Science.gov

Sample records for 3d motion estimation

  1. Motion estimation in the 3-D Gabor domain.

    PubMed

    Feng, Mu; Reed, Todd R

    2007-08-01

    Motion estimation methods can be broadly classified as being spatiotemporal or frequency domain in nature. The Gabor representation is an analysis framework providing localized frequency information. When applied to image sequences, the 3-D Gabor representation displays spatiotemporal/spatiotemporal-frequency (st/stf) information, enabling the application of robust frequency domain methods with adjustable spatiotemporal resolution. In this work, the 3-D Gabor representation is applied to motion analysis. We demonstrate that piecewise uniform translational motion can be estimated by using a uniform translation motion model in the st/stf domain. The resulting motion estimation method exhibits both good spatiotemporal resolution and substantial noise resistance compared to existing spatiotemporal methods. To form the basis of this model, we derive the signature of the translational motion in the 3-D Gabor domain. Finally, to obtain higher spatiotemporal resolution for more complex motions, a dense motion field estimation method is developed to find a motion estimate for every pixel in the sequence.

  2. Full 3-D transverse oscillations: a method for tissue motion estimation.

    PubMed

    Salles, Sebastien; Liebgott, Hervé; Garcia, Damien; Vray, Didier

    2015-08-01

    We present a new method to estimate 4-D (3-D + time) tissue motion. The method used combines 3-D phase based motion estimation with an unconventional beamforming strategy. The beamforming technique allows us to obtain full 3-D RF volumes with axial, lateral, and elevation modulations. Based on these images, we propose a method to estimate 3-D motion that uses phase images instead of amplitude images. First, volumes featuring 3-D oscillations are created using only a single apodization function, and the 3-D displacement between two consecutive volumes is estimated simultaneously by applying this 3-D estimation. The validity of the method is investigated by conducting simulations and phantom experiments. The results are compared with those obtained with two other conventional estimation methods: block matching and optical flow. The results show that the proposed method outperforms the conventional methods, especially in the transverse directions.

  3. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  4. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  5. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.

    PubMed

    Dhou, S; Hurwitz, M; Mishra, P; Cai, W; Rottmann, J; Li, R; Williams, C; Wagar, M; Berbeco, R; Ionascu, D; Lewis, J H

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  6. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  7. Estimation of 3D myocardial motion from tagged MRI using LDDMM

    NASA Astrophysics Data System (ADS)

    Kotamraju, Vinay; McVeigh, Elliot; Beg, Mirza Faisal

    2007-03-01

    Non-invasive estimation of regional cardiac function is important for assessment of myocardial contractility. The use of MR tagging technique enables acquisition of intra-myocardial tissue motion by placing a spatially modulated pattern of magnetization whose deformation with the myocardium over the cardiac cycle can be imaged. Quantitative computation of parameters such as wall thickening, shearing, rotation, torsion and strain within the myocardium is traditionally achieved by processing the tag-marked MR image frames to 1) segment the tag lines and 2) detect the correspondence between points across the time-indexed frames. In this paper, we describe our approach to solving this problem using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) algorithm in which tag-line segmentation and motion reconstruction occur simultaneously. Our method differs from earlier proposed non rigid registration based cardiac motion estimation methods in that our matching cost incorporates image intensity overlap via the L2 norm and the estimated tranformations are diffeomorphic. We also present a novel method of generating synthetic tag line images with known ground truth and motion characteristics that closely follow those in the original data; these can be used for validation of motion estimation algorithms. Initial validation shows that our method is able to accurately segment tag-lines and estimate a dense 3D motion field describing the motion of the myocardium in both the left and the right ventricle.

  8. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

    PubMed

    Xu, Gang; Xing, Mengdao; Xia, Xiang-Gen; Zhang, Lei; Chen, Qianqian; Bao, Zheng

    2016-05-01

    In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm. PMID:26930684

  9. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

    PubMed

    Xu, Gang; Xing, Mengdao; Xia, Xiang-Gen; Zhang, Lei; Chen, Qianqian; Bao, Zheng

    2016-05-01

    In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm.

  10. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  11. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  12. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  13. 3D motion and strain estimation of the heart: initial clinical findings

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Hristova, Krassimira; Loeckx, Dirk; Rademakers, Frank; Claus, Piet; D'hooge, Jan

    2010-03-01

    The quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. As such, tissue Doppler imaging and speckle tracking based methods have been introduced to estimate local myocardial strain. Recently, volumetric ultrasound has become more readily available, allowing therefore the 3D estimation of motion and myocardial deformation. Our lab has previously presented a method based on spatio-temporal elastic registration of ultrasound volumes to estimate myocardial motion and deformation in 3D, overcoming the spatial limitations of the existing methods. This method was optimized on simulated data sets in previous work and is currently tested in a clinical setting. In this manuscript, 10 healthy volunteers, 10 patient with myocardial infarction and 10 patients with arterial hypertension were included. The cardiac strain values extracted with the proposed method were compared with the ones estimated with 1D tissue Doppler imaging and 2D speckle tracking in all patient groups. Although the absolute values of the 3D strain components assessed by this new methodology were not identical to the reference methods, the relationship between the different patient groups was similar.

  14. On-line 3D motion estimation using low resolution MRI

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2015-08-01

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  15. On-line 3D motion estimation using low resolution MRI.

    PubMed

    Glitzner, M; de Senneville, B Denis; Lagendijk, J J W; Raaymakers, B W; Crijns, S P M

    2015-08-21

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with (2.5 mm)3 voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. (5 mm)3. In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  16. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  17. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  18. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    SciTech Connect

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-06-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  19. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  20. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections. PMID:24505748

  1. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  2. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  3. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. PMID:26795123

  4. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load.

