Science.gov

Sample records for 3d model structure

  1. Inferential modeling of 3D chromatin structure.

    PubMed

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-04-30

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen.

  2. Automated modeling of RNA 3D structure.

    PubMed

    Rother, Kristian; Rother, Magdalena; Skiba, Pawel; Bujnicki, Janusz M

    2014-01-01

    This chapter gives an overview over the current methods for automated modeling of RNA structures, with emphasis on template-based methods. The currently used approaches to RNA modeling are presented with a side view on the protein world, where many similar ideas have been used. Two main programs for automated template-based modeling are presented: ModeRNA assembling structures from fragments and MacroMoleculeBuilder performing a simulation to satisfy spatial restraints. Both approaches have in common that they require an alignment of the target sequence to a known RNA structure that is used as a modeling template. As a way to find promising template structures and to align the target and template sequences, we propose a pipeline combining the ParAlign and Infernal programs on RNA family data from Rfam. We also briefly summarize template-free methods for RNA 3D structure prediction. Typically, RNA structures generated by automated modeling methods require local or global optimization. Thus, we also discuss methods that can be used for local or global refinement of RNA structures.

  3. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling.

  4. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    PubMed

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  5. 3D-GNOME: an integrated web service for structural modeling of the 3D genome

    PubMed Central

    Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-01-01

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892

  6. Formal representation of 3D structural geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  7. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    SciTech Connect

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  8. RNA and protein 3D structure modeling: similarities and differences.

    PubMed

    Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M

    2011-09-01

    In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.

  9. Coarse-grained modeling of RNA 3D structure.

    PubMed

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.

  10. Gene3D: modelling protein structure, function and evolution.

    PubMed

    Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A

    2006-01-01

    The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.

  11. 3D genome structure modeling by Lorentzian objective function.

    PubMed

    Trieu, Tuan; Cheng, Jianlin

    2016-11-29

    The 3D structure of the genome plays a vital role in biological processes such as gene interaction, gene regulation, DNA replication and genome methylation. Advanced chromosomal conformation capture techniques, such as Hi-C and tethered conformation capture, can generate chromosomal contact data that can be used to computationally reconstruct 3D structures of the genome. We developed a novel restraint-based method that is capable of reconstructing 3D genome structures utilizing both intra-and inter-chromosomal contact data. Our method was robust to noise and performed well in comparison with a panel of existing methods on a controlled simulated data set. On a real Hi-C data set of the human genome, our method produced chromosome and genome structures that are consistent with 3D FISH data and known knowledge about the human chromosome and genome, such as, chromosome territories and the cluster of small chromosomes in the nucleus center with the exception of the chromosome 18. The tool and experimental data are available at https://missouri.box.com/v/LorDG.

  12. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  13. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation

    NASA Astrophysics Data System (ADS)

    El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.

    2016-03-01

    3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven

  14. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints.

    PubMed

    Magnus, Marcin; Boniecki, Michał J; Dawson, Wayne; Bujnicki, Janusz M

    2016-07-08

    RNA function in many biological processes depends on the formation of three-dimensional (3D) structures. However, RNA structure is difficult to determine experimentally, which has prompted the development of predictive computational methods. Here, we introduce a user-friendly online interface for modeling RNA 3D structures using SimRNA, a method that uses a coarse-grained representation of RNA molecules, utilizes the Monte Carlo method to sample the conformational space, and relies on a statistical potential to describe the interactions in the folding process. SimRNAweb makes SimRNA accessible to users who do not normally use high performance computational facilities or are unfamiliar with using the command line tools. The simplest input consists of an RNA sequence to fold RNA de novo. Alternatively, a user can provide a 3D structure in the PDB format, for instance a preliminary model built with some other technique, to jump-start the modeling close to the expected final outcome. The user can optionally provide secondary structure and distance restraints, and can freeze a part of the starting 3D structure. SimRNAweb can be used to model single RNA sequences and RNA-RNA complexes (up to 52 chains). The webserver is available at http://genesilico.pl/SimRNAweb.

  15. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  16. Determination and validation of mTOR kinase-domain 3D structure by homology modeling.

    PubMed

    Lakhlili, Wiame; Chevé, Gwénaël; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2015-01-01

    The AKT/mammalian target of rapamycin (mTOR) pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D) structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.

  17. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.

  18. Modeling and characterization of 2-D and 3-D textile structural composites

    SciTech Connect

    Yang, J.M.

    1986-01-01

    This dissertation studies the analytical modeling and experimental characterization of various two-dimensional and three-dimensional textile structure composites. In the analytical approach, various theoretical models were established to predict the stiffness, strength, nonlinear deformation, and failure behavior of triaxial woven-fabric composites, 3-D braided composites, and multilayer multidirectional warp knit fabric composites in polymer and metal matrices. The structure performance maps of various textile structural composites were also established, based upon these analytical methods. In the experimental approach, extensive mechanical testing and microstructural characterization were performed to investigate the thermomechanical properties and failure behavior of 3-D braided FP/Al composites. Results of this research will serve as the basis for assessing the potential of textile composites for structural applications.

  19. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions.

    PubMed

    Vukicevic, Marija; Puperi, Daniel S; Jane Grande-Allen, K; Little, Stephen H

    2017-02-01

    As catheter-based structural heart interventions become increasingly complex, the ability to effectively model patient-specific valve geometry as well as the potential interaction of an implanted device within that geometry will become increasingly important. Our aim with this investigation was to combine the technologies of high-spatial resolution cardiac imaging, image processing software, and fused multi-material 3D printing, to demonstrate that patient-specific models of the mitral valve apparatus could be created to facilitate functional evaluation of novel trans-catheter mitral valve repair strategies. Clinical 3D transesophageal echocardiography and computed tomography images were acquired for three patients being evaluated for a catheter-based mitral valve repair. Target anatomies were identified, segmented and reconstructed into 3D patient-specific digital models. For each patient, the mitral valve apparatus was digitally reconstructed from a single or fused imaging data set. Using multi-material 3D printing methods, patient-specific anatomic replicas of the mitral valve were created. 3D print materials were selected based on the mechanical testing of elastomeric TangoPlus materials (Stratasys, Eden Prairie, Minnesota, USA) and were compared to freshly harvested porcine leaflet tissue. The effective bending modulus of healthy porcine MV tissue was significantly less than the bending modulus of TangoPlus (p < 0.01). All TangoPlus varieties were less stiff than the maximum tensile elastic modulus of mitral valve tissue (3697.2 ± 385.8 kPa anterior leaflet; 2582.1 ± 374.2 kPa posterior leaflet) (p < 0.01). However, the slopes of the stress-strain toe regions of the mitral valve tissues (532.8 ± 281.9 kPa anterior leaflet; 389.0 ± 156.9 kPa posterior leaflet) were not different than those of the Shore 27, Shore 35, and Shore 27 with Shore 35 blend TangoPlus material (p > 0.95). We have demonstrated that patient-specific mitral valve models can be

  20. Comparison of low cost 3D structured light scanners for face modeling.

    PubMed

    Bakirman, Tolga; Gumusay, Mustafa Umit; Reis, Hatice Catal; Selbesoglu, Mahmut Oguz; Yosmaoglu, Serra; Yaras, Mehmet Cem; Seker, Dursun Zafer; Bayram, Bulent

    2017-02-01

    This study aims to compare three different structured light scanner systems to generate accurate 3D human face models. Among these systems, the most dense and expensive one was denoted as the reference and the other two that were low cost and low resolution were compared according to the reference system. One female face and one male face were scanned with three light scanner systems. Point-cloud filtering, mesh generation, and hole-filling steps were carried out using a trial version of commercial software; moreover, the data evaluation process was realized using CloudCompare open-source software. Various filtering and mesh smoothing levels were applied on reference data to compare with other low-cost systems. Thus, the optimum reduction level of reference data was evaluated to continue further processes. The outcome of the presented study shows that low-cost structured light scanners have a great potential for 3D object modeling, including the human face. A considerable cheap structured light system has been used due to its capacity to obtain spatial and morphological information in the case study of 3D human face modeling. This study also discusses the benefits and accuracy of low-cost structured light systems.

  1. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    PubMed

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences.

  2. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  3. Predicting RNA 3D structure using a coarse-grain helix-centered model.

    PubMed

    Kerpedjiev, Peter; Höner Zu Siederdissen, Christian; Hofacker, Ivo L

    2015-06-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures.

  4. Algorithms for extraction of structural attitudes from 3D outcrop models

    NASA Astrophysics Data System (ADS)

    Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos

    2016-05-01

    The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.

  5. Towards Automated Seismic Moment Tensor Inversion in Australia Using 3D Structural Model

    NASA Astrophysics Data System (ADS)

    Hingee, M.; Tkalcic, H.; Fichtner, A.; Sambridge, M.; Kennett, B. L.; Gorbatov, A.

    2009-12-01

    There is significant seismic activity in the region around Australia, largely due to the plate boundaries to the north and to the east of the mainland. This seismicity poses serious seismic and tsunamigenic hazard in a wider region, and risk to coastal areas of Australia, and is monitored by Geoscience Australia (GA) using a network of permanent broadband seismometers within Australia. Earthquake and tsunami warning systems were established by the Australian Government and have been using the waveforms from the GA seismological network. The permanent instruments are augmented by non-GA seismic stations based both within and outside of Australia. In particular, seismic moment tensor (MT) solutions for events around Australia as well as local distances are useful for both warning systems and geophysical studies in general. These monitoring systems, however, currently use only one dimensional, spherically-symmetric models of the Earth for source parameter determination. Recently, a novel 3D model of Australia and the surrounding area has been developed from spectral element simulations [1], taking into account not only velocity heterogeneities, but also radial anisotropy and seismic attenuation. This development, inter alia, introduces the potential of providing significant improvements in MT solution accuracy. Allowing reliable MT solutions with reduced dependence on non-GA stations is a secondary advantage. We studied the feasibility of using 1D versus 3D structural models. The accuracy of the 3D model has been investigated, confirming that these models are in most cases superior to the 1D models. A full MT inversion method using a point source approximation was developed as the first step, keeping in mind that for more complex source time functions, a finite source inversion will be needed. Synthetic experiments have been performed with random noise added to the signal to test the code in the both 1D and 3D setting, using a precomputed library of structural Greens

  6. A 3D model describing the initial structure of an artificial hydrological catchment

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Schneider, A.; Buczko, U.; Gerke, H. H.

    2009-04-01

    The initial development stages of artificially constructed hydrologic catchments are characterized by the absence of vegetation, soil organic matter and soil horizons. This results in increased surface runoff and favors erosion processes that dominate the initial phase. Hydraulic conditions on artificial catchments thus are governed by rapidly changing surface structures as well as by the primary internal structural framework. Contemporary hydrological modeling does not consider any dynamic change of relevant structural features but rather assumes a stable, invariant landscape. The objective of this study was the digital visualization and quantitative description of the initial state and its early structural dynamics, exemplified for the small artificial hydrological catchment "Huehnerwasser" near Cottbus, Germany. Photogrammetric surveys of surface and internal structural units (clay basis liner) during the construction phase provided spatially and temporally resolved data for digital elevation models (DEM). Interpolated physical and chemical soil properties obtained at a borehole grid (e.g., texture) are used for the visualization of spatial distribution of relevant (hydraulic) parameters. The data are merged in a database and visualized in the 3D-GIS application GoCAD. The specific technological construction processes determines the internal structure of the artificial catchment. Resulting differences in bulk density and texture are supposed to have considerable impact on hydraulic properties. A structure generator program was implemented to reproduce the initial structure of the sediment layer as closely as possible. Results of the digital structure generation are checked with non-invasive geophysical measurements, on-site bore holes data and off-site 2D vertical spoil exploration. The accuracy of structure generator results will be compared with predictions of different interpolation methods. Thus, the structure model will serve as a basis for deriving the 3D

  7. 3D Density Structure and LOS Observations of a Model CME

    NASA Astrophysics Data System (ADS)

    Manchester, W. B.; Lugaz, N.; Gombosi, T.; de Zeeuw, D.; Sokolov, I.; Toth, G.

    2004-12-01

    We present synthetic Thomson-scattered white-light images of a simulated coronal mass ejection (CME). The simulations are based on a 3-D MHD model of a CME propagating through a bimodal solar wind characteristic of solar minimum. The CME is driven by a 3-D Gibson-Low flux rope inserted in the helmet streamer of the steady-state corona. Synthetic coronograph images are produced that follow the evolution of the CME to 1 AU from several points of view. The white light images provide a basis for comparison with wide angle coronographs, like those of SMEI or STEREO. We find that a large amount of plasma is swept up from the solar wind by the CME-driven shock wave, which dominates the density structure far from the Sun. We also find that the shape of this compressed plasma is highly distorted by the variation in speed of the ambient solar wind. Comparisons of 2-D integrated images to the 3-D density structure show that the viewing angle severely effects the line-of-sight appearance of the CME, as well as the estimated mass of the CME from such 2D images.

  8. A crust-scale 3D structural model of the Beaufort-Mackenzie Basin (Arctic Canada)

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Lewerenz, Björn; Kroeger, Karsten Friedrich

    2013-04-01

    The Beaufort-Mackenzie Basin was initiated in the Early Jurassic as part of an Arctic rifted passive continental margin which soon after became overprinted by Cordilleran foreland tectonics. Decades of industrial exploration and scientific research in this petroliferous region have produced a wide spectrum of geological and geophysical data as well as geoscientific knowledge. We have integrated available grids of sedimentary horizons, well data, seismic reflection and refraction data, and the observed regional gravity field into the first crust-scale 3D structural model of the Beaufort-Mackenzie Basin. Many characteristics of this model reflect the complex geodynamic and tectonostratigraphic history of the basin. The Mesozoic-Cenozoic sedimentary part of the model comprises seven clastic units (predominantly sandy shales) of which the modelled thickness distributions allow to retrace the well-established history of the basin comprising a gradual north(east)ward shift of the main depocentres as well as diverse phases of localised erosion. As a result of this development, the present-day configuration of the basin reveals that the sedimentary units tend to be younger, more porous, and thus less dense towards the north at a constant depth level. By integrating three refraction seismic profiles and performing combined isostatic and 3D gravity modelling, we have modelled the sub-sedimentary basement of the Beaufort-Mackenzie Basin. The continental basement spans from unstretched domains (as thick as about 42 km) in the south to extremely thinned domains (of less than 5 km thickness) in the north where it probably represents transitional crust attached to the oceanic crust of the Canada Basin. The uppermost parts of the continental crust are less dense (ρ = 2710 kg/m3) and most probably made up by pre-Mesozoic meta-sediments overlying a heavier igneous and metamorphic crust (ρ = 2850 kg/m3). The presented crust-scale 3D structural model shows that the greatest

  9. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  10. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  11. NACr14: A 3D model for the crustal structure of the North American Continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Mooney, Walter D.; Cloetingh, Sierd

    2014-09-01

    Based on the large number of crustal seismic experiments carried out in the last decades we create NACr14, a 3D crustal model of the North American continent at a resolution of 1° × 1°. We present maps of thickness and average velocities of the main layers that comprise the North American crystalline crust, obtained from the most recent seismic crustal models within the USGS crustal structure database. However, the crustal data are unevenly distributed and in some cases discrepancies exist between published models. In order to construct a consistent 3D crustal model with three layers in the crystalline crust, we refrained from a direct interpolation of the crustal seismic parameters in the database. Instead, we implemented the following sequence of steps: 1. Definition of the geometry of the main tectonic provinces of North America; 2. Selection and evaluation of the reliability of seismic crustal models in the database; 3. Estimation of the P-wave seismic velocity and thickness of the upper, middle and lower crust for each tectonic province; 4. Estimation of the interpolated Pn velocity distribution. The resulting average velocity of the crystalline crust is mostly consistent with that of the seismic points. The main variations of the structure of the crystalline crust of North America displayed in the model can be related to its tectonic evolution. The model, available in a digital form, can be used in various geophysical applications, such as the correction for the crustal effects in gravity and seismic tomography and models of dynamic topography, in order to detect heterogeneities characterizing the underlying upper mantle.

  12. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite.

  13. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    NASA Astrophysics Data System (ADS)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  14. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  15. Computerized modeling techniques predict the 3D structure of H₄R: facts and fiction.

    PubMed

    Zaid, Hilal; Ismael-Shanak, Siba; Michaeli, Amit; Rayan, Anwar

    2012-01-01

    The functional characterization of proteins presents a daily challenge r biochemical, medical and computational sciences, especially when the structures are undetermined empirically, as in the case of the Histamine H4 Receptor (H₄R). H₄R is a member of the GPCR superfamily that plays a vital role in immune and inflammatory responses. To date, the concept of GPCRs modeling is highlighted in textbooks and pharmaceutical pamphlets, and this group of proteins has been the subject of almost 3500 publications in the scientific literature. The dynamic nature of determining the GPCRs structure was elucidated through elegant and creative modeling methodologies, implemented by many groups around the world. H₄R which belongs to the GPCR family was cloned in 2000; understandably, its biological activity was reported only 65 times in pubmed. Here we attempt to cover the fundamental concepts of H₄R structure modeling and its implementation in drug discovery, especially those that have been experimentally tested and to highlight some ideas that are currently being discussed on the dynamic nature of H₄R and GPCRs computerized techniques for 3D structure modeling.

  16. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION

    SciTech Connect

    Gunár, Stanislav; Mackay, Duncan H.

    2015-10-20

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing position of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.

  17. 3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors.

    PubMed

    Falchi, Federico; Manetti, Fabrizio; Carraro, Fabio; Naldini, Antonella; Maga, Giovanni; Crespan, Emmanuele; Schenone, Silvia; Bruno, Olga; Brullo, Chiara; Botta, Maurizio

    2009-06-01

    Quality QSAR: A combination of docking calculations and a statistical approach toward Abl inhibitors resulted in a 3D QSAR model, the analysis of which led to the identification of ligand portions important for affinity. New compounds designed on the basis of the model were found to have very good affinity for the target, providing further validation of the model itself.The X-ray crystallographic coordinates of the Abl tyrosine kinase domain in its active, inactive, and Src-like inactive conformations were used as targets to simulate the binding mode of a large series of pyrazolo[3,4-d]pyrimidines (known Abl inhibitors) by means of GOLD software. Receptor-based alignments provided by molecular docking calculations were submitted to a GRID-GOLPE protocol to generate 3D QSAR models. Analysis of the results showed that the models based on the inactive and Src-like inactive conformations had very poor statistical parameters, whereas the sole model based on the active conformation of Abl was characterized by significant internal and external predictive ability. Subsequent analysis of GOLPE PLS pseudo-coefficient contour plots of this model gave us a better understanding of the relationships between structure and affinity, providing suggestions for the next optimization process. On the basis of these results, new compounds were designed according to the hydrophobic and hydrogen bond donor and acceptor contours, and were found to have improved enzymatic and cellular activity with respect to parent compounds. Additional biological assays confirmed the important role of the selected compounds as inhibitors of cell proliferation in leukemia cells.

  18. Modeling the effects of 3-D slab geometry and oblique subduction on subduction zone thermal structure

    NASA Astrophysics Data System (ADS)

    Wada, I.; Wang, K.; He, J.

    2013-12-01

    In this study, we revisit the effects of along-strike variation in slab geometry and oblique subduction on subduction zone thermal structures. Along-strike variations in slab dip cause changes in the descending rate of the slab and generate trench-parallel pressure gradients that drive trench-parallel mantle flow (e.g., Kneller and van Keken, 2007). Oblique subduction also drives trench-parallel mantle flow. In this study, we use a finite element code PGCtherm3D and examine a range of generic subduction geometries and parameters to investigate the effects of the above two factors. This exercise is part of foundational work towards developing detailed 3-D thermal models for NE Japan, Nankai, and Cascadia to better constrain their 3-D thermal structures and to understand the role of temperature in controlling metamorphic, seismogenic, and volcanic processes. The 3-D geometry of the subducting slabs in the forearc and arc regions are well delineated at these three subduction zones. Further, relatively large compilations of surface heat flow data at these subduction zones make them excellent candidates for this study. At NE Japan, a megathrust earthquake occurred on March 11, 2011; at Nankai and Cascadia, there has been a great effort to constrain the scale of the next subduction thrust earthquake for the purpose of disaster prevention. Temperature influences the slip behavior of subduction faults by (1) affecting the rheology of the interface material and (2) controlling dehydration reactions, which can lead to elevated pore fluid pressure. Beyond the depths of subduction thrust earthquakes, the thermal structure is affected strongly by the pattern of mantle wedge flow. This flow is driven by viscous coupling between the subducting slab and the overriding mantle, and it brings in hot flowing mantle into the wedge. The trench-ward (up-dip) extent of the slab-mantle coupling is thus a key factor that controls the thermal structure. Slab-mantle decoupling at shallow

  19. Simulation of instrumental intensities in the Tokyo Metropolitan area using a 3D attenuation structure model.

    NASA Astrophysics Data System (ADS)

    Panayotopoulos, Y.; Hirata, N.; Sakai, S.; Nakagawa, S.; Kasahara, K.

    2015-12-01

    In recent years the development of dense seismic networks in Japan has enabled high quality observations of instrumental intensities. However, the distribution of intensities of historical earthquakes can only be retrieved by the damage reports on historical documents. Their epicenter and magnitude can be roughly estimated from the intensity distribution, assuming that seismic intensity decays with distance. This approximation is not always accurate, since the amplitude of short period ground motion decays with focal distance and is affected by the 3D attenuation structure along the path and in addition displays frequency dependence. In order to estimate the location and size of a large historical earthquake, we need to accurately simulate the seismic intensity distribution, accounting for non linear attenuation of seismic waves along the path. The instrumental seismic intensities inside the Kanto basin observed at the Tokyo Metropolitan Seismic Observation network (MeSO-net) and Hi-net stations display unusual distribution patterns, with peak intensities observed several km away from the epicenter rather than at the stations closer to it. In order to understand the source of this intensity distribution, we estimated the theoretical instrumental intensities using a 3D attenuation structure and compare it to the observed intensity distribution. We first estimated a 3D attenuation structure using the spectral decay of seismic waves, by fitting the observed seismic wave spectrum to a theoretical spectrum using an ω2 model. The obtained model suggests Qs values of 50˜100 inside the Kanto basin and low Qs values < 300 in the area where the Philippine Sea plate meets the upper part of the Pacific plate. We then use an ω2 model in order to estimate the source acceleration spectrum of several earthquakes occurring below the Kanto basin at depths ranging 30~80 km. Our simulation shows that earthquakes occurring on the Pacific plate pass through the low Qs area inside the

  20. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin

    NASA Astrophysics Data System (ADS)

    Autin, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.; Marchal, D.

    2016-04-01

    Following previous work on the Colorado Basin using a 3D crustal structural model, we now investigate the presence of lower crustal bodies at the base of the crust using 3D lithospheric gravity modelling and calculations of the conductive thermal field. Our first study highlighted two fault directions and depocentres associated with thinned crust (NW-SE in the West and NE-SW at the distal margin). Fault relative chronology argues for two periods of extension: (1) NW-SE faulting and thinning in the western Colorado Basin and (2) NE-SW faulting and thinning related to the continental breakup and formation of the NE-SW-striking volcanic margins of the Atlantic Ocean. In this study, the geometry of modelled high-density Lower Crustal Bodies (LCBs) enables the reproduction of the gravimetric field as well as of the temperature measured in wells down to 4500 m. The modelled LCBs correlate with geological observations: (1) NW-SE LCBs below the deepest depocentres in the West, (2) NE-SW LCBs below the distal margin faults and the seaward dipping reflectors. Thus the proposed poly-phased evolution of the margin could as well correspond to two emplacement phases of the LCBs. The calculated conductive thermal field fits the measured temperatures best if the thermal properties (thermal conductivity and radiogenic heat production) assigned to the LCBs correspond to either high-grade metamorphic rocks or to mafic magmatic intrusions. To explain the possible lithology of the LCBs, we propose that the two successive phases of extension are accompanied by magma supply, emplaced (1) in the thinnest crust below the older NW-SE depocentres, then (2) along the NE-SW continentward boundary of the distal margin and below the volcanic seaward dipping reflectors. The South African conjugate margin records only the second NE-SW event and we discuss hypotheses which could explain these differences between the conjugate margins.

