and large 3D data volumes. We evaluate our approach on four challenging electron and light microscopy applications that exhibit very different image modalities and where annotation is very costly. Across all applications we achieve a significant improvement over the state-of-the-art machine learning methods and demonstrate our ability to greatly reduce human annotation effort. PMID:25474809

  19. 3-D object-oriented image analysis of geophysical data

    NASA Astrophysics Data System (ADS)

    Fadel, I.; Kerle, N.; van der Meijde, M.

    2014-07-01

    Geophysical data are the main source of information about the subsurface. Geophysical techniques are, however, highly non-unique in determining specific physical parameters and boundaries of subsurface objects. To obtain actual physical information, an inversion process is often applied, in which measurements at or above the Earth surface are inverted into a 2- or 3-D subsurface spatial distribution of the physical property. Interpreting these models into structural objects, related to physical processes, requires a priori knowledge and expert analysis which is susceptible to subjective choices and is therefore often non-repeatable. In this research, we implemented a recently introduced object-based approach to interpret the 3-D inversion results of a single geophysical technique using the available a priori information and the physical and geometrical characteristics of the interpreted objects. The introduced methodology is semi-automatic and repeatable, and allows the extraction of subsurface structures using 3-D object-oriented image analysis (3-D OOA) in an objective knowledge-based classification scheme. The approach allows for a semi-objective setting of thresholds that can be tested and, if necessary, changed in a very fast and efficient way. These changes require only changing the thresholds used in a so-called ruleset, which is composed of algorithms that extract objects from a 3-D data cube. The approach is tested on a synthetic model, which is based on a priori knowledge on objects present in the study area (Tanzania). Object characteristics and thresholds were well defined in a 3-D histogram of velocity versus depth, and objects were fully retrieved. The real model results showed how 3-D OOA can deal with realistic 3-D subsurface conditions in which the boundaries become fuzzy, the object extensions become unclear and the model characteristics vary with depth due to the different physical conditions. As expected, the 3-D histogram of the real data was

  20. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. PMID:26073969

  1. Practical applications of 3D sonography in gynecologic imaging.

    PubMed

    Andreotti, Rochelle F; Fleischer, Arthur C

    2014-11-01

    Volume imaging in the pelvis has been well demonstrated to be an extremely useful technique, largely based on its ability to reconstruct the coronal plane of the uterus that usually cannot be visualized using traditional 2-dimensional (2D) imaging. As a result, this technique is now a part of the standard pelvic ultrasound protocol in many institutions. A variety of valuable applications of 3D sonography in the pelvis are discussed in this article. PMID:25444101

  2. 3D Winding Number: Theory and Application to Medical Imaging

    PubMed Central

    Becciu, Alessandro; Fuster, Andrea; Pottek, Mark; van den Heuvel, Bart; ter Haar Romeny, Bart; van Assen, Hans

    2011-01-01

    We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results. PMID:21317978

  3. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  4. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  5. 3D ultrasound image segmentation using wavelet support vector machines

    PubMed Central

    Akbari, Hamed; Fei, Baowei

    2012-01-01

    Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682

  6. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  7. 1024 pixels single photon imaging array for 3D ranging

    NASA Astrophysics Data System (ADS)

    Bellisai, S.; Guerrieri, F.; Tisa, S.; Zappa, F.; Tosi, A.; Giudice, A.

    2011-01-01

    Three dimensions (3D) acquisition systems are driving applications in many research field. Nowadays 3D acquiring systems are used in a lot of applications, such as cinema industry or in automotive (for active security systems). Depending on the application, systems present different features, for example color sensitivity, bi-dimensional image resolution, distance measurement accuracy and acquisition frame rate. The system we developed acquires 3D movie using indirect Time of Flight (iTOF), starting from phase delay measurement of a sinusoidally modulated light. The system acquires live movie with a frame rate up to 50frame/s in a range distance between 10 cm up to 7.5 m.

  8. 3-D segmentation of human sternum in lung MDCT images.

    PubMed

    Pazokifard, Banafsheh; Sowmya, Arcot

    2013-01-01

    A fully automatic novel algorithm is presented for accurate 3-D segmentation of the human sternum in lung multi detector computed tomography (MDCT) images. The segmentation result is refined by employing active contours to remove calcified costal cartilage that is attached to the sternum. For each dataset, costal notches (sternocostal joints) are localized in 3-D by using a sternum mask and positions of the costal notches on it as reference. The proposed algorithm for sternum segmentation was tested on 16 complete lung MDCT datasets and comparison of the segmentation results to the reference delineation provided by a radiologist, shows high sensitivity (92.49%) and specificity (99.51%) and small mean distance (dmean=1.07 mm). Total average of the Euclidean distance error for costal notches positioning in 3-D is 4.2 mm. PMID:24110446

  9. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  10. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  11. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development.

    PubMed

    Harris, Kristen M; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H; Lindsey, Laurence F; Baden, Alexander D; Vogelstein, Joshua T; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50-60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm(3)) surrounding a large dendritic spine, a cylinder (~43 μm(3)) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm(3)) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  12. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions. PMID:26567131

  13. Automatic needle segmentation in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Cardinal, H. Neale; Guan, Weiguang; Fenster, Aaron

    2002-05-01

    In this paper, we propose to use 2D image projections to automatically segment a needle in a 3D ultrasound image. This approach is motivated by the twin observations that the needle is more conspicuous in a projected image, and its projected area is a minimum when the rays are cast parallel to the needle direction. To avoid the computational burden of an exhaustive 2D search for the needle direction, a faster 1D search procedure is proposed. First, a plane which contains the needle direction is determined by the initial projection direction and the (estimated) direction of the needle in the corresponding projection image. Subsequently, an adaptive 1D search technique is used to adjust the projection direction iteratively until the projected needle area is minimized. In order to remove noise and complex background structure from the projection images, a priori information about the needle position and orientation is used to crop the 3D volume, and the cropped volume is rendered with Gaussian transfer functions. We have evaluated this approach experimentally using agar and turkey breast phantoms. The results show that it can find the 3D needle orientation within 1 degree, in about 1 to 3 seconds on a 500 MHz computer.

  14. Vhrs Stereo Images for 3d Modelling of Buildings

    NASA Astrophysics Data System (ADS)

    Bujakiewicz, A.; Holc, M.

    2012-07-01

    The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  15. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  16. Quantitative 3-D imaging topogrammetry for telemedicine applications

    NASA Technical Reports Server (NTRS)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  17. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  18. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    PubMed

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples. PMID:25433274

  19. Large distance 3D imaging of hidden objects

    NASA Astrophysics Data System (ADS)

    Rozban, Daniel; Aharon Akram, Avihai; Kopeika, N. S.; Abramovich, A.; Levanon, Assaf

    2014-06-01

    Imaging systems in millimeter waves are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is low compared to that of infrared and optical rays. The lack of an inexpensive room temperature detector makes it difficult to give a suitable real time implement for the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with Glow Discharge Detector (GDD) Focal Plane Array (FPA of plasma based detectors) using heterodyne detection. The intensity at each pixel in the GDD FPA yields the usual 2D image. The value of the I-F frequency yields the range information at each pixel. This will enable 3D MMW imaging. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of inexpensive detectors. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  20. Automated reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L.

    Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camera settings. In addition, the parameters of this camera are allowed to change during acquisition (e.g., by zooming or focusing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on state-of-the-art algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of successive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach.

  1. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  2. Texture blending on 3D models using casual images

    NASA Astrophysics Data System (ADS)

    Liu, Xingming; Liu, Xiaoli; Li, Ameng; Liu, Junyao; Wang, Huijing

    2013-12-01

    In this paper, a method for constructing photorealistic textured model using 3D structured light digitizer is presented. Our method acquisition of range images and texture images around object, and range images are registered and integrated to construct geometric model of object. System is calibrated and poses of texture-camera are determined so that the relationship between texture and geometric model is established. After that, a global optimization is applied to assign compatible texture to adjacent surface and followed with a level procedure to remove artifacts due to vary lighting, approximate geometric model and so on. Lastly, we demonstrate the effect of our method on constructing a real model of world.

  3. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  4. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  5. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

    PubMed Central

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L.; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-01-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  6. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  7. Right main bronchus perforation detected by 3D-image

    PubMed Central

    Bense, László; Eklund, Gunnar; Jorulf, Hakan; Farkas, Árpád; Balásházy, Imre; Hedenstierna, Göran; Krebsz, Ádám; Madas, Balázs Gergely; Strindberg, Jerker Eden

    2011-01-01

    A male metal worker, who has never smoked, contracted debilitating dyspnoea in 2003 which then deteriorated until 2007. Spirometry and chest x-rays provided no diagnosis. A 3D-image of the airways was reconstructed from a high-resolution CT (HRCT) in 2007, showing peribronchial air on the right side, mostly along the presegmental airways. After digital subtraction of the image of the peribronchial air, a hole on the cranial side of the right main bronchus was detected. The perforation could be identified at the re-examination of HRCTs in 2007 and 2009, but not in 2010 when it had possibly healed. The occupational exposure of the patient to evaporating chemicals might have contributed to the perforation and hampered its healing. A 3D HRCT reconstruction should be considered to detect bronchial anomalies, including wall-perforation, when unexplained dyspnoea or other chest symptoms call for extended investigation. PMID:22679238

  8. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  9. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  10. 3D VSP imaging in the Deepwater GOM

    NASA Astrophysics Data System (ADS)

    Hornby, B. E.

    2005-05-01

    Seismic imaging challenges in the Deepwater GOM include surface and sediment related multiples and issues arising from complicated salt bodies. Frequently, wells encounter geologic complexity not resolved on conventional surface seismic section. To help address these challenges BP has been acquiring 3D VSP (Vertical Seismic Profile) surveys in the Deepwater GOM. The procedure involves placing an array of seismic sensors in the borehole and acquiring a 3D seismic dataset with a surface seismic gunboat that fires airguns in a spiral pattern around the wellbore. Placing the seismic geophones in the borehole provides a higher resolution and more accurate image near the borehole, as well as other advantages relating to the unique position of the sensors relative to complex structures. Technical objectives are to complement surface seismic with improved resolution (~2X seismic), better high dip structure definition (e.g. salt flanks) and to fill in "imaging holes" in complex sub-salt plays where surface seismic is blind. Business drivers for this effort are to reduce risk in well placement, improved reserve calculation and understanding compartmentalization and stratigraphic variation. To date, BP has acquired 3D VSP surveys in ten wells in the DW GOM. The initial results are encouraging and show both improved resolution and structural images in complex sub-salt plays where the surface seismic is blind. In conjunction with this effort BP has influenced both contractor borehole seismic tool design and developed methods to enable the 3D VSP surveys to be conducted offline thereby avoiding the high daily rig costs associated with a Deepwater drilling rig.