  5. 3D Human Motion Editing and Synthesis: A Survey

    PubMed Central

    Wang, Xin; Chen, Qiudi; Wang, Wanliang

    2014-01-01

    The ways to compute the kinematics and dynamic quantities of human bodies in motion have been studied in many biomedical papers. This paper presents a comprehensive survey of 3D human motion editing and synthesis techniques. Firstly, four types of methods for 3D human motion synthesis are introduced and compared. Secondly, motion capture data representation, motion editing, and motion synthesis are reviewed successively. Finally, future research directions are suggested. PMID:25045395

  6. Characterization of 3-D coronary tree motion from MSCT angiography

    PubMed Central

    Yang, Guanyu; Zhou, Jian; Boulmier, Dominique; Garcia, Marie-Paule; Luo, Limin; Toumoulin, Christine

    2010-01-01

    This paper describes a method for the characterization of coronary artery motion using Multi-slice Computed Tomography (MSCT) volume sequences. Coronary trees are first extracted by a spatial vessel tracking method in each volume of MSCT sequence. A point-based matching algorithm, with feature landmarks constraint, is then applied to match the 3D extracted centerlines between two consecutive instants over a complete cardiac cycle. The transformation functions and correspondence matrices are estimated simultaneously and allow deformable fitting of the vessels over the volume series. Either point-based or branch-based motion features can be derived. Experiments have been conducted in order to evaluate the performance of the method with a matching error analysis. PMID:19783508

  7. On the Inverse Problem of Binocular 3D Motion Perception

    PubMed Central

    Lages, Martin; Heron, Suzanne

    2010-01-01

    It is shown that existing processing schemes of 3D motion perception such as interocular velocity difference, changing disparity over time, as well as joint encoding of motion and disparity, do not offer a general solution to the inverse optics problem of local binocular 3D motion. Instead we suggest that local velocity constraints in combination with binocular disparity and other depth cues provide a more flexible framework for the solution of the inverse problem. In the context of the aperture problem we derive predictions from two plausible default strategies: (1) the vector normal prefers slow motion in 3D whereas (2) the cyclopean average is based on slow motion in 2D. Predicting perceived motion directions for ambiguous line motion provides an opportunity to distinguish between these strategies of 3D motion processing. Our theoretical results suggest that velocity constraints and disparity from feature tracking are needed to solve the inverse problem of 3D motion perception. It seems plausible that motion and disparity input is processed in parallel and integrated late in the visual processing hierarchy. PMID:21124957

  8. Artificial neural networks for 3-D motion analysis-Part II: Nonrigid motion.

    PubMed

    Chen, T; Lin, W C; Chen, C T

    1995-01-01

    For pt. I see ibid., p. 1386-93 (1995). An approach applying artificial neural net techniques to 3D nonrigid motion analysis is proposed. The 3D nonrigid motion of the left ventricle of a human heart is examined using biplanar cineangiography data, consisting of 3D coordinates of 30 coronary artery bifurcation points of the left ventricle and the correspondences of these points taken over 10 time instants during the heart cardiac cycle. The motion is decomposed into global rigid motion and a set of local nonrigid deformations which are coupled with the global motion. The global rigid motion can be estimated precisely as a translation vecto and a rotation matrix. Local nonrigid deformation estimation is discussed. A set of neural nets similar in structure and dynamics but different in physical size is proposed to tackle the problem of nonrigidity. These neural networks are interconnected through feedbacks. The activation function of the output layer is selected so that a feedback is involved in the output updating. The constraints are specified to ensure stable and globally consistent estimation. The objective is to find the optimal deformation matrices that satisfy the constraints for all coronary artery bifurcation points of the left ventricle. The proposed neural networks differ from other existing neural network models in their unique structure and dynamics.

  9. 3D visual presentation of shoulder joint motion.

    PubMed

    Totterman, S; Tamez-Pena, J; Kwok, E; Strang, J; Smith, J; Rubens, D; Parker, K

    1998-01-01

    The 3D visual presentation of biodynamic events of human joints is a challenging task. Although the 3D reconstruction of high contrast structures from CT data has been widely explored, then there is much less experience in reconstructing the small low contrast soft tissue structures from inhomogeneous and sometimes noisy MR data. Further, there are no algorithms for tracking the motion of moving anatomic structures through MR data. We represent a comprehensive approach to 3D musculoskeletal imagery that addresses these challenges. Specific imaging protocols, segmentation algorithms and rendering techniques are developed and applied to render complex 3D musculoskeletal systems for their 4D visual presentation. Applications of our approach include analysis of rotational motion of the shoulder, the knee flexion, and other complex musculoskeletal motions, and the development of interactive virtual human joints.

  10. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  11. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology.

  12. Preference for motion and depth in 3D film

    NASA Astrophysics Data System (ADS)

    Hartle, Brittney; Lugtigheid, Arthur; Kazimi, Ali; Allison, Robert S.; Wilcox, Laurie M.

    2015-03-01

    While heuristics have evolved over decades for the capture and display of conventional 2D film, it is not clear these always apply well to stereoscopic 3D (S3D) film. Further, while there has been considerable recent research on viewer comfort in S3D media, little attention has been paid to audience preferences for filming parameters in S3D. Here we evaluate viewers' preferences for moving S3D film content in a theatre setting. Specifically we examine preferences for combinations of camera motion (speed and direction) and stereoscopic depth (IA). The amount of IA had no impact on clip preferences regardless of the direction or speed of camera movement. However, preferences were influenced by camera speed, but only in the in-depth condition where viewers preferred faster motion. Given that previous research shows that slower speeds are more comfortable for viewing S3D content, our results show that viewing preferences cannot be predicted simply from measures of comfort. Instead, it is clear that viewer response to S3D film is complex and that film parameters selected to enhance comfort may in some instances produce less appealing content.

  13. Joint 3d Estimation of Vehicles and Scene Flow

    NASA Astrophysics Data System (ADS)

    Menze, M.; Heipke, C.; Geiger, A.

    2015-08-01

    driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

  14. Neuromorphic Event-Based 3D Pose Estimation

    PubMed Central

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.

    2016-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547

  15. Neuromorphic Event-Based 3D Pose Estimation.

    PubMed

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B

    2015-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30-60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion.