  1. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  2. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  3. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.

    PubMed

    Yu, Dong-Jun; Li, Yang; Hu, Jun; Yang, Xibei; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    Disulfide connectivity is an important protein structural characteristic. Accurately predicting disulfide connectivity solely from protein sequence helps to improve the intrinsic understanding of protein structure and function, especially in the post-genome era where large volume of sequenced proteins without being functional annotated is quickly accumulated. In this study, a new feature extracted from the predicted protein 3D structural information is proposed and integrated with traditional features to form discriminative features. Based on the extracted features, a random forest regression model is performed to predict protein disulfide connectivity. We compare the proposed method with popular existing predictors by performing both cross-validation and independent validation tests on benchmark datasets. The experimental results demonstrate the superiority of the proposed method over existing predictors. We believe the superiority of the proposed method benefits from both the good discriminative capability of the newly developed features and the powerful modelling capability of the random forest. The web server implementation, called TargetDisulfide, and the benchmark datasets are freely available at: http://csbio.njust.edu.cn/bioinf/TargetDisulfide for academic use.

  4. 3D modeling of soil structure in urban groundwater areas: case studies in Kolpene, Rovaniemi, Finland

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2015-04-01

    3D modeling of groundwater areas is an important research method in groundwater surveys. Model of geological soil structure improves the knowledge of linkage between land use planning and groundwater protection. Results can be used as base information when developing the water supply services and anticipating and performing the measures needed in case of environmental accidents. Also, collected information is utilized when creating the groundwater flow model. In Finland, structure studies have been conducted in cooperation (among others) with the municipalities and local water suppliers and with the authorities from the Centre for Economic Development, Transport and the Environment. Geological Survey of Finland carries out project "Structure studies in Kolpene groundwater area" in Rovaniemi, Finnish Lapland. Study site is located in northern Finland, in the vicinity of the city center of Rovaniemi. Extent of the area is about 13 square kilometers and there are lots of urban residential areas and other human activities. The objective of this project is to determine the geological structure of the Kolpene groundwater area so that the results can be used to estimate the validity of the present exclusion area and possible risks to the groundwater caused by the land use. Soil layers of the groundwater area are studied by means of collecting information by heavy drilling, geophysical surveying (ground penetrating radar and gravimeter measurements) and water sampling from the installed observation pipes. Also the general geological and hydrological mappings are carried out. Main results which will be produced are: 1) the model of the bedrock surface, 2) the model of the surface of the ground water and flow directions, 3) the thickness of ground water saturated soil layers and 4) location and main characteristics of the soil layers which are significant to the ground water conditions. The preparing studies have been started at the end of 2013 and the results will be

  5. Robust near-infrared structured light scanning for 3D human model reconstruction

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Yang, Ruigang

    2014-03-01

    In this paper we present a novel sensing system, robust Near-infrared Structured Light Scanning (NIRSL) for three-dimensional human model scanning application. Human model scanning due to its nature of various hair and dress appearance and body motion has long been a challenging task. Previous structured light scanning methods typically emitted visible coded light patterns onto static and opaque objects to establish correspondence between a projector and a camera for triangulation. In the success of these methods rely on scanning objects with proper reflective surface for visible light, such as plaster, light colored cloth. Whereas for human model scanning application, conventional methods suffer from low signal to noise ratio caused by low contrast of visible light over the human body. The proposed robust NIRSL, as implemented with the near infrared light, is capable of recovering those dark surfaces, such as hair, dark jeans and black shoes under visible illumination. Moreover, successful structured light scan relies on the assumption that the subject is static during scanning. Due to the nature of body motion, it is very time sensitive to keep this assumption in the case of human model scan. The proposed sensing system, by utilizing the new near-infrared capable high speed LightCrafter DLP projector, is robust to motion, provides accurate and high resolution three-dimensional point cloud, making our system more efficient and robust for human model reconstruction. Experimental results demonstrate that our system is effective and efficient to scan real human models with various dark hair, jeans and shoes, robust to human body motion and produces accurate and high resolution 3D point cloud.

  6. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.

    PubMed

    Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2016-06-25

    Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd.

  7. An efficient finite-element algorithm for 3D layered complex structure modelling.

    PubMed

    Sahalos, J N; Kyriacou, G A; Vafiadis, E

    1994-05-01

    In this paper an efficient finite-element method (FEM) algorithm for complicated three-dimensional (3D) layered type models has been developed. Its unique feature is that it can handle, with memory requirements within the abilities of a simple PC, arbitrarily shaped 3D elements. This task is achieved by storing only the non-zero coefficients of the sparse FEM system of equations. The algorithm is applied to the solution of the Laplace equation in models with up to 79 layers of trilinear general hexahedron elements. The system of equations is solved with the Gauss-Seidel iterative technique.

  8. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  9. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    PubMed

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-07-08

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions.

  10. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  11. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  12. Cardiac tissue structure. Electric field interactions in polarizing the heart: 3D computer models and applications

    NASA Astrophysics Data System (ADS)

    Entcheva, Emilia

    1998-11-01

    The goal of this research is to investigate the interactions between the cardiac tissue structure and applied electric fields in producing complex polarization patterns. It is hypothesized that the response of the heart in the conditions of strong electric shocks, as those applied in defibrillation, is dominated by mechanisms involving the cardiac muscle structure perceived as a continuum. Analysis is carried out in three-dimensional models of the heart with detailed fiber architecture. Shock-induced transmembrane potentials are calculated using the bidomain model in its finite element implementation. The major new findings of this study can be summarized as follows: (1) The mechanisms of polarization due to cardiac fiber curvature and fiber rotation are elucidated in three-dimensional ellipsoidal hearts of variable geometry; (2) Results are presented showing that the axis of stimulation and the polarization axis on a whole heart level might differ significantly due to geometric and anisotropic factors; (3) Virtual electrode patterns are demonstrated numerically inside the ventricular wall in internal defibrillation conditions. The role of the tissue-bath interface in shaping the shock-induced polarization is revealed; (4) The generation of 3D phase singularity scrolls by shock-induced intramural virtual electrode patterns is proposed as evidence for a possible new mechanism for the failure to defibrillate. The results of this study emphasize the role of unequal anisotropy in the intra- and extracellular domains, as well as the salient fiber architecture characteristics, such as curvature and transmural rotation, in polarizing the myocardium. Experimental support of the above findings was actively sought and found in recent optical mapping studies using voltage-sensitive dyes. If validated in vivo, these findings would significantly enrich the prevailing concepts about the mechanisms of stimulation and defibrillation of the heart.

  13. Designing stream restoration structures using 3D hydro-morphodynamic numerical modeling

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.; Kozarek, J. L.; Hill, C.; Kang, S.; Plott, R.; Diplas, P.; Sotiropoulos, F.

    2012-12-01

    Efforts to stabilize and restore streams and rivers across the nation have grown dramatically in the last fifteen years, with over $1 billion spent every year since 1990. The development of effective and long-lasting strategies, however, is far from trivial and despite large investments it is estimated that at least 50% of stream restoration projects fail. This is because stream restoration is today more of an art than a science. The lack of physics-based engineering standards for stream restoration techniques is best underscored in the design and installation of shallow, in-stream, low-flow structures, which direct flow away from the banks, protect stream banks from erosion and scour, and increase habitat diversity. Present-day design guidelines for such in-stream structures are typically vague and rely heavily on empirical knowledge and intuition rather than physical understanding of the interactions of the structures the flow and sediment transport processes in the waterway. We have developed a novel computer-simulation based paradigm for designing in stream structures that is based on state-of-the-art 3D hydro-morphodynamic modeling validated with laboratory and field-scale experiments. The numerical model is based on the Curvilinear Immersed Boundary (CURVIB) approach of Kang et al. and Khosronejad et al. (Adv. in Water Res. 2010, 2011), which can simulate flow and sediment transport processes in arbitrarily complex waterways with embedded rock structures. URANS or large-eddy simulation (LES) models are used to simulate turbulence. Transport of bed materials is simulated using the non-equilibrium Exner equation for the bed surface elevation coupled with a transport equation for suspended load. Extensive laboratory and field-scale experiments have been carried out and employed to validate extensively the computational model. The numerical model is used to develop a virtual testing environment within which one or multiple in-stream structures can be embedded in

  14. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  15. Nonlinear Numerical Modeling of Shape Control in IGNITOR in the Presence of 3D Structures

    NASA Astrophysics Data System (ADS)

    Albanese, R.; Ambrosino, G.; de Tommasi, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.; Coppi, B.

    2014-10-01

    IGNITOR is a high field compact machine designed for the investigation of fusion burning plasmas at or close to ignition. The integrated plasma position, shape and current control plays an important role in its safe operation. The analysis of its behavior taking into account nonlinear and 3D effects can be of great interest for assessing its performances. In fact, the system was designed on the basis of an axisymmetric linearized model. To this purpose, we use a computational tool, called CarMa0NL, with the unprecedented capability of simultaneously considering three-dimensional effects of conductors surrounding the plasma and the inherent nonlinearity of the plasma behaviour itself, in the presence of the complex set of circuit equations describing the control system. Preliminary results already lead to the conclusion that the vertical position response is not much influenced by nonlinear and 3D effects, as the vertical stabilization controller is able to ``hide'' the differences in open-loop models. Here we assess the performance of the shape controller, by coupling the nonlinear plasma evolution in the presence of the 3D vessel with ports to the complex circuit dynamics simulating the integrated closed loop control system.

  16. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  18. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  19. Imaging 3D geological structure of the Mygdonian basin (Northern Greece) with geological numerical modeling and geophysical methods.

    NASA Astrophysics Data System (ADS)

    Cédric, Guyonnet-Benaize; Fabrice, Hollender; Maria, Manakou; Alexandros, Savvaidis; Elena, Zargli; Cécile, Cornou; Nikolaos, Veranis; Dimitrios, Raptakis; Artemios, Atzemoglou; Pierre-Yves, Bard; Nikolaos, Theodulidis; Kyriazis, Pitilakis; Emmanuelle, Chaljub

    2013-04-01

    The Mygdonian basin, located 30 km E-NE close to Thessaloniki, is a typical active tectonic basin, trending E-NW, filled by sediments 200 to 400 m thick. This basin has been chosen as a European experimental site since 1993 (European Commission research projects - EUROSEISTEST). It has been investigated for experimental and theoretical studies on site effects. The Mygdonian basin is currently covered by a permanent seismological network and has been mainly characterized in 2D and 3D with geophysical and geotechnical studies (Bastani et al, 2011; Cadet and Savvaidis, 2011; Gurk et al, 2007; Manakou et al, 2007; Manakou et al, 2010; Pitilakis et al, 1999; Raptakis et al, 2000; Raptakis et al, 2005). All these studies allowed understanding the influence of geological structures and local site conditions on seismic site response. For these reasons, this site has been chosen for a verification exercise for numerical simulations in the framework of an ongoing international collaborative research project (Euroseistest Verification and Validation Project - E2VP). The verification phase has been made using a first 3D geophysical and geotechnical model (Manakou, 2007) about 5 km wide and 15 km long, centered on the Euroseistest site. After this verification phase, it has been decided to update, optimize and extend this model in order to obtain a more detailed model of the 3D geometry of the entire basin, especially the bedrock 3D geometry which can affect drastically the results of numerical simulations for site effect studies. In our study, we build a 3D geological model of the present-day structure of the entire Mygdonian basin. This "precise" model is 12 km wide, 65 km long and is 400 m deep in average. It has been built using geophysical, geotechnical and geological data. The database is heterogeneous and composed of hydrogeological boreholes, seismic refraction surveys, array microtremor measurements, electrical and geotechnical surveys. We propose an integrated

  20. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  1. 3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

    NASA Astrophysics Data System (ADS)

    Hong, Ik-Seon; Yi, Yu; Yu, Jaehyung; Haruyama, Junichi

    2015-06-01

    When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

  2. Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry.

    PubMed

    Zhang, Chuanwei; Liu, Shiyuan; Shi, Tielin; Tang, Zirong

    2011-02-01

    The success of the model-based infrared reflectrometry (MBIR) technique relies heavily on accurate modeling and fast calculation of the infrared metrology process, which continues to be a challenge, especially for three-dimensional (3D) trench structures. In this paper, we present a simplified formulation for effective medium approximation (EMA), determined by a fitting-based method for the modeling of 3D trench structures. Intensive investigations have been performed with an emphasis on the generality of the fitting-determined (FD)-EMA formulation in terms of trench depth, trench pitch, and incidence angle so that its application is not limited to a particular configuration. Simulations conducted on a taper trench structure have further verified the proposed FD-EMA and demonstrated that the MBIR metrology with the FD-EMA-based model achieves an accuracy one order higher than that of the conventional zeroth-order EMA-based model.

  3. Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten

    2015-12-01

    The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.

  4. In Vitro Model of the Epidermis: Connecting Protein Function to 3D Structure.

    PubMed

    Arnette, Christopher; Koetsier, Jennifer L; Hoover, Paul; Getsios, Spiro; Green, Kathleen J

    2016-01-01

    Much of our understanding of the biological processes that underlie cellular functions in humans, such as cell-cell communication, intracellular signaling, and transcriptional and posttranscriptional control of gene expression, has been acquired from studying cells in a two-dimensional (2D) tissue culture environment. However, it has become increasingly evident that the 2D environment does not support certain cell functions. The need for more physiologically relevant models prompted the development of three-dimensional (3D) cultures of epithelial, endothelial, and neuronal tissues (Shamir & Ewald, 2014). These models afford investigators with powerful tools to study the contribution of spatial organization, often in the context of relevant extracellular matrix and stromal components, to cellular and tissue homeostasis in normal and disease states.

  5. Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling

    PubMed Central

    WATANABE, TOMONARI; HANAN, JIM S.; ROOM, PETER M.; HASEGAWA, TOSHIHIRO; NAKAGAWA, HIROSHI; TAKAHASHI, WATARU

    2005-01-01

    • Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. • Methods A japonica type rice, ‘Namaga’, was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create ‘3D virtual rice’ plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. • Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The ‘3D virtual rice’ reproduces the structural development of isolated plants and provides a good estimation of the tillering process, and of the accumulation of leaves. • Conclusions The results indicated that the ‘3D virtual rice’ has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion. PMID:15820987

  6. A study of the effects of degraded imagery on tactical 3D model generation using structure-from-motion

    NASA Astrophysics Data System (ADS)

    Bolick, Leslie; Harguess, Josh

    2016-05-01

    An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.

  7. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  8. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  9. Cycle graph analysis for 3D roof structure modelling: Concepts and performance

    NASA Astrophysics Data System (ADS)

    Perera, Gamage Sanka Nirodha; Maas, Hans-Gerd

    2014-07-01

    The paper presents a cycle graph analysis approach to the automatic reconstruction of 3D roof models from airborne laser scanner data. The nature of convergences of topological relations of plane adjacencies, allowing for the reconstruction of roof corner geometries with preserved topology, can be derived from cycles in roof topology graphs. The topology between roof adjacencies is defined in terms of ridge-lines and step-edges. In the proposed method, the input point cloud is first segmented and roof topology is derived while extracting roof planes from identified non-terrain segments. Orientation and placement regularities are applied on weakly defined edges using a piecewise regularization approach prior to the reconstruction, which assists in preserving symmetries in building geometry. Roof corners are geometrically modelled using the shortest closed cycles and the outermost cycle derived from roof topology graph in which external target graphs are no longer required. Based on test results, we show that the proposed approach can handle complexities with nearly 90% of the detected roof faces reconstructed correctly. The approach allows complex height jumps and various types of building roofs to be firmly reconstructed without prior knowledge of primitive building types.

  10. 3D Documentation and BIM Modeling of Cultural Heritage Structures Using UAVs: The Case of the Foinikaria Church

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Hadjimitsis, D.

    2016-10-01

    The documentation of architectural cultural heritage sites has traditionally been expensive and labor-intensive. New innovative technologies, such as Unmanned Aerial Vehicles (UAVs), provide an affordable, reliable and straightforward method of capturing cultural heritage sites, thereby providing a more efficient and sustainable approach to documentation of cultural heritage structures. In this study, hundreds of images of the Panagia Chryseleousa church in Foinikaria, Cyprus were taken using a UAV with an attached high resolution camera. The images were processed to generate an accurate digital 3D model by using Structure in Motion techniques. Building Information Model (BIM) was then used to generate drawings of the church. The methodology described in the paper provides an accurate, simple and cost-effective method of documenting cultural heritage sites and generating digital 3D models using novel techniques and innovative methods.

  11. Synthesis, structure determination and 3D molecular modeling of some novel manganese(II) complexes

    NASA Astrophysics Data System (ADS)

    Hari Kumaran Nair, M. L.; Lalitha, K. P.

    2013-06-01

    Some novel manganese(II) complexes with the ligand (z)-4-((2-hydroxy-4-methoxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, MPAAP, 3-methoxy phenol azoantipyrine, L1, having the formulae [Mn(L1)2(X)2], [Mn(L1)2(Y)2], where X = Cl- / Br-; Y = NCS- were synthesized and characterized by elemental analysis, molar conductance and magnetic susceptibility measurements, spectral (IR, UV-Visible, EPR, FAB mass) studies, thermogravimetric analysis, powder XRD and cyclic voltammetric studies and by SEM image. An octahedral structure is tentatively proposed for the complexes with respect to the above studies. The [Mn(L1)2(Y)2] was subjected to γ-ray irradiation and the internal changes accompanied were evaluated. The energy minimized configuration of the complex [Mn(L1)2(Y)2] was made with CHEM Bio 3D Ultra 11.0 and the respective parameters are computed. The ligand and its complex [Mn(L1)2(Y)2] were screened for their possible antimicrobial activities.

  12. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture

    PubMed Central

    Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.

    2011-01-01

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194

  13. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    PubMed

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  14. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  15. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest.

    PubMed

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-06-12

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived.

  16. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.

  17. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.

    PubMed

    Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling

    2014-11-12

    Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.

  18. Structural evolution of the Currawong Pb-Zn-Cu deposit (Victoria, Australia) - new insights from 3D implicit modelling linked to structural observations

    NASA Astrophysics Data System (ADS)

    Vollgger, Stefan; Cruden, Alexander

    2015-04-01

    Structurally controlled mineralisation commonly shows distinctive geometries, orientations and spatial distributions that derive from associated structures. These structures have the ability to effectively transport, trap and focus fluids. Moreover, structures such as faults and shear zones can offset, truncate and spatially redistribute earlier mineralisation. We present a workflow that combines structural fieldwork with state-of-the-art 3D modelling to assess the structural framework of an ore deposit. Traditional 3D models of ore deposits rely on manual digitisation of cross sections and their subsequent linkage to form 3D objects. Consequently, the geological interpretation associated with each section will be reflected in the resulting 3D models. Such models are therefore biased and should be viewed and interpreted with caution. Conversely, 3D implicit modelling minimises the modelling bias by using an implicit function that is fitted to spatial data such as drillhole data. This function defines a scalar field, from which 3D isosurfaces can be extracted. Assay data can be visualised as 3D grade shells at various threshold grade values and used to analyse and measure the shape, distribution and orientation of mineralisation. Additionally, lithology codes from drillholes can be used to extract lithological boundaries in 3D without the need for manual digitisation. In our case study at the Palaeozoic Currawong Pb-Zn-Cu deposit (Victoria, Australia), orientations extracted from ore bodies within a 3D implicit model have been compared to structural field data collected around the deposit. The data and model suggest that Currawong's massive sulfide lenses have been structurally modified. Mineralisation trends are parallel to a dominant NW dipping foliation mapped in the field. This foliation overprints earlier bedding in the host metasediments that has been deformed into upright folds. Several sets of steep faults further increase the structural complexity of the

  19. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling

    PubMed Central

    Segura, Joan; Sanchez-Garcia, Ruben; Tabas-Madrid, Daniel; Cuenca-Alba, Jesus; Sorzano, Carlos Oscar S.; Carazo, Jose Maria

    2016-01-01

    Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es. PMID:26772592

  20. Mechanism of Enzymatic Reaction and Protein-Protein Interactions of PLD from a 3D Structural Model

    PubMed Central

    Mahankali, Madhu; Alter, Gerald; Gomez-Cambronero, Julian

    2014-01-01

    The phospholipase D (PLD) superfamily catalyzes the hydrolysis of cell membrane phospholipids generating the key intracellular lipid second messenger phosphatidic acid. However, there is not yet any resolved structure either from a crystallized protein or from NMR of any mammalian PLDs. We propose here a 3D model of the PLD2 by combining homology and ab initio 3 dimensional structural modeling methods, and docking conformation. This model is in agreement with the biochemical and physiological behavior of PLD in cells. For the lipase activity, the N- and C-terminal histidines of the HKD motifs (His 442/His 756) form a catalytic pocket, which accommodates phosphatidylcholine head group (but not phosphatidylethanolamine or phosphatidyl serine). The model explains the mechanism of the reaction catalysis, with nucleophilic attacks of His 442 and water, the latter aided by His 756. Further, the secondary structure regions superimposed with bacterial PLD crystal structure, which indicated an agreement structure model obtained. It also explains protein-protein interactions, such as PLD2-Rac2 transmodulation (with a 1:2 stoichiometry), PLD2 GEF activity on Rac2 that is relevant for actin polymerization and cell migration, and a biding site for phosphoinositides. Since tumor-aggravating properties have been found in mice overexpressing PLD2 enzyme, the 3D model of PLD2 will be also useful, to a large extent, in developing pharmaceuticals to modulate its in vivo activity. PMID:25308783

  1. 3D-geological structures with digital elevation models using GPU programming

    NASA Astrophysics Data System (ADS)

    Mateo Lázaro, Jesús; Sánchez Navarro, José Ángel; García Gil, Alejandro; Edo Romero, Vanesa

    2014-09-01

    We present an application that visualises three-dimensional geological structures with digital terrain models. The three-dimensional structures are displayed as their intersections with two-dimensional surfaces that may be defined analytically (e.g., sections) or with grid meshes in the case of irregular surfaces such as the digital terrain models. The process begins with classic techniques of terrain visualisation using hypsometric shading with textures. Then, geometric transformations that are easily conceived and programmed are added, thus representing the three-dimensional structures with their location and orientation. Functions of three variables are used to define the geological structures, and data from digital terrain models are used as one of the variables. This provides a simple source code and results in a short calculation time. Additionally, the process of generating new textures can be performed by a Graphics Processing Unit (GPU), thereby making real-time processing very effective and providing the possibility of displaying the simulation of geological structures in motion.