  11. 3D tongue motion from tagged and cine MR images.

    PubMed

    Xing, Fangxu; Woo, Jonghye; Murano, Emi Z; Lee, Junghoon; Stone, Maureen; Prince, Jerry L

    2013-01-01

    Understanding the deformation of the tongue during human speech is important for head and neck surgeons and speech and language scientists. Tagged magnetic resonance (MR) imaging can be used to image 2D motion, and data from multiple image planes can be combined via post-processing to yield estimates of 3D motion. However, lacking boundary information, this approach suffers from inaccurate estimates near the tongue surface. This paper describes a method that combines two sources of information to yield improved estimation of 3D tongue motion. The method uses the harmonic phase (HARP) algorithm to extract motion from tags and diffeomorphic demons to provide surface deformation. It then uses an incompressible deformation estimation algorithm to incorporate both sources of displacement information to form an estimate of the 3D whole tongue motion. Experimental results show that use of combined information improves motion estimation near the tongue surface, a problem that has previously been reported as problematic in HARP analysis, while preserving accurate internal motion estimates. Results on both normal and abnormal tongue motions are shown. PMID:24505742

  12. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  13. Radiometric Quality Evaluation of INSAT-3D Imager Data

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Jindal, D.; Badal, N.; Kartikeyan, B.; Gopala Krishna, B.

    2014-11-01

    INSAT-3D is an advanced meteorological satellite of ISRO which acquires imagery in optical and infra-red (IR) channels for study of weather dynamics in Indian sub-continent region. In this paper, methodology of radiometric quality evaluation for Level-1 products of Imager, one of the payloads onboard INSAT-3D, is described. Firstly, overall visual quality of scene in terms of dynamic range, edge sharpness or modulation transfer function (MTF), presence of striping and other image artefacts is computed. Uniform targets in Desert and Sea region are identified for which detailed radiometric performance evaluation for IR channels is carried out. Mean brightness temperature (BT) of targets is computed and validated with independently generated radiometric references. Further, diurnal/seasonal trends in target BT values and radiometric uncertainty or sensor noise are studied. Results of radiometric quality evaluation over duration of eight months (January to August 2014) and comparison of radiometric consistency pre/post yaw flip of satellite are presented. Radiometric Analysis indicates that INSAT-3D images have high contrast (MTF > 0.2) and low striping effects. A bias of <4K is observed in the brightness temperature values of TIR-1 channel measured during January-August 2014 indicating consistent radiometric calibration. Diurnal and seasonal analysis shows that Noise equivalent differential temperature (NEdT) for IR channels is consistent and well within specifications.

  14. Automated Identification of Fiducial Points on 3D Torso Images

    PubMed Central

    Kawale, Manas M; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Fingeret, Michelle C; Markey, Mia K; Merchant, Fatima A

    2013-01-01

    Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D co-ordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we deeply miss her insight and her fellowship. PMID:25288903

  15. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  16. Femoroacetabular impingement with chronic acetabular rim fracture - 3D computed tomography, 3D magnetic resonance imaging and arthroscopic correlation

    PubMed Central

    Chhabra, Avneesh; Nordeck, Shaun; Wadhwa, Vibhor; Madhavapeddi, Sai; Robertson, William J

    2015-01-01

    Femoroacetabular impingement is uncommonly associated with a large rim fragment of bone along the superolateral acetabulum. We report an unusual case of femoroacetabular impingement (FAI) with chronic acetabular rim fracture. Radiographic, 3D computed tomography, 3D magnetic resonance imaging and arthroscopy correlation is presented with discussion of relative advantages and disadvantages of various modalities in the context of FAI. PMID:26191497

  17. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    SciTech Connect

    Surry, K. J. M.; Mills, G. R.; Bevan, K.; Downey, D. B.; Fenster, A.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM and US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization

  18. Infrared differential interference contrast microscopy for overlay metrology on 3D-interconnect bonded wafers

    NASA Astrophysics Data System (ADS)

    Ku, Yi-sha; Shyu, Deh-Ming; Lin, Yeou-Sung; Cho, Chia-Hung

    2013-04-01

    Overlay metrology for stacked layers will be playing a key role in bringing 3D IC devices into manufacturing. However, such bonded wafer pairs present a metrology challenge for optical microscopy tools by the opaque nature of silicon. Using infrared microscopy, silicon wafers become transparent to the near-infrared (NIR) wavelengths of the electromagnetic spectrum, enabling metrology at the interface of bonded wafer pairs. Wafers can be bonded face to face (F2F) or face to back (F2B) which the stacking direction is dictated by how the stacks are carried in the process and functionality required. For example, Memory stacks tend to use F2B stacking enables a better managed design. Current commercial tools use single image technique for F2F bonding overlay measurement because depth of focus is sufficient to include both surfaces; and use multiple image techniques for F2B overlay measurement application for the depth of focus is no longer sufficient to include both stacked wafer surfaces. There is a need to specify the Z coordinate or stacking wafer number through the silicon when visiting measurement wafer sites. Two shown images are of the same (X, Y) but separate Z location acquired at focus position of each wafer surface containing overlay marks. Usually the top surface image is bright and clear; however, the bottom surface image is somewhat darker and noisier as an adhesive layer is used in between to bond the silicon wafers. Thus the top and bottom surface images are further processed to achieve similar brightness and noise level before merged for overlay measurement. This paper presents a special overlay measurement technique, using the infrared differential interference contrast (DIC) microscopy technique to measure the F2B wafer bonding overlay by a single shot image. A pair of thinned wafers at 50 and 150 μm thickness is bonded on top of a carrier wafer to evaluate the bonding overlay. It works on the principle of interferometry to gain information about the

  19. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  20. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  1. Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis

    NASA Astrophysics Data System (ADS)

    Mah, J.; Claire, S.; Steve, M.

    2009-05-01

    Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint

  2. Virtual image display as a backlight for 3D.

    PubMed

    Travis, Adrian; MacCrann, Niall; Emerton, Neil; Kollin, Joel; Georgiou, Andreas; Lanier, Jaron; Bathiche, Stephen

    2013-07-29

    We describe a device which has the potential to be used both as a virtual image display and as a backlight. The pupil of the emitted light fills the device approximately to its periphery and the collimated emission can be scanned both horizontally and vertically in the manner needed to illuminate an eye in any position. The aim is to reduce the power needed to illuminate a liquid crystal panel but also to enable a smooth transition from 3D to a virtual image as the user nears the screen. PMID:23938645

  3. 3D imaging of soil pore network: two different approaches

    NASA Astrophysics Data System (ADS)

    Matrecano, M.; Di Matteo, B.; Mele, G.; Terribile, F.

    2009-04-01

    Pore geometry imaging and its quantitative description is a key factor for advances in the knowledge of physical, chemical and biological soil processes. For many years photos from flattened surfaces of undisturbed soil samples impregnated with fluorescent resin and from soil thin sections under microscope have been the only way available for exploring pore architecture at different scales. Earlier 3D representations of the internal structure of the soil based on not destructive methods have been obtained using medical tomographic systems (NMR and X-ray CT). However, images provided using such equipments, show strong limitations in terms of spatial resolution. In the last decade very good results have then been obtained using imaging from very expensive systems based on synchrotron radiation. More recently, X-ray Micro-Tomography has resulted the most widely applied being the technique showing the best compromise between costs, resolution and size of the images. Conversely, the conceptually simpler but destructive method of "serial sectioning" has been progressively neglected for technical problems in sample preparation and time consumption needed to obtain an adequate number of serial sections for correct 3D reconstruction of soil pore geometry. In this work a comparison between the two methods above has been carried out in order to define advantages, shortcomings and to point out their different potential. A cylindrical undisturbed soil sample 6.5cm in diameter and 6.5cm height of an Ap horizon of an alluvial soil showing vertic characteristics, has been reconstructed using both a desktop X-ray micro-tomograph Skyscan 1172 and the new automatic serial sectioning system SSAT (Sequential Section Automatic Tomography) set up at CNR ISAFOM in Ercolano (Italy) with the aim to overcome most of the typical limitations of such a technique. Image best resolution of 7.5 µm per voxel resulted using X-ray Micro CT while 20 µm was the best value using the serial sectioning

  4. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.

    PubMed

    Charwat, Verena; Schütze, Karin; Holnthoner, Wolfgang; Lavrentieva, Antonina; Gangnus, Rainer; Hofbauer, Pablo; Hoffmann, Claudia; Angres, Brigitte; Kasper, Cornelia

    2015-07-10

    Today highly complex 3D cell culture formats that closely mimic the in vivo situation are increasingly available. Despite their wide use, the development of analytical methods and tools that can work within the depth of 3D-tissue constructs lags behind. In order to get the most information from a 3D cell sample, adequate and reliable assays are required. However, the majority of tools and methods used today have been originally designed for 2D cell cultures and translation to a 3D environment is in general not trivial. Ideally, an analytical method should be non-invasive and allow for repeated observation of living cells in order to detect dynamic changes in individual cells within the 3D cell culture. Although well-established laser confocal microscopy can be used for these purposes, this technique has serious limitations including penetration depth and availability. Focusing on two relevant analytical methods for live-cell monitoring, we discuss the current challenges of analyzing living 3D samples: microscopy, which is the most widely used technology to observe and examine cell cultures, has been successfully adapted for 3D samples by recording of so-called "z-stacks". However the required equipment is generally very expensive and therefore access is often limited. Consequently alternative and less advanced approaches are often applied that cannot capture the full structural complexity of a 3D sample. Similarly, image analysis tools for quantification of microscopic images range from highly specialized and costly to simplified and inexpensive. Depending on the actual sample composition and scientific question the best approach needs to be assessed individually. Another more recently introduced technology for non-invasive cell analysis is Raman micro-spectroscopy. It enables label-free identification of cellular metabolic changes with high sensitivity and has already been successful applied to 2D and 3D cell cultures. However, its future significance for cell

  5. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  6. Mesh generation from 3D multi-material images.

    PubMed

    Boltcheva, Dobrina; Yvinec, Mariette; Boissonnat, Jean-Daniel

    2009-01-01

    The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations. PMID:20426123

  7. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  8. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  9. Performance prediction for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Rubel, Oleksii; Kozhemiakin, Ruslan A.; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2015-10-01

    Performance of denoising based on discrete cosine transform applied to multichannel remote sensing images corrupted by additive white Gaussian noise is analyzed. Images obtained by satellite Earth Observing-1 (EO-1) mission using hyperspectral imager instrument (Hyperion) that have high input SNR are taken as test images. Denoising performance is characterized by improvement of PSNR. For hard-thresholding 3D DCT-based denoising, simple statistics (probabilities to be less than a certain threshold) are used to predict denoising efficiency using curves fitted into scatterplots. It is shown that the obtained curves (approximations) provide prediction of denoising efficiency with high accuracy. Analysis is carried out for different numbers of channels processed jointly. Universality of prediction for different number of channels is proven.