  16. Neuromorphic Event-Based 3D Pose Estimation.

    PubMed

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B

    2015-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30-60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547

  17. Learning Projectile Motion with the Computer Game ``Scorched 3D``

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    2008-01-01

    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  18. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  19. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  20. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  1. 3D model-based catheter tracking for motion compensation in EP procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  2. Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity.

    PubMed

    Paradis, A-L; Droulez, J; Cornilleau-Pérès, V; Poline, J-B

    2008-12-01

    This study aims at segregating the neural substrate for the 3D-form and 3D-motion attributes in structure-from-motion perception, and at disentangling the stimulus-driven and endogenous-attention-driven processing of these attributes. Attention and stimulus were manipulated independently: participants had to detect the transitions of one attribute--form, 3D motion or colour--while the visual stimulus underwent successive transitions of all attributes. We compared the BOLD activity related to form and 3D motion in three conditions: stimulus-driven processing (unattended transitions), endogenous attentional selection (task) or both stimulus-driven processing and attentional selection (attended transitions). In all conditions, the form versus 3D-motion contrasts revealed a clear dorsal/ventral segregation. However, while the form-related activity is consistent with previously described shape-selective areas, the activity related to 3D motion does not encompass the usual "visual motion" areas, but rather corresponds to a high-level motion system, including IPL and STS areas. Second, we found a dissociation between the neural processing of unattended attributes and that involved in endogenous attentional selection. Areas selective for 3D-motion and form showed either increased activity at transitions of these respective attributes or decreased activity when subjects' attention was directed to a competing attribute. We propose that both facilitatory and suppressive mechanisms of attribute selection are involved depending on the conditions driving this selection. Therefore, attentional selection is not limited to an increased activity in areas processing stimulus properties, and may unveil different functional localization from stimulus modulation.

  3. Use of 3D vision for fine robot motion

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Litwin, Todd

    1989-01-01

    An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.

  4. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  5. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  6. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  7. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  8. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  9. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts.

  10. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts. PMID:21277821

  11. Determining 3-D motion and structure from image sequences

    NASA Technical Reports Server (NTRS)

    Huang, T. S.

    1982-01-01

    A method of determining three-dimensional motion and structure from two image frames is presented. The method requires eight point correspondences between the two frames, from which motion and structure parameters are determined by solving a set of eight linear equations and a singular value decomposition of a 3x3 matrix. It is shown that the solution thus obtained is unique.

  12. Estimating Density Gradients and Drivers from 3D Ionospheric Imaging

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Bust, G. S.; Curtis, N.; Reynolds, A.; Crowley, G.

    2009-12-01

    The transition regions at the edges of the ionospheric storm-enhanced density (SED) are important for a detailed understanding of the mid-latitude physical processes occurring during major magnetic storms. At the boundary, the density gradients are evidence of the drivers that link the larger processes of the SED, with its connection to the plasmasphere and prompt-penetration electric fields, to the smaller irregularities that result in scintillations. For this reason, we present our estimates of both the plasma variation with horizontal and vertical spatial scale of 10 - 100 km and the plasma motion within and along the edges of the SED. To estimate the density gradients, we use Ionospheric Data Assimilation Four-Dimensional (IDA4D), a mature data assimilation algorithm that has been developed over several years and applied to investigations of polar cap patches and space weather storms [Bust and Crowley, 2007; Bust et al., 2007]. We use the density specification produced by IDA4D with a new tool for deducing ionospheric drivers from 3D time-evolving electron density maps, called Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). The EMPIRE technique has been tested on simulated data from TIMEGCM-ASPEN and on IDA4D-based density estimates with ongoing validation from Arecibo ISR measurements [Datta-Barua et al., 2009a; 2009b]. We investigate the SED that formed during the geomagnetic super storm of November 20, 2003. We run IDA4D at low-resolution continent-wide, and then re-run it at high (~10 km horizontal and ~5-20 km vertical) resolution locally along the boundary of the SED, where density gradients are expected to be highest. We input the high-resolution estimates of electron density to EMPIRE to estimate the ExB drifts and field-aligned plasma velocities along the boundaries of the SED. We expect that these drivers contribute to the density structuring observed along the SED during the storm. Bust, G. S. and G. Crowley (2007

  13. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  14. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  15. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  16. Low-level motion analysis of color and luminance for perception of 2D and 3D motion.

    PubMed

    Shioiri, Satoshi; Yoshizawa, Masanori; Ogiya, Mistuharu; Matsumiya, Kazumichi; Yaguchi, Hirohisa

    2012-01-01

    We investigated the low-level motion mechanisms for color and luminance and their integration process using 2D and 3D motion aftereffects (MAEs). The 2D and 3D MAEs obtained in equiluminant color gratings showed that the visual system has the low-level motion mechanism for color motion as well as for luminance motion. The 3D MAE is an MAE for motion in depth after monocular motion adaptation. Apparent 3D motion can be perceived after prolonged exposure of one eye to lateral motion because the difference in motion signal between the adapted and unadapted eyes generates interocular velocity differences (IOVDs). Since IOVDs cannot be analyzed by the high-level motion mechanism of feature tracking, we conclude that a low-level motion mechanism is responsible for the 3D MAE. Since we found different temporal frequency characteristics between the color and luminance stimuli, MAEs in the equiluminant color stimuli cannot be attributed to a residual luminance component in the color stimulus. Although a similar MAE was found with a luminance and a color test both for 2D and 3D motion judgments after adapting to either color or luminance motion, temporal frequency characteristics were different between the color and luminance adaptation. The visual system must have a low-level motion mechanism for color signals as for luminance ones. We also found that color and luminance motion signals are integrated monocularly before IOVD analysis, showing a cross adaptation effect between color and luminance stimuli. This was supported by an experiment with dichoptic presentations of color and luminance tests. In the experiment, color and luminance tests were presented in the different eyes dichoptically with four different combinations of test and adaptation: color or luminance test in the adapted eye after color or luminance adaptation. Findings of little or no influence of the adaptation/test combinations indicate the integration of color and luminance motion signals prior to the

  17. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  18. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  19. Markerless 3D motion capture for animal locomotion studies

    PubMed Central

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  20. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  1. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  2. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Fenster, Aaron; Bax, Jeffrey; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D.