  2. Data-driven interactive 3D medical image segmentation based on structured patch model.

    PubMed

    Park, Sang Hyun; Yun, Il Dong; Lee, Sang Uk

    2013-01-01

    In this paper, we present a novel three dimensional interactive medical image segmentation method based on high level knowledge of training set. Since the interactive system should provide intermediate results to an user quickly, insufficient low level models are used for most of previous methods. To exploit the high level knowledge within a short time, we construct a structured patch model that consists of multiple corresponding patch sets. The structured patch model includes the spatial relationships between neighboring patch sets and the prior knowledge of the corresponding patch set on each local region. The spatial relationships accelerate the search of corresponding patch in test time, while the prior knowledge improves the segmentation accuracy. The proposed framework provides not only fast editing tool, but the incremental learning system through adding the segmentation result to the training set. Experiments demonstrate that the proposed method is useful for fast and accurate segmentation of target objects from the multiple medical images.

  3. 3D Modeling Engine Representation Summary Report

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  4. Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures.

    PubMed

    Buytaert, Jan A N; Salih, Wasil H M; Dierick, Manual; Jacobs, Patric; Dirckx, Joris J J

    2011-12-01

    In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.

  5. 3D active shape models of human brain structures: application to patient-specific mesh generation

    NASA Astrophysics Data System (ADS)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  6. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  7. Quiescent Prominences in the Era of ALMA: Simulated Observations Using the 3D Whole-prominence Fine Structure Model

    NASA Astrophysics Data System (ADS)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.; Anzer, Ulrich

    2016-12-01

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible in the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence-corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.

  8. Modelling a 3D structure for EgDf1 from shape Echinococcus granulosus: putative epitopes, phosphorylation motifs and ligand

    NASA Astrophysics Data System (ADS)

    Paulino, M.; Esteves, A.; Vega, M.; Tabares, G.; Ehrlich, R.; Tapia, O.

    1998-07-01

    EgDf1 is a developmentally regulated protein from the parasite Echinococcus granulosus related to a family of hydrophobic ligand binding proteins. This protein could play a crucial role during the parasite life cycle development since this organism is unable to synthetize most of their own lipids de novo. Furthermore, it has been shown that two related protein from other parasitic platyhelminths (Fh15 from Fasciola hepatica and Sm14 from Schistosoma mansoni) are able to confer protective inmunity against experimental infection in animal models. A three-dimensional structure would help establishing structure/function relationships on a knowledge based manner. 3D structures for EgDf1 protein were modelled by using myelin P2 (mP2) and intestine fatty acid binding protein (I-FABP) as templates. Molecular dynamics techniques were used to validate the models. Template mP2 yielded the best 3D structure for EgDf1. Palmitic and oleic acids were docked inside EgDf1. The present theoretical results suggest definite location in the secondary structure of the epitopic regions, consensus phosphorylation motifs and oleic acid as a good ligand candidate to EgDf1. This protein might well be involved in the process of supplying hydrophobic metabolites for membrane biosynthesis and for signaling pathways.

  9. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  10. Constructing Arguments with 3-D Printed Models

    ERIC Educational Resources Information Center

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  11. Deformable modeling using a 3D boundary representation with quadratic constraints on the branching structure of the Blum skeleton.

    PubMed

    Yushkevich, Paul A; Zhang, Hui Gary

    2013-01-01

    We propose a new approach for statistical shape analysis of 3D anatomical objects based on features extracted from skeletons. Like prior work on medial representations, the approach involves deforming a template to target shapes in a way that preserves the branching structure of the skeleton and provides intersubject correspondence. However, unlike medial representations, which parameterize the skeleton surfaces explicitly, our representation is boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods developed 2D objects or tube-like 3D objects, we impose symmetry constraints on tuples of boundary points in a way that guarantees the preservation of the skeleton's topology under deformation. Once discretized, the problem of deforming a template to a target shape is formulated as a quadratically constrained quadratic programming problem. The new technique is evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from diffusion-weighted MRI.

  12. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.

    PubMed

    Filoux, Erwan; Callé, Samuel; Lou-Moeller, Rasmus; Lethiecq, Marc; Levassort, Franck

    2010-05-01

    The transient analysis of piezoelectric transducers is often performed using finite-element or finite-difference time-domain methods, which efficiently calculate the vibration of the structure but whose numerical dispersion prevents the modeling of waves propagating over large distances. A second analytical or numerical simulation is therefore often required to calculate the pressure field in the propagating medium (typically water) to deduce many important characteristics of the transducer, such as spatial resolutions and side lobe levels. This is why a hybrid algorithm was developed, combining finite- difference and pseudo-spectral methods in the case of 2-D configurations to simulate accurately both the generation of acoustic waves by the piezoelectric transducer and their propagation in the surrounding media using a single model. The algorithm was redefined in this study to take all three dimensions into account and to model single-element transducers, which usually present axisymmetrical geometry. This method was validated through comparison of its results with those of finite-element software, and was used to simulate the behavior of planar and lens-focused transducers. A high-frequency (30 MHz) transducer based on a screen-printed piezoelectric thick film was fabricated and characterized. The numerical results of the hybrid algorithm were found to be in good agreement with the experimental measurements of displacements at the surface of the transducer and of pressure radiated in water in front of the transducer.

  13. Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids

    SciTech Connect

    Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.

    1998-01-01

    New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.

  14. Processes of Equatorial Thermal Structure: An Analysis of Galileo Temperature Profile with 3-D Model

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Waite, J. H., Jr.; Bougher, S. W.; Gladstone, G. R.

    2005-01-01

    The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter's thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approximately 2 kilometers per second and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy to equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (less than 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (greater than 0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.

  15. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  16. In silico 3D structure modeling and inhibitor binding studies of human male germ cell-associated kinase.

    PubMed

    Tanneeru, Karunakar; Balla, Ashok Raja; Guruprasad, Lalitha

    2015-01-01

    Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein-inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH-pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.

  17. Crustal density structure in northwestern South America derived from analysis and 3-D modeling of gravity and seismicity data

    NASA Astrophysics Data System (ADS)

    Sanchez-Rojas, J.; Palma, M.

    2014-11-01

    This paper presents a three-dimensional (3-D) interpretation of new gravity and seismicity datasets for northern South America. A 3-D forward density model was constructed on the basis of deep wide-angle seismic refraction sections, Moho depth from receiver functions, and surface geology. Density values were estimated from published borehole data for sediments by using empirical velocity-density functions and considering mineralogical-chemical composition variations under typical pressure-temperature conditions for upper and lower crustal rocks. The modeled 3-D density structure was kept as simple as possible. The continental and oceanic plates were formed by two sedimentary bodies, one crustal body, and one mantle lithosphere body overlying a sub-lithospheric mantle. The Caribbean plate was modeled with an atypical crustal thickness of ~ 18 km (including sediments). The geometry of the Caribbean plate was modeled using a combination of gravity modeling and analyses of the seismicity and focal-mechanism solutions. Intermediate seismicity and the orientation of the T-axes appeared aligned along the predicted position of the slab. As a result, the estimated slab dip angle under Maracaibo and the Mérida Andes was ~ 15° and increases up to ~ 20° after 100 km depth. The model shows two orientations in the slab strike: ~ N150°E ± 5 in western Colombia and southward underneath the Maracaibo block. The modeling results suggest that the northern South American upper and lower crusts are relatively light and the density of the Caribbean crust is typical for an oceanic crust.

  18. Alpine fold-and-thrust structures revealed: A 3D model from the Helvetic Zone (Säntis area, Switzerland)

    NASA Astrophysics Data System (ADS)

    Sala, Paola; Pfiffner, Adrian; Frehner, Marcel

    2013-04-01

    To investigate the geometrical relationships between folding and thrust faulting, a 3D model of the Helvetic fold-and-thrust belt in Eastern Switzerland is built from several cross-sections in the Säntis area, between Hoher Kasten and Wildhaus. Existing cross-sections from Schlatter (1941), Kempf (1966), and Pfiffner (2000; 2011) were partly redrawn and cross-checked for line length balancing. Additional cross-sections based on surface geology were newly constructed to fill areas with a low cross-section density and to solve geological problems. The interpolation of the formation interfaces and the thrusts between the cross-sections allowed generating six main surfaces corresponding to the base of the Öhrli and Betlis Limestones, the Helvetic Kieselkalk, the Schrattenkalk and Garschella Formations, and the Seewen Limestone. The main structural elements in the Säntis area, such as the Säntis Thrust or the Sax-Schwende Fault, are also implemented in the model. The 3D model highlights the shape of the main anticline-syncline pairs (e.g., Altmann-Wildseeli, Schafberg-Moor, Roslenfirst-Mutschen, etc...) and how these fold trains vary in amplitude and wavelength along strike. The model also clearly shows the lateral extension, the trend, and the variation in displacement of the principal faults. The reconstruction of 3D horizons allows the geologists investigating cross-sections along any given direction. The 3D model is useful to understand how the changes of the internal nappe structures, namely folds and thrust faults, change along strike. Such changes occur either across transverse faults or in a more gradual manner. The model can and will also be used as a base to perform retrodeformation and strain estimation. Shortening will be calculated using the base Schrattenkalk as the reference horizon. REFERENCES Pfiffner, O.A., 2000: Cross-sections in Funk, H., Habich, J.K., Hantke, R. & Pfiffner, O.A., 2000: Blatt 1115 Säntis - Geologischer Atlas der Schweiz 1

  19. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    PubMed

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.

  20. 3-D seismic tomographic modelling of the crustal structure of northwestern Svalbard based on deep seismic soundings

    NASA Astrophysics Data System (ADS)

    Czuba, Wojciech

    2016-11-01

    Wide angle refraction and reflection measurements were carried out in the passive continental margin zone of the northwestern Svalbard during several expeditions in 1978-1999. Data from a set of 2-D archival and modern seismic profiles recorded in-line and off-line, and from an additional permanent seismic station, were altogether used for seismic modelling of the crustal structure of the study area. Seismic arrivals (airgun and chemical explosive sources) were recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone stations (OBH). Good quality refracted and reflected P waves have provided an excellent data base for a seismic modelling. Chemical explosive sources were recorded even up to 300 km distances. The 3-D tomographic inversion method was applied. The results are comparable to the earlier 2-D modelling. Additional off-line information allowed to develop a 3-D image of the crustal structure. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho interface was determined east of the Molloy Deep and in the Knipovich Ridge. The Moho discontinuity deepens down to about 30 km below the continental crust of Spitsbergen.

  1. 3-D seismic tomographic modelling of the crustal structure of northwestern Svalbard based on deep seismic soundings

    NASA Astrophysics Data System (ADS)

    Czuba, Wojciech

    2017-01-01

    Wide angle refraction and reflection measurements were carried out in the passive continental margin zone of the northwestern Svalbard during several expeditions in 1978-1999. Data from a set of 2-D archival and modern seismic profiles recorded in-line and off-line, and from an additional permanent seismic station, were altogether used for seismic modelling of the crustal structure of the study area. Seismic arrivals (airgun and chemical explosive sources) were recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone stations (OBH). Good quality refracted and reflected P waves have provided an excellent data base for a seismic modelling. Chemical explosive sources were recorded even up to 300 km distances. The 3-D tomographic inversion method was applied. The results are comparable to the earlier 2-D modelling. Additional off-line information allowed to develop a 3-D image of the crustal structure. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho interface was determined east of the Molloy Deep and in the Knipovich Ridge. The Moho discontinuity deepens down to about 30 km below the continental crust of Spitsbergen.

  2. The Learner Characteristics, Features of Desktop 3D Virtual Reality Environments, and College Chemistry Instruction: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.

    2012-01-01

    We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…

  3. Pattern formation of down-built salt structures: insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris

    2015-04-01

    Many salt diapirs are thought to have formed as a result of down-building, which implies that the top of the diapir remained close to the surface during sediment deposition. This process is largely three-dimensional and in order to better understand what controls the patterns that form as a result of this down-building process, we here perform three-dimensional numerical models and compare the results with analytical models. In our models, we vary several parameters such as initial salt thickness, sedimentation rate, salt viscosity, salt-sediment viscosity contrast as well as the density of sediments. Down-building of three-dimensional diapirs only occurs for a certain range of parameters and is favored by lower sediment/salt viscosity contrasts and sedimentation rates in agreement with analytical predictions and findings from previous 2D models. However, the models show that the sedimentation rate has an additional effect on the formation and evolution of three-dimensional diapir patterns. At low sedimentation rates, salt ridges that form during early model stages remain preserved at later stages as well. For higher sedimentation rates, the initial salt ridges break up and form finger-like diapirs at the junction of salt ridges, which results in different salt exposure patterns at the surface. Once the initial pattern of diapirs is formed, higher sedimentation rate can also result in covered diapirs if the diapir extrusion velocity is insufficiently large. We quantify the effect of sedimentation rate on the number of diapirs exposed at the surface as well as on their spacing. In some cases, this final pattern is distinctly different from the initial polygonal pattern. We also study the extrusion of salt through time in the simulations, and show that it can be related to the geometries of the sedimentary layers surrounding the diapirs. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program

  4. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models

    NASA Astrophysics Data System (ADS)

    Miller, Craig A.; Williams-Jones, Glyn

    2016-06-01

    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, ~ 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  5. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  6. Scalable 3D GIS environment managed by 3D-XML-based modeling

    NASA Astrophysics Data System (ADS)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  7. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  8. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  9. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  10. 3D modelling of a dolomitized syn-sedimentary structure: an exhumed potential analogue of hydrocarbon reservoir.

    NASA Astrophysics Data System (ADS)

    Martinelli, Mattia; Franceschi, Marco; Massironi, Matteo; Bistacchi, Andrea; Di Cuia, Raffaele; Rizzi, Alessandro

    2016-04-01

    further increase the potential creation of potential hydrocarbon traps. These complex conditions are visible in a syn-sedimentary structure spectacularly exposed on the Monte Testo (Trentino, Italy). In this contribution, we present a 3D geo-model of this structure, obtained with SKUA-gOcad, based on 3D photogrammetric modelling, detailed geological mapping and structural analysis, porosity analysis carried out on representative sections, and geostatistical simulation of porosity on dolomitized bodies. Thanks to the 3D model we obtained: i) a thickness map of the Rotzo Formation that allow us to understand which faults were active during the deposition of the formation and which areas could have been more suitable for hydrocarbon accumulation; ii) a geometric and volumetric model of the structure that permitted us to study the porosity distribution and to define the potential volume of hydrocarbons that could be hosted by a similar structure. These results were eventually extrapolated to the entire platform, providing clues on the hydrocarbon potential of similar buried geologic bodies.

  11. The geothermal field below the city of Berlin, Germany: Results from structurally and parametrically improved 3D Models

    NASA Astrophysics Data System (ADS)

    Frick, Maximilian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena

    2016-04-01

    The goal of this study was to quantify the influence of the geological structure and geophysical parametrization of model units on the geothermal field as calculated by 3D numerical simulations of coupled fluid and heat transport for the subsurface of Berlin, Germany. The study area is located in the Northeast German Basin which is filled with several kilometers of sediments. This sedimentary infill includes the clastic sedimentary units Middle Buntsandstein and Sedimentary Rotliegend which are of particular interest for geothermal exploration. Previous studies conducted in the Northeast German Basin have already shown the geometries and properties of the geological units majorly control the distribution of subsurface temperatures. In this study we followed a two-step approach, where we first improved an existing structural model by integrating newly available 57 geological cross-sections, well data and deep seismics (down to ~4 km). Secondly, we performed a sensitivity analysis investigating the effects of varying physical fluid and rock properties on the subsurface temperature field. The results of this study show, that the structural configuration of model units exerts the highest influence on the geothermal field (up to ± 23 K at 1000 m below sea level). Here, the Rupelian clay aquitard, displaying a heterogeneous thickness distribution, locally characterized by hydrogeological windows (i.e. domains of no thickness) enabling intra-aquifer groundwater circulation has been identified as major controlling factor. The new structural configuration of this unit (more continuous, less numerous hydrogeological windows) also leads to a reduction of the influence of different boundary conditions and heat transport mechanisms considered. Additionally, the models results show that calculated temperatures highly depend on geophysical properties of model units whereas the hydraulic conductivity of the Cenozoic succession was identified as most dominant, leading to changes

  12. Segmentation of the Aortic Valve Apparatus in 3D Echocardiographic Images: Deformable Modeling of a Branching Medial Structure.

    PubMed

    Pouch, Alison M; Tian, Sijie; Takabe, Manabu; Wang, Hongzhi; Yuan, Jiefu; Cheung, Albert T; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2015-01-01

    3D echocardiographic (3DE) imaging is a useful tool for assessing the complex geometry of the aortic valve apparatus. Segmentation of this structure in 3DE images is a challenging task that benefits from shape-guided deformable modeling methods, which enable inter-subject statistical shape comparison. Prior work demonstrates the efficacy of using continuous medial representation (cm-rep) as a shape descriptor for valve leaflets. However, its application to the entire aortic valve apparatus is limited since the structure has a branching medial geometry that cannot be explicitly parameterized in the original cm-rep framework. In this work, we show that the aortic valve apparatus can be accurately segmented using a new branching medial modeling paradigm. The segmentation method achieves a mean boundary displacement of 0.6 ± 0.1 mm (approximately one voxel) relative to manual segmentation on 11 3DE images of normal open aortic valves. This study demonstrates a promising approach for quantitative 3DE analysis of aortic valve morphology.

  13. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    NASA Astrophysics Data System (ADS)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  14. 3D Microperfusion Model of ADPKD

    DTIC Science & Technology

    2015-10-01

    Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D

  15. Quantitative 3D structured illumination microscopy of nuclear structures.

    PubMed

    Kraus, Felix; Miron, Ezequiel; Demmerle, Justin; Chitiashvili, Tsotne; Budco, Alexei; Alle, Quentin; Matsuda, Atsushi; Leonhardt, Heinrich; Schermelleh, Lothar; Markaki, Yolanda

    2017-05-01

    3D structured illumination microscopy (3D-SIM) is the super-resolution technique of choice for multicolor volumetric imaging. Here we provide a validated sample preparation protocol for labeling nuclei of cultured mammalian cells, image acquisition and registration practices, and downstream image analysis of nuclear structures and epigenetic marks. Using immunostaining and replication labeling combined with image segmentation, centroid mapping and nearest-neighbor analyses in open-source environments, 3D maps of nuclear structures are analyzed in individual cells and normalized to fluorescence standards on the nanometer scale. This protocol fills an unmet need for the application of 3D-SIM to the technically challenging nuclear environment, and subsequent quantitative analysis of 3D nuclear structures and epigenetic modifications. In addition, it establishes practical guidelines and open-source solutions using ImageJ/Fiji and the TANGO plugin for high-quality and routinely comparable data generation in immunostaining experiments that apply across model systems. From sample preparation through image analysis, the protocol can be executed within one week.

  16. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  17. Analysis of positions and substituents on genotoxicity of fluoroquinolones with quantitative structure-activity relationship and 3D Pharmacophore model.

    PubMed

    Fengxian, Chen; Reti, Hai

    2017-02-01

    The genotoxicity values of 21 quinolones were studied to establish a quantitative structure-activity relationship model and 3D Pharmacophore model separately for screening essential positions and substituents that contribute to genotoxicity of fluoroquinolones (FQs). A full factor experimental design was performed to analyze the specific main effect and second-order interaction effect of different positions and substituents on genotoxicity, forming a reasonable modification scheme which was validated on typical FQ with genotoxicity and efficacy data. Four positions (1, 5, 7, 8) were screened finally to form the full factorial experimental design which contained 72 congeners in total, illustrating that: the dominant effect of 5 and 7-positions on genotoxicity of FQs is main effect; meanwhile the effect of 1 and 8-positions is a second-order interaction effect; two adjacent positions always have stronger second-order interaction effect and lower genotoxicity; the obtained modification scheme had been validated on typical FQ congeners with the modified compound has a lower genotoxicity, higher synthesis feasibilities and efficacy.

  18. Modeling cellular processes in 3D.

    PubMed

    Mogilner, Alex; Odde, David

    2011-12-01

    Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.

  19. Fluid–Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure

    SciTech Connect

    Toma, Milan; Jensen, Morten Ø.; Einstein, Daniel R.; Yoganathan, Ajit P.; Cochran, Richard P.; Kunzelman, Karyn S.

    2015-07-17

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in-vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with *CT. Experimental data from the in-vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed lea et dynamics, and force vectors from the in-vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements are important in validating and adjusting material parameters in computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  20. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  1. Jurassic extension and Cenozoic inversion tectonics in the Asturian Basin, NW Iberian Peninsula: 3D structural model and kinematic evolution

    NASA Astrophysics Data System (ADS)

    Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura

    2016-09-01

    We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.

  2. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    PubMed

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  3. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    NASA Astrophysics Data System (ADS)

    Maerten, F.; Maerten, L.; Pollard, D. D.

    2014-11-01

    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  4. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O.; Samson, P.; Segonds, D.

    1996-12-31

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  5. Reservoir geology using 3D modelling tools

    SciTech Connect

    Dubrule, O. ); Samson, P. ); Segonds, D. )

    1996-01-01

    The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.

  6. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  7. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  8. MSV3d: database of human MisSense Variants mapped to 3D protein structure.

    PubMed

    Luu, Tien-Dao; Rusu, Alin-Mihai; Walter, Vincent; Ripp, Raymond; Moulinier, Luc; Muller, Jean; Toursel, Thierry; Thompson, Julie D; Poch, Olivier; Nguyen, Hoan

    2012-01-01

    The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d.

  9. Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling

    NASA Astrophysics Data System (ADS)

    Kalberg, Thomas; Gohl, Karsten; Eagles, Graeme; Spiegel, Cornelia

    2015-12-01

    The Amundsen Sea Embayment of West Antarctica is of particular interest as it provides critical geological boundary conditions in better understanding the dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is whether this region has been affected by the West Antarctic Rift System, which is one of the largest in the world and the dominating tectonic feature in West Antarctica. Previous geophysical studies suggested an eastward continuation of this rift system into the Amundsen Sea Embayment. This geophysical study of the Amundsen Sea Embayment presents a compilation of data collected during two RV Polarstern expeditions in the Amundsen Sea Embayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived gravity data of the Amundsen Sea Embayment complete the dataset. Our 3-D gravity and magnetic models of the lithospheric architecture and development of this Pacific margin improve previous interpretations from 2-D models of the region. The crust-mantle boundary beneath the continental rise and shelf is between 14 and 29 km deep. The imaged basement structure can be related to rift basins within the Amundsen Sea Embayment, some of which can be interpreted as products of the Cretaceous rift and break-up phase and some as products of later propagation of the West Antarctic Rift System into the region. An estimate of the flexural rigidity of the lithosphere reveals a thin elastic thickness in the eastern embayment which increases towards the west. The results are comparable to estimates in other rift systems such as the Basin and Range province or the East African Rift. Based on these results, we infer an arm of the West Antarctic Rift System is superposed on a distributed Cretaceous rift province in the Amundsen Sea Embayment. Finally, the embayment was affected by magmatism from discrete sources along the Pacific margin of West Antarctica in the Cenozoic.

  10. 3D Structures of Responsive Nanocompartmentalized Microgels.

    PubMed

    Gelissen, Arjan P H; Oppermann, Alex; Caumanns, Tobias; Hebbeker, Pascal; Turnhoff, Sarah K; Tiwari, Rahul; Eisold, Sabine; Simon, Ulrich; Lu, Yan; Mayer, Joachim; Richtering, Walter; Walther, Andreas; Wöll, Dominik

    2016-11-09

    Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core-shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.