  10. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  11. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  12. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  13. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties. PMID:17481354

  14. Scattering robust 3D reconstruction via polarized transient imaging.

    PubMed

    Wu, Rihui; Suo, Jinli; Dai, Feng; Zhang, Yongdong; Dai, Qionghai

    2016-09-01

    Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium. PMID:27607944

  15. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  16. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Jo, Hong Li; Song, Yo Han; Park, Jinho; Jo, Eun-Jung; Goh, Yeongchang; Shin, Kyujin; Kim, Min-Gon; Lee, Kang Taek

    2015-11-01

    We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description. Electronic supplementary information (ESI) available: Methods for synthetic procedure, characterization, live-cell imaging with UCNPs, and two video files for 3D imaging. See DOI: 10.1039/c5nr05875a

  17. Automatic detection of endothelial cells in 3D angiogenic sprouts from experimental phase contrast images

    NASA Astrophysics Data System (ADS)

    Wang, MengMeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H. Harry

    2015-03-01

    Cell migration studies in 3D environments become more popular, as cell behaviors in 3D are more similar to the behaviors of cells in a living organism (in vivo). We focus on the 3D angiogenic sprouting in microfluidic devices, where Endothelial Cells (ECs) burrow into the gel matrix and form solid lumen vessels. Phase contrast microscopy is used for long-term observation of the unlabeled ECs in the 3D microfluidic devices. Two template matching based approaches are proposed to automatically detect the unlabeled ECs in the angiogenic sprouts from the acquired experimental phase contrast images. Cell and non-cell templates are obtained from these phase contrast images as the training data. The first approach applies Partial Least Square Regression (PLSR) to find the discriminative features and their corresponding weight to distinguish cells and non-cells, whereas the second approach relies on Principal Component Analysis (PCA) to reduce the template feature dimension and Support Vector Machine (SVM) to find their corresponding weight. Through a sliding window manner, the cells in the test images are detected. We then validate the detection accuracy by comparing the results with the same images acquired with a confocal microscope after cells are fixed and their nuclei are stained. More accurate numerical results are obtained for approach I (PLSR) compared to approach II (PCA & SVM) for cell detection. Automatic cell detection will aid in the understanding of cell migration in 3D environment and in turn result in a better understanding of angiogenesis.

  18. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  19. Calibration of an intensity ratio system for 3D imaging

    NASA Astrophysics Data System (ADS)

    Tsui, H. T.; Tang, K. C.

    1989-03-01

    An intensity ratio method for 3D imaging is proposed with error analysis given for assessment and future improvements. The method is cheap and reasonably fast as it requires no mechanical scanning or laborious correspondence computation. One drawback of the intensity ratio methods which hamper their widespread use is the undesirable change of image intensity. This is usually caused by the difference in reflection from different parts of an object surface and the automatic iris or gain control of the camera. In our method, gray-level patterns used include an uniform pattern, a staircase pattern and a sawtooth pattern to make the system more robust against errors in intensity ratio. 3D information of the surface points of an object can be derived from the intensity ratios of the images by triangulation. A reference back plane is put behind the object to monitor the change in image intensity. Errors due to camera calibration, projector calibration, variations in intensity, imperfection of the slides etc. are analyzed. Early experiments of the system using a newvicon CCTV camera with back plane intensity correction gives a mean-square range error of about 0.5 percent. Extensive analysis of various errors is expected to yield methods for improving the accuracy.

  20. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  1. Imaging PVC gas pipes using 3-D GPR

    SciTech Connect

    Bradford, J.; Ramaswamy, M.; Peddy, C.

    1996-11-01

    Over the years, many enhancements have been made by the oil and gas industry to improve the quality of seismic images. The GPR project at GTRI borrows heavily from these technologies in order to produce 3-D GPR images of PVC gas pipes. As will be demonstrated, improvements in GPR data acquisition, 3-D processing and visualization schemes yield good images of PVC pipes in the subsurface. Data have been collected in cooperation with the local gas company and at a test facility in Texas. Surveys were conducted over both a metal pipe and PVC pipes of diameters ranging from {1/2} in. to 4 in. at depths from 1 ft to 3 ft in different soil conditions. The metal pipe produced very good reflections and was used to fine tune and optimize the processing run stream. It was found that the following steps significantly improve the overall image: (1) Statics for drift and topography compensation, (2) Deconvolution, (3) Filtering and automatic gain control, (4) Migration for focusing and resolution, and (5) Visualization optimization. The processing flow implemented is relatively straightforward, simple to execute and robust under varying conditions. Future work will include testing resolution limits, effects of soil conditions, and leak detection.

  2. Depth-controlled 3D TV image coding

    NASA Astrophysics Data System (ADS)

    Chiari, Armando; Ciciani, Bruno; Romero, Milton; Rossi, Ricardo

    1998-04-01

    Conventional 3D-TV codecs processing one down-compatible (either left, or right) channel may optionally include the extraction of the disparity field associated with the stereo-pairs to support the coding of the complementary channel. A two-fold improvement over such approaches is proposed in this paper by exploiting 3D features retained in the stereo-pairs to reduce the redundancies in both channels, and according to their visual sensitiveness. Through an a-priori disparity field analysis, our coding scheme separates a region of interest from the foreground/background in the volume space reproduced in order to code them selectively based on their visual relevance. Such a region of interest is here identified as the one which is focused by the shooting device. By suitably scaling the DCT coefficient n such a way that precision is reduced for the image blocks lying on less relevant areas, our approach aims at reducing the signal energy in the background/foreground patterns, while retaining finer details on the more relevant image portions. From an implementation point of view, it is worth noticing that the system proposed keeps its surplus processing power on the encoder side only. Simulation results show such improvements as a better image quality for a given transmission bit rate, or a graceful quality degradation of the reconstructed images with decreasing data-rates.

  3. Ice shelf melt rates and 3D imaging

    NASA Astrophysics Data System (ADS)

    Lewis, Cameron Scott

    Ice shelves are sensitive indicators of climate change and play a critical role in the stability of ice sheets and oceanic currents. Basal melting of ice shelves plays an important role in both the mass balance of the ice sheet and the global climate system. Airborne- and satellite based remote sensing systems can perform thickness measurements of ice shelves. Time separated repeat flight tracks over ice shelves of interest generate data sets that can be used to derive basal melt rates using traditional glaciological techniques. Many previous melt rate studies have relied on surface elevation data gathered by airborne- and satellite based altimeters. These systems infer melt rates by assuming hydrostatic equilibrium, an assumption that may not be accurate, especially near an ice shelf's grounding line. Moderate bandwidth, VHF, ice penetrating radar has been used to measure ice shelf profiles with relatively coarse resolution. This study presents the application of an ultra wide bandwidth (UWB), UHF, ice penetrating radar to obtain finer resolution data on the ice shelves. These data reveal significant details about the basal interface, including the locations and depth of bottom crevasses and deviations from hydrostatic equilibrium. While our single channel radar provides new insight into ice shelf structure, it only images a small swatch of the shelf, which is assumed to be an average of the total shelf behavior. This study takes an additional step by investigating the application of a 3D imaging technique to a data set collected using a ground based multi channel version of the UWB radar. The intent is to show that the UWB radar could be capable of providing a wider swath 3D image of an ice shelf. The 3D images can then be used to obtain a more complete estimate of the bottom melt rates of ice shelves.

  4. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  5. 3D imaging with a linear light source

    NASA Astrophysics Data System (ADS)

    Lunazzi, José J.; Rivera, Noemí I. R.

    2008-04-01

    In a previous system we showed how the three-dimensionality of an object can be projected and preserved on a diffractive screen, which is just a simple diffractive holographic lens. A transmission object is illuminated with an extended filament of a white light lamp and no additional element is necessary. The system forms three-dimensional (3D) images with normal depth (orthoscopic) of the shadow type. The continuous parallax, perfect sharpness and additional characteristics of the image depend on the width and extension of the luminous filament and the properties of the diffractive lens. This new imaging system is shown to inspire an interesting extension to non-perfect reflective or refractive imaging elements because the sharpness of the image depends only on the width of the source. As new light sources are being developed that may result in very thin linear white light sources, for example, light emitting diodes, it may be useful to further develop this technique. We describe an imaging process in which a rough Fresnel metallic mirror can give a sharp image of an object due to the reduced width of a long filament lamp. We will discuss how the process could be extended to Fresnel lenses or to any aberrating imaging element.

  6. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell

    PubMed Central

    Bohórquez, Diego; Haque, Fariha; Medicetty, Satish; Liddle, Rodger A.

    2015-01-01

    Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue. PMID:26273796

  7. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy.

    PubMed

    Mohapatra, Saswat; Nandi, Somen; Chowdhury, Rajdeep; Das, Gaurav; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-07-21

    A tumor-like multi-cellular spheroid (3D) differs from a 2D cell in a number of ways. This is demonstrated using time resolved confocal microscopy. Two different tumor spheroids - HeLa (cervical cancer) and A549 (lung cancer) - are studied using 3 different fluorescent dyes - C153 (non-covalent), CPM (covalent) and doxorubicin (non-covalent, anti-cancer drug). The pattern of localization of these three fluorescent probes in the 3D tumor cell exhibits significant differences from that in the conventional 2D cells. For both the cells (HeLa and A549), the total uptake of doxorubicin in the 3D cell is much lower than that in the 2D cell. The uptake of doxorubicin molecules in the A549 spheroid is significantly different compared to the HeLa spheroid. The local polarity (i.e. emission maxima) and solvation dynamics in the 3D tumor cell differ from those in 2D cells. The covalent probe CPM exhibits intermittent fluorescence oscillations in the 1-2 s time scale. This is attributed to redox processes. These results may provide new insights into 3D tumors. PMID:27336201

  8. Pinhole shifting lifetime imaging microscopy.

    PubMed

    Ramshesh, Venkat K; Lemasters, John J

    2008-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu(3+)), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu(3+) microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 micros was estimated for the Eu(3+) microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  9. Dislocation Density Tensor Characterization of Deformation Using 3D X-Ray Microscopy

    SciTech Connect

    Larson, Ben C; Tischler, Jonathan Zachary; El-Azab, Anter; Liu, Wenjun

    2008-01-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  10. Dislocation density tensor characterization of deformation using 3D x-ray microscopy.