    2012-02-01

    Prostate biopsy is the clinical standard for prostate cancer diagnosis. To improve the accuracy of targeting suspicious locations, systems have been developed that can plan and record biopsy locations in a 3D TRUS image acquired at the beginning of the procedure. Some systems are designed for maximum compatibility with existing ultrasound equipment and are thus designed around the use of a conventional 2D TRUS probe, using controlled axial rotation of this probe to acquire a 3D TRUS reference image at the start of the biopsy procedure. Prostate motion during the biopsy procedure causes misalignments between the prostate in the live 2D TRUS images and the pre-acquired 3D TRUS image. We present an image-based rigid registration technique that aligns live 2D TRUS images, acquired immediately prior to biopsy needle insertion, with the pre-acquired 3D TRUS image to compensate for this motion. Our method was validated using 33 manually identified intrinsic fiducials in eight subjects and the target registration error was found to be 1.89 mm. We analysed the suitability of two image similarity metrics (normalized cross correlation and mutual information) for this task by plotting these metrics as a function of varying parameters in the six degree-of-freedom transformation space, with the ground truth plane obtained from registration as the starting point for the parameter exploration. We observed a generally convex behaviour of the similarity metrics. This encourages their use for this registration problem, and could assist in the design of a tool for the detection of misalignment, which could trigger the execution of a non-real-time registration, when needed during the procedure.

  3. Simple 3-D stimulus for motion parallax and its simulation.

    PubMed

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces. PMID:23964382

  4. Computational optical-sectioning microscopy for 3D quantization of cell motion: results and challenges

    NASA Astrophysics Data System (ADS)

    McNally, James G.

    1994-09-01

    How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the

  5. Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory

    PubMed Central

    Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.

    2014-01-01

    Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292

  6. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic

  7. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.

    PubMed

    Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam

    2014-07-01

    Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.

  8. First order error propagation of the procrustes method for 3D attitude estimation.

    PubMed

    Dorst, Leo

    2005-02-01

    The well-known Procrustes method determines the optimal rigid body motion that registers two point clouds by minimizing the square distances of the residuals. In this paper, we perform the first order error analysis of this method for the 3D case, fully specifying how directional noise in the point clouds affects the estimated parameters of the rigid body motion. These results are much more specific than the error bounds which have been established in numerical analysis. We provide an intuitive understanding of the outcome to facilitate direct use in applications.

  9. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.

  10. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  11. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion

    NASA Astrophysics Data System (ADS)

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J.

    2007-07-01

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  12. 3D magnetic sources' framework estimation using Genetic Algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Ponte-Neto, C. F.; Barbosa, V. C.

    2008-05-01

    We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate

  13. The effect of motion on IMRT - looking at interplay with 3D measurements

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Yan, H.; Oldham, M.; Juang, T.; Adamovics, J.; Yin, F. F.

    2013-06-01

    Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

  14. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  15. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  16. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of

  17. Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; Danilouchkine, Mikhail G.; van Stralen, Marijn; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2009-02-01

    For obtaining quantitative and objective functional parameters from three-dimensional (3D) echocardiographic sequences, automated segmentation methods may be preferable to cumbersome manual delineation of 3D borders. In this study, a novel optical-flow based tracking method is proposed for propagating 3D endocardial contours of the left ventricle throughout the cardiac cycle. To take full advantage of the time-continuous nature of cardiac motion, a statistical motion model was explicitly embedded in the optical flow solution. The cardiac motion was modeled as frame-to-frame affine transforms, which were extracted using Procrustes analysis on a set of training contours. Principal component analysis was applied to obtain a compact model of cardiac motion throughout the whole cardiac cycle. The parameters of this model were resolved in an optical flow manner, via spatial and temporal gradients in image intensity. The algorithm was tested on 36 noncontrast and 28 contrast enhanced 3D echocardiographic sequences in a leave-one-out manner. Good results were obtained using a combination of the proposed motion-guided method and a purely data-driven optical flow approach. The improvement was particularly noticeable in areas where the LV wall was obscured by image artifacts. In conclusion, the results show the applicability of the proposed method in clinical quality echocardiograms.

  18. From canonical poses to 3D motion capture using a single camera.

    PubMed

    Fossati, Andrea; Dimitrijevic, Miodrag; Lepetit, Vincent; Fua, Pascal

    2010-07-01

    We combine detection and tracking techniques to achieve robust 3D motion recovery of people seen from arbitrary viewpoints by a single and potentially moving camera. We rely on detecting key postures, which can be done reliably, using a motion model to infer 3D poses between consecutive detections, and finally refining them over the whole sequence using a generative model. We demonstrate our approach in the cases of golf motions filmed using a static camera and walking motions acquired using a potentially moving one. We will show that our approach, although monocular, is both metrically accurate because it integrates information over many frames and robust because it can recover from a few misdetections.

  19. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions.

  20. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  1. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  2. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI

    NASA Astrophysics Data System (ADS)

    Liew, Y. M.; McLaughlin, R. A.; Chan, B. T.; Aziz, Y. F. Abdul; Chee, K. H.; Ung, N. M.; Tan, L. K.; Lai, K. W.; Ng, S.; Lim, E.

    2015-04-01

    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.