  11. Lithological 3D grid model of the Vuonos area built by using geostatistical simulation honoring the 3D fault model and structural trends of the Outokumpu association rocks in Eastern Finland

    NASA Astrophysics Data System (ADS)

    Laine, Eevaliisa

    2015-04-01

    The Outokumpu mining district - a metallogenic province about 100 km long x 60 km wide - hosts a Palaeoproterozoic sulfide deposit characterized by an unusual lithological association. It is located in the North Karelia Schist Belt , which was thrust on the late Archaean gneissic-granitoid basement of the Karelian craton during the early stages of the Svecofennian Orogeny between 1.92 and 1.87 Ga (Koistinen 1981). Two major tectono-stratigraphic units can be distinguished, a lower, parautochthonous 'Lower Kaleva' unit and an upper, allochthonous 'upper Kaleva' unit or 'Outokumpu allochthon'. The latter consists of tightly-folded deep marine turbiditic mica schists and metagraywackes containing intercalations of black schist, and the Outo¬kumpu assemblage, which comprises ca. 1950 Ma old, serpentinized peridotites surrounded by carbonate-calc-silicate ('skarn')-quartz rocks. The ore body is enclosed in the Outokumpu assemblage, which is thought to be part of a disrupted and incomplete ophiolite complex (Vuollo & Piirainen 1989) that can be traced to the Kainuu schist belt further north where the well-preserved Jormua ophiolite is ex¬posed (Kontinen 1987, Peltonen & Kontinen 2004). Outokumpu can be divided into blocks divided by faults and shear zones (Saalmann and Laine, 2014). The aim of this study was to make a 3D lithological model of a small part of the Outokumpu association rocks in the Vuonos area honoring the 3D fault model built by Saalmann and Laine (2014). The Vuonos study area is also a part of the Outokumpu mining camp area (Aatos et al. 2013, 2014). Fault and shear structures was used in geostatistical gridding and simulation of the lithologies. Several possible realizations of the structural grids, conforming the main lithological trends were built. Accordingly, it was possible to build a 3D structural grid containing information of the distribution of the possible lithologies and an estimation the associated uncertainties. References: Aatos, S

  12. 3-D visualization of geologic structures and processes

    NASA Astrophysics Data System (ADS)

    Pflug, R.; Klein, H.; Ramshorn, Ch.; Genter, M.; Stärk, A.

    Interactive 3-D computer graphics techniques are used to visualize geologic structures and simulated geologic processes. Geometric models that serve as input to 3-D viewing programs are generated from contour maps, from serial sections, or directly from simulation program output. Choice of viewing parameters strongly affects the perception of irregular surfaces. An interactive 3-D rendering program and its graphical user interface provide visualization tools for structural geology, seismic interpretation, and visual post-processing of simulations. Dynamic display of transient ground-water simulations and sedimentary process simulations can visualize processes developing through time.

  13. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  14. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.

    PubMed

    Gilbert, Hannah E; Eaton, Julian T; Hannan, Jonathan P; Holers, V Michael; Perkins, Stephen J

    2005-02-25

    Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R(G) of 2.12(+/-0.05) nm, its maximum length of 10nm and its sedimentation coefficient s20,w(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 microM. The X-ray scattering curve for monomeric C3d gave an R(G) value of 1.95 nm, and this together with its s20,w(o) value of 3.17 S gave good agreement with the monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R(G) value of 2.44(+/-0.1) nm, its length of 9 nm and its s20,w(o) value of 3.45(+/-0.01) S showed that its structure was not much more

  15. Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors: development and validation of predictive 3-D QSAR models through extensive ligand- and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert

    2015-08-01

    Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.

  16. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  17. Visualization of 3D Geological Models on Google Earth

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  18. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  19. Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Zhou, Y.

    2010-12-01

    It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement

  20. The Structure of the Kaali Impact Crater (Estonia) Based on 3D Laser Scanning, Electro-Resistivity Tomography, and iSale Hydrocode Modelling

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Wilk, J.; Kukko, A.; Kaartinen, H.; Kohv, M.; Jõeleht, A.; Välja, R.; Paavel, K.; Kriiska, A.; Plado, J.; Losiak, A.; Wisniowski, T.; Huber, M.; Zhu, M. H.

    2015-09-01

    A field investigation using 3D laser scans, ERT, and strike and dip measurements has produced the highest resolution DEM and structural characterization of the Kaali Main crater to date. We use field measurements to constrain iSale formation models.

  1. Crust Uppermost Mantle Structure beneath Eastern Asia: Progress towards a Uniform, Tightly Constrained, High Resolution 3-D Model

    NASA Astrophysics Data System (ADS)

    Shen, W.; Ritzwoller, M. H.; Zheng, Y.; Lin, F. C.; Kim, Y.; Ning, J.; Kang, D.; Feng, L.; Wiens, D. A.

    2015-12-01

    In the past decade, large and dense seismic arrays have been deployed across much of eastern Asia (e.g., the "CEArray" and the "China Array" deployed by the China Earthquake Administration (CEA), the NECESS Array deployed collaboratively by China, Japan and the US, Korean Seismic Network, KNET and other networks in Japan, and historical PASSCAL installations), which have been used to produce increasingly well resolved models of the crust and uppermost mantle at different length scales. These models, however, do not cover eastern Asia uniformly. In this presentation, we report on an effort to generate a uniform high resolution 3-D model of the crust and uppermost mantle beneath eastern Asia using state-of-art surface wave and body wave inversion techniques. Highlights of this effort include: 1) We collect ambient noise cross-correlations using more than 1,800 seismic stations from multiple seismic arrays in this area and perform uniform surface wave tomography for the study area. 2) We collect P-wave receiver functions for over 1,000 stations and Rayleigh wave H/V ratio measurements for over 200 stations in this area. 3) We adopt a Bayesian Monte Carlo inversion to the Rayleigh wave dispersion maps and produce a uniform 3-D model with uncertainties of the crust and uppermost mantle. 4) In the areas where receiver functions and/or Rayleigh wave H/V ratios are collected, we replace the surface wave inversion by a joint inversion of surface waves and these seismic observables. The resulting model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle which we summarize and discuss with focus on the relationship between the observed crustal variations and tectonic/geological boundaries and lithospheric modifications associated with volcanism in Northeast China.

  2. Characteristics of pore structures in Selma Chalk using dual FIB-SEM 3D imaging and Lattice Boltzmann Modeling

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.

    2012-12-01

    Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structures. This is especially true for chalk materials, where pore networks are small and complex, and often characterized at sub-micron scale. Common techniques such as X-ray microtomography, microscopic imaging, or mercury intrusion porosimetry often show a limit on determining pore throat distributions and seal analysis of such fine-grained rocks. Focused ion beam-scanning electron microscope (FIB-SEM) and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in samples of the Cretaceous Selma Group Chalk. The Selma Chalk is considered the seal for oil and gas fields in the Mississippi Interior Salt Basin and a proposed regional-scale seal identified for CO2 sequestration sites. A series of image analysis techniques is used to process raw images in order to recover both nano-scale pore structure and continuous fracture networks. We apply 3D imaging techniques in interpreting FIB-SEM binary data for characterizing geometric pore body and throat distributions and other topological properties, and lattice-Boltzmann method (LBM) for obtaining permeability at several different scales. In particular, comparison of primary flow paths obtained from 3D image analysis and LBM demonstrates that image analysis results may have too many equally plausible flow paths, compared to LBM results. Upscaling of permeability and LB multiphase flow results with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction during multiphase flow, and seal analysis for geologic CO2 storage. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114

  3. Integration of multi-source and multi-scale datasets for 3D structural modeling for subsurface exploration targeting, Luanchuan Mo-polymetallic district, China

    NASA Astrophysics Data System (ADS)

    Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei

    2017-04-01

    In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.

  4. 3-D Teaching Models for All

    ERIC Educational Resources Information Center

    Bradley, Joan; Farland-Smith, Donna

    2010-01-01

    Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…

  5. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    PubMed

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein.

  6. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures

    PubMed Central

    Rahrig, Ryan R.; Petrov, Anton I.; Leontis, Neocles B.; Zirbel, Craig L.

    2013-01-01

    The R3D Align web server provides online access to ‘RNA 3D Align’ (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/. PMID:23716643

  7. Model-based 3D SAR reconstruction

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2014-06-01

    Three dimensional scene reconstruction with synthetic aperture radar (SAR) is desirable for target recognition and improved scene interpretability. The vertical aperture, which is critical to reconstruct 3D SAR scenes, is almost always sparsely sampled due to practical limitations, which creates an underdetermined problem. This papers explores 3D scene reconstruction using a convex model-based approach. The approach developed is demonstrated on 3D scenes, but can be extended to SAR reconstruction of sparsely sampled signals in the spatial and, or, frequency domains. The model-based approach enables knowledge-aided image formation (KAIF) by incorporating spatial, aspect, and sparsity magnitude terms into the image reconstruction. The incorporation of these terms, which are based on prior scene knowledge, will demonstrate improved results compared to traditional image formation algorithms. The SAR image formation problem is formulated as a second order cone program (SOCP) and the results are demonstrated on 3D scenes using simulated data and data from the GOTCHA data collect.1 The model-based results are contrasted against traditional backprojected images.

  8. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  9. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations.

  10. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  11. 3D Structure of Tillage Soils

    NASA Astrophysics Data System (ADS)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and

  12. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  13. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  14. Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model.

    PubMed

    Bertoglio, Cristóbal; Barber, David; Gaddum, Nicholas; Valverde, Israel; Rutten, Marcel; Beerbaum, Philipp; Moireau, Philippe; Hose, Rodney; Gerbeau, Jean-Frédéric

    2014-03-21

    We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid-structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data. First, we estimate the stiffness distribution of a silicon rubber tube from image data. Second, we present the estimation of aortic wall stiffness from real clinical data.

  15. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  16. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  17. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  18. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  19. Sensing and compressing 3-D models

    SciTech Connect

    Krumm, J.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  20. Vision models for 3D surfaces

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda

    1992-11-01

    Different approaches to computational stereo to represent human stereo vision have been developed over the past two decades. The Marr-Poggio theory of human stereo vision is probably the most widely accepted model of the human stereo vision. However, recently developed motion stereo models which use a sequence of images taken by either a moving camera or a moving object provide an alternative method of achieving multi-resolution matching without the use of Laplacian of Gaussian operators. While using image sequences, the baseline between two camera positions for a image pair is changed for the subsequent image pair so as to achieve different resolution for each image pair. Having different baselines also avoids the inherent occlusion problem in stereo vision models. The advantage of using multi-resolution images acquired by camera positioned at different baselines over those acquired by LOG operators is that one does not have to encounter spurious edges often created by zero-crossings in the LOG operated images. Therefore in designing a computer vision system, a motion stereo model is more appropriate than a stereo vision model. However, in some applications where only a stereo pair of images are available, recovery of 3D surfaces of natural scenes are possible in a computationally efficient manner by using cepstrum matching and regularization techniques. Section 2 of this paper describes a motion stereo model using multi-scale cepstrum matching for the detection of disparity between image pairs in a sequence of images and subsequent recovery of 3D surfaces from depth-map obtained by a non convergent triangulation technique. Section 3 presents a 3D surface recovery technique from a stereo pair using cepstrum matching for disparity detection and cubic B-splines for surface smoothing. Section 4 contains the results of 3D surface recovery using both of the techniques mentioned above. Section 5 discusses the merit of 2D cepstrum matching and cubic B

  1. Analyses of Magnetic Structures of Active Region 11117 Evolution using a 3D Data-Driven Magnetohydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Wu, Shi; Jiang, Chaowei; Feng, Xueshang

    We use the photospheric vector magnetograms obtained by Helioseismic and Magnetic Image (HMI) on-board the Solar Dynamic Observatory (SDO) as the boundary conditions for a Data-Driven CESE-MHD model (Jiang et al. 2012) to investigate the physical characteristics and evolution of magnetic field configurations in the corona before and after a solar eruptive event. Specifically, the evolution of AR11117 characteristics such as length of magnetic shear along the neutral line, current helicity, magnetic free energy and the energy flux across the photosphere due to flux emergence and surface flow are presented. The computed 3D magnetic field configuration are compared with AIA (Atmosphere Image Assembly) which shows remarkable resemblance. A topological analyses reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare is caused by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of flare, while the computed magnetic free energy drops during the flare by 10 (30) ergs which is adequate in providing the energy budget of a minor C-class confined flare as observed. Jiang, Chaowei, Xueshang, Feng, S. T Wu and Qiang Hu, Ap. J., 759:85, 2012 Nov 10

  2. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  3. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and

  4. CoMFA and CoMSIA 3D-quantitative structure-activity relationship model on benzodiazepine derivatives, inhibitors of phosphodiesterase IV

    NASA Astrophysics Data System (ADS)

    Ducrot, Pierre; Andrianjara, Charles R.; Wrigglesworth, Roger

    2001-09-01

    Recently, we reported structurally novel PDE4 inhibitors based on 1,4-benzodiazepine derivatives. The main interest in developing bezodiazepine-based PDE4 inhibitors is in their lack of adverse effects of emesis with respect to rolipram-like compounds. A large effort has thus been made toward the structural optimization of this series. In the absence of structural information on the inhibitor binding mode into the PDE4 active site, 2D-QSAR (H-QSAR) and two 3D-QSAR (CoMFA and CoMSIA) methods were applied to improve our understanding of the molecular mechanism controlling the PDE4 affinity of the benzodiazepine derivatives. As expected, the CoMSIA 3D contour maps have provided more information on the benzodiazepine interaction mode with the PDE4 active site whereas CoMFA has built the best tool for activity prediction. The 2D pharmacophoric model derived from CoMSIA fields is consistent with the crystal structure of the PDE4 active site reported recently. The combination of the 2D and 3D-QSAR models was used not only to predict new compounds from the structural optimization process, but also to screen a large library of bezodiazepine derivatives.

  5. Fallon FORGE 3D Geologic Model

    SciTech Connect

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  6. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  7. Gis-Based Smart Cartography Using 3d Modeling

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  8. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  9. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  10. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.

    PubMed

    Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles

    2015-07-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa.

  11. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.

    PubMed

    Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M

    2016-01-01

    RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled

  12. Automated 3D structure composition for large RNAs

    PubMed Central

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J.; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W.

    2012-01-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues. PMID:22539264

  13. Automated 3D structure composition for large RNAs.

    PubMed

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W

    2012-08-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues.

  14. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure

    PubMed Central

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun

    2017-01-01

    Purpose The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. Methods To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6–8 weeks old mice by a 2-step collagenase method. Samples of 4 × 107 hepatocytes with 80%–90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Results Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Conclusion Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers. PMID:28203553

  15. Computational chemistry study of 3D-structure-function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials.

    PubMed

    Concu, Riccardo; Podda, Gianni; Uriarte, Eugenio; González-Díaz, Humberto

    2009-07-15

    In a significant work, Dobson and Doig (J Mol Biol 2003, 330, 771) illustrated protein prediction as enzymatic or not from spatial structure without resorting to alignments. They used 52 protein features and a nonlinear support vector machine model to classify more than 1000 proteins collected from the PDB with a 77% overall accuracy. The most useful features were: the secondary-structure content, the amino acid frequencies, the number of disulphide bonds, and the largest cleft size. Working on the same dataset used by D&D, in this article we reported a good and simple model, based on the Markov chain models (MCM), to classify protein 3D structures as enzymatic or not, taking into consideration the spatial structure without resorting to alignments. Here we define, for the first time, a general MCM to calculate the electrostatic potential, molecular vibrations, van der Waals (vdw) interactions, and hydrophobic interactions (HINT) and use them in comparative studies of potential fields and/or protein function prediction. The dataset is composed of 1371 proteins divided into 689 enzymes and 682 nonenzymes, all proteins were collected from the PDB. The best model we found was a linear model carried out with the linear discriminant analysis; it was able to classify 74.18% of the proteins using only two electrostatic potentials. In the work described here, we define 3D-HINT potentials (mu(k)) and use them for the first time to derive a classifier for protein enzymes. We analyzed ROC curves, domain of applicability, parametric assumptions, desirability maps, and also tested other nonlinear artificial neural network models which did not improve the linear model. In closing, this MCM allows a fast calculation and comparison of different potentials deriving into accurate protein 3D structure-function relationships, notably simpler than the previous.

  16. Strategies to reconstruct 3D Coffea arabica L. plant structure.

    PubMed

    Matsunaga, Fabio Takeshi; Tosti, Jonas Barbosa; Androcioli-Filho, Armando; Brancher, Jacques Duílio; Costes, Evelyne; Rakocevic, Miroslava

    2016-01-01

    Accurate model of structural elements is necessary to model the foliage and fruit distributions in cultivated plants, both of them being key parameters for yield prediction. However, the level of details in architectural data collection could vary, simplifying the data collection when plants get older and because of the high time cost required. In the present study, we aimed at reconstructing and analyzing plant structure, berry distributions and yield in Coffea arabica (Arabica coffee), by using both detailed or partial morphological information and probabilistic functions. Different datasets of coffee plant architectures were available with different levels of detail depending on the tree age. Three scales of decomposition-plant, axes and metamers were used reconstruct the plant architectures. CoffePlant3D, a software which integrates a series of mathematical, computational and statistical methods organized in three newly developed modules, AmostraCafe3D, VirtualCafe3D and Cafe3D, was developed to accurately reconstruct coffee plants in 3D, whatever the level of details available. The number of metamers of the 2nd order axes was shown to be linearly proportional to that of the orthotropic trunk, and the number of berries per metamer was modeled as a Gaussian function within a specific zone along the plagiotropic axes. This ratio of metamer emission rhythm between the orthotropic trunk and plagiotropic axes represents the pillar of botanical events in the C. arabica development and was central in our modeling approach, especially to reconstruct missing data. The methodology proposed for reconstructing coffee plants under the CoffePlant3D was satisfactorily validated across dataset available and could be performed for any other Arabica coffee variety.

  17. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    PubMed Central

    Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  18. A sediment structure model for describing the 3D spatial distribution of soil hydraulic properties of an artificial catchment using pedotransfer functions

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Bartsch, R.; Schneider, A.; Gerke, H. H.

    2012-04-01

    Modelling the spatial heterogeneity of catchments is a prerequisite for the understanding of flow processes and the application of hydrological models. The initial structure represents also the starting point for catchment and ecosystem development. The quality of hydrologic modeling is often limited due to a lack of data or an oversimplification of aquifer properties. Predictions can be significantly improved by using spatial models that reproduce specific structural characteristics. Current geostatistical methods are unable the capture spatially complex conditions, e.g. abrupt changes in structures. More deterministic structure generator approaches are currently been discussed in hydrogeology for exploration. Process-based structure generators deduce structural characteristics e.g. from the known formation processes of the aquifer. The objective was to describe the spatial distribution of soil hydraulic properties in a catchment based on generated 3D sediments distributions. The approach was tested for the artificially constructed "Hühnerwasser" ("Chicken Creek") catchment. The catchment is located in the post-lignite mining area of Welzow-Süd in Lower Lusatia, Brandenburg, Germany. Here, the initial sediment distribution was governed primarily by dumping processes of the large-scale mining technology and the geological conditions at the excavation site. For the initially organic matter-free sandy sediments, the structure model generated the distributions of soil texture and soil bulk density within dumping spoil cones. These were represented by 2D cross sections with compacted central parts and particle-segregated flanks. The 3D geometry of the catchment was generated by sequencing of these basic structural elements along identified stacker trajectories, finally yielding a discretized 3D volume model using the GOCAD software. Based on these data, spatial distributions of hydraulic properties were calculated using well-established pedotransfer functions

  19. Molecular Cloning and 3D Structure Modeling of APEX1, DNA Base Excision Repair Enzyme from the Camel, Camelus dromedarius

    PubMed Central

    Ataya, Farid Shokry; Fouad, Dalia; Malik, Ajamaluddin; Saeed, Hesham Mahmoud

    2012-01-01

    The domesticated one-humped camel, Camelus dromedarius, is one of the most important animals in the Arabian Desert. It is exposed most of its life to both intrinsic and extrinsic genotoxic factors that are known to cause gross DNA alterations in many organisms. Ionic radiation and sunlight are known producers of Reactive Oxygen Species (ROS), one of the causes for DNA lesions. The damaged DNA is repaired by many enzymes, among of them Base Excision Repair enzymes, producing the highly mutagenic apurinic/apyrimidinicsites (AP sites). Therefore, recognition of AP sites is fundamental to cell/organism survival. In the present work, the full coding sequence of a putative cAPEX1 gene was amplified for the first time from C. dromedarius by RT-PCR and cloned (NCBI accession number are HM209828 and ADJ96599 for nucleotides and amino acids, respectively). cDNA sequencing was deduced to be 1041 nucleotides, of which 954 nucleotides encode a protein of 318 amino acids, similar to the coding region of the APEX1 gene and the protein from many other species. The calculated molecular weight and isoelectric point of cAPEX1 using Bioinformatics tools was 35.5 kDa and 8.11, respectively. The relative expressions of cAPEX1 in camel kidney, spleen, lung and testis were examined using qPCR and compared with that of the liver using a 18S ribosomal subunit as endogenous control. The highest level of cAPEX1 transcript was found in the testis; 325% higher than the liver, followed by spleen (87%), kidney (20%) and lung (5%), respectively. The cAPEX1 is 94%–97% similar to their mammalian counterparts. Phylogenetic analysis revealed that cAPEX1 is grouped together with that of S. scrofa. The predicted 3D structure of cAPEX1 has similar folds and topology with the human (hAPEX1). The root-mean-square deviation (rmsd) between cAPEX1 and hAPEX1 was 0.582 and the Q-score was 0.939. PMID:22942721

  20. RNA Structure: Advances and Assessment of 3D Structure Prediction.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2017-03-30

    Biological functions of RNA molecules are dependent upon sustained specific three-dimensional (3D) structures of RNA, with or without the help of proteins. Understanding of RNA structure is frequently based on 2D structures, which describe only the Watson-Crick (WC) base pairs. Here, we hierarchically review the structural elements of RNA and how they contribute to RNA 3D structure. We focus our analysis on the non-WC base pairs and on RNA modules. Several computer programs have now been designed to predict RNA modules. We describe the RNA-Puzzles initiative, which is a community-wide, blind assessment of RNA 3D structure prediction programs to determine the capabilities and bottlenecks of current predictions. The assessment metrics used in RNA-Puzzles are briefly described. The detection of RNA 3D modules from sequence data and their automatic implementation belong to the current challenges in RNA 3D structure prediction. Expected final online publication date for the Annual Review of Biophysics Volume 46 is May 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. 3D Model of Surfactant Replacement Therapy

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  2. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  3. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  4. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x

  5. An approach for the 3D dynamic mathematical modelization of big structures with special respect to Ariane 5

    NASA Astrophysics Data System (ADS)

    Dieker, S.

    1993-10-01

    With special respect to Ariane 5, solutions are outlined that allow an improvement of the mathematical modeling and calculation in structural dynamics. Substructuring, and the application of modern component mode synthesis methods, are necessary. However, most of the methods result in modal degrees of freedom (DOF) of the interfaces and demand a high effort to couple the substructures. A general method is described that overcomes the disadvantages of the modal interface DOFs. As a result, the coupling of substructures is reduced to a simple addition of matrices. All reduced matrices of the substructures are real and symmetric. In a second section, special aspects of modeling are discussed. Structural aspects that are taken into account are the viscoelastic material behavior of the propellant of the solid rocket booster, the idealization of fluids and shells, and the fluid-structure-interaction. The coupling between axial, lateral and circumferential wave modes of Ariane 5 is no longer negligible; a hybrid description of the DOFs of the complete launcher by grid point displacements and Fourier series is possible, and offers an additional way to reduce the number of DOFs.

  6. Instability and Wave Propagation in Structured 3D Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.

    2014-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.