    SciTech Connect

    Larson, B. C.; Tischler, J. Z.; El-Azab, A.; Liu, W.; ORNL; Florida State Univ.

    2008-04-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  11. Development of 3D microwave imaging reflectometry in LHD (invited).

    PubMed

    Nagayama, Y; Kuwahara, D; Yoshinaga, T; Hamada, Y; Kogi, Y; Mase, A; Tsuchiya, H; Tsuji-Iio, S; Yamaguchi, S

    2012-10-01

    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO. PMID:23126965

  12. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  13. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  14. Ultra-realistic 3-D imaging based on colour holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, H. I.

    2013-02-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  15. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  16. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  17. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  18. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data.

    PubMed

    Besseling, T H; Hermes, M; Kuijk, A; de Nijs, B; Deng, T-S; Dijkstra, M; Imhof, A; van Blaaderen, A

    2015-05-20

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level. PMID:25922931

  19. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data

    NASA Astrophysics Data System (ADS)

    Besseling, T. H.; Hermes, M.; Kuijk, A.; de Nijs, B.; Deng, T.-S.; Dijkstra, M.; Imhof, A.; van Blaaderen, A.

    2015-05-01

    Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.

  20. 3D photoacoustic imaging of a moving target

    NASA Astrophysics Data System (ADS)

    Ephrat, Pinhas; Roumeliotis, Michael; Prato, Frank S.; Carson, Jeffrey J. L.

    2009-02-01

    We have developed a fast 3D photoacoustic imaging system based on a sparse array of ultrasound detectors and iterative image reconstruction. To investigate the high frame rate capabilities of our system in the context of rotational motion, flow, and spectroscopy, we performed high frame-rate imaging on a series of targets, including a rotating graphite rod, a bolus of methylene blue flowing through a tube, and hyper-spectral imaging of a tube filled with methylene blue under a no flow condition. Our frame-rate for image acquisition was 10 Hz, which was limited by the laser repetition rate. We were able to track the rotation of the rod and accurately estimate its rotational velocity, at a rate of 0.33 rotations-per-second. The flow of contrast in the tube, at a flow rate of 180 μL/min, was also well depicted, and quantitative analysis suggested a potential method for estimating flow velocity from such measurements. The spectrum obtained did not provide accurate results, but depicted the spectral absorption signature of methylene blue , which may be sufficient for identification purposes. These preliminary results suggest that our high frame-rate photoacoustic imaging system could be used for identifying contrast agents and monitoring kinetics as an agent propagates through specific, simple structures such as blood vessels.

  1. 3-D Imaging and Simulation for Nephron Sparing Surgical Training.

    PubMed

    Ahmadi, Hamed; Liu, Jen-Jane

    2016-08-01

    Minimally invasive partial nephrectomy (MIPN) is now considered the procedure of choice for small renal masses largely based on functional advantages over traditional open surgery. Lack of haptic feedback, the need for spatial understanding of tumor borders, and advanced operative techniques to minimize ischemia time or achieve zero-ischemia PN are among factors that make MIPN a technically demanding operation with a steep learning curve for inexperienced surgeons. Surgical simulation has emerged as a useful training adjunct in residency programs to facilitate the acquisition of these complex operative skills in the setting of restricted work hours and limited operating room time and autonomy. However, the majority of available surgical simulators focus on basic surgical skills, and procedure-specific simulation is needed for optimal surgical training. Advances in 3-dimensional (3-D) imaging have also enhanced the surgeon's ability to localize tumors intraoperatively. This article focuses on recent procedure-specific simulation models for laparoscopic and robotic-assisted PN and advanced 3-D imaging techniques as part of pre- and some cases, intraoperative surgical planning. PMID:27314271

  2. 3D Reconstruction of virtual colon structures from colonoscopy images.

    PubMed

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  3. Recent progress in 3-D imaging of sea freight containers

    NASA Astrophysics Data System (ADS)

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  4. Recent progress in 3-D imaging of sea freight containers

    SciTech Connect

    Fuchs, Theobald Schön, Tobias Sukowski, Frank; Dittmann, Jonas; Hanke, Randolf

    2015-03-31

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  5. Computing 3D head orientation from a monocular image sequence

    NASA Astrophysics Data System (ADS)

    Horprasert, Thanarat; Yacoob, Yaser; Davis, Larry S.

    1997-02-01

    An approach for estimating 3D head orientation in a monocular image sequence is proposed. The approach employs recently developed image-based parameterized tracking for face and face features to locate the area in which a sub- pixel parameterized shape estimation of the eye's boundary is performed. This involves tracking of five points (four at the eye corners and the fifth is the tip of the nose). We describe an approach that relies on the coarse structure of the face to compute orientation relative to the camera plane. Our approach employs projective invariance of the cross-ratios of the eye corners and anthropometric statistics to estimate the head yaw, roll and pitch. Analytical and experimental results are reported.

  6. 3D electrical tomographic imaging using vertical arrays of electrodes

    NASA Astrophysics Data System (ADS)

    Murphy, S. C.; Stanley, S. J.; Rhodes, D.; York, T. A.

    2006-11-01

    Linear arrays of electrodes in conjunction with electrical impedance tomography have been used to spatially interrogate industrial processes that have only limited access for sensor placement. This paper explores the compromises that are to be expected when using a small number of vertically positioned linear arrays to facilitate 3D imaging using electrical tomography. A configuration with three arrays is found to give reasonable results when compared with a 'conventional' arrangement of circumferential electrodes. A single array yields highly localized sensitivity that struggles to image the whole space. Strategies have been tested on a small-scale version of a sludge settling application that is of relevance to the industrial sponsor. A new electrode excitation strategy, referred to here as 'planar cross drive', is found to give superior results to an extended version of the adjacent electrodes technique due to the improved uniformity of the sensitivity across the domain. Recommendations are suggested for parameters to inform the scale-up to industrial vessels.

  7. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  8. Mono- and multistatic polarimetric sparse aperture 3D SAR imaging

    NASA Astrophysics Data System (ADS)

    DeGraaf, Stuart; Twigg, Charles; Phillips, Louis

    2008-04-01

    SAR imaging at low center frequencies (UHF and L-band) offers advantages over imaging at more conventional (X-band) frequencies, including foliage penetration for target detection and scene segmentation based on polarimetric coherency. However, bandwidths typically available at these center frequencies are small, affording poor resolution. By exploiting extreme spatial diversity (partial hemispheric k-space coverage) and nonlinear bandwidth extrapolation/interpolation methods such as Least-Squares SuperResolution (LSSR) and Least-Squares CLEAN (LSCLEAN), one can achieve resolutions that are commensurate with the carrier frequency (λ/4) rather than the bandwidth (c/2B). Furthermore, extreme angle diversity affords complete coverage of a target's backscatter, and a correspondingly more literal image. To realize these benefits, however, one must image the scene in 3-D; otherwise layover-induced misregistration compromises the coherent summation that yields improved resolution. Practically, one is limited to very sparse elevation apertures, i.e. a small number of circular passes. Here we demonstrate that both LSSR and LSCLEAN can reduce considerably the sidelobe and alias artifacts caused by these sparse elevation apertures. Further, we illustrate how a hypothetical multi-static geometry consisting of six vertical real-aperture receive apertures, combined with a single circular transmit aperture provide effective, though sparse and unusual, 3-D k-space support. Forward scattering captured by this geometry reveals horizontal scattering surfaces that are missed in monostatic backscattering geometries. This paper illustrates results based on LucernHammer UHF and L-band mono- and multi-static simulations of a backhoe.

  9. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  10. 3D positional tracking of ellipsoidal particles in a microtube flow using holographic microscopy

    NASA Astrophysics Data System (ADS)

    Byeon, Hyeok Jun; Seo, Kyung Won; Lee, Sang Joon

    2014-11-01

    Understanding of micro-scale flow phenomena is getting large attention under advances in micro-scale measurement technologies. Especially, the dynamics of particles suspended in a fluid is essential in both scientific and industrial fields. Moreover, most particles handled in research and industrial fields have non-spherical shapes rather than a simple spherical shape. Under various flow conditions, these non-spherical particles exhibit unique dynamic behaviors. To analyze these dynamic behaviors in a fluid flow, 3D positional information of the particles should be measured accurately. In this study, digital holographic microscopy (DHM) is employed to measure the 3D positional information of non-spherical particles, which are fabricated by stretching spherical polystyrene particles. 3D motions of those particles are obtained by interpreting the holograms captured from particles. Ellipsoidal particles with known size and shape are observed to verify the performance of the DHM technique. In addition, 3D positions of particles in a microtube flow are traced. This DHM technique exhibits promising potential in the analysis of dynamic behaviors of non-spherical particles suspended in micro-scale fluid flows.

  11. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  12. Graph-regularized 3D shape reconstruction from highly anisotropic and noisy images

    PubMed Central

    Heinrich, Stephanie; Drewe, Philipp; Lou, Xinghua; Umrania, Shefali; Rätsch, Gunnar

    2014-01-01

    Analysis of microscopy images can provide insight into many biological processes. One particularly challenging problem is cellular nuclear segmentation in highly anisotropic and noisy 3D image data. Manually localizing and segmenting each and every cellular nucleus is very time-consuming, which remains a bottleneck in large-scale biological experiments. In this work, we present a tool for automated segmentation of cellular nuclei from 3D fluorescent microscopic data. Our tool is based on state-of-the-art image processing and machine learning techniques and provides a user-friendly graphical user interface. We show that our tool is as accurate as manual annotation and greatly reduces the time for the registration. PMID:25866587

  13. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  14. Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function

    PubMed Central

    Jia, Shu; Vaughan, Joshua C.; Zhuang, Xiaowei

    2014-01-01

    Airy beams maintain their intensity profiles over a large propagation distance without substantial diffraction and exhibit lateral bending during propagation1-5. This unique property has been exploited for micromanipulation of particles6, generation of plasma channels7 and guidance of plasmonic waves8, but has not been explored for high-resolution optical microscopy. Here, we introduce a self-bending point spread function (SB-PSF) based on Airy beams for three-dimensional (3D) super-resolution fluorescence imaging. We designed a side-lobe-free SB-PSF and implemented a two-channel detection scheme to enable unambiguous 3D localization of fluorescent molecules. The lack of diffraction and the propagation-dependent lateral bending make the SB-PSF well suited for precise 3D localization of molecules over a large imaging depth. Using this method, we obtained super-resolution imaging with isotropic 3D localization precision of 10-15 nm over a 3 μm imaging depth from ∼2000 photons per localization. PMID:25383090