  3. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  4. A comparison of 3D scapular kinematics between dominant and nondominant shoulders during multiplanar arm motion

    PubMed Central

    Lee, Sang Ki; Yang, Dae Suk; Kim, Ha Yong; Choy, Won Sik

    2013-01-01

    Background: Generally, the scapular motions of pathologic and contralateral normal shoulders are compared to characterize shoulder disorders. However, the symmetry of scapular motion of normal shoulders remains undetermined. Therefore, the aim of this study was to compare 3dimensinal (3D) scapular motion between dominant and nondominant shoulders during three different planes of arm motion by using an optical tracking system. Materials and Methods: Twenty healthy subjects completed five repetitions of elevation and lowering in sagittal plane flexion, scapular plane abduction, and coronal plane abduction. The 3D scapular motion was measured using an optical tracking system, after minimizing reflective marker skin slippage using ultrasonography. The dynamic 3D motion of the scapula of dominant and nondominant shoulders, and the scapulohumeral rhythm (SHR) were analyzed at each 10° increment during the three planes of arm motion. Results: There was no significant difference in upward rotation or internal rotation (P > 0.05) of the scapula between dominant and nondominant shoulders during the three planes of arm motion. However, there was a significant difference in posterior tilting (P = 0.018) during coronal plane abduction. The SHR was a large positive or negative number in the initial phase of sagittal plane flexion and scapular plane abduction. However, the SHR was a small positive or negative number in the initial phase of coronal plane abduction. Conclusions: Only posterior tilting of the scapula during coronal plane abduction was asymmetrical in our healthy subjects, and depending on the plane of arm motion, the pattern of the SHR differed as well. These differences should be considered in the clinical assessment of shoulder pathology. PMID:23682174

  5. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  6. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  7. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  8. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  9. Teleoperation of a robot manipulator from 3D human hand-arm motion

    NASA Astrophysics Data System (ADS)

    Kofman, Jonathan; Verma, Siddharth; Wu, Xianghai; Luu, Timothy

    2003-10-01

    The control of a robot manipulator by a human operator is often necessary in unstructured dynamic environments with unfamiliar objects. Remote teleoperation is required when human presence at the robot site is undesirable or difficult, such as in handling hazardous materials and operating in dangerous or inaccessible environments. Previous approaches have employed mechanical or other contacting interfaces which require unnatural motions for object manipulation tasks or hinder dexterous human motion. This paper presents a non-contacting method of teleoperating a robot manipulator by having the human operator perform the 3D human hand-arm motion that would naturally be used to compete an object manipulation task and tracking the motion with a stereo-camera system at a local site. The 3D human hand-arm motion is reconstructed at the remote robot site and is used to control the position and orientation of the robot manipulator end-effector in real-time. Images captured of the robot interacting with objects at the remote site provide visual feedback to the human operator. Tests in teleoperation of the robot manipulator have demonstrated the ability of the human to carry out object manipulator tasks remotely and the teleoperated robot manipulator system to copy human-arm motions in real-time.

  10. 3D imaging of particle-scale rotational motion in cyclically driven granular flows

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang

    Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.

  11. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  12. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.

    PubMed

    Piro, Neltje E; Piro, Lennart K; Kassubek, Jan; Blechschmidt-Trapp, Ronald A

    2016-01-01

    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  13. Kinetic depth effect and optic flow--I. 3D shape from Fourier motion.

    PubMed

    Dosher, B A; Landy, M S; Sperling, G

    1989-01-01

    Fifty-three different 3D shapes were defined by sequences of 2D views (frames) of dots on a rotating 3D surface. (1) Subjects' accuracy of shape identifications dropped from over 90% to less than 10% when either the polarity of the stimulus dots was alternated from light-on-gray to dark-on-gray on successive frames or when neutral gray interframe intervals were interposed. Both manipulations interfere with motion extraction by spatio-temporal (Fourier) and gradient first-order detectors. Second-order (non-Fourier) detectors that use full-wave rectification are unaffected by alternating-polarity but disrupted by interposed gray frames. (2) To equate the accuracy of two-alternative forced-choice (2AFC) planar direction-of-motion discrimination in standard and polarity-alternated stimuli, standard contrast was reduced. 3D shape discrimination survived contrast reduction in standard stimuli whereas it failed completely with polarity-alternation even at full contrast. (3) When individual dots were permitted to remain in the image sequence for only two frames, performance showed little loss compared to standard displays where individual dots had an expected lifetime of 20 frames, showing that 3D shape identification does not require continuity of stimulus tokens. (4) Performance in all discrimination tasks is predicted (up to a monotone transformation) by considering the quality of first-order information (as given by a simple computation on Fourier power) and the number of locations at which motion information is required. Perceptual first-order analysis of optic flow is the primary substrate for structure-from-motion computations in random dot displays because only it offers sufficient quality of perceptual motion at a sufficient number of locations.

  14. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    SciTech Connect

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-05-15

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period ({rho}) to R-waves (R) detected in the patient's ECG and found a mean difference of 14{+-}80 ms. Two simultaneous angular positions were acquired and {rho} was detected for each position. There was no statistically significant difference (P=0.79) between {rho} in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC

  15. Ultrasonic diaphragm tracking for cardiac interventional navigation on 3D motion compensated static roadmaps

    NASA Astrophysics Data System (ADS)

    Timinger, Holger; Kruger, Sascha; Dietmayer, Klaus; Borgert, Joern

    2005-04-01

    In this paper, a novel approach to cardiac interventional navigation on 3D motion-compensated static roadmaps is presented. Current coronary interventions, e.g. percutaneous transluminal coronary angioplasties, are performed using 2D X-ray fluoroscopy. This comes along with well-known drawbacks like radiation exposure, use of contrast agent, and limited visualization, e.g. overlap and foreshortening, due to projection imaging. In the presented approach, the interventional device, i.e. the catheter, is tracked using an electromagnetic tracking system (MTS). Therefore, the catheters position is mapped into a static 3D image of the volume of interest (VOI) by means of an affine registration. In order to compensate for respiratory motion of the catheter with respect to the static image, a parameterized affine motion model is used which is driven by a respiratory sensor signal. This signal is derived from ultrasonic diaphragm tracking. The motion compensation for the heartbeat is done using ECG-gating. The methods are validated using a heart- and diaphragm-phantom. The mean displacement of the catheter due to the simulated organ motion decreases from approximately 9 mm to 1.3 mm. This result indicates that the proposed method is able to reconstruct the catheter position within the VOI accurately and that it can help to overcome drawbacks of current interventional procedures.

  16. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  17. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  18. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  19. Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D

    SciTech Connect

    Rearden, Bradley T; Williams, Mark L

    2007-01-01

    Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysis sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.