  7. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  8. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  9. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  10. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  11. Coronal roots of solar wind streams: 3-D MHD modeling

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    Weak (discontinuous) solutions of the 3-D MHD equations look like a promising tool to model the transonic solar wind with structural elements: current sheets, coronal plumes etc. Using the observational information about various coronal emissions one can include these structural elements into the 3-D MHD solar wind model by embedding the discontinuities of given type. Such 3-D MHD structured solar wind is calculated self-consistently: variants are examined via numerical experiments. In particular, the behavior of coronal plumes in the transonic solar wind flow, is modeled. The input information for numerical modeling (for example, the magnetic field map at the very base of the solar corona) can be adjusted so that fast stream arises over the center of the coronal hole, over the coronal hole boundaries and, even, over the region with closed magnetic topology. 3-D MHD equations have the analytical solution which can serve as a model of supersonic trans-alfvenic solar wind in the (5-20) solar radii heliocentric distance interval. The transverse, nonradial total (gas + magnetic field) pressure balance in the flow is the corner-stone of this solution. The solution describes the filamentation (ray-like structure of the solar corona) and streaming (formation of high-speed streams with velocities up to 800 km/sec) as a consequence of the magnetic field spatial inhomogeneous structure and trans-alfvenic character of the flow. The magnetic field works in the model as a 'controller' for the solar wind streaming and filamentation.

  12. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  13. Impact of soil structure heterogeneity on the degradation of organic pollutants at the centimeter scale : 3D Modeling using graph based method

    NASA Astrophysics Data System (ADS)

    Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia

    2014-05-01

    Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.

  14. Quasi-3D Algorithm in Multi-scale Modeling Framework

    NASA Astrophysics Data System (ADS)

    Jung, J.; Arakawa, A.

    2008-12-01

    As discussed in the companion paper by Arakawa and Jung, the Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic vector vorticity equation model (VVM) applied to a Q3D network of horizontal grid points. This paper presents an outline of the recently revised Q3D algorithm and a highlight of the results obtained by application of the algorithm to an idealized model setting. The Q3D network of grid points consists of two sets of grid-point arrays perpendicular to each other. For a scalar variable, for example, each set consists of three parallel rows of grid points. Principal and supplementary predictions are made on the central and the two adjacent rows, respectively. The supplementary prediction is to allow the principal prediction be three-dimensional at least to the second-order accuracy. To accommodate a higher-order accuracy and to make the supplementary predictions formally three-dimensional, a few rows of ghost points are added at each side of the array. Values at these ghost points are diagnostically determined by a combination of statistical estimation and extrapolation. The basic structure of the estimation algorithm is determined in view of the global stability of Q3D advection. The algorithm is calibrated using the statistics of past data at and near the intersections of the two sets of grid- point arrays. Since the CRM in the Q3D MMF extends beyond individual GCM boxes, the CRM can be a GCM by itself. However, it is better to couple the CRM with the GCM because (1) the CRM is a Q3D CRM based on a highly anisotropic network of grid points and (2) coupling with a GCM makes it more straightforward to inherit our experience with the conventional GCMs. In the coupled system we have selected, prediction of thermdynamic variables is almost entirely done by the Q3D CRM with no direct forcing by the GCM. The coupling of the dynamics between the two components is through mutual

  15. The 3D lightweight structural characteristics of the beetle forewing.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Guo, Zhensheng; Yan, Lili

    2017-02-01

    The present paper renewedly expounds upon the characteristics of the 3D lightweight structure of beetle forewings and notes that two biomimetic structures (models) that have appeared in recent years do not comply with these characteristics based on a comparison of the structures of the biological prototypes. The first model features transverse tubules based on observations of circular holes in cross-sectional figures of the Cybister forewing. The second is a biomimetic spherical cavity model with hollow trabeculae that reportedly exhibits superior mechanical properties because its structures are most similar to the biological prototype. Finally, a false biomimetic proposition that the mechanical properties of biomimetic structures with "fiber winding" patterns are superior to those of structures constructed of pure "epoxy" is also noted. Hopefully, the present study can serve to improve the state of research on biomimetic applications of beetle forewing structures.

  16. 3D Printing of Biomolecular Models for Research and Pedagogy.

    PubMed

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-03-13

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.

  17. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  18. 3D microstructure modeling of compressed fiber-based materials

    NASA Astrophysics Data System (ADS)

    Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker

    2014-07-01

    A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.

  19. Non-linear dynamic analyses of 3D masonry structures by means of a homogenized rigid body and spring model (HRBSM)

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Casolo, Siro

    2016-12-01

    A simple homogenized rigid body and spring model (HRBSM) is presented and applied for the non-linear dynamic analysis of 3D masonry structures. The approach, previously developed by the authors for the modeling of in-plane loaded walls is herein extended to real 3D buildings subjected to in- and out-of-plane deformation modes. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. All the simulations here presented are performed using the commercial software Abaqus. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  20. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism

    NASA Astrophysics Data System (ADS)

    Longchamp, Céline; Abellan, Antonio; Jaboyedoff, Michel; Manzella, Irene

    2016-09-01

    Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (> 106 m3) and several complex processes, and they are difficult to witness. For this reason the study of these phenomena using analog modeling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior.The main objective of this research is to analyze rock avalanche dynamics and deformation process by means of a detailed structural analysis of the deposits coming from data of 3-D measurements of mass movements of different magnitudes, from decimeter level scale laboratory experiments to well-studied rock avalanches of several square kilometers' magnitude.Laboratory experiments were performed on a tilting plane on which a certain amount of a well-defined granular material is released, propagates and finally stops on a horizontal surface. The 3-D geometrical model of the deposit is then obtained using either a scan made with a 3-D digitizer (Konica Minolta VIVID 9i) or a photogrammetric method called structure from motion (SfM), which requires taking several pictures from different point of view of the object to be modeled.In order to emphasize and better detect the fault structures present in the deposits, we applied a median filter with different moving window sizes (from 3 × 3 to 9 × 9 nearest neighbors) to the 3-D datasets and a gradient operator along the direction of propagation.The application of these filters on the datasets results in (1) a precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits and (2) a more accurate interpretation of the relative movements along the deposit (i.e., normal, strike-slip, inverse faults) by using cross sections. Results show how the use of filtering techniques reveals disguised features in the original point cloud and that similar displacement patterns

  1. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    PubMed

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic

  2. Regional geothermal 3D modelling in Denmark

    NASA Astrophysics Data System (ADS)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  3. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  4. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening.

    PubMed

    Zhang, Qing Y; Wan, Jian; Xu, Xin; Yang, Guang F; Ren, Yan L; Liu, Jun J; Wang, Hui; Guo, Yu

    2007-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.

  5. The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures.

    PubMed

    Yang, Hao; Xu, Xiangyang; Neumann, Ingo

    2014-11-19

    Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model.

  6. 3D Modelling of Kizildag Monument

    NASA Astrophysics Data System (ADS)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  7. Dynactin 3D structure: implications for assembly and dynein binding.

    PubMed

    Imai, Hiroshi; Narita, Akihiro; Maéda, Yuichiro; Schroer, Trina A

    2014-09-23

    The multisubunit protein complex, dynactin, is an essential component of the cytoplasmic dynein motor. High-resolution structural work on dynactin and the dynein/dynactin supercomplex has been limited to small subunits and recombinant fragments that do not report fully on either ≈1MDa assembly. In the present study, we used negative-stain electron microscopy and image analysis based on random conical tilt reconstruction to obtain a three-dimensional (3D) structure of native vertebrate dynactin. The 35-nm-long dynactin molecule has a V-shaped shoulder at one end and a flattened tip at the other end, both offset relative to the long axis of the actin-related protein (Arp) backbone. The shoulder projects dramatically away from the Arp filament core in a way that cannot be appreciated in two-dimensional images, which has implications for the mechanism of dynein binding. The 3D structure allows the helical parameters of the entire Arp filament core, which includes the actin capping protein, CP, to be determined for the first time. This structure exhibits near identity to F-actin and can be well fitted into the dynactin envelope. Molecular fitting of modeled CP-Arp polymers into the envelope shows that the filament contains between 7 and 9 Arp protomers and is capped at both ends. In the 7 Arp model, which agrees best with measured Arp stoichiometry and other structural information, actin capping protein (CP) is not present at the distal tip of the structure, unlike what is seen in the other models. The 3D structure suggests a mechanism for dynactin assembly and length specification.

  8. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    PubMed

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-06-23

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  9. 3D Modelling of X-pinches.

    NASA Astrophysics Data System (ADS)

    Ciardi, A.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.

    2003-10-01

    X-pinch produced plasmas are an intense source of soft x-rays generated by passing a large, fast rising current through two or more thin metallic wires crossed in the shape of <93>an "X". During the current pulse, the plasma is pinched at the crossing point where a dense Z-pinch plasma column develops. Further compression produces micron sized x-ray hot spots with energy densities in excess of ˜10^24 eV cm-3. We present 3D resistive magnetohydrodynamic simulations of two- and four-wire X-pinches for a variety of wire materials. The simulations naturally follow the evolution of the X-pinch: jet-like structures on axis, formation of a Z-pinch and its subsequent rapid evolution and production of x-ray hot spots. The effects of wire material and wire number are studied with particular consideration to the relationship between the magnetic confinement and radiative cooling mechanisms, which ultimately determine the complex behaviour of the X-pinch.

  10. Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling.

    PubMed

    Silva, Daniela S P; Reis, Marta I R; Nascimento, Diana S; do Vale, Ana; Pereira, Pedro J B; dos Santos, Nuno M S

    2007-07-01

    The present manuscript reports for the first time the sequencing and characterisation of sea bass (sb) MHCII alpha and beta chains and Ii chain cDNAs as well as their expression analysis under resting state. 3D homology modelling, using crystal structures from mammalian orthologues, has been used to illustrate and support putative structural homologies of the sea bass counterparts. The sbIi cDNA consists of 96 bp of 5'-UTR, a 843 bp open reading frame (ORF) and 899 bp of 3'-UTR including a canonical polyadenylation signal 16 nucleotides before the polyadenylation tail. The ORF was translated into a 280 amino acid sequence, in which all characteristic domains found in the Ii p41 human form could be identified, including the cytoplasmic N-terminus domain, the transmembrane (TM) region, the CLIP domain, the trimerization domain and the thyroglobulin (Tg) type I domain. The trimerization and Tg domains of sbIi were successfully modelled using the human counterparts as templates. Four different sequences of each class II alpha and beta MHCII were obtained from a single fish, apparently not derived from a single locus. All the characteristic features of the MHCII chain structure could be identified in the predicted ORF of sea bass alpha and beta sequences, consisting of leader peptide (LP), alpha1/beta1 and alpha2/beta2 domains, connecting peptide and TM and cytoplasmic regions. Furthermore, independently of the HLA-DR crystal structure used as template in homology modelling, a similar predicted 3D structure and trimeric quaternary architecture was obtained for sbMHC, with major deviations occurring only within the sea bass MHCII alpha1 domain.

  11. Potential of 3D City Models to assess flood vulnerability

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  12. 3-D physical models of amitosis (cytokinesis).

    PubMed

    Cheng, Kang; Zou, Changhua

    2005-01-01

    Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too.

  13. 3-D Attenuation Structure around the SAFOD site, Parkfield, California

    NASA Astrophysics Data System (ADS)

    Harrington, N. L.; Thurber, C. H.; Zhang, H.; Roecker, S.

    2006-12-01

    We are developing models of the 3-D attenuation structure, both Qp and Qs, for a region about 15 km square centered on SAFOD. We are analyzing local earthquake data collected in 2001 and 2002 from the UW/RPI PASO array, the UC-Berkeley HRSN, and USGS seismic network stations around Parkfield. We determine the P- or S-wave t* values for an individual local earthquake for each of the observing stations by fitting observed spectra using a joint inversion for a common corner frequency, low-frequency amplitude, and t*. Within our initial data set, we examine 575 events recorded at up to 111 stations and obtain over 19000 P- wave t* values. We use these t* values in simul2000 and tomoDD to perform the inversion to obtain a 3-D, frequency-independent Qp model of the attenuation structure, using an existing 3-D Vp model and associated event locations. We will use this same procedure to obtain the Qs structure. In our preliminary Qp structure results, we observe a high Qp feature (about 250) at 0-8 km depth on the southwest side of the fault. We associate this feature with the high density, high velocity Salinian basement rocks. We also see a moderate Qp feature (about 150) in the fault zone that encompasses the hypocenters of our events. On the northeast side of the fault, we observe Qp values generally increasing with depth, from 125 at the surface to 200 at 8 km. We will present our final Qp and Qs models, identify major features within the two, and discuss how these features relate to the findings of other geophysical studies in the area (seismic velocity, electrical resistivity, anisotropy). We will discuss how these features relate to the nature of the crust in that area, including the local geology, presence of fluids, fracturing, etc.

  14. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  15. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  16. The 3D Structure of the Proton

    NASA Astrophysics Data System (ADS)

    Kaiser, Ralf

    2012-09-01

    When Rutherford, Geiger and Marsden discovered the atomic nucleus in 1909 in Manchester, they at the same time also laid the foundations for the most successful method to study the structure of nuclei and nucleons. They found a point-like scattering centre inside the atom and identified it with the atomic nucleus and the theoretical description of this process has been known as Rutherford scattering ever since. The deviation between the theoretical description for a point-like scattering centre and experimental data has since been used to reveal information about the structure of the nucleus as well as the nucleon. There has been a continuous development from Hofstadters experiments in the 1950s, over the SLAC experiments in the 60s and 70s to the the HERA experiments at DESY and the experimental programme at Jeffersonlab. In this paper I am presenting the most recent results in Deeply Virtual Compton Scattering from the Hermes experiment at DESY, taken with a high density unpolarised target and a recoil detector in 2006/7.

  17. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  18. Enhanced visualization of angiograms using 3D models

    NASA Astrophysics Data System (ADS)

    Marovic, Branko S.; Duckwiler, Gary R.; Villablanca, Pablo; Valentino, Daniel J.

    1999-05-01

    The 3D visualization of intracranial vasculature can facilitate the planning of endovascular therapy and the evaluation of interventional result. To create 3D visualizations, volumetric datasets from x-ray computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are commonly rendered using maximum intensity projection (MIP), volume rendering, or surface rendering techniques. However, small aneurysms and mild stenoses are very difficult to detect using these methods. Furthermore, the instruments used during endovascular embolization or surgical treatment produce artifacts that typically make post-intervention CTA inapplicable, and the presence of magnetic material prohibits the use of MRA. Therefore, standard digital angiography is typically used. In order to address these problems, we developed a visualization and modeling system that displays 2D and 3D angiographic images using a simple Web-based interface. Polygonal models of vasculature were generated from CT and MR data using 3D segmentation of bones and vessels and polygonal surface extraction and simplification. A web-based 3D environment was developed for interactive examination of reconstructed surface models, creation of oblique cross- sections and maximum intensity projections, and distance measurements and annotations. This environment uses a multi- tier client/server approach employing VRML and Java. The 3D surface model and angiographic images can be aligned and displayed simultaneously to permit better perception of complex vasculature and to determine optical viewing positions and angles before starting an angiographic sessions. Polygonal surface reconstruction allows interactive display of complex spatial structures on inexpensive platforms such as personal computers as well as graphic workstations. The aneurysm assessment procedure demonstrated the utility of web-based technology for clinical visualization. The resulting system facilitated the treatment of serious vascular

  19. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  20. 3D Animations for Exploring Nucleon Structure

    NASA Astrophysics Data System (ADS)

    Gorman, Waverly; Burkardt, Matthias

    2016-09-01

    Over the last few years many intuitive pictures have been developed for the interpretation of electron hadron scattering experiments, such as a mechanism for transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering experiments. While Dr. Burkardt's pictures have been helpful for many researchers in the field, they are still difficult to visualize for broader audiences since they rely mostly on 2-dimensional static images. In order to make more accessible for a broader audience what can be learned from Jefferson Lab experiments, we have started to work on developing 3-dimensional animations for these processes. The goal is to enable the viewer to repeatedly look at the same microscopic mechanism for a specific reaction, with the viewpoint of the observer changing. This should help an audience that is not so familiar with these reactions to better understand what can be learned from various experiments at Jefferson Lab aimed at exploring the nucleon structure. Jefferson Lab Minority/Female Undergraduate Research Assistantship.

  1. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  2. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Paradis, Hedvig; Andersson, Martin; Sundén, Bengt

    2016-08-01

    A 3D model at microscale by the lattice Boltzmann method (LBM) is proposed for part of an anode of a solid oxide fuel cell (SOFC) to analyze the interaction between the transport and reaction processes and structural parameters. The equations of charge, momentum, heat and mass transport are simulated in the model. The modeling geometry is created with randomly placed spheres to resemble the part of the anode structure close to the electrolyte. The electrochemical reaction processes are captured at specific sites where spheres representing Ni and YSZ materials are present with void space. This work focuses on analyzing the effect of structural parameters such as porosity, and percentage of active reaction sites on the ionic current density and concentration of H2 using LBM. It is shown that LBM can be used to simulate an SOFC anode at microscale and evaluate the effect of structural parameters on the transport processes to improve the performance of the SOFC anode. It was found that increasing the porosity from 30 to 50 % decreased the ionic current density due to a reduction in the number of reaction sites. Also the consumption of H2 decreased with increasing porosity. When the percentage of active reaction sites was increased while the porosity was kept constant, the ionic current density increased. However, the H2 concentration was slightly reduced when the percentage of active reaction sites was increased. The gas flow tortuosity decreased with increasing porosity.

  3. A 3-D shape model of Interamnia

    NASA Astrophysics Data System (ADS)

    Sato, Isao

    2015-08-01

    A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.

  4. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  5. Anatomy-based 3D skeleton extraction from femur model.

    PubMed

    Gharenazifam, Mina; Arbabi, Ehsan

    2014-11-01

    Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.

  6. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    NASA Astrophysics Data System (ADS)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang

    2016-10-01

    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  7. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor 3D model atmospheres

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Homeier, D.; Plez, B.

    2017-02-01

    Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D. Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis. Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed. Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model. Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.

  8. The deep crustal structure of the mafic-ultramafic Seiland Igneous Province of Norway from 3-D gravity modelling and geological implications

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; Fichler, Christine; McEnroe, Suzanne A.

    2016-12-01

    The Seiland Igneous Province (SIP) is the largest complex of mafic and ultramafic intrusions in northern Fennoscandia intruded at ca. 580-560 Ma. The depth extent and the deep structure of the SIP are mainly unknown apart from three profiles modelled by gravity and refraction seismic data. Utilizing 3-D gravity modelling, a complex model of the deep subsurface structure of the SIP has been developed. The structure is presented in a multiprofile model ranging from the surface to the Moho. The mafic/ultramafic rocks of the SIP are modelled with densities of 3100 and 3300 kg m-3, the surrounding rocks by densities of 2700 and 2900 kg m-3 for upper and lower crust, respectively. This density model explains the pronounced positive Bouguer gravity anomaly of up to 100 mGal above background. Its minimum volume is estimated from the subsurface model to 17 000 km3 and as such we revise downwards the earlier estimations of 25 000 km3. The new subsurface model suggests that most of the SIP has a thickness between 2 and 4 km. An area with roots in an annular pattern is found and two deep-reaching roots have been identified located below the islands of Seiland and Sørøy. The depth of these roots is estimated to approximatively 9 km. The SIP is presently interpreted to be in the Caledonian Kalak Nappe Complex and the roots depth constrains its minimum thickness which is larger than earlier estimated. Furthermore, the rather undisturbed shape of the annular root pattern indicates that the SIP has not been subjected to strong tectonic reworking during the Caledonian orogeny.

  9. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  10. 3D cartographic modeling of the Alpine arc

    NASA Astrophysics Data System (ADS)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  11. Semiautomatic approaches to account for 3-D distortion of the electric field from local, near-surface structures in 3-D resistivity inversions of 3-D regional magnetotelluric data

    USGS Publications Warehouse

    Rodriguez, Brian D.

    2017-03-31

    This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.

  12. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  13. Structural insights of JAK2 inhibitors: pharmacophore modeling and ligand-based 3D-QSAR studies of pyrido-indole derivatives.

    PubMed

    Gade, Deepak Reddy; Kunala, Pavan; Raavi, Divya; Reddy, Pavan Kumar K; Prasad, Rajendra V V S

    2015-04-01

    In this study we have performed pharmacophore modeling and built a 3D QSAR model for pyrido-indole derivatives as Janus Kinase 2 inhibitors. An efficient pharmacophore has been identified from a data set of 51 molecules and the identified pharmacophore hypothesis consisted of one hydrogen bond acceptor, two hydrogen bond donors and three aromatic rings, i.e. ADDRRR. A powerful 3D-QSAR model has also been constructed by employing Partial Least Square regression analysis with a regression coefficient of 0.97 (R(2)) and Q(2) of 0.95, and Pearson-R of 0.98.

  14. Finding Organized Structures in 3-D LADAR Data

    DTIC Science & Technology

    2004-12-01

    work exists also on how to extract planar and linear objects from scattered 3-D point clouds , see for example [5], [6]. Methods were even proposed to...of structure detection and segmentation from 3-D point clouds collected from a single sensor location or integrated from multiple locations. In [2...primitives to point clouds are difficult to use practically for large data sets containing multiple complex structures, in opposition to multiple planar

  15. Elastic wave modelling in 3D heterogeneous media: 3D grid method

    NASA Astrophysics Data System (ADS)

    Jianfeng, Zhang; Tielin, Liu

    2002-09-01

    We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.

  16. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  17. 3D modeling based on CityEngine

    NASA Astrophysics Data System (ADS)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  18. Evaluation of 3D Printer Accuracy in Producing Fractal Structure.

    PubMed

    Kikegawa, Kana; Takamatsu, Kyuuichirou; Kawakami, Masaru; Furukawa, Hidemitsu; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-01-01

    Hierarchical structures, also known as fractal structures, exhibit advantageous material properties, such as water- and oil-repellency as well as other useful optical characteristics, owing to its self-similarity. Various methods have been developed for producing hierarchical geometrical structures. Recently, fractal structures have been manufactured using a 3D printing technique that involves computer-aided design data. In this study, we confirmed the accuracy of geometrical structures when Koch curve-like fractal structures with zero to three generations were printed using a 3D printer. The fractal dimension was analyzed using a box-counting method. This analysis indicated that the fractal dimension of the third generation hierarchical structure was approximately the same as that of the ideal Koch curve. These findings demonstrate that the design and production of fractal structures can be controlled using a 3D printer. Although the interior angle deviated from the ideal value, the side length could be precisely controlled.

  19. Direct-Write 3D Nanoprinting of Plasmonic Structures

    DOE PAGES

    Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.; ...

    2016-11-23

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less

  20. Direct-Write 3D Nanoprinting of Plasmonic Structures.

    PubMed

    Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich; Fowlkes, Jason D; Lewis, Brett B; Kothleitner, Gerald; Rack, Philip D; Plank, Harald

    2017-03-08

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. While several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. In this study, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. By that, complex 3D nanostructures composed of highly compact, pure gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.

  1. Direct-Write 3D Nanoprinting of Plasmonic Structures

    SciTech Connect

    Winkler, Robert; Schmidt, Franz-Philipp; Haselmann, Ulrich; Fowlkes, Jason D.; Lewis, Brett B.; Kothleitner, Gerald; Rack, Philip D.; Plank, Harald

    2016-11-23

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, pure gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.