  15. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    PubMed

    Carlini, Lina; Holden, Seamus J; Douglass, Kyle M; Manley, Suliana

    2015-01-01

    Three-dimensional (3D) localization-based super-resolution microscopy (SR) requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE) at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample. PMID:26600467

  16. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging

    PubMed Central

    Manley, Suliana

    2015-01-01

    Three-dimensional (3D) localization-based super-resolution microscopy (SR) requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope’s pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE) at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample. PMID:26600467

  17. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  18. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  19. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  20. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  1. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  2. Fast 3D subsurface imaging with stepped-frequency GPR

    NASA Astrophysics Data System (ADS)

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Sutter, Lena

    2015-05-01

    This paper investigates an algorithm for forming 3D images of the subsurface using stepped-frequency GPR data. The algorithm is specifically designed for a handheld GPR and therefore accounts for the irregular sampling pattern in the data and the spatially-variant air-ground interface by estimating an effective "ground-plane" and then registering the data to the plane. The algorithm efficiently solves the 4th-order polynomial for the Snell reflection points using a fully vectorized iterative scheme. The forward operator is implemented efficiently using an accelerated nonuniform FFT (Greengard and Lee, 2004); the adjoint operator is implemented efficiently using an interpolation step coupled with an upsampled FFT. The imaging is done as a linearized version of the full inverse problem, which is regularized using a sparsity constraint to reduce sidelobes and therefore improve image localization. Applying an appropriate sparsity constraint, the algorithm is able to eliminate most the surrounding clutter and sidelobes, while still rendering valuable image properties such as shape and size. The algorithm is applied to simulated data, controlled experimental data (made available by Dr. Waymond Scott, Georgia Institute of Technology), and government-provided data with irregular sampling and air-ground interface.

  3. Image appraisal for 2D and 3D electromagnetic inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1998-04-01

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and model covariance matrices can be directly calculated. The columns of the model resolution matrix are shown to yield empirical estimates of the horizontal and vertical resolution throughout the imaging region. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how the estimated data noise maps into parameter error. When the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion), an iterative method can be applied to statistically estimate the model covariance matrix, as well as a regularization covariance matrix. The latter estimates the error in the inverted results caused by small variations in the regularization parameter. A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on a synthetic cross well EM data set.

  4. 3D geometric analysis of the aorta in 3D MRA follow-up pediatric image data

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Alrajab, Abdulsattar; Arnold, Raoul; Eichhorn, Joachim; von Tengg-Kobligk, Hendrik; Schenk, Jens-Peter; Rohr, Karl

    2014-03-01

    We introduce a new model-based approach for the segmentation of the thoracic aorta and its main branches from follow-up pediatric 3D MRA image data. For robust segmentation of vessels even in difficult cases (e.g., neighboring structures), we propose a new extended parametric cylinder model which requires only relatively few model parameters. The new model is used in conjunction with a two-step fitting scheme for refining the segmentation result yielding an accurate segmentation of the vascular shape. Moreover, we include a novel adaptive background masking scheme and we describe a spatial normalization scheme to align the segmentation results from follow-up examinations. We have evaluated our proposed approach using different 3D synthetic images and we have successfully applied the approach to follow-up pediatric 3D MRA image data.

  5. 3D Chemical and Elemental Imaging by STXM Spectrotomography

    SciTech Connect

    Wang, J.; Karunakaran, C.; Lu, Y.; Hormes, J.; Hitchcock, A. P.; Prange, A.; Franz, B.; Harkness, T.; Obst, M.

    2011-09-09

    Spectrotomography based on the scanning transmission x-ray microscope (STXM) at the 10ID-1 spectromicroscopy beamline of the Canadian Light Source was used to study two selected unicellular microorganisms. Spatial distributions of sulphur globules, calcium, protein, and polysaccharide in sulphur-metabolizing bacteria (Allochromatium vinosum) were determined at the S 2p, C 1s, and Ca 2p edges. 3D chemical mapping showed that the sulphur globules are located inside the bacteria with a strong spatial correlation with calcium ions (it is most probably calcium carbonate from the medium; however, with STXM the distribution and localization in the cell can be made visible, which is very interesting for a biologist) and polysaccharide-rich polymers, suggesting an influence of the organic components on the formation of the sulphur and calcium deposits. A second study investigated copper accumulating in yeast cells (Saccharomyces cerevisiae) treated with copper sulphate. 3D elemental imaging at the Cu 2p edge showed that Cu(II) is reduced to Cu(I) on the yeast cell wall. A novel needle-like wet cell sample holder for STXM spectrotomography studies of fully hydrated samples is discussed.

  6. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  7. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  8. Catching HIV ‘in the act’ with 3D electron microscopy

    PubMed Central

    Earl, Lesley A.; Lifson, Jeffrey D.; Subramaniam, Sriram

    2013-01-01

    The development of a safe, effective vaccine to prevent human immunodeficiency virus (HIV) infection is a key step for controlling the disease on a global scale. However, many aspects of HIV biology make vaccine design problematic, including the sequence diversity and structural variability of the surface envelope glycoproteins and the poor accessibility of neutralization-sensitive epitopes on the virus. In this review, we discuss recent progress in understanding HIV in a structural context using emerging tools in 3D electron microscopy, and outline how some of these advances could be important for a better understanding of mechanisms of viral entry and for vaccine design. PMID:23850373

  9. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  10. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    DOE PAGESBeta

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-05-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less

  11. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  12. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    SciTech Connect

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  13. 3D and multispectral imaging for subcutaneous veins detection.

    PubMed

    Paquit, Vincent C; Tobin, Kenneth W; Price, Jeffery R; Mèriaudeau, Fabrice

    2009-07-01

    The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. Experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface are presented. For illumination our system is composed of a mercury arc lamp coupled to a 10nm band-pass spectrometer. A structured lighting system is also coupled to our multispectral system in order to provide 3D information of the patient arm orientation. Images of each patient arm are captured under every possible combinations of illuminants and the optimal combination of wavelengths for a given subject to maximize vein contrast using linear discriminant analysis is determined. PMID:19582050

  14. An Efficient 3D Imaging using Structured Light Systems

    NASA Astrophysics Data System (ADS)

    Lee, Deokwoo

    Structured light 3D surface imaging has been crucial in the fields of image processing and computer vision, particularly in reconstruction, recognition and others. In this dissertation, we propose the approaches to development of an efficient 3D surface imaging system using structured light patterns including reconstruction, recognition and sampling criterion. To achieve an efficient reconstruction system, we address the problem in its many dimensions. In the first, we extract geometric 3D coordinates of an object which is illuminated by a set of concentric circular patterns and reflected to a 2D image plane. The relationship between the original and the deformed shape of the light patterns due to a surface shape provides sufficient 3D coordinates information. In the second, we consider system efficiency. The efficiency, which can be quantified by the size of data, is improved by reducing the number of circular patterns to be projected onto an object of interest. Akin to the Shannon-Nyquist Sampling Theorem, we derive the minimum number of circular patterns which sufficiently represents the target object with no considerable information loss. Specific geometric information (e.g. the highest curvature) of an object is key to deriving the minimum sampling density. In the third, the object, represented using the minimum number of patterns, has incomplete color information (i.e. color information is given a priori along with the curves). An interpolation is carried out to complete the photometric reconstruction. The results can be approximately reconstructed because the minimum number of the patterns may not exactly reconstruct the original object. But the result does not show considerable information loss, and the performance of an approximate reconstruction is evaluated by performing recognition or classification. In an object recognition, we use facial curves which are deformed circular curves (patterns) on a target object. We simply carry out comparison between the

  15. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  16. 3D imaging of semiconductor components by discrete laminography

    NASA Astrophysics Data System (ADS)

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-01

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  17. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the

  18. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  19. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure. PMID:23703429

  20. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  1. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  2. 3D segmentation of prostate ultrasound images using wavelet transform

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Yang, Xiaofeng; Halig, Luma V.; Fei, Baowei

    2011-03-01

    The current definitive diagnosis of prostate cancer is transrectal ultrasound (TRUS) guided biopsy. However, the current procedure is limited by using 2D biopsy tools to target 3D biopsy locations. This paper presents a new method for automatic segmentation of the prostate in three-dimensional transrectal ultrasound images, by extracting texture features and by statistically matching geometrical shape of the prostate. A set of Wavelet-based support vector machines (WSVMs) are located and trained at different regions of the prostate surface. The WSVMs capture texture priors of ultrasound images for classification of the prostate and non-prostate tissues in different zones around the prostate boundary. In the segmentation procedure, these W-SVMs are trained in three sagittal, coronal, and transverse planes. The pre-trained W-SVMs are employed to tentatively label each voxel around the surface of the model as a prostate or non-prostate voxel by the texture matching. The labeled voxels in three planes after post-processing is overlaid on a prostate probability model. The probability prostate model is created using 10 segmented prostate data. Consequently, each voxel has four labels: sagittal, coronal, and transverse planes and one probability label. By defining a weight function for each labeling in each region, each voxel is labeled as a prostate or non-prostate voxel. Experimental results by using real patient data show the good performance of the proposed model in segmenting the prostate from ultrasound images.

  3. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  4. Performance assessment of 3D surface imaging technique for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Recent development in optical 3D surface imaging technologies provide better ways to digitalize the 3D surface and its motion in real-time. The non-invasive 3D surface imaging approach has great potential for many medical imaging applications, such as motion monitoring of radiotherapy, pre/post evaluation of plastic surgery and dermatology, to name a few. Various commercial 3D surface imaging systems have appeared on the market with different dimension, speed and accuracy. For clinical applications, the accuracy, reproducibility and robustness across the widely heterogeneous skin color, tone, texture, shape properties, and ambient lighting is very crucial. Till now, a systematic approach for evaluating the performance of different 3D surface imaging systems still yet exist. In this paper, we present a systematic performance assessment approach to 3D surface imaging system assessment for medical applications. We use this assessment approach to exam a new real-time surface imaging system we developed, dubbed "Neo3D Camera", for image-guided radiotherapy (IGRT). The assessments include accuracy, field of view, coverage, repeatability, speed and sensitivity to environment, texture and color.

  5. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  6. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  7. 3D Slicer as an image computing platform for the Quantitative Imaging Network.

    PubMed

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V; Pieper, Steve; Kikinis, Ron

    2012-11-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  8. A one-piece 3D printed flexure translation stage for open-source microscopy

    NASA Astrophysics Data System (ADS)

    Sharkey, James P.; Foo, Darryl C. W.; Kabla, Alexandre; Baumberg, Jeremy J.; Bowman, Richard W.

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.