  20. Integration of 3D structure from disparity into biological motion perception independent of depth awareness.

    PubMed

    Wang, Ying; Jiang, Yi

    2014-01-01

    Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers' depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception.

  1. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  2. Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors

    PubMed Central

    Ge, Song; Fan, Guoliang

    2015-01-01

    We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary nature to cope with non-rigid and articulated deformations of the human body under a variety of poses. This unique combination allows us to handle point sets of complex body motion and large pose variation without any initial conditions, as required by most existing approaches. Second, we introduce an efficient pose tracking strategy to deal with sequential depth data, where the major challenge is the incomplete data due to self-occlusions and view changes. We introduce a visible point extraction method to initialize a new template for the current frame from the previous frame, which effectively reduces the ambiguity and uncertainty during registration. Third, to support robust and stable pose tracking, we develop a segment volume validation technique to detect tracking failures and to re-initialize pose registration if needed. The experimental results on both benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework when compared with state-of-the-art algorithms. PMID:26131673

  3. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  4. Boundary estimation method for ultrasonic 3D imaging

    NASA Astrophysics Data System (ADS)

    Ohashi, Gosuke; Ohya, Akihisa; Natori, Michiya; Nakajima, Masato

    1993-09-01

    The authors developed a new method for automatically and efficiently estimating the boundaries of soft tissue and amniotic fluid and to obtain a fine three dimensional image of the fetus from information given by ultrasonic echo images. The aim of this boundary estimation is to provide clear three dimensional images by shading the surface of the fetus and uterine wall using Lambert shading method. Normally there appears a random granular pattern called 'speckle' on an ultrasonic echo image. Therefore, it is difficult to estimate the soft tissue boundary satisfactorily via a simple method such as threshold value processing. Accordingly, the authors devised a method for classifying attributes into three categories using the neural network: soft tissue, amniotic and boundary. The shape of the grey level histogram was the standard for judgment, made by referring to the peripheral region of the voxel. Its application to the clinical data has shown a fine estimation of the boundary between the fetus or the uterine wall and the amniotic, enabling the details of the three dimensional structure to be observed.

  5. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  6. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  7. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  8. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  9. Validation of INSAT-3D atmospheric motion vectors for monsoon 2015

    NASA Astrophysics Data System (ADS)

    Sharma, Priti; Rani, S. Indira; Das Gupta, M.

    2016-05-01

    Atmospheric Motion Vector (AMV) over Indian Ocean and surrounding region is one of the most important sources of tropospheric wind information assimilated in numerical weather prediction (NWP) system. Earlier studies showed that the quality of Indian geo-stationary satellite Kalpana-1 AMVs was not comparable to that of other geostationary satellites over this region and hence not used in NWP system. Indian satellite INSAT-3D was successfully launched on July 26, 2013 with upgraded imaging system as compared to that of previous Indian satellite Kalpana-1. INSAT-3D has middle infrared band (3.80 - 4.00 μm) which is capable of night time pictures of low clouds and fog. Three consecutive images of 30-minutes interval are used to derive the AMVs. New height assignment scheme (using NWP first guess and replacing old empirical GA method) along with modified quality control scheme were implemented for deriving INSAT-3D AMVs. In this paper an attempt has been made to validate these AMVs against in-situ observations as well as against NCMRWF's NWP first guess for monsoon 2015. AMVs are subdivided into three different pressure levels in the vertical viz. low (1000 - 700 hPa), middle (700 - 400 hPa) and high (400 - 100 hPa) for validation purpose. Several statistics viz. normalized root mean square vector difference; biases etc. have been computed over different latitudinal belt. Result shows that the general mean monsoon circulations along with all the transient monsoon systems are well captured by INSAT-3D AMVs, as well as the error statistics viz., RMSE etc of INSAT-3D AMVs is now comparable to other geostationary satellites.

  10. Estimation of 3D cardiac deformation using spatio-temporal elastic registration of non-scanconverted ultrasound data

    NASA Astrophysics Data System (ADS)

    Elen, An; Loeckx, Dirk; Choi, Hon Fai; Gao, Hang; Claus, Piet; Maes, Frederik; Suetens, Paul; D'hooge, Jan

    2008-03-01

    Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Spatio-temporal elastic registration of 3D cardiac ultrasound data can however be used to estimate the 3D motion and full 3D strain tensor. In this work, the spatio-temporal elastic registration method was validated for both non-scanconverted and scanconverted images. This was done using simulated 3D pyramidal ultrasound data sets based on a thick-walled deforming ellipsoid and an adapted convolution model. A B-spline based frame-to-frame elastic registration method was applied to both the scanconverted and non-scanconverded data sets and the accuracy of the resulting deformation fields was quantified. The mean accuracy of the estimated displacement was very similar for the scanconverted and non-scanconverted data sets and thus, it was shown that 3D elastic registration to estimate the cardiac deformation from ultrasound images can be performed on non-scanconverted images, but that avoiding of the scanconversion step does not significantly improve the results of the displacement estimation.

  11. Broadband Near-Field Ground Motion Simulations in 3D Scattering Media

    NASA Astrophysics Data System (ADS)

    Imperatori, Walter; Mai, Martin

    2013-04-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broadband ground-motion calculations, either considering scattering as a semi-stochastic or pure stochastic process. In this study, we simulate broadband (0-10 Hz) ground motions using a 3D finite-difference wave propagation solver using several 3D media characterized by Von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wave-field at short and intermediate distances from the source in terms of ground motion parameters. We also examine other relevant scattering-related phenomena, such as the loss of radiation pattern and the directivity breakdown. We first simulate broadband ground motions for a point-source characterized by a classic omega-squared spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both sub-shear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for PGV calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggest that Von Karman correlation functions with correlation length between several hundred meters and few kilometers, Hurst exponent around 0.3 and standard deviation in the 5-10% range

  12. Automated Segmentation of the Right Ventricle in 3D Echocardiography: A Kalman Filter State Estimation Approach.

    PubMed

    Bersvendsen, Jorn; Orderud, Fredrik; Massey, Richard John; Fosså, Kristian; Gerard, Olivier; Urheim, Stig; Samset, Eigil