  2. Diagnosis and control of 3D elastic mechanical structures

    NASA Astrophysics Data System (ADS)

    Krajcin, Idriz; Soeffker, Dirk

    2005-05-01

    In this paper, a model-based approach for fault detection and vibration control of flexible structures is proposed and applied to 3D-structures. Faults like cracks or impacts acting on a flexible structure are considered as unknown inputs acting on the structure. The Proportional-Integral-Observer (PI-Observer) is used to estimate the system states as well as unknown inputs acting on a system. Also the effects of structural changes are understood as external effects (related to the unchanged structure) and are considered as fictitious external forces or moments. The paper deals with the design of the PI-Observer for practical applications when measurement noise and model uncertainties are present and shows its performance in experimental results. As examples, impacts acting upon a one side clamped elastic beam and on a thin plate structure are estimated using displacement or strain measurements. To control the vibration of the flexible plate, two piezoelectric patches bonded on the structure are used as actuators. The control algorithm introduced in this contribution contains a state feedback control and additionally a disturbance rejection. The disturbances are estimated using the PI-Observer. Experimental results show the performance and the robustness properties of the control strategy for the vibration control of a very thin plate.

  3. 3D-Fun: predicting enzyme function from structure.

    PubMed

    von Grotthuss, Marcin; Plewczynski, Dariusz; Vriend, Gert; Rychlewski, Leszek

    2008-07-01

    The 'omics' revolution is causing a flurry of data that all needs to be annotated for it to become useful. Sequences of proteins of unknown function can be annotated with a putative function by comparing them with proteins of known function. This form of annotation is typically performed with BLAST or similar software. Structural genomics is nowadays also bringing us three dimensional structures of proteins with unknown function. We present here software that can be used when sequence comparisons fail to determine the function of a protein with known structure but unknown function. The software, called 3D-Fun, is implemented as a server that runs at several European institutes and is freely available for everybody at all these sites. The 3D-Fun servers accept protein coordinates in the standard PDB format and compare them with all known protein structures by 3D structural superposition using the 3D-Hit software. If structural hits are found with proteins with known function, these are listed together with their function and some vital comparison statistics. This is conceptually very similar in 3D to what BLAST does in 1D. Additionally, the superposition results are displayed using interactive graphics facilities. Currently, the 3D-Fun system only predicts enzyme function but an expanded version with Gene Ontology predictions will be available soon. The server can be accessed at http://3dfun.bioinfo.pl/ or at http://3dfun.cmbi.ru.nl/.

  4. Genome3D: exploiting structure to help users understand their sequences

    PubMed Central

    Lewis, Tony E.; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L.; Buchan, Daniel W.A.; Chothia, Cyrus; Cozzetto, Domenico; Dana, José M.; Filippis, Ioannis; Gough, Julian; Jones, David T.; Kelley, Lawrence A.; Kleywegt, Gerard J.; Minneci, Federico; Mistry, Jaina; Murzin, Alexey G.; Ochoa-Montaño, Bernardo; Oates, Matt E.; Punta, Marco; Rackham, Owen J.L.; Stahlhacke, Jonathan; Sternberg, Michael J.E.; Velankar, Sameer; Orengo, Christine

    2015-01-01

    Genome3D (http://www.genome3d.eu) is a collaborative resource that provides predicted domain annotations and structural models for key sequences. Since introducing Genome3D in a previous NAR paper, we have substantially extended and improved the resource. We have annotated representatives from Pfam families to improve coverage of diverse sequences and added a fast sequence search to the website to allow users to find Genome3D-annotated sequences similar to their own. We have improved and extended the Genome3D data, enlarging the source data set from three model organisms to 10, and adding VIVACE, a resource new to Genome3D. We have analysed and updated Genome3D's SCOP/CATH mapping. Finally, we have improved the superposition tools, which now give users a more powerful interface for investigating similarities and differences between structural models. PMID:25348407

  5. When good statistical models of aquifer heterogeneity go right: The impact of aquifer permeability structures on 3D flow and transport

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G.

    2017-02-01

    Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the univariate PDF f(Y) and autocorrelation ρY. Solute transport is analyzed through the Breakthrough Curve (BTC) at planes at distance x from the injection plane. The study examines the impact of permeability structures sharing same f(Y) and ρY, but differing in higher order statistics (integral scales of variograms of Y classes) upon the numerical solution of flow and transport. Flow and transport are solved for 3D structures, rather than the 2D models adopted in most of previous works. We considered a few permeability structures, including the widely employed multi-Gaussian, the connected and disconnected fields introduced by Zinn and Harvey [2003] and a model characterized by equipartition of the correlation scale among Y values. We also consider the impact of statistical anisotropy of Y, the shape of ρY and local diffusion. The main finding is that unlike 2D, the prediction of the BTC of ergodic plumes by numerical and analytical models for different structures is quite robust, displaying a seemingly universal behavior, and can be used with confidence in applications. However, as a prerequisite the basic parameters KG (the geometric mean), σY2 (the logconductivity variance) and I (the horizontal integral scale of ρY) have to be identified from field data. The results suggest that narrowing down the gap between the BTCs in applications can be achieved by obtaining Kef (the effective conductivity) or U independently (e.g. by pumping tests), rather than attempting to characterize the permeability structure beyond f(Y) and ρY.

  6. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large

  7. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  8. Source inversion analysis of the 2011 Tohoku-Oki earthquake using Green's functions calculated from a 3-D heterogeneous structure model

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Aoi, S.; Maeda, T.; Sekiguchi, H.; Kunugi, T.

    2013-12-01

    Source inversion analysis using near-source strong-motion records with an assumption of 1-D underground structure models has revealed the overall characteristics of the rupture process of the 2011 Tohoku-Oki mega-thrust earthquake. This assumption for the structure model is acceptable because the seismic waves radiated during the Tohoku-Oki event were rich in the very-low-frequency contents lower than 0.05 Hz, which are less affected by the small-scale heterogeneous structure. The analysis using more reliable Green's functions even in the higher-frequency range considering complex structure of the subduction zone will illuminate more detailed rupture process in space and time and the transition of the frequency dependence of the wave radiation for the Tohoku-Oki earthquake. In this study, we calculate the near-source Green's functions using a 3-D underground structure model and perform the source inversion analysis using them. The 3-D underground structure model used in this study is the Japan Integrated Velocity Structure Model (Headquarters for Earthquake Research Promotion, 2012). A curved fault model on the Pacific plate interface is discretized into 287 subfaults at ~20 km interval. The Green's functions are calculated using GMS (Aoi et al., 2004), which is a simulation program package for the seismic wave field by the finite difference method using discontinuous grids (Aoi and Fujiwara, 1999). Computational region is 136-146.2E in longitude, 34-41.6N in latitude, and 0-100 km in depth. The horizontal and vertical grid intervals are 200 m and 100 m, respectively, for the shallower region and those for the deeper region are tripled. The number of the total grids is 2.1 billion. We derive 300-s records by calculating 36,000 steps with a time interval of 0.0083 second (120 Hz sampling). It takes nearly one hour to compute one case using 48 Graphics Processing Units (GPU) on TSUBAME2.0 supercomputer owned by Tokyo Institute of Technology. In total, 574 cases are

  9. 3-d Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    to 05-31-92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS 3-d Periodic Packaging: N00014-90-J-1159 Sodalite , A Model System 6. AUTHOR(S) G.D. Stucky, V.I...assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom cage can be synthesized with...structure of both the frameworks and the clusters within the cages of sodalite structural analogues can be precisely determined. In addition to new

  10. 3-D Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    hfww 05-15-92 Technical 06-1-91 o 05-31-92 ,mA AMU SUBSTIl SI. FUNDING NUMBUS 3-d Periodic Packaging: Sodalite , A Model System N00014-81-K-0598 AUTNO(S...considerable latitude in the assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom...framework electric field. The structure of both the fiameworks and the clusters within the cages of sodalite structural analogues can be precisely

  11. Single-Tooth Modeling for 3D Dental Model

    PubMed Central

    Yuan, Tianran; Liao, Wenhe; Dai, Ning; Cheng, Xiaosheng; Yu, Qing

    2010-01-01

    An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the “valley” shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed and classified based on the minimum curvatures of the surface. The single tooth shape is restored according to the bioinformation along the hole boundary, which is generated after the fusion region being removed. By using the extracted boundary from the blending regions between the teeth and soft tissues as reference, the teeth can be separated from the 3D dental model one by one correctly. Experimental results show that the proposed method can achieve satisfying modeling results with high-degree approximation of the real tooth and meet the requirements of clinical oral medicine. PMID:20689718

  12. Development of the Improving Process for the 3D Printed Structure

    NASA Astrophysics Data System (ADS)

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  13. Development of the Improving Process for the 3D Printed Structure

    PubMed Central

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-01

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics. PMID:28054558

  14. Development of the Improving Process for the 3D Printed Structure.

    PubMed

    Takagishi, Kensuke; Umezu, Shinjiro

    2017-01-05

    The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.

  15. 3D-model of complex km-scale fold structures using laserscanning images: The Achensee region, western Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Ortner, H.; Gruber, A.

    2012-04-01

    The Northern Calcareous Alps (NCA) are a fold-and-thrust belt built by Permomesozoic rocks. It was affected by Early Jurassic rifting prior to Late Creatceous stacking of thrust sheets. The inversion of Jurassic basins resulted in complex fold structures. One of the enigmatic areas is the Achensee region, where a major kilometric W-E trending anticline-syncline system (Montschein-anticline, Karwendel-syncline) is offset to the north east of lake Achensee (Guffert-anticline, Thiersee syncline). The anticlines and synclines west and east of the transfer zone are recumbent, but no thrust is visible. In the transfer zone, the axis of the anticline curves to a N-S orientation (Unnutz anticline), whereas the syncline evolves to a thrust with 5km offset in E-W cross section (Achental thrust) that superimposes Triassic on Cretaceous rocks. The 3D-model in this low-budget project was constructed to understand the kinematic evolution of the fold and thrust system. Input data were: (1) a tectonic map with a dense network of orientation data, (2) a map of the trace of bedding mapped from 1m resolution laserscanning images, (3) a DEM with approximately 30m resolution.(1) and (2) were prepared in a GIS system, and then imported into the Midland Valleys Move software. Our intention was to create a data-oriented model, to prevent any model-induced bias. Thrust planes were constructed using the intersection lines with the DEM. Bedding in folds was modelled by extruding the intersection lines with the DEM parallel to the fold axis. In both cases errors were introduced into the model as the DEM has not enough resolution. Orientation data are displayed as discs in 3D space. The 3D-model shows that the Achental thrust cuts progressively into deeper structural levels of the Unnutz anticline to the south, therefore the thrust dips shallower to the south than the fold axis. Therefore the Achental thrust superimposes pre-existing folds onto the footwall toward the north, as established

  16. Protein 3D structure computed from evolutionary sequence variation.

    PubMed

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  17. 3D tumor models: history, advances and future perspectives.

    PubMed

    Benien, Parul; Swami, Archana

    2014-05-01

    Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.

  18. Structural analysis of tropical cyclone using INSAT-3D observations

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.

    2016-05-01

    The continuous observations from visible and thermal infrared (TIR) channels of geostationary satellites are highly useful for obtaining the features associated with the shape and dynamics of cloud structures within the tropical cyclones (TCs). As TC develops from an unstructured cloud cluster and intensifies, the cloud structures become more axisymmetric around the centre of the TC. To better understand the structure of TC during different stages of its evolution i.e. from its cyclogenesis to maturity and dissipation, the continuous satellite observations plays a key role. The high spatial and temporal resolution observations from geostationary satellites are very useful in order to analyze the cloud organization during the cyclogenesis. The gradient of the brightness temperatures measures the level of symmetry of each structure, which characterizes the degree of cloud organization of the TC. In the present work, the structural analysis of TC during its life period using the observations from Indian geostationary satellite INSAT-3D has been discussed. The visible and TIR observations from INSAT-3D satellite were used to fix the center position of the cyclone which is an input for the cyclone track and intensity prediction models. This data is also used to estimate the intensity of cyclone in the advanced Dvorak technique (ADT), and in the estimation of radius of maximum winds (Rmax) of TC which is an essential input parameter for the prediction of storm surge associated to the cyclones. The different patterns of cloud structure during the intensification stage, eye-wall formation and dissipation have been discussed. The early identification of these features helps in predicting the rapid intensification of TC which in turn improves the intensity predictions.

  19. From Tls Point Clouds to 3d Models of Trees: a Comparison of Existing Algorithms for 3d Tree Reconstruction

    NASA Astrophysics Data System (ADS)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2017-02-01

    3D models of tree geometry are important for numerous studies, such as for urban planning or agricultural studies. In climatology, tree models can be necessary for simulating the cooling effect of trees by estimating their evapotranspiration. The literature shows that the more accurate the 3D structure of a tree is, the more accurate microclimate models are. This is the reason why, since 2013, we have been developing an algorithm for the reconstruction of trees from terrestrial laser scanner (TLS) data, which we call TreeArchitecture. Meanwhile, new promising algorithms dedicated to tree reconstruction have emerged in the literature. In this paper, we assess the capacity of our algorithm and of two others -PlantScan3D and SimpleTree- to reconstruct the 3D structure of trees. The aim of this reconstruction is to be able to characterize the geometric complexity of trees, with different heights, sizes and shapes of branches. Based on a specific surveying workflow with a TLS, we have acquired dense point clouds of six different urban trees, with specific architectures, before reconstructing them with each algorithm. Finally, qualitative and quantitative assessments of the models are performed using reference tree reconstructions and field measurements. Based on this assessment, the advantages and the limits of every reconstruction algorithm are highlighted. Anyway, very satisfying results can be reached for 3D reconstructions of tree topology as well as of tree volume.

  20. Method for modeling post-mortem biometric 3D fingerprints

    NASA Astrophysics Data System (ADS)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  1. Characterizing 3D Vegetation Structure from Space: Mission Requirements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan; Shugart, H. H.; Wickland, Diane

    2012-01-01

    data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization. We also show from the literature that lidar profile samples together with wall-to53 wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein.

  2. Progress Toward an Integration of Process-Structure-Property-Performance Models for "Three-Dimensional (3-D) Printing" of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.

    2014-07-01

    Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.

  3. 3D Face modeling using the multi-deformable method.

    PubMed

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  4. CityGML - Interoperable semantic 3D city models

    NASA Astrophysics Data System (ADS)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its

  5. 3-D physical modeling of a complex salt canopy

    SciTech Connect

    Wiley, R.W.; Sekharan, K.K.

    1996-12-31

    Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.

  6. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  7. Toward mobile 3D visualization for structural biologists.

    PubMed

    Tanramluk, Duangrudee; Akavipat, Ruj; Charoensawan, Varodom

    2013-12-01

    Technological advances in crystallography have led to the ever-rapidly increasing number of biomolecular structures deposited in public repertoires. This undoubtedly shifts the bottleneck of structural biology research from obtaining high-quality structures to data analysis and interpretation. The recently available glasses-free autostereoscopic laptop offers an unprecedented opportunity to visualize and study 3D structures using a much more affordable, and for the first time, portable device. Together with a gamepad re-programmed for 3D structure controlling, we describe how the gaming technologies can deliver the output 3D images for high-quality viewing, comparable to that of a passive stereoscopic system, and can give the user more control and flexibility than the conventional controlling setup using only a mouse and a keyboard.

  8. 3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures

    PubMed Central

    Wang, Jian; Zhao, Yunjie; Zhu, Chunyan; Xiao, Yi

    2015-01-01

    Model evaluation is a necessary step for better prediction and design of 3D RNA structures. For proteins, this has been widely studied and the knowledge-based statistical potential has been proved to be one of effective ways to solve this problem. Currently, a few knowledge-based statistical potentials have also been proposed to evaluate predicted models of RNA tertiary structures. The benchmark tests showed that they can identify the native structures effectively but further improvements are needed to identify near-native structures and those with non-canonical base pairs. Here, we present a novel knowledge-based potential, 3dRNAscore, which combines distance-dependent and dihedral-dependent energies. The benchmarks on different testing datasets all show that 3dRNAscore are more efficient than existing evaluation methods in recognizing native state from a pool of near-native states of RNAs as well as in ranking near-native states of RNA models. PMID:25712091

  9. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  10. Exploring Geothermal Energy Potential in Ireland through 3-D Geophysical-Petrological Modelling of Surface Heat-Flow and Crustal and Upper-Mantle Structure

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Muller, M. R.; Jones, A. G.

    2012-04-01

    Little is known of Ireland's deep, low-enthalpy geothermal resources and the potential for space heating and/or electricity generation based on geothermal energy to displace Ireland's significant reliance on carbon-based fuels. IRETHERM (www.iretherm.ie) is a four-and-a-half year, all-island, academic-government-industry collaborative project, initiated in 2011, with the overarching objective of developing a strategic and holistic understanding of Ireland's geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One of the challenges in searching for deep geothermal resources in the relatively unexplored setting of Ireland lies in identifying those areas most likely to support significantly elevated temperatures at depth. Available borehole data, although sparse and clustered around areas of mineral and hydrocarbon interest, suggest a marked regional increase in surface heat-flow across Ireland, from ~40 mW/m2 in the south to >80 mW/m2 in the north. The origins of both the observed regional heat-flow trend and local temperature anomalies have not been investigated and are not currently understood. Although variations in the structure of the crust and lithosphere have been revealed by a number of active-source seismic and teleseismic experiments, their effects on surface heat-flow have not been modelled. Bulk 3-D variation in crustal heat-production across Ireland, which may contribute significantly to the observed regional and local temperature variations, has also not been determined. We investigate the origins of Ireland's regional heat-flow trend and regional and local temperature variations using the software package LitMod. This software combines petrological and geophysical modelling of the lithosphere and sub-lithospheric upper mantle within an internally consistent thermodynamic-geophysical framework, where all relevant properties are functions of temperature, pressure and chemical composition. The major

  11. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  12. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

    NASA Astrophysics Data System (ADS)

    Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.

    2014-12-01

    Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth

  13. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  14. 3D cone-sheet and crystal-settling models reveal magma-reservoir structure of the Carlingford central complex, Ireland

    NASA Astrophysics Data System (ADS)

    Schauroth, Jenny; Burchardt, Steffi; Meade, Fiona; Troll, Valentin R.

    2014-05-01

    The Palaeogene Carlingford central complex, northeast Ireland, hosts a swarm of mostly basaltic cone-sheets with several lithological subsets (Halsall, 1974). The two most abundant sets are aphyric and highly porphyritic cone-sheets with up to 80% of cm-sized plagioclase phenocrysts. The abundance of highly porphyritic cone-sheets seems to systematically increase with altitude compared to the aphyric type (Meade, 2008). We hypothesised that this observation might be explained by the zonation of the source magma reservoir. In order to test this hypothesis, we modelled the 3D cone-sheet structure at depth and the settling of plagioclase phenocrysts. The 3D model of the Carlingford cone-sheet swarm reveals that lithological types of Carlingford cone-sheets are not systematically distributed in space. Using the method proposed by Burchardt et al. (2013), we constructed the likely source reservoir of the cone-sheets, which is saucer-shaped, elongated in NW direction, 7 km long and 3 km wide, and located at a depth of 1 km below the present-day land surface. Our calculation of the terminal velocity of the plagioclase phenocrysts shows that the large phenocrysts in the porphyritic cone-sheets were too big to float at the conditions present in the Carlingford magma reservoir. We can therefore exclude vertical magma-chamber stratification as an explanation for the formation and distribution of porphyritic and aphyric cone-sheets. Instead, we envisage the formation of a crystal mush at the base and sides of the Carlingford magma reservoir. Cone-sheet injection and magma-cha,ber replenishments have remobilised plagioclase cumulates, which may explain the occurrence and distribution of aphyric and highly porphyritic cone-sheets. REFERENCES Burchardt, S., Troll, V. R., Mathieu, L., Emeleus, H. C., Donaldson, C., 2013, Scientific Reports 3, 2891. Halsall, T.J., 1974, The minor intrusions and structure of the Carlingford complex, Eire (PhD thesis): University of Leicester. Meade

  15. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu; Geller, Robert J.; Cummins, Phil R.

    2000-04-01

    We compute complete (including both body and surface waves) synthetic seismograms for laterally and vertically heterogeneous Earth models using the Direct Solution Method (DSM). We use the optimally accurate modified operators derived by Geller and Takeuchi [Geller, R.J., Takeuchi, N., 1995. A new method for computing highly accurate DSM synthetic seismograms. Geophys. J. Int. 123, 449-470] and extended to spherical coordinates by Takeuchi et al. [Takeuchi, N., Geller, R.J., Cummins, P.R., 1996. Highly accurate P-SV complete synthetic seismograms using modified DSM operators. Geophys. Res. Lett. 23, 1175-1178] and Cummins et al. [Cummins, P.R., Takeuchi, N., Geller, R.J., 1997. Computation of complete synthetic seismograms for laterally heterogenous models using the Direct Solution Method. Geophys. J. Int. 130, 1-16] for 1- and 3-D models, respectively. In this study we greatly reduce the CPU time by treating the laterally heterogeneous structure as a perturbation to a spherically symmetric model (i.e., using the Born approximation). Note, however, that (1) our methods do not require the use of the Born approximation and (2) the reference model for the Born approximation is not required to be spherically symmetric. The synthetic seismograms in this paper are computed using the first-order Born approximation. However, accuracy can be greatly improved by using higher order terms of the Born series; theoretical results are presented in this paper, and some preliminary numerical examples are presented in this volume by Igel et al. [Igel, H., Takeuchi, N., Geller, R.J., Megnin, C., Bunge, H.P., Clévédé, E., Dalkolmo, J., Romanowicz, B., 1998. The COSY project: verification of global seismic modeling algorithms, Phys. Earth Planet. Inter., this issue].

  16. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  17. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  18. [Potentials of 3D-modeling in reconstructive orbital surgery].

    PubMed

    Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A

    2012-01-01

    A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.

  19. Proposed traceable structural resolution protocols for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David; Beraldin, J.-Angelo; Cournoyer, Luc; Carrier, Benjamin; Blais, François

    2009-08-01

    A protocol for determining structural resolution using a potentially-traceable reference material is proposed. Where possible, terminology was selected to conform to those published in ISO JCGM 200:2008 (VIM) and ASTM E 2544-08 documents. The concepts of resolvability and edge width are introduced to more completely describe the ability of an optical non-contact 3D imaging system to resolve small features. A distinction is made between 3D range cameras, that obtain spatial data from the total field of view at once, and 3D range scanners, that accumulate spatial data for the total field of view over time. The protocol is presented through the evaluation of a 3D laser line range scanner.

  20. 3D Geologic Model of the San Diego Area

    NASA Astrophysics Data System (ADS)

    Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.

    2015-12-01

    Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.