  9. A one-piece 3D printed flexure translation stage for open-source microscopy.

    PubMed

    Sharkey, James P; Foo, Darryl C W; Kabla, Alexandre; Baumberg, Jeremy J; Bowman, Richard W

    2016-02-01

    Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond. PMID:26931888

  10. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    PubMed Central

    Park, HyunJoo; Hong, Sung-Hee; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, Sang-Eun; Park, YongKeun

    2015-01-01

    Babesia microti causes “emergency” human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability. PMID:26039793

  11. Enhancing 3-D cell structures in confocal and STED microscopy: a joint model for interpolation, deblurring and anisotropic smoothing

    NASA Astrophysics Data System (ADS)

    Persch, Nico; Elhayek, Ahmed; Welk, Martin; Bruhn, Andrés; Grewenig, Sven; Böse, Katharina; Kraegeloh, Annette; Weickert, Joachim

    2013-12-01

    This paper proposes an advanced image enhancement method that is specifically tailored towards 3-D confocal and STED microscopy imagery. Our approach unifies image denoising, deblurring and interpolation in one joint method to handle the typical weaknesses of these advanced microscopy techniques: out-of-focus blur, Poisson noise and low axial resolution. In detail, we propose the combination of (i) Richardson-Lucy deconvolution, (ii) image restoration and (iii) anisotropic inpainting in one single scheme. To this end, we develop a novel PDE-based model that realizes these three ideas. First we consider a basic variational image restoration functional that is turned into a joint interpolation scheme by extending the regularization domain. Next, we integrate the variational representation of Richardson-Lucy deconvolution into our model, and illustrate its relation to Poisson distributed noise. In the following step, we supplement the components of our model with sub-quadratic penalization strategies that increase the robustness of the overall method. Finally, we consider the associated minimality conditions, where we exchange the occurring scalar-valued diffusivity function by a so-called diffusion tensor. This leads to an anisotropic regularization that is aligned with structures in the evolving image. As a further contribution of this paper, we propose a more efficient and faster semi-implicit iteration scheme that also increases the stability. Our experiments on real data sets demonstrate that this joint model achieves a superior reconstruction quality of the recorded cell.

  12. ROIC for gated 3D imaging LADAR receiver

    NASA Astrophysics Data System (ADS)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-09-01

    Time of flight laser range finding, deep space communications and scanning video imaging are three applications requiring very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In this project, a readout integrated circuit of hybrid e-APD focal plane array (FPA) with 100um pitch for 3D-LADAR was designed for gated optical receiver. The ROIC works at 77K, including unit cell circuit, column-level circuit, timing control, bias circuit and output driver. The unit cell circuit is a key component, which consists of preamplifier, correlated double Sampling (CDS), bias circuit and timing control module. Specially, the preamplifier used the capacitor feedback transimpedance amplifier (CTIA) structure which has two capacitors to offer switchable capacitance for passive/active dual mode imaging. The main circuit of column-level circuit is a precision Multiply-by-Two circuit which is implemented by switched-capacitor circuit. Switched-capacitor circuit is quite suitable for the signal processing of readout integrated circuit (ROIC) due to the working characteristics. The output driver uses a simply unity-gain buffer. Because the signal is amplified in column-level circuit, the amplifier in unity-gain buffer uses a rail-rail amplifier. In active imaging mode, the integration time is 80ns. Integrating current from 200nA to 4uA, this circuit shows the nonlinearity is less than 1%. In passive imaging mode, the integration time is 150ns. Integrating current from 1nA to 20nA shows the nonlinearity less than 1%.

  13. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  14. 3D imaging of enzymes working in situ.

    PubMed

    Jamme, F; Bourquin, D; Tawil, G; Viksø-Nielsen, A; Buléon, A; Réfrégiers, M

    2014-06-01

    Today, development of slowly digestible food with positive health impact and production of biofuels is a matter of intense research. The latter is achieved via enzymatic hydrolysis of starch or biomass such as lignocellulose. Free label imaging, using UV autofluorescence, provides a great tool to follow one single enzyme when acting on a non-UV-fluorescent substrate. In this article, we report synchrotron DUV fluorescence in 3-dimensional imaging to visualize in situ the diffusion of enzymes on solid substrate. The degradation pathway of single starch granules by two amylases optimized for biofuel production and industrial starch hydrolysis was followed by tryptophan autofluorescence (excitation at 280 nm, emission filter at 350 nm). The new setup has been specially designed and developed for a 3D representation of the enzyme-substrate interaction during hydrolysis. Thus, this tool is particularly effective for improving knowledge and understanding of enzymatic hydrolysis of solid substrates such as starch and lignocellulosic biomass. It could open up the way to new routes in the field of green chemistry and sustainable development, that is, in biotechnology, biorefining, or biofuels. PMID:24796213

  15. PSF engineering in multifocus microscopy for increased depth volumetric imaging.

    PubMed

    Hajj, Bassam; El Beheiry, Mohamed; Dahan, Maxime

    2016-03-01

    Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm. PMID:27231584

  16. PSF engineering in multifocus microscopy for increased depth volumetric imaging

    PubMed Central

    Hajj, Bassam; El Beheiry, Mohamed; Dahan, Maxime

    2016-01-01

    Imaging and localizing single molecules with high accuracy in a 3D volume is a challenging task. Here we combine multifocal microscopy, a recently developed volumetric imaging technique, with point spread function engineering to achieve an increased depth for single molecule imaging. Applications in 3D single molecule localization-based super-resolution imaging is shown over an axial depth of 4 µm as well as for the tracking of diffusing beads in a fluid environment over 8 µm. PMID:27231584

  17. Segmentation of 3D holographic images using bivariate jointly distributed region snake

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi; Javidi, Bahram

    2006-06-01

    In this paper, we describe the bivariate jointly distributed region snake method in segmentation of microorganisms in Single Exposure On- Line (SEOL) holographic microscopy images. 3D images of the microorganisms are digitally reconstructed and numerically focused from any arbitrary depth from a single recorded digital hologram without mechanical scanning. Living organisms are non-rigid and they vary in shape and size. Moreover, they often do not exhibit clear edges in digitally reconstructed SEOL holographic images. Thus, conventional segmentation techniques based on the edge map may fail to segment these images. However, SEOL holographic microscopy provides both magnitude and phase information of the sample specimen, which could be helpful in the segmentation process. In this paper, we present a statistical framework based on the joint probability distribution of magnitude and phase information of SEOL holographic microscopy images and maximum likelihood estimation of image probability density function parameters. An optimization criterion is computed by maximizing the likelihood function of the target support hypothesis. In addition, a simple stochastic algorithm has been adapted for carrying out the optimization, while several boosting techniques have been employed to enhance its performance. Finally, the proposed method is applied for segmentation of biological microorganisms in SEOL holographic images and the experimental results are presented.

  18. Use of Low-cost 3-D Images in Teaching Gross Anatomy.

    ERIC Educational Resources Information Center

    Richards, Boyd F.; And Others

    1987-01-01

    With advances in computer technology, it has become possible to create three-dimensional (3-D) images of anatomical structures for use in teaching gross anatomy. Reported is a survey of attitudes of 91 first-year medical students toward the use of 3-D images in their anatomy course. Reactions to the 3-D images and suggestions for improvement are…

  19. Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation.

    PubMed

    Hay, R F; Gibson, G M; Lee, M P; Padgett, M J; Phillips, D B

    2014-07-28

    High-speed video stereo-microscopy relies on illumination from two distinct angles to create two views of a sample from different directions. The 3D trajectory of a microscopic object can then be reconstructed using parallax to combine 2D measurements of its position in each image. In this work, we evaluate the accuracy of 3D particle tracking using this technique, by extending the number of views from two to four directions. This allows us to record two independent sets of measurements of the 3D coordinates of tracked objects, and comparison of these enables measurement and minimisation of the tracking error in all dimensions. We demonstrate the method by tracking the motion of an optically trapped microsphere of 5 μm in diameter, and find an accuracy of 2-5 nm laterally, and 5-10 nm axially, representing a relative error of less than 2.5% of its range of motion in each dimension. PMID:25089484

  20. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  1. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  2. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  3. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  4. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy.

    PubMed

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-05-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  5. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  6. Transmission of holographic 3D images using infrared transmitter(II): on a study of transmission of holographic 3D images using infrared transmitter safe to medical equipment

    NASA Astrophysics Data System (ADS)

    Takano, Kunihiko; Muto, Kenji; Tian, Lan; Sato, Koki

    2007-09-01

    An infrared transmitting technique for 3D holographic images is studied. It seems to be very effective as a transmitting technique for 3D holographic images in the places where electric wave is prohibited to be used for transmission. In this paper, we first explain our infrared transmitting system for holograms and a display system for the presentation of holographic 3D images reconstructed from the received signal. Next, we make a report on the results obtained by infrared transmission of CGH and a comparison of the real and the reconstructed 3D images in our system. As this result, it is found that reconstructed holographic 3D images do not suffer a large deterioration in the quality and highly contrasted ones can be presented.

  7. Noninvasive Imaging of 3D Dynamics in Thickly Fluorescent Specimens Beyond the Diffraction Limit

    PubMed Central

    Gao, Liang; Shao, Lin; Higgins, Christopher D.; Poulton, John S.; Peifer, Mark; Davidson, Michael W.; Wu, Xufeng; Goldstein, Bob; Betzig, Eric

    2013-01-01

    SUMMARY Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three-dimensions. Here, however, we report that rapid 3D dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultra-thin planar illumination produced by scanned Bessel beams with superresolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context. PMID:23217717

  8. 3D imaging of nanomaterials by discrete tomography.

    PubMed

    Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G

    2009-05-01

    The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094

  9. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  10. Image-Based 3d Reconstruction and Analysis for Orthodontia

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  11. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  12. Isolation, Electron Microscopy and 3D Reconstruction of Invertebrate Muscle Myofilaments

    PubMed Central

    Craig, Roger

    2011-01-01

    Understanding the molecular mechanism of muscle contraction and its regulation has been greatly influenced and aided by studies of myofilament structure in invertebrate muscles. Invertebrates are easily obtained and cover a broad spectrum of species and functional specializations. The thick (myosin-containing) filaments from some invertebrates are especially stable and simple in structure and thus much more amenable to structural analysis than those of vertebrates. Comparative studies of invertebrate filaments by electron microscopy and image processing have provided important generalizations of muscle molecular structure and function. This article reviews methods for preparing thick and thin filaments from invertebrate muscle, for imaging filaments by electron microscopy, and for determining their three dimensional structure by image processing. It also highlights some of the key insights into filament function that have come from these studies. PMID:22155190

  13. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  14. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking.