    2016-01-01

    As the right ventricle's (RV) role in cardiovascular diseases is being more widely recognized, interest in RV imaging, function and quantification is growing. However, there are currently few RV quantification methods for 3D echocardiography presented in the literature or commercially available. In this paper we propose an automated RV segmentation method for 3D echocardiographic images. We represent the RV geometry by a Doo-Sabin subdivision surface with deformation modes derived from a training set of manual segmentations. The segmentation is then represented as a state estimation problem and solved with an extended Kalman filter by combining the RV geometry with a motion model and edge detection. Validation was performed by comparing surface-surface distances, volumes and ejection fractions in 17 patients with aortic insufficiency between the proposed method, magnetic resonance imaging (MRI), and a manual echocardiographic reference. The algorithm was efficient with a mean computation time of 2.0 s. The mean absolute distances between the proposed and manual segmentations were 3.6 ± 0.7 mm. Good agreements of end diastolic volume, end systolic volume and ejection fraction with respect to MRI ( -26±24 mL , -16±26 mL and 0 ± 10%, respectively) and a manual echocardiographic reference (7 ± 30 mL, 13 ± 17 mL and -5±7% , respectively) were observed.

  13. 3D digital holographic interferometry as a tool to measure the tympanic membrane motion

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, M.; Muñoz Solis, S.; Mendoza Santoyo, F.

    2012-10-01

    Most of the current optical non-invasive methodologies used to characterize the tympanic membrane (TM) motion generate data in the z direction only, i.e., employ an out-of-plane sensitive configuration. In this paper, 3-D digital holographic interferometry (3-D DHI), is used to measure micrometer displacements from the TM surface. The proposed optical configuration provides information from three sensitivity vectors that separate the contributions from x, y and z displacement components. In order to achieve high accuracy of the sensitivity vector and to obtain the complete determination of the 3-D TM displacements, its surface contour is obtained by moving only two object illumination sources chosen from any pair within the DHI optical setup. Results are presented from measurements corresponding to individual displacements maps for the three orthogonal displacements components x, y and z combined with the TM shape from an ex-vivo cat. These results will no doubt contribute to enhance the understanding and determinate the mechanical properties of this complex tissue.

  14. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  15. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  16. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  17. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  18. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  19. 3D motion tracking of the heart using Harmonic Phase (HARP) isosurfaces

    NASA Astrophysics Data System (ADS)

    Soliman, Abraam S.; Osman, Nael F.

    2010-03-01

    Tags are non-invasive features induced in the heart muscle that enable the tracking of heart motion. Each tag line, in fact, corresponds to a 3D tag surface that deforms with the heart muscle during the cardiac cycle. Tracking of tag surfaces deformation is useful for the analysis of left ventricular motion. Cardiac material markers (Kerwin et al, MIA, 1997) can be obtained from the intersections of orthogonal surfaces which can be reconstructed from short- and long-axis tagged images. The proposed method uses Harmonic Phase (HARP) method for tracking tag lines corresponding to a specific harmonic phase value and then the reconstruction of grid tag surfaces is achieved by a Delaunay triangulation-based interpolation for sparse tag points. Having three different tag orientations from short- and long-axis images, the proposed method showed the deformation of 3D tag surfaces during the cardiac cycle. Previous work on tag surface reconstruction was restricted for the "dark" tag lines; however, the use of HARP as proposed enables the reconstruction of isosurfaces based on their harmonic phase values. The use of HARP, also, provides a fast and accurate way for tag lines identification and tracking, and hence, generating the surfaces.

  20. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI

    PubMed Central

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2014-01-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  1. New method for detection of complex 3D fracture motion - Verification of an optical motion analysis system for biomechanical studies

    PubMed Central

    2012-01-01

    Background Fracture-healing depends on interfragmentary motion. For improved osteosynthesis and fracture-healing, the micromotion between fracture fragments is undergoing intensive research. The detection of 3D micromotions at the fracture gap still presents a challenge for conventional tactile measurement systems. Optical measurement systems may be easier to use than conventional systems, but, as yet, cannot guarantee accuracy. The purpose of this study was to validate the optical measurement system PONTOS 5M for use in biomechanical research, including measurement of micromotion. Methods A standardized transverse fracture model was created to detect interfragmentary motions under axial loadings of up to 200 N. Measurements were performed using the optical measurement system and compared with a conventional high-accuracy tactile system consisting of 3 standard digital dial indicators (1 μm resolution; 5 μm error limit). Results We found that the deviation in the mean average motion detection between the systems was at most 5.3 μm, indicating that detection of micromotion was possible with the optical measurement system. Furthermore, we could show two considerable advantages while using the optical measurement system. Only with the optical system interfragmentary motion could be analyzed directly at the fracture gap. Furthermore, the calibration of the optical system could be performed faster, safer and easier than that of the tactile system. Conclusion The PONTOS 5 M optical measurement system appears to be a favorable alternative to previously used tactile measurement systems for biomechanical applications. Easy handling, combined with a high accuracy for 3D detection of micromotions (≤ 5 μm), suggests the likelihood of high user acceptance. This study was performed in the context of the deployment of a new implant (dynamic locking screw; Synthes, Oberdorf, Switzerland). PMID:22405047

  2. Impact of Building Heights on 3d Urban Density Estimation from Spaceborne Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Peng, Feifei; Gong, Jianya; Wang, Le; Wu, Huayi; Yang, Jiansi

    2016-06-01

    In urban planning and design applications, visualization of built up areas in three dimensions (3D) is critical for understanding building density, but the accurate building heights required for 3D density calculation are not always available. To solve this problem, spaceborne stereo imagery is often used to estimate building heights; however estimated building heights might include errors. These errors vary between local areas within a study area and related to the heights of the building themselves, distorting 3D density estimation. The impact of building height accuracy on 3D density estimation must be determined across and within a study area. In our research, accurate planar information from city authorities is used during 3D density estimation as reference data, to avoid the errors inherent to planar information extracted from remotely sensed imagery. Our experimental results show that underestimation of building heights is correlated to underestimation of the Floor Area Ratio (FAR). In local areas, experimental results show that land use blocks with low FAR values often have small errors due to small building height errors for low buildings in the blocks; and blocks with high FAR values often have large errors due to large building height errors for high buildings in the blocks. Our study reveals that the accuracy of 3D density estimated from spaceborne stereo imagery is correlated to heights of buildings in a scene; therefore building heights must be considered when spaceborne stereo imagery is used to estimate 3D density to improve precision.