  1. 3D Wilson cycle: structural inheritance and subduction polarity reversals

    NASA Astrophysics Data System (ADS)

    Beaussier, Stephane; Gerya, Taras; Burg, Jean-Pierre

    2016-04-01

    Many orogenies display along-strike variations in their orogenic wedge geometry. For instance, the Alps is an example of lateral changes in the subducting lithosphere polarity. High resolution tomography has shown that the southeast dipping European lithosphere is separated from the northeast dipping Adriatic lithosphere by a narrow transition zone at about the "Judicarian" line (Kissling et al. 2006). The formation of such 3D variations remains conjectural. We investigate the conditions that can spontaneously induce such lithospheric structures, and intend to identify the main parameters controlling their formation and geometry. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we modelled a Wilson cycle starting from a continental lithosphere in an extensional setting resulting in continental breakup and oceanic spreading. At a later stage, divergence is gradually reversed to convergence, which induce subduction of the oceanic lithosphere formed during oceanic spreading. In this model, all lateral and longitudinal structures of the lithospheres are generated self-consistently, and are consequences of the initial continental structure, tectono-magmatic inheritance, and material rheology. Our numerical simulations point out the control of rheological parameters defining the brittle/plastic yielding conditions for the lithosphere. Formation of several opposing domains of opposing subduction polarity is facilitated by wide and weak oceanic lithospheres. Furthermore, contrasts of strength between the continental and oceanic lithosphere, as well as the angle between the plate suture and the shortening direction have a second order effect on the lateral geometry of the subduction zone. In our numerical experiments systematic lateral changes in the subduction lithosphere polarity during subduction initiation form spontaneously suggesting intrinsic physical origin of this phenomenon. Further studies are necessary to understand why this feature, observed

  2. CH5M3D: an HTML5 program for creating 3D molecular structures

    PubMed Central

    2013-01-01

    Background While a number of programs and web-based applications are available for the interactive display of 3-dimensional molecular structures, few of these provide the ability to edit these structures. For this reason, we have developed a library written in JavaScript to allow for the simple creation of web-based applications that should run on any browser capable of rendering HTML5 web pages. While our primary interest in developing this application was for educational use, it may also prove useful to researchers who want a light-weight application for viewing and editing small molecular structures. Results Molecular compounds are drawn on the HTML5 Canvas element, with the JavaScript code making use of standard techniques to allow display of three-dimensional structures on a two-dimensional canvas. Information about the structure (bond lengths, bond angles, and dihedral angles) can be obtained using a mouse or other pointing device. Both atoms and bonds can be added or deleted, and rotation about bonds is allowed. Routines are provided to read structures either from the web server or from the user’s computer, and creation of galleries of structures can be accomplished with only a few lines of code. Documentation and examples are provided to demonstrate how users can access all of the molecular information for creation of web pages with more advanced features. Conclusions A light-weight (≈ 75 kb) JavaScript library has been made available that allows for the simple creation of web pages containing interactive 3-dimensional molecular structures. Although this library is designed to create web pages, a web server is not required. Installation on a web server is straightforward and does not require any server-side modules or special permissions. The ch5m3d.js library has been released under the GNU GPL version 3 open-source license and is available from http://sourceforge.net/projects/ch5m3d/. PMID:24246004

  3. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  4. Structural analysis and implicit 3D modelling of high-grade host rocks to the Venetia kimberlite diatremes, Central Zone, Limpopo Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Creus, P. K.; Anthonissen, C. J.; Stoch, B.; Ekkerd, J.

    2016-05-01

    The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3-3.1 Ga, 2.7-2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E-W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03-2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2-1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.

  5. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors.

    PubMed

    Levashov, V A

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.

  6. San Francisco Bay test case for 3-D model verification

    USGS Publications Warehouse

    Smith, Peter E.

    1994-01-01

    This paper describes a field test case for 3-D hydrodynamic model verification using data from Carquinez Strait in San Francisco Bay, California. It will be disseminated by the ASCE Computational Hydraulics task committee on 3-D Free-Surface Hydrodynamic Model Verifications during late 1994.

  7. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  8. Designing 3D Structure by 5-7 Kirigami

    NASA Astrophysics Data System (ADS)

    Gong, Xingting; Cho, Yigil; Castle, Toen; Sussman, Daniel; Kamien, Randall

    2015-03-01

    The purpose of this talk is to explore how one can create 3D structures from 2D materials through the art of kirigami. Kirigami expands upon origami by allowing not only folds, but also cuts, into materials. If we take an incompressible material such as paper and remove a hole from it, the paper will buckle into the third dimension once that hole is sealed in order to relieve strain. Thus, orienting cuts and folds in certain places throughout a sheet of paper can influence its ``pop-up,'' 3D structure. To narrow down the inverse design problem, we confined ourselves to making only one kind of cut (which we call the ``5-7 cut'') on a honeycomb grid, and we show how this single cut can give rise to arbitrarily complex three dimensional structures. A simple set of rules exists: (a) one 5-7 cut divides the material into 2 sections which can choose to pop-up or down independently of each other, (b) rows of uniform cuts must pop up or down in unison, giving (nearly) arbitrary 2D structure, and (c) the 5-7 cuts can be arranged in various ways to create 6 basic pop-up ``modes,'' which can then be arranged to give (nearly) arbitrary 3D structure. These simple rules allow a framework for designing targeted 3D structure from an initial 2D sheet of material. This work was supported by NSF EFRI-ODISSEI Grant EFRI 13-31583.

  9. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  10. Interactive mapping on 3-D terrain models

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-10-01

    We present an interactive, real-time mapping system for use with digital elevation models and remotely sensed multispectral imagery that aids geoscientists in the creation and interpretation of geologic/neotectonic maps at length scales of 10 m to 1000 km. Our system provides a terrain visualization of the surface of the Earth or other terrestrial planets by displaying a virtual terrain model generated from a digital elevation model overlain by a color texture generated from orthophotos or satellite imagery. We use a quadtree-based, multiresolution display method to render in real time high-resolution virtual terrain models that span large spatial regions. The system allows users to measure the orientations of geologic surfaces and record their observations by drawing lines directly on the virtual terrain model. In addition, interpretive surfaces can be generated from these drawings and displayed to facilitate understanding of the three-dimensional geometry of geologic surfaces. The main strength of our system is the combination of real-time rendering and interactive mapping performed directly on the virtual terrain model with the ability to navigate the scene while changing viewpoints arbitrarily during mapping. User studies and comparisons with commercially available mapping software show that our system improves mapping accuracy and efficiency and also yields observations that cannot be made with existing systems.

  11. 3D Printers Can Provide an Added Dimension for Teaching Structure-Energy Relationships

    ERIC Educational Resources Information Center

    Blauch, David N.; Carroll, Felix A.

    2014-01-01

    A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.

  12. Coherent structures in 3D viscous time-periodic flow

    NASA Astrophysics Data System (ADS)

    Znaien, J. G.; Speetjens, M. F. M.; Trieling, R. R.; Clercx, H. J. H.

    2010-11-01

    Periodically driven laminar flows occur in many industrial processes from food-mixing devices to micro-mixer in lab-on-a-chip systems. The present study is motivated by better understanding fundamental transport phenomena in three-dimensional viscous time-periodic flows. Both numerical simulation and three-dimensional Particle Tracking Velocimetry measurements are performed to investigate the 3D advection of a passive scalar in a lid-driven cylindrical cavity flow. The flow is forced by a time-periodic in-plane motion of one endwall via a given forcing protocol. We concentrate on the formation and interaction of coherent structures due to fluid inertia, which play an important role in 3D mixing by geometrically determining the tracer transport. The disintegration of these structures by fluid inertia reflects an essentially 3D route to chaos. Data from tracking experiments of small particles will be compared with predictions from numerical simulations on transport of passive tracers.

  13. 3-D model-based Bayesian classification

    SciTech Connect

    Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.

    1994-12-31

    The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.

  14. Extending 3D city models with legal information

    NASA Astrophysics Data System (ADS)

    Frank, A. U.; Fuhrmann, T.; Navratil, G.

    2012-10-01

    3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.

  15. Opportunity Landing Spot Panorama (3-D Model)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

    [figure removed for brevity, see original site] Click on image for larger view

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

  16. 3D printing of nano- and micro-structures

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  17. Venusian Applications of 3D Convection Modeling

    NASA Technical Reports Server (NTRS)

    Bonaccorso, Timary Annie

    2011-01-01

    This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.

  18. RELAP5-3D Compressor Model

    SciTech Connect

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  19. Global Magnetospheric Modeling of 3D Reconnection

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S.

    1999-01-01

    A review of approaches to the global modeling of the terrestrial magnetosphere, how these approaches are utilized to interpret satellite data, and how these approaches have been successful at predicting magnetospheric phenomena will be presented. In addition, the importance of the ionospheric boundary and its effect on the globally topology of the magnetospheric magnetic field will be reviewed. In particular, numerical results that are rapidly changing our view of magnetospheric reconnection within the magnetospheric magnetic field will be discussed.

  20. In Silico 3D Modeling of Binding Activities.

    PubMed

    Moro, Stefano; Sturlese, Mattia; Ciancetta, Antonella; Floris, Matteo

    2016-01-01

    In silico three-dimensional (3D) molecular modeling tools based upon the receptor/enzyme-ligand docking simulation in protein crystal structures and/or homology modeling of receptors have been reliably used in pharmacological research and development for decades. Molecular docking methodologies are helpful for revealing facets of activation and inactivation, thus improving mechanistic understanding and predicting molecular ligand binding activity, and they can have a high level of accuracy, and have also been explored and applied in chemical risk assessment. This computational approach is, however, only applicable for chemical hazard identification situations where the specific target receptor for a given chemical is known and the crystal structure/homology model of the receptor is available.

  1. Modeling 3D facial shape from DNA.

    PubMed

    Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D

    2014-03-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.

  2. Modeling 3D Facial Shape from DNA

    PubMed Central

    Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.

    2014-01-01

    Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127

  3. 3D structures of membrane proteins from genomic sequencing

    PubMed Central

    Hopf, Thomas A.; Colwell, Lucy J.; Sheridan, Robert; Rost, Burkhard; Sander, Chris; Marks, Debora S.

    2012-01-01

    Summary We show that amino acid co-variation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown, 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane), applies a maximum entropy approach to infer evolutionary co-variation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded, de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modelling by this method. PMID:22579045

  4. Parameterization of 3D brain structures for statistical shape analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Litao; Jiang, Tianzi

    2004-05-01

    Statistical Shape Analysis (SSA) is a powerful tool for noninvasive studies of pathophysiology and diagnosis of brain diseases. It also provides a shape constraint for the segmentation of brain structures. There are two key problems in SSA: the representation of shapes and their alignments. The widely used parameterized representations are obtained by preserving angles or areas and the alignments of shapes are achieved by rotating parameter net. However, representations preserving angles or areas do not really guarantee the anatomical correspondence of brain structures. In this paper, we incorporate shape-based landmarks into parameterization of banana-like 3D brain structures to address this problem. Firstly, we get the triangulated surface of the object and extract two landmarks from the mesh, i.e. the ends of the banana-like object. Then the surface is parameterized by creating a continuous and bijective mapping from the surface to a spherical surface based on a heat conduction model. The correspondence of shapes is achieved by mapping the two landmarks to the north and south poles of the sphere and using an extracted origin orientation to select the dateline during parameterization. We apply our approach to the parameterization of lateral ventricle and a multi-resolution shape representation is obtained by using the Discrete Fourier Transform.

  5. The 3D structure of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Patsourakos, Spiros

    2016-07-01

    Coronal Mass Ejections (CMEs) represent one of the most powerful energy release phenomena in the entire solar system and are a major driver of space weather. Prior to 2006, our observational access to CMEs was limited to single viewpoint remote sensing observations in the inner/outer corona, and in-situ observations further away, e.g. at 1 AU. Taking all these factors together, turned out to be a major obstacle in our understanding and characterizing of the 3D structure and evolution of CMEs. The situation improved dramatically with the availability of multi-viewpoint imaging observations of CMEs, all way through from the Sun to 1 AU, from the STEREO mission since 2006, combined with observations from other missions (SOHO, Hinode, SDO, IRIS). With this talk we will discuss several key recent results in CME science resulting from the analysis of multi-viewpoint observations. This includes: (1) shape and structure; (2) kinematics and energetics; (3) trajectories, deflections and rotations; (4) arrival times and velocities at 1 AU; (5) magnetic field structure; (6) relationships with coronal and interplanetary shocks and solar energetic particles. The implications of these results in terms of CME theories and models will be also addressed. We will conclude with a discussion of important open issues in our understanding of CMEs and how these could be addressed with upcoming (Solar Orbiter, Solar Probe Plus) and under-study missions (e.g., L5).

  6. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  7. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  8. Modeling cell migration in 3D: Status and challenges.

    PubMed

    Rangarajan, Rajagopal; Zaman, Muhammad H

    2008-01-01

    Cell migration is a multi-scale process that integrates signaling, mechanics and biochemical reaction kinetics. Various mathematical models accurately predict cell migration on 2D surfaces, but are unable to capture the complexities of 3D migration. Additionally, quantitative 3D cell migration models have been few and far between. In this review we look and characterize various mathematical models available in literature to predict cell migration in 3D matrices and analyze their strengths and possible changes to these models that could improve their predictive capabilities.

  9. 3D PIC Modeling of Microcavity Discharge

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  10. Kongsfjorden-MIKE 3D model

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir

    2014-05-01

    Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  11. Exploiting Textured 3D Models for Developing Serious Games

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  12. 3D model of fault and fissures structure of the Kovdor Baddeleyite-Apatite-Magnetite Deposit (NE of the Fennoscandian Shield)

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry; Klimov, Sergey

    2015-04-01

    The Kovdor baddeleyite-apatite-magnetite deposit (KBAMD) is represented by a large vertical ore body and is located in the southwestern part of the Kovdor ultramafic-alkaline central-type intrusion. The intrusion represents a concentrically zoned complex of rocks with an oval shape in plan, and straight zoning, which complies with the injection and displacement of each of further magma phases from the center towards the periphery. The operation of the deposit in open pits started in 1962, and nowadays, it has produced over 500,000,000 tons of ore. This is one of the largest open pits in the Kola region, which is ca. 2 km long, 1.8 km wide, and over 400 m deep. Regular structural studies has been carried out since late 1970. A unique massif of spatial data has been accumulated so far to include over 25,000 measurements of fissures and faults from the surface, ca. 20,000 measurements of fissures in the oriented drill core (over 18 km) etc. Using this data base the 3D model of fault and fissures structure was designed. The analysis of one has resulted in the identification of a series of laws and features, which are necessary to be taken into account when designing a deep open pit and mining is carried out. These are mainly aspects concerning the origin, kinematics, mechanics and ratio of spatial extension of various fault systems, variation of their parameters at deep horizons, features of a modern stress field in the country rocks, etc. The 3D model has allowed to divide the whole fracture / fissure systems of the massif rocks into 2 large groups: prototectonic system of joints, including cracks of 'liquid magmatic (carbonatite stage) contraction genesis', and newly formed faults due to the superimposed tectonic stages. With regard to the deposit scale, these are characterized as intraformational and transformational, respectively. Each group shows a set (an assemblage) of fault systems with unique features and signs, as well as regular interconnections. The

  13. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  14. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  15. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains

    PubMed Central

    Lewis, Tony E.; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L.; Buchan, Daniel W.A.; Chothia, Cyrus; Cuff, Alison; Dana, Jose M.; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T.; Kelley, Lawrence A.; Kleywegt, Gerard J.; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G.; Ochoa-Montaño, Bernardo; Rackham, Owen J. L.; Smith, James; Sternberg, Michael J. E.; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence–structure–function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker’s yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs). PMID:23203986

  16. Postprocessing techniques for 3D non-linear structures

    NASA Technical Reports Server (NTRS)

    Gallagher, Richard S.

    1987-01-01

    How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.

  17. The application of 3D Zernike moments for the description of "model-free" molecular structure, functional motion, and structural reliability.

    PubMed

    Grandison, Scott; Roberts, Carl; Morris, Richard J

    2009-03-01

    Protein structures are not static entities consisting of equally well-determined atomic coordinates. Proteins undergo continuous motion, and as catalytic machines, these movements can be of high relevance for understanding function. In addition to this strong biological motivation for considering shape changes is the necessity to correctly capture different levels of detail and error in protein structures. Some parts of a structural model are often poorly defined, and the atomic displacement parameters provide an excellent means to characterize the confidence in an atom's spatial coordinates. A mathematical framework for studying these shape changes, and handling positional variance is therefore of high importance. We present an approach for capturing various protein structure properties in a concise mathematical framework that allows us to compare features in a highly efficient manner. We demonstrate how three-dimensional Zernike moments can be employed to describe functions, not only on the surface of a protein but throughout the entire molecule. A number of proof-of-principle examples are given which demonstrate how this approach may be used in practice for the representation of movement and uncertainty.

  18. The 3D Attenuation Structure of Deception Island (Antarctica)

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; De Siena, L.; Ibáñez, J. M.; Del Pezzo, E.; García-Yeguas, A.; Díaz-Moreno, A.

    2015-05-01

    The seismic and volcanological structure of Deception Island (Antarctica) is an intense focus topic in Volcano Geophysics. The interpretations given by scientists on the origin, nature, and location of the structures buried under the island strongly diverge. We present a high-resolution 3D P-wave attenuation tomography model obtained by using the coda normalization method on 20,293 high-quality waveforms produced by active sources. The checkerboard and synthetic anomaly tests guarantee the reproduction of the input anomalies under the island down to a depth of 4 km. The results, once compared with our current knowledge on the geological, geochemical, and geophysical structure of the region, depict Deception as a piecemeal caldera structure coming out of the Bransfield Trough. High-attenuation anomalies contouring the northeastern emerged caldera rim correlate with the locations of sediments. In our interpretation, the main attenuation contrast, which appears under the collapsed southeastern caldera rim, is related to the deeper feeding systems. A unique P-wave high-attenuation spherical-like anomaly in the inner bay extends between depths of 1 and 3 km. The northern contour of the anomaly coincides with the calderic rim both at 1 and 2 km, while smaller anomalies connect it with deeper structures below 3 km, dipping toward the Bransfield Trough. In our interpretation, the large upper anomaly is caused by a high-temperature shallow (1-3 km deep) geothermal system, located beneath the sediment-filled bay in the collapsed blocks and heated by smaller, deeper contributions of molten materials (magma) rising from southeast.

  19. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  20. Analogue modeling of 3-D structural segmentation in fold-and-thrust belts: interactions between frictional and viscous provinces in foreland basins

    NASA Astrophysics Data System (ADS)

    Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.

    2016-04-01

    Accretionary wedges are generally segmented both across and along strike because of diverse factors including tectonic and stratigraphic inheritance. In fold-and-thrust belts, along-strike stratigraphic changes in the foreland sequence are classically observed and cause a curvature of the deformation front. Although the parameters controlling this curvature are well documented, the structural interactions and mutual influences between adjacent provinces are much less analyzed. To investigate this question, we deformed analogue models in a compressional box equipped with digital cameras and a topographic measurement apparatus. Models where shortened above a basal frictional detachment (glass microbeads) and segmentation was tested by having a region in which we added an interbedded viscous level (silicone polymer) within the sedimentary cover (dry sand). By changing the number (2 or 3) and the relative width of the purely frictional and viscous provinces, our goal was to characterize geometrically and kinematically the interactions between the viscous and the purely frictional provinces. We used a commercial geomodeller to generate 3-D geometrical models. The results indicate that regardless of the relative width of the purely frictional vs. viscous provinces, the deformation style in the frictional province is not influenced by the presence of the adjacent viscous province. On the contrary, the structural style and the deformation kinematics in the viscous province is significantly impacted by the presence or absence of an adjacent purely frictional province. At first order, the deformation style in the viscous province depends on its width, and three structural styles can be defined along strike. Far from the frictional area, structures are primarily of salt-massif type, and they do not seem to be influenced by the frictional wedge province. Towards the frictional province, deformation changes gradually to a zone of purely forethrusts (foreland verging), and

  1. A 3D acquisition system combination of structured-light scanning and shape from silhouette

    NASA Astrophysics Data System (ADS)

    Sun, Changku; Tao, Li; Wang, Peng; He, Li

    2006-05-01

    A robust and accurate three dimensional (3D) acquisition system is presented, which is a combination of structured-light scanning and shape from silhouette. Using common world coordinate system, two groups of point data can be integrated into the final complete 3D model without any integration and registration algorithm. The mathematics model of structured-light scanning is described in detail, and the shape from silhouette algorithm is introduced as well. The complete 3D model of a cup with a handle is obtained successfully by the proposed technique. At last the measurement on a ball bearing is performed, with the measurement precision better than 0.15 mm.

  2. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    NASA Astrophysics Data System (ADS)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  3. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  4. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  5. 3D-model building of the jaw impression

    NASA Astrophysics Data System (ADS)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  6. Cloud-resolving component in the quasi-3D multi-scale modeling framework

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2010-05-01

    A quasi-3D multi-scale modeling framework (Q3D MMF), which combines a GCM with a Q3D CRM, is an attempt to include three dimensional cloud effects in a GCM without necessarily using a global cloud-resolving model. The horizontal domain of the Q3D CRM consists of two perpendicular sets of channels crossing at the center of a GCM grid box, each of which includes two grid-point arrays. Through coupling this structure with a GCM, the whole system of the Q3D MMF can converge to a fully 3D global CRM as the GCM's resolution is refined. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application. However, due to the use of very narrow channels for the cloud-resolving component, its prediction algorithm must be specially designed. As a step in developing a Q3D MMF, we have first constructed a prediction algorithm for the Q3D CRM applying a 3D anelastic vector vorticity equation model to the Q3D network of grid points. Preliminary tests of the Q3D CRM have been performed for an idealized small domain. Comparing the results with those of the straightforward application of a 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions and the MMF based on the Q3D CRM will be a useful framework for climate modeling. This paper presents an outline of the Q3D algorithm and highlights of the results.

  7. Summary on several key techniques in 3D geological modeling.

    PubMed

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  8. Summary on Several Key Techniques in 3D Geological Modeling

    PubMed Central

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029

  9. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  10. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  11. 3D printed components with ultrasonically arranged microscale structure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  12. A 3-D Puzzle Approach to Building Protein-DNA Structures.

    PubMed

    Hinton, Deborah M

    2017-02-02

    Despite recent advances in structural analysis, it is still challenging to obtain a high resolution structure for a complex of RNA polymerase, transcriptional factors, and DNA. However, using biochemical constraints, 3-D printed models of available structures, and computer modeling, one can build biologically relevant models of such supramolecular complexes.

  13. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  14. 3D Modeling from Photos Given Topological Information.

    PubMed

    Kim, Young Min; Cho, Junghyun; Ahn, Sang Chul

    2016-09-01

    Reconstructing 3D models given a single-view 2D information is inherently an ill-posed problem and requires additional information such as shape prior or user input.We introduce a method to generate multiple 3D models of a particular category given corresponding photographs when the topological information is known. While there is a wide range of shapes for an object of a particular category, the basic topology usually remains constant.In consequence, the topological prior needs to be provided only once for each category and can be easily acquired by consulting an existing database of 3D models or by user input. The input of topological description is only connectivity information between parts; this is in contrast to previous approaches that have required users to interactively mark individual parts. Given the silhouette of an object and the topology, our system automatically finds a skeleton and generates a textured 3D model by jointly fitting multiple parts. The proposed method, therefore, opens the possibility of generating a large number of 3D models by consulting a massive number of photographs. We demonstrate examples of the topological prior and reconstructed 3D models using photos.

  15. Modeling tree crown dynamics with 3D partial differential equations

    PubMed Central

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095

  16. 3D Model of the Eta Carinae Little Homunculus Nebula

    NASA Astrophysics Data System (ADS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2015-01-01

    We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.