    PubMed

    Dettmer, Simon L; Keyser, Ulrich F; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces. PMID:24593372

  15. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  16. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  17. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    PubMed Central

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  18. A computational 3D model for reconstruction of neural stem cells in bright-field time-lapse microscopy

    NASA Astrophysics Data System (ADS)

    Degerman, J.; Winterfors, E.; Faijerson, J.; Gustavsson, T.

    2007-02-01

    This paper describes a computational model for image formation of in-vitro adult hippocampal progenitor (AHP) cells, in bright-field time-lapse microscopy. Although this microscopymodality barely generates sufficient contrast for imaging translucent cells, we show that by using a stack of defocused image slices it is possible to extract position and shape of spherically shaped specimens, such as the AHP cells. This inverse problem was solved by modeling the physical objects and image formation system, and using an iterative nonlinear optimization algorithm to minimize the difference between the reconstructed and measured image stack. By assuming that the position and shape of the cells do not change significantly between two time instances, we can optimize these parameters using the previous time instance in a Bayesian estimation approach. The 3D reconstruction algorithm settings, such as focal sampling distance, and PSF, were calibrated using latex spheres of known size and refractive index. By using the residual between reconstructed and measured image intensities, we computed a peak signal-to-noise ratio (PSNR) to 28 dB for the sphere stack. A biological specimen analysis was done using an AHP cell, where reconstruction PSNR was 28 dB as well. The cell was immuno-histochemically stained and scanned in a confocal microscope, in order to compare our cell model to a ground truth. After convergence the modelled cell volume had an error of less than one percent.

  19. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy.

    PubMed

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  20. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    PubMed Central

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  1. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  2. Characterization and application of 3D-printed phantoms for biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Coburn, James; Liang, Chia-Pin; Woolsey, Nicholas; Le, Du; Ramella-Roman, Jessica; Chen, Yu; Pfefer, Joshua

    2013-05-01

    The emerging technique of three-dimensional (3D) printing provides a simple, fast, and flexible way to fabricate structures with arbitrary spatial features and may prove useful in the development of standardized, phantom-based performance test methods for biophotonic imaging. Acrylonitrile Butadiene Styrene (ABS) is commonly used in the printing process, given its low cost and strength. In this study, we evaluate 3D printing as an approach for fabricating biologically-relevant optical phantoms for hyperspectral reflectance imaging (HRI). The initial phase of this work involved characterization of absorption and scattering coefficients using spectrophotometry. The morphology of phantoms incorporating vessel-like channels with diameters on the order of hundreds of microns was examined by microscopy and OCT. A near-infrared absorbing dye was injected into channels located at a range of depths within the phantom and imaged with a near-infrared HRI system (650-1100 nm). ABS was found to have scattering coefficients comparable to biological tissue and low absorption throughout much of the visible and infrared range. Channels with dimensions on the order of the resolution limit of the 3D printer (~0.2 mm) exhibited pixelation effects as well as a degree of distortion along their edges. Furthermore, phantom porosity sometimes resulted in leakage from channel regions. Contrast-enhanced channel visualization with HRI was possible to a depth of nearly 1 mm - a level similar to that seen previously in biological tissue. Overall, our ABS phantoms demonstrated a high level of optical similarity to biological tissue. While limitations in printer resolution, matrix homogeneity and optical property tunability remain challenging, 3D printed phantoms have significant promise as samples for objective, quantitative evaluation of performance for biophotonic imaging modalities such as HRI.

  3. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  4. 3-D Adaptive Sparsity Based Image Compression With Applications to Optical Coherence Tomography.

    PubMed

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A; Farsiu, Sina

    2015-06-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  5. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  6. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  7. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  8. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  9. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  10. Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy.

    PubMed

    Arnold, Jan; Mahamid, Julia; Lucic, Vladan; de Marco, Alex; Fernandez, Jose-Jesus; Laugks, Tim; Mayer, Tobias; Hyman, Anthony A; Baumeister, Wolfgang; Plitzko, Jürgen M

    2016-02-23

    The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy. PMID:26769364

  11. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  12. Assessment of rhinoplasty techniques by overlay of before-and-after 3D images.

    PubMed

    Toriumi, Dean M; Dixon, Tatiana K

    2011-11-01

    This article describes the equipment and software used to create facial 3D imaging and discusses the validation and reliability of the objective assessments done using this equipment. By overlaying preoperative and postoperative 3D images, it is possible to assess the surgical changes in 3D. Methods are described to assess the 3D changes from the rhinoplasty techniques of nasal dorsal augmentation, increasing tip projection, narrowing the nose, and nasal lengthening. PMID:22004862

  13. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Fiedler, Susanne; Schmid, Volker J; Schermelleh, Lothar; Cremer, Thomas; Cremer, Marion

    2012-05-01

    Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization. PMID:22508100

  14. Implementation of wireless 3D stereo image capture system and 3D exaggeration algorithm for the region of interest

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Badarch, Luubaatar

    2015-05-01

    In this paper, we introduce the mobile embedded system implemented for capturing stereo image based on two CMOS camera module. We use WinCE as an operating system and capture the stereo image by using device driver for CMOS camera interface and Direct Draw API functions. We aslo comments on the GPU hardware and CUDA programming for implementation of 3D exaggeraion algorithm for ROI by adjusting and synthesizing the disparity value of ROI (region of interest) in real time. We comment on the pattern of aperture for deblurring of CMOS camera module based on the Kirchhoff diffraction formula and clarify the reason why we can get more sharp and clear image by blocking some portion of aperture or geometric sampling. Synthesized stereo image is real time monitored on the shutter glass type three-dimensional LCD monitor and disparity values of each segment are analyzed to prove the validness of emphasizing effect of ROI.

  15. Evolution of 3D surface imaging systems in facial plastic surgery.

    PubMed

    Tzou, Chieh-Han John; Frey, Manfred

    2011-11-01

    Recent advancements in computer technologies have propelled the development of 3D imaging systems. 3D surface-imaging is taking surgeons to a new level of communication with patients; moreover, it provides quick and standardized image documentation. This article recounts the chronologic evolution of 3D surface imaging, and summarizes the current status of today's facial surface capturing technology. This article also discusses current 3D surface imaging hardware and software, and their different techniques, technologies, and scientific validation, which provides surgeons with the background information necessary for evaluating the systems and knowledge about the systems they might incorporate into their own practice. PMID:22004854

  16. Four-view stereoscopic imaging and display system for web-based 3D image communication

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Park, Young-Gyoo; Kim, Eun-Soo

    2004-10-01

    In this paper, a new software-oriented autostereoscopic 4-view imaging & display system for web-based 3D image communication is implemented by using 4 digital cameras, Intel Xeon server computer system, graphic card having four outputs, projection-type 4-view 3D display system and Microsoft' DirectShow programming library. And its performance is also analyzed in terms of image-grabbing frame rates, displayed image resolution, possible color depth and number of views. From some experimental results, it is found that the proposed system can display 4-view VGA images with a full color of 16bits and a frame rate of 15fps in real-time. But the image resolution, color depth, frame rate and number of views are mutually interrelated and can be easily controlled in the proposed system by using the developed software program so that, a lot of flexibility in design and implementation of the proposed multiview 3D imaging and display system are expected in the practical application of web-based 3D image communication.

  17. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  18. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  19. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements. PMID:22051087

  20. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656

  1. Deconvolution approach for 3D scanning microscopy with helical phase engineering.

    PubMed

    Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; Jesacher, Alexander

    2016-07-11

    RESCH (refocusing after scanning using helical phase engineering) microscopy is a scanning technique using engineered point spread functions which provides volumetric information. We present a strategy for processing the collected raw data with a multi-view maximum likelihood deconvolution algorithm, which inherently comprises the resolution gain of pixel-reassignment microscopy. The method, which we term MD-RESCH (for multi-view deconvolved RESCH), achieves in our current implementation a 20% resolution advantage along all three axes compared to RESCH and confocal microscopy. Along the axial direction, the resolution is comparable to that of image scanning microscopy. However, because the method inherently reconstructs a volume from a single 2D scan, a significantly higher optical sectioning becomes directly visible to the user, which would otherwise require collecting multiple 2D scans taken at a series of axial positions. Further, we introduce the use of a single-helical detection PSF to obtain an increased post-acquisition refocusing range. We present data from numerical simulations as well as experiments to confirm the validity of our approach. PMID:27410820

  2. Display of travelling 3D scenes from single integral-imaging capture

    NASA Astrophysics Data System (ADS)

    Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro

    2016-06-01

    Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

  3. Estimating Density Gradients and Drivers from 3D Ionospheric Imaging

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Bust, G. S.; Curtis, N.; Reynolds, A.; Crowley, G.

    2009-12-01

    The transition regions at the edges of the ionospheric storm-enhanced density (SED) are important for a detailed understanding of the mid-latitude physical processes occurring during major magnetic storms. At the boundary, the density gradients are evidence of the drivers that link the larger processes of the SED, with its connection to the plasmasphere and prompt-penetration electric fields, to the smaller irregularities that result in scintillations. For this reason, we present our estimates of both the plasma variation with horizontal and vertical spatial scale of 10 - 100 km and the plasma motion within and along the edges of the SED. To estimate the density gradients, we use Ionospheric Data Assimilation Four-Dimensional (IDA4D), a mature data assimilation algorithm that has been developed over several years and applied to investigations of polar cap patches and space weather storms [Bust and Crowley, 2007; Bust et al., 2007]. We use the density specification produced by IDA4D with a new tool for deducing ionospheric drivers from 3D time-evolving electron density maps, called Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). The EMPIRE technique has been tested on simulated data from TIMEGCM-ASPEN and on IDA4D-based density estimates with ongoing validation from Arecibo ISR measurements [Datta-Barua et al., 2009a; 2009b]. We investigate the SED that formed during the geomagnetic super storm of November 20, 2003. We run IDA4D at low-resolution continent-wide, and then re-run it at high (~10 km horizontal and ~5-20 km vertical) resolution locally along the boundary of the SED, where density gradients are expected to be highest. We input the high-resolution estimates of electron density to EMPIRE to estimate the ExB drifts and field-aligned plasma velocities along the boundaries of the SED. We expect that these drivers contribute to the density structuring observed along the SED during the storm. Bust, G. S. and G. Crowley (2007

  4. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study

    PubMed Central

    Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  5. Recognition Accuracy Using 3D Endoscopic Images for Superficial Gastrointestinal Cancer: A Crossover Study.

    PubMed

    Nomura, Kosuke; Kaise, Mitsuru; Kikuchi, Daisuke; Iizuka, Toshiro; Fukuma, Yumiko; Kuribayashi, Yasutaka; Tanaka, Masami; Toba, Takahito; Furuhata, Tsukasa; Yamashita, Satoshi; Matsui, Akira; Mitani, Toshifumi; Hoteya, Shu

    2016-01-01

    Aim. To determine whether 3D endoscopic images improved recognition accuracy for superficial gastrointestinal cancer compared with 2D images. Methods. We created an image catalog using 2D and 3D images of 20 specimens resected by endoscopic submucosal dissection. The twelve participants were allocated into two groups. Group 1 evaluated only 2D images at first, group 2 evaluated 3D images, and, after an interval of 2 weeks, group 1 next evaluated 3D and group 2 evaluated 2D images. The evaluation items were as follows: (1) diagnostic accuracy of the tumor extent and (2) confidence levels in assessing (a) tumor extent, (b) morphology, (c) microsurface structure, and (d) comprehensive recognition. Results. The use of 3D images resulted in an improvement in diagnostic accuracy in both group 1 (2D: 76.9%, 3D: 78.6%) and group 2 (2D: 79.9%, 3D: 83.6%), with no statistically significant difference. The confidence levels were higher for all items ((a) to (d)) when 3D images were used. With respect to experience, the degree of the improvement showed the following trend: novices > trainees > experts. Conclusions. By conversion into 3D images, there was a significant improvement in the diagnostic confidence level for superficial tumors, and the improvement was greater in individuals with lower endoscopic expertise. PMID:27597863

  6. 3D microscope imaging robust to restoration artifacts introduced by optically thick specimens

    NASA Astrophysics Data System (ADS)

    Patwary, Nurmohammed; King, Sharon V.; Preza, Chrysanthe

    2015-03-01

    We demonstrate 3D microscope imaging using computational optical sectioning microscopy (COSM) with an engineered point-spread function (PSF) robust to depth-induced spherical aberration (SA). Earlier we demonstrated that wavefront encoding (WFE) using a squared cubic (SQUBIC) phase mask reduces the PSF depth-variance in the presence of SA and that space-invariant (SI) restoration of simulated images using a single WFE-PSF does not lead to artifacts as in the conventional case. In this study, we show experimental verification of our WFE COSM approach. The WFE system used is a commercial microscope with a modified side port imaging path, where a spatial light modulator projects the SQUBIC phase mask on the back focal plane of the imaging lens. High resolution images of a test sample with 6 μm in diameter microspheres embedded in UV-cured optical cement (RI = 1.47) were captured using both the engineered and the conventional imaging paths of the system. The acquired images were restored using a regularized SI expectation maximization algorithm based on Tikhonov-Miller regularization with a roughness penalty. A comparative study quantified in terms of the correlation coefficients between the XZ medial sections of the restored images, from experimental data, shows an 11% reduction in depth sensitivity in the SQUBIC system compared to the conventional system.

  7. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  8. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  9. Estimation of single cell volume from 3D confocal images using automatic data processing

    NASA Astrophysics Data System (ADS)

    Chorvatova, A.; Cagalinec, M.; Mateasik, A.; Chorvat, D., Jr.

    2012-06-01

    Cardiac cells are highly structured with a non-uniform morphology. Although precise estimation of their volume is essential for correct evaluation of hypertrophic changes of the heart, simple and unified techniques that allow determination of the single cardiomyocyte volume with sufficient precision are still limited. Here, we describe a novel approach to assess the cell volume from confocal microscopy 3D images of living cardiac myocytes. We propose a fast procedure based on segementation using active deformable contours. This technique is independent on laser gain and/or pinhole settings and it is also applicable on images of cells stained with low fluorescence markers. Presented approach is a promising new tool to investigate changes in the cell volume during normal, as well as pathological growth, as we demonstrate in the case of cell enlargement during hypertension in rats.

  10. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  11. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  12. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  13. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  14. Fast algorithm of 3D median filter for medical image despeckling

    NASA Astrophysics Data System (ADS)

    Xiong, Chengyi; Hou, Jianhua; Gao, Zhirong; He, Xiang; Chen, Shaoping

    2007-12-01

    Three-dimensional (3-D) median filtering is very useful to eliminate speckle noise from a medical imaging source, such as functional magnetic resonance imaging (fMRI) and ultrasonic imaging. 3-D median filtering is characterized by its higher computation complexity. N 3(N 3-1)/2 comparison operations would be required for 3-D median filtering with N×N×N window if the conventional bubble-sorting algorithm is adopted. In this paper, an efficient fast algorithm for 3-D median filtering was presented, which considerably reduced the computation complexity for extracting the median of a 3-D data array. Compared to the state-of-the-art, the proposed method could reduce the computation complexity of 3-D median filtering by 33%. It results in efficiently reducing the system delay of the 3-D median filter by software implementation, and the system cost and power consumption by hardware implementation.

  15. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field. PMID:25640426

  16. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    PubMed

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max). PMID:18044549

  17. Computation of optimized arrays for 3-D electrical imaging surveys

    NASA Astrophysics Data System (ADS)

    Loke, M. H.; Wilkinson, P. B.; Uhlemann, S. S.; Chambers, J. E.; Oxby, L. S.

    2014-12-01

    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The `Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional arrays.

  18. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  19. Imaging system for creating 3D block-face cryo-images of whole mice

    NASA Astrophysics Data System (ADS)

    Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David

    2006-03-01

    We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.

  20. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  1. 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2012-02-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 +/- 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images.

  2. Increasing the depth of field in Multiview 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon

    2016-06-01

    A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.

  3. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  4. Fast fully 3-D image reconstruction in PET using planograms.

    PubMed

    Brasse, D; Kinahan, P E; Clackdoyle, R; Defrise, M; Comtat, C; Townsend, D W

    2004-04-01

    We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15. PMID:15084067

  5. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  6. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449

  7. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  8. Infrared imaging of the polymer 3D-printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Kunc, Vlastimil; Lindal, John M.; Post, Brian; Smith, Rachel J.; Love, Lonnie; Duty, Chad E.

    2014-05-01

    Both mid-wave and long-wave IR cameras are used to measure various temperature profiles in thermoplastic parts as they are printed. Two significantly different 3D-printers are used in this study. The first is a small scale commercially available Solidoodle 3 printer, which prints parts with layer thicknesses on the order of 125μm. The second printer used is a "Big Area Additive Manufacturing" (BAAM) 3D-printer developed at Oak Ridge National Laboratory. The BAAM prints parts with a layer thicknesses of 4.06 mm. Of particular interest is the temperature of the previously deposited layer as the new hot layer is about to be extruded onto it. The two layers are expected have a stronger bond if the temperature of the substrate layer is above the glass transition temperature. This paper describes the measurement technique and results for a study of temperature decay and substrate layer temperature for ABS thermoplastic with and without the addition of chopped carbon fibers.

  9. Quality Prediction of Asymmetrically Distorted Stereoscopic 3D Images.

    PubMed

    Wang, Jiheng; Rehman, Abdul; Zeng, Kai; Wang, Shiqi; Wang, Zhou

    2015-11-01

    Objective quality assessment of distorted stereoscopic images is a challenging problem, especially when the distortions in the left and right views are asymmetric. Existing studies suggest that simply averaging the quality of the left and right views well predicts the quality of symmetrically distorted stereoscopic images, but generates substantial prediction bias when applied to asymmetrically distorted stereoscopic images. In this paper, we first build a database that contains both single-view and symmetrically and asymmetrically distorted stereoscopic images. We then carry out a subjective test, where we find that the quality prediction bias of the asymmetrically distorted images could lean toward opposite directions (overestimate or underestimate), depending on the distortion types and levels. Our subjective test also suggests that eye dominance effect does not have strong impact on the visual quality decisions of stereoscopic images. Furthermore, we develop an information content and divisive normalization-based pooling scheme that improves upon structural similarity in estimating the quality of single-view images. Finally, we propose a binocular rivalry-inspired multi-scale model to predict the quality of stereoscopic images from that of the single-view images. Our results show that the proposed model, without explicitly identifying image distortion types, successfully eliminates the prediction bias, leading to significantly improved quality prediction of the stereoscopic images. PMID:26087491

  10. Analysis of fracture networks in a reservoir dolomite by 3D micro-imaging

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Hoyer, Stefan; Exner, Ulrike; Reuschlé, Thierry

    2013-04-01

    the fracture apertures can be defined. One can use an adaptation to the filtering technique to determine the orientation of the extracted fractures in a sample as well. All these analyses contribute to comprehensive information on the fracture network in a sample. This processed data can then serve as input for permeability modelling. All results from the µCT imaging and data analyses are combined and cross-calibrated with information from different techniques, obtained on the same samples. We apply for example the aforementioned laboratory methods (including permeability determination under increasing confining pressure) and 2D thin section analysis. Furthermore, we use 3D Focussed Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography to obtain 3D information at a much smaller scale. Eventually, we try to obtain an as complete as possible set of information for every sample analysed. The combination of the various techniques shows that especially the 3D imaging is important, as even on the small sample sizes, large differences between the present fracture networks can be observed. This starts to make it possible to explain the reasons for found differences between various wells. This research thereby hopefully leads to a better understanding of the (microscale) characteristics of a reservoir system.

  11. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    NASA Astrophysics Data System (ADS)

    Casal, A.; Cerrato, R.; Mateo, M. P.; Nicolas, G.

    2016-06-01

    A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  12. Multi-layer 3D imaging using a few viewpoint images and depth map

    NASA Astrophysics Data System (ADS)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  13. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). PMID:10388621

  14. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability. PMID:25465067

  15. Perceptual quality measurement of 3D images based on binocular vision.

    PubMed

    Zhou, Wujie; Yu, Lu

    2015-07-20

    Three-dimensional (3D) technology has become immensely popular in recent years and widely adopted in various applications. Hence, perceptual quality measurement of symmetrically and asymmetrically distorted 3D images has become an important, fundamental, and challenging issue in 3D imaging research. In this paper, we propose a binocular-vision-based 3D image-quality measurement (IQM) metric. Consideration of the 3D perceptual properties of the primary visual cortex (V1) and the higher visual areas (V2) for 3D-IQM is the major technical contribution to this research. To be more specific, first, the metric simulates the receptive fields of complex cells (V1) using binocular energy response and binocular rivalry response and the higher visual areas (V2) using local binary patterns features. Then, three similarity scores of 3D perceptual properties between the reference and distorted 3D images are measured. Finally, by using support vector regression, three similarity scores are integrated into an overall 3D quality score. Experimental results for two public benchmark databases demonstrate that, in comparison with most current 2D and 3D metrics, the proposed metric achieves significantly higher consistency in alignment with subjective fidelity ratings. PMID:26367842

  16. 3-D Target Location from Stereoscopic SAR Images

    SciTech Connect

    DOERRY,ARMIN W.

    1999-10-01

    SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.

  17. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imagi