  17. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  18. Structural interpretation of upper crust of the Khibiny area on the complex of geological and geophysical data and the results of 3D seismic and density modeling

    NASA Astrophysics Data System (ADS)

    Zhirov, Dmitry; Glaznev, Victor; Zhirova, Anzhela

    2015-04-01

    The area considered is located in the central part of the Kola Peninsula and represents a part of tectonically compound terrane, consisting of the AR, PR and PZ geological structures of the East of Fennoscandian shield (NW Russia). The Khibiny massif (PZ) intrudes the Archean complexes (the northern contact) and the Paleoproterozoic volcanogenic-sedimentary Imandra-Varzuga complex (southern and SW-contacts). Moreover this district includes several PGE-bearing layered mafic-ultramafic intrusions, which are related with Neo Archaean ÷ Paleoproterozoic rifting and plume activity (LIP). According to the previous conceptions the shape of the Khibiny multiphase pluton is close to the asymmetrical lopolit, characterized by the steep eastern and northern contacts and the gentler south and west contacts. The results of the 3D seismic and density modelling showed two correlated local high-velocity and high-density anomalies with dimensions of 5 x 10 km approximately in central part of the Khibiny massif (1) and close to contact with Imandra-Varzuga sedimentary-volcanic complex (2). The first anomaly cannot be explained by "substance" factor only (titanomagnetite-apatite ore bodies), as it has a structural disconformity to general structure of the pluton. According to the numerous instrumental measurements the actual values of stress are significantly greater than values calculated by weight of rocks. It is important the main normal axis of compressive stress has usually quasi-horizontal position. Thus, the zone of abnormally high tectonic stress is the best explanation for this anomaly. The quick isostatic uplift of the massif after the digression of the last glacier, during which the rocks did not have time to unload, can be a source of the increased horizontal stress. Based on the properties of typical rocks and geological structure of the region the second anomaly is well interpreted by large layered intrusion of Fedorova-Pana type, subsurface of which is cut by Khibiny

  19. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  20. Slat Cove Unsteadiness Effect of 3D Flow Structures

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Khorrami, Mehdi R.

    2006-01-01

    Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.

  1. The 3-D inelastic analyses for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.

  2. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  3. Cancer3D: understanding cancer mutations through protein structures.

    PubMed

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution.

  4. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  5. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  6. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  7. A 3D structure model of integrin alpha 4 beta 1 complex: I. Construction of a homology model of beta 1 and ligand binding analysis.

    PubMed Central

    You, Tony J; Maxwell, David S; Kogan, Timothy P; Chen, Qi; Li, Jian; Kassir, Jamal; Holland, George W; Dixon, Richard A F

    2002-01-01

    It is well established that integrin alpha 4 beta 1 binds to the vascular cell adhesion molecule (VCAM) and fibronectin and plays an important role in signal transduction. Blocking the binding of VCAM to alpha 4 beta 1 is thought to be a way of controlling a number of disease processes. To better understand how various inhibitors might block the interaction of VCAM and fibronectin with alpha 4 beta 1, we began constructing a structure model for the integrin alpha 4 beta 1 complex. As the first step, we have built a homology model of the beta 1 subunit based on the I domain of the integrin CD11B subunit. The model, including a bound Mg(2+) ion, was optimized through a specially designed relaxation scheme involving restrained minimization and dynamics steps. The native ligand VCAM and two highly active small molecules (TBC772 and TBC3486) shown to inhibit binding of CS-1 and VCAM to alpha 4 beta 1 were docked into the active site of the refined model. Results from the binding analysis fit well with a pharmacophore model that was independently derived from active analog studies. A critical examination of residues in the binding site and analysis of docked ligands that are both potent and selective led to the proposal of a mechanism for beta 1/beta 7 ligand binding selectivity. PMID:11751331

  8. Plasticized protein for 3D printing by fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  9. Modeling approaches for ligand-based 3D similarity.

    PubMed

    Tresadern, Gary; Bemporad, Daniele

    2010-10-01

    3D ligand-based similarity approaches are widely used in the early phases of drug discovery for tasks such as hit finding by virtual screening or compound design with quantitative structure-activity relationships. Here in we review widely used software for performing such tasks. Some techniques are based on relatively mature technology, shape-based similarity for instance. Typically, these methods remained in the realm of the expert user, the experienced modeler. However, advances in implementation and speed have improved usability and allow these methods to be applied to databases comprising millions of compounds. There are now many reports of such methods impacting drug-discovery projects. As such, the medicinal chemistry community has become the intended market for some of these new tools, yet they may consider the wide array and choice of approaches somewhat disconcerting. Each method has subtle differences and is better suited to certain tasks than others. In this article we review some of the widely used computational methods via application, provide straightforward background on the underlying theory and provide examples for the interested reader to pursue in more detail. In the new era of preclinical drug discovery there will be ever more pressure to move faster and more efficiently, and computational approaches based on 3D ligand similarity will play an increasing role in in this process.

  10. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  11. Myosin filament 3D structure in mammalian cardiac muscle☆

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  12. 3D Bioprinting of Tissue/Organ Models.

    PubMed

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.

  13. 3D web visualization of huge CityGML models

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  14. Manufacturing of a 3D complex hyperstable Cesic structure

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Courteau, Pascal; Poupinet, Anne; Sarri, Giuseppe

    2007-09-01

    Global astrometry requires extremely stable materials for instrument structures, such as optical benches. Cesic®, developed by ECM and Thales Alenia Space for mirrors and high stability structures, offers an excellent compromise in terms of structural strength, stability and very high lightweight capability, with a coefficient of thermal expansion that is virtually zero at cryogenic T°. The High-Stability Optical Bench (HSOB) GAIA study, realized by Thales Alenia Space under ESA contract, aimed to design, develop and test a full-scale representative of the HSOB bench, made entirely of Cesic®. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, a Michelson interferometer composed of integrated optics with nm-resolution. The HSOB bench has been submitted to a homogeneous T° step under vacuum to characterize 3-D expansion behavior of its two arms. The quite negligible interarm differential, measured with a nm-range reproducibility, demonstrates that a complete 3-D structure made of Cesic® has the same CTE homogeneity as do characterization samples, fully in line with the stringent GAIA requirements (1ppm at 120K). This demonstrates that Cesic® properties at cryogenic temperatures are fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM's and Thales Alenia Space's ability to design and manufacture monolithic lightweight highly stable optical structures, based on inner-cell triangular design made possible by the unique Cesic® manufacturing process.

  15. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2004-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  16. A new 3D dynamical biomechanical tongue model

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner

    2001-05-01

    A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.

  17. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen

    2007-07-27

    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  18. A 3D Bubble Merger Model for RTI Mixing

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian

    2015-11-01

    In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  19. Perception-based shape retrieval for 3D building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao

    2013-01-01

    With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance

  20. Automatic structural matching of 3D image data

    NASA Astrophysics Data System (ADS)

    Ponomarev, Svjatoslav; Lutsiv, Vadim; Malyshev, Igor

    2015-10-01

    A new image matching technique is described. It is implemented as an object-independent hierarchical structural juxtaposition algorithm based on an alphabet of simple object-independent contour structural elements. The structural matching applied implements an optimized method of walking through a truncated tree of all possible juxtapositions of two sets of structural elements. The algorithm was initially developed for dealing with 2D images such as the aerospace photographs, and it turned out to be sufficiently robust and reliable for matching successfully the pictures of natural landscapes taken in differing seasons from differing aspect angles by differing sensors (the visible optical, IR, and SAR pictures, as well as the depth maps and geographical vector-type maps). At present (in the reported version), the algorithm is enhanced based on additional use of information on third spatial coordinates of observed points of object surfaces. Thus, it is now capable of matching the images of 3D scenes in the tasks of automatic navigation of extremely low flying unmanned vehicles or autonomous terrestrial robots. The basic principles of 3D structural description and matching of images are described, and the examples of image matching are presented.

  1. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  2. Automating the determination of 3D protein structure

    SciTech Connect

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  3. Automatic paper sliceform design from 3D solid models.

    PubMed

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  4. An endoscopic 3D scanner based on structured light.

    PubMed

    Schmalz, Christoph; Forster, Frank; Schick, Anton; Angelopoulou, Elli

    2012-07-01

    We present a new endoscopic 3D scanning system based on Single Shot Structured Light. The proposed design makes it possible to build an extremely small scanner. The sensor head contains a catadioptric camera and a pattern projection unit. The paper describes the working principle and calibration procedure of the sensor. The prototype sensor head has a diameter of only 3.6mm and a length of 14mm. It is mounted on a flexible shaft. The scanner is designed for tubular cavities and has a cylindrical working volume of about 30mm length and 30mm diameter. It acquires 3D video at 30 frames per second and typically generates approximately 5000 3D points per frame. By design, the resolution varies over the working volume, but is generally better than 200μm. A prototype scanner has been built and is evaluated in experiments with phantoms and biological samples. The recorded average error on a known test object was 92μm.

  5. The Structure of the Kaali Impact Crater (Estonia) based on 3D Laser Scanning, Photogrammetric Modelling and Strike and Dip Measurements

    NASA Astrophysics Data System (ADS)

    Zanetti, Michael; Wilk, Jakob; Joeleht, Argo; Välja, Rudolf; Losiak, Anna; Wisniowski, Tomek; Huber, Matthew; Pavel, Kristiina; Kriiska, Aivar; Plado, Jüri; Geppert, Wolf Dietrich; Kukko, Antero; Kaartinen, Harri

    2015-04-01

    Introduction: The Kaali Impact Crater on the island of Saaremaa, Estonia (58.37° N, 22.67° E) is part of a crater-strewn-field consisting of nine identified craters, ranging in size from 110m (Kaali Main) to a few meters in diameter [1-3]. The strewn field was formed by the breakup of an IAB iron meteorite during atmospheric entry [4]. The main crater is due to its size an important crater to study the effects of small asteroidal impacts on terrestrial planets. Despite some anthropomorphic changes, the crater is well preserved. During a scientific expedition in August 2014, we mapped the crater in unprecedented detail using 3D laser scanning tools and made detailed strike and dip measurements of all outcrops. Additional measurements using ground-penetrating radar and electro-resistivity tomography we also conducted to further refine the subsurface crater morphology. The results include a high resolution topographic map of the crater, previously unreported observations of overturned ejecta, and refined morphometric estimates of the crater. Additionally, research conducted as part of the expedition has provided a new, best-estimate for the formation of the crater (3200a +/- 30 BP) based on 14C AMS dating of charcoal from within the ejecta blanket [Losiak et al., 2015, this conference]. Structural Mapping: Although Kaali Main has been the subject of previous investigation (e.g. [2,5,6]), most of the structural descriptions of the crater pre-date modern crater investigations. Strongly inclined blocks were previously considered being affected by erosion and slope processes, our new observations show that most high dip-angle features fit well with overall dip-angle systematics. The existence of the overturned flap can be demonstrated in at least four areas around the crater. 3D Laser Scanning: A point cloud containing 16 million data points was created using 43 individual scans from a tripod mounted Faro 3D 330x laser scanner. Scans were processed using Trimble

  6. 3D model generation using an airborne swarm

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.

    2015-03-01

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  7. 3D model generation using an airborne swarm

    SciTech Connect

    Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  8. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  9. Water linked 3D coordination polymers: Syntheses, structures and applications

    NASA Astrophysics Data System (ADS)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  10. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  11. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.

    2015-01-01

    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  12. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    PubMed Central

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  13. 3D head model classification using optimized EGI

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  14. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  15. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.

    2016-06-01

    The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.

  16. 3D model of amphioxus steroid receptor complexed with estradiol

    SciTech Connect

    Baker, Michael E.; Chang, David J.

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  17. Developing and Testing a 3d Cadastral Data Model a Case Study in Australia

    NASA Astrophysics Data System (ADS)

    Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.

    2012-07-01

    Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal

  18. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  19. Modeling and analysis of 3-D elongated shapes with applications to long bone morphometry

    SciTech Connect

    Burdin, V.; Roux, C.; Lefevre, C.; Stindel, E.

    1996-02-01

    This paper presents a geometric model to be used as a framework for the description and analysis of three-dimensional (3-D) elongated shapes. Elongated shapes can be decomposed into two different parts: a 3-D curve (the central axis) and a 3-D surface (the straight surface). The central axis is described in terms of curvature and torsion. A novel concept of torsion image is introduced which allows the user to study the torsion of some relevant 3-D structures such as the medulla of long bones, without computing the third derivative. The description of the straight surface is based on an ordered set of Fourier Descriptors (FD`s), each set representing a 2-D slice of the structure. These descriptors possess completeness, continuity, and stability properties, and some geometrical invariancies. A polar diagram is built which contains the anatomical information of the straight surface and can be used as a tool for the analysis and discrimination of 3-D structures. A technique for the reconstruction of the 3-D surface from the model`s two components is presented. Various applications to the analysis of long bone structures, such as the ulna and radius, are derived from the model, namely, data compression, comparison of 3-D shapes, segmentation into 3-D primitives, and torsion and curvature analysis. The relevance of the method to morphometry and to clinical applications is discussed.

  20. Patient-Specific Simulations of Reactivity in Models of the Pulmonary Vasculature: A 3-D Numerical Study with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Hunter, Kendall; Zhang, Yanhang; Lanning, Craig

    2005-11-01

    Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.

  1. Air Pollution Modeling Using A 3-d Hemispheric Nested Model

    NASA Astrophysics Data System (ADS)

    Frohn, L. M.; Christensen, J. H.; Brandt, J.; Hertel, O.

    A 3-D Eulerian transport-chemistry model based on modules and parameterisations from models developed over the last decade at the National Environmental Research Institute (DREAM, DEHM, ACDEP and DEOM) has been developed. The model is hemispheric with currently two nests implemented. The horizontal resolution in the mother domain is 150 km x 150 km. First nest covers the European area wit,h a 50 km x 50 km resolution, second covers the Scandinavian area with a resolution of 16.67 km x 16.67 km. The model employs a chemical scheme (originally 53 species) which has been modified to include a detailed description of the nitrogen chemistry. The concentration of air pollutants, such as sulfur and nitrogen in various forms, has been calculated with the model, applying no nesting as well as one and two nests. The calculated values have been validated by comparison to measurements from more than 200 EMEP monitoring stations. Furthermore deposition of nitrogen to marine waters has been estimated with the model. The goal is to obtain an improved description of spatial and temporal variations in the nutrient deposition to the marine environment. In the presentation the physics and chemistry of the model will be shortly described. Validations of the model calculations by comparison to EMEP measurements will be shown and discussed together with the results of the deposition calculations.

  2. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  3. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  4. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  5. 3D Model Generation From the Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  6. Space Partitioning for Privacy Enabled 3D City Models

    NASA Astrophysics Data System (ADS)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  7. 3-D world modeling for an autonomous robot

    SciTech Connect

    Goldstein, M.; Pin, F.G.; Weisbin, C.R.

    1987-08-01

    This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into ''objects'' that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition. 20 refs., 14 figs.

  8. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  9. 3D shape decomposition and comparison for gallbladder modeling

    NASA Astrophysics Data System (ADS)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  10. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    PubMed

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  11. 3D Printing of Hierarchical Silk Fibroin Structures.

    PubMed

    Sommer, Marianne R; Schaffner, Manuel; Carnelli, Davide; Studart, André R

    2016-12-21

    Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40-350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.

  12. Deformable registration of 3D vessel structures to a single projection image

    NASA Astrophysics Data System (ADS)

    Zikic, Darko; Groher, Martin; Khamene, Ali; Navab, Nassir

    2008-03-01

    Alignment of angiographic preoperative 3D scans to intraoperative 2D projections is an important issue for 3D depth perception and navigation during interventions. Currently, in a setting where only one 2D projection is available, methods employing a rigid transformation model present the state of the art for this problem. In this work, we introduce a method capable of deformably registering 3D vessel structures to a respective single projection of the scene. Our approach addresses the inherent ill-posedness of the problem by incorporating a priori knowledge about the vessel structures into the formulation. We minimize the distance between the 2D points and corresponding projected 3D points together with regularization terms encoding the properties of length preservation of vessel structures and smoothness of deformation. We demonstrate the performance and accuracy of the proposed method by quantitative tests on synthetic examples as well as real angiographic scenes.

  13. Enhanced LOD Concepts for Virtual 3d City Models

    NASA Astrophysics Data System (ADS)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  14. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.

    PubMed

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.

  15. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer

    PubMed Central

    Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura

    2016-01-01

    The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109

  16. Large scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-02-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.

  17. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    NASA Astrophysics Data System (ADS)

    Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.

    2014-11-01

    We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.

  18. A Primer for the Linkage Between Unstructured Water Quality Model CE-QUAL-ICM and Structured Three-Dimensional Hydrodynamic Model CH3D-WES

    DTIC Science & Technology

    2007-10-01

    2. If Q=3, two numbers show the k koordinates of boxes beneath and on the face. m . SFC BOX #: number of surface boxes n. NVF: number of faces...T. Cole. 1993. Three-dimensional eutrophication model of Chesapeake Bay. J. Environ. Eng. 119:1006-1025. Cerco, C. F., and M . Noel. 2004. The 2002...F., M . Noel. and S.-C. Kim. 2006. Three-dimensional management model for Lake Washington, Part II: Eutrophication modeling and skill assessment. Lake

  19. Modeling the Properties of 3D Woven Composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian N.

    1995-01-01

    An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.

  20. Performance and Cognitive Assessment in 3-D Modeling

    ERIC Educational Resources Information Center

    Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.

    2011-01-01

    The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…

  1. Assessment of 3D Models Used in Contours Studies

    ERIC Educational Resources Information Center

    Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes

    2015-01-01

    This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…

  2. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.

  3. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B

  4. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  5. Dual multispectral and 3D structured light laparoscope

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.

  6. Efficient global wave propagation adapted to 3-D structural complexity: a pseudospectral/spectral-element approach

    NASA Astrophysics Data System (ADS)

    Leng, Kuangdai; Nissen-Meyer, Tarje; van Driel, Martin

    2016-12-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34 s down to 11 s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.

  7. Synthesis of image sequences for Korean sign language using 3D shape model

    NASA Astrophysics Data System (ADS)

    Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon

    1995-05-01

    This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.

  8. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  9. Quasi-3D Multi-scale Modeling Framework Development

    NASA Astrophysics Data System (ADS)

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  10. POISs3: A 3D poisson smoother of structured grids

    NASA Astrophysics Data System (ADS)

    Lehtimaeki, R.

    Flow solvers based on solving Navier-Stokes or Euler equations generally need a computational grid to represent the domain of the flow. A structured computational grid can be efficiently produced by algebraic methods like transfinite interpolation. Unfortunately, algebraic methods propagate all kinds of unsmoothness of the boundary into the field. Unsmoothness of the grid, in turn, can result in inaccuracy in the flow solver. In the present work a 3D elliptic grid smoother was developed. The smoother is based on solving three Poisson equations, one for each curvilinear direction. The Poisson equations formed in the physical region are first transformed to the computational (rectilinear) region. The resulting equations form a system of three coupled elliptic quasi-linear partial differential equations in the computational domain. A short review of the Poisson method is presented. The regularity of a grid cell is studied and a skewness value is developed.

  11. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  12. Grid cells in 3-D: Reconciling data and models.

    PubMed

    Horiuchi, Timothy K; Moss, Cynthia F

    2015-12-01

    It is well documented that place cells and grid cells in echolocating bats show properties similar to those described in rodents, and yet, continuous theta-frequency oscillations, proposed to play a central role in grid/place cell formation, are not present in bat recordings. These comparative neurophysiological data have raised many questions about the role of theta-frequency oscillations in spatial memory and navigation. Additionally, spatial navigation in three-dimensions poses new challenges for the representation of space in neural models. Inspired by the literature on space representation in the echolocating bat, we have developed a nonoscillatory model of 3-D grid cell creation that shares many of the features of existing oscillatory-interference models. We discuss the model in the context of current knowledge of 3-D space representation and highlight directions for future research.

  13. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  14. Parallel 3-D viscoelastic finite difference seismic modelling

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas

    2002-10-01

    Computational power has advanced to a state where we can begin to perform wavefield simulations for realistic (complex) 3-D earth models at frequencies of interest to both seismologists and engineers. On serial platforms, however, 3-D calculations are still limited to small grid sizes and short seismic wave traveltimes. To make use of the efficiency of network computers a parallel 3-D viscoelastic finite difference (FD) code is implemented which allows to distribute the work on several PCs or workstations connected via standard ethernet in an in-house network. By using the portable message passing interface standard (MPI) for the communication between processors, running times can be reduced and grid sizes can be increased significantly. Furthermore, the code shows good performance on massive parallel supercomputers which makes the computation of very large grids feasible. This implementation greatly expands the applicability of the 3-D elastic/viscoelastic finite-difference modelling technique by providing an efficient, portable and practical C-program.

  15. Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Donald S.

    2015-01-01

    The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

  16. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  17. Extracting Feature Points of the Human Body Using the Model of a 3D Human Body

    NASA Astrophysics Data System (ADS)

    Shin, Jeongeun; Ozawa, Shinji

    The purpose of this research is to recognize 3D shape features of a human body automatically using a 3D laser-scanning machine. In order to recognize the 3D shape features, we selected the 23 feature points of a body and modeled its 3D features. The set of 23 feature points consists of the motion axis of a joint, the main point for the bone structure of a human body. For extracting feature points of object model, we made 2.5D templates neighbor for each feature points were extracted according to the feature points of the standard model of human body. And the feature points were extracted by the template matching. The extracted feature points can be applied as body measurement, the 3D virtual fitting system for apparel etc.

  18. Modeling of 3D Woven Composites Containing Multiple Delaminations

    DTIC Science & Technology

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  19. Multifunctional 3D printing of heterogeneous hydrogel structures.

    PubMed

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-15

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  20. Multifunctional 3D printing of heterogeneous hydrogel structures

    NASA Astrophysics Data System (ADS)

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  1. Multifunctional 3D printing of heterogeneous hydrogel structures

    PubMed Central

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-01-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing. PMID:27630079

  2. High Rayleigh Number 3d Spherical Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Davies, J. H.

    2003-04-01

    The geochemical and geophysical evidence related to the mantle can potentially be reconciled by a hypothesis of whole mantle convection where the heterogeneity stems from the continuous recycling of oceanic crust, depleted lithospheric mantle and sediments. The mantle is expected to be well but not perfectly stirred, sampled differently in different tectonic settings, and with components having wide-ranging residence times. We might for example expect very long residence times for some buoyant or dense components that can reside in either the upper (lithosphere) or lower boundary (D''). We have started testing whether such a whole mantle convection hypothesis can satisfy wide ranging first order geophysical observations, such as plate velocities, stability of upwellings, geometry of downwellings, etc. The model parameters, including the mantle's viscosity structure, are guided by extensive earlier community work. We use TERRA to model compressible convection in a 3D spherical mantle shell with a depth dependent viscosity structure, where the lower mantle is 40 times more viscous than the upper mantle. A chondritic rate of internal heating of 6 x 10^-12 W/Kg was assumed, leading to Ra(H) = 3.4x10^8. A realistic depth dependent thermal expansivity and Murnaghan equation of state was assumed, with free slip b.c.. The evolution of the system was followed for 2 Billion years. The RMS surface velocity varied from around 4 - 7cm/yr, very similar to recent plate velocities. The structures in the lower mantle are relatively stable and larger length scale in comparison to the upper mantle features. The downwellings and upwellings are linear in planform but the upwellings are dominated by stronger upflow at the columns formed at their intersection. The upwelling features embedded in the lower mantle are very stable, and it is reasonable to expect (though yet to be demonstrated) that with temperature-dependent viscosity the upwellings will be dominated by the cylindrical

  3. Geometric and Colour Data Fusion for Outdoor 3D Models

    PubMed Central

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327

  4. A method for building 3D models of barchan dunes

    NASA Astrophysics Data System (ADS)

    Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu

    2016-01-01

    The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.

  5. Geometric and colour data fusion for outdoor 3D models.

    PubMed

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  6. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  7. Parallel tempering and 3D spin glass models

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.