  3. Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2006-05-01

    This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruction when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image reconstruction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing a single scattering center are detected and the 3D location of these cells' pixels are estimated; all other pixels are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

  4. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  5. Augmenting ViSP's 3D Model-Based Tracker with RGB-D SLAM for 3D Pose Estimation in Indoor Environments

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2016-06-01

    This paper presents a novel application of the Visual Servoing Platform's (ViSP) for pose estimation in indoor and GPS-denied outdoor environments. Our proposed solution integrates the trajectory solution from RGBD-SLAM into ViSP's pose estimation process. Li-Chee-Ming and Armenakis (2015) explored the application of ViSP in mapping large outdoor environments, and tracking larger objects (i.e., building models). Their experiments revealed that tracking was often lost due to a lack of model features in the camera's field of view, and also because of rapid camera motion. Further, the pose estimate was often biased due to incorrect feature matches. This work proposes a solution to improve ViSP's pose estimation performance, aiming specifically to reduce the frequency of tracking losses and reduce the biases present in the pose estimate. This paper explores the integration of ViSP with RGB-D SLAM. We discuss the performance of the combined tracker in mapping indoor environments and tracking 3D wireframe indoor building models, and present preliminary results from our experiments.

  6. 3D cardiac motion reconstruction from CT data and tagged MRI.

    PubMed

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  7. 3D Cardiac Motion Reconstruction from CT Data and Tagged MRI

    PubMed Central

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2016-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  8. 3D hand motion trajectory prediction from EEG mu and beta bandpower.

    PubMed

    Korik, A; Sosnik, R; Siddique, N; Coyle, D

    2016-01-01

    A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs

  9. 3D hand motion trajectory prediction from EEG mu and beta bandpower.

    PubMed

    Korik, A; Sosnik, R; Siddique, N; Coyle, D

    2016-01-01

    A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs.

  10. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas

    NASA Astrophysics Data System (ADS)

    Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.

    2013-01-01

    This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias

  11. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  12. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  13. Neural network techniques for invariant recognition and motion tracking of 3-D objects

    SciTech Connect

    Hwang, J.N.; Tseng, Y.H.

    1995-12-31

    Invariant recognition and motion tracking of 3-D objects under partial object viewing are difficult tasks. In this paper, we introduce a new neural network solution that is robust to noise corruption and partial viewing of objects. This method directly utilizes the acquired range data and requires no feature extraction. In the proposed approach, the object is first parametrically represented by a continuous distance transformation neural network (CDTNN) which is trained by the surface points of the exemplar object. When later presented with the surface points of an unknown object, this parametric representation allows the mismatch information to back-propagate through the CDTNN to gradually determine the best similarity transformation (translation and rotation) of the unknown object. The mismatch can be directly measured in the reconstructed representation domain between the model and the unknown object.

  14. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  15. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.

    PubMed

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points--with 8 common points at water surface--and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  16. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  17. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm

    PubMed Central

    Ladstein, Jarle; Evensmoen, Hallvard R.; Håberg, Asta K.; Kristoffersen, Anders; Goa, Pål E.

    2016-01-01

    Purpose: To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Materials and Methods: Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Results: Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. Conclusion: The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2

  18. The use of an MEG device as 3D digitizer and motion monitoring system.

    PubMed

    de Munck, J C; Verbunt, J P; Van't Ent, D; Van Dijk, B W

    2001-08-01

    An algorithm is described that localizes a set of simultaneously activated coils using MEG detectors. These coil positions are used for continuous or intermittent head position registration during long MEG sessions, to coregistrate MR and MEG data and to localize EEG electrodes attached to the scalp, when EEG and MEG are recorded simultaneously. The algorithm is based on a mathematical model in which the coils are described as stationary magnetic dipoles with known source time functions. This knowledge makes it possible to detect and remove bad channels automatically. It is also assumed that the source time functions are orthogonal. Therefore, the localization problem splits into independent localization problems. for each coil. The method is validated in a phantom experiment, where the relative coil positions were known. From this experiment it is found that the average error is 0.25 cm. An error of 0.23 cm was found in an experiment where 64 electrode positions were measured four times independently. Examples of the applications of the method are presented. Our method eliminates the use of an external 3D digitizer and maps the MEG directly onto other modalities. This is not only a practical advantage, but it also reduces the gross registration error. Furthermore, head motions can be monitored and MEG data can be corrected for these motions.

  19. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  20. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  1. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  2. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods.

    PubMed

    van Velden, Floris H P; Kloet, Reina W; van Berckel, Bart N M; Wolfensberger, Saskia P A; Lammertsma, Adriaan A; Boellaard, Ronald

    2008-06-21

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  3. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods

    NASA Astrophysics Data System (ADS)

    van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald

    2008-06-01

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  4. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  5. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  6. Estimation of the degree of polarization in low-light 3D integral imaging

    NASA Astrophysics Data System (ADS)

    Carnicer, Artur; Javidi, Bahram

    2016-06-01

    The calculation of the Stokes Parameters and the Degree of Polarization in 3D integral images requires a careful manipulation of the polarimetric elemental images. This fact is particularly important if the scenes are taken in low-light conditions. In this paper, we show that the Degree of Polarization can be effectively estimated even when elemental images are recorded with few photons. The original idea was communicated in [A. Carnicer and B. Javidi, "Polarimetric 3D integral imaging in photon-starved conditions," Opt. Express 23, 6408-6417 (2015)]. First, we use the Maximum Likelihood Estimation approach for generating the 3D integral image. Nevertheless, this method produces very noisy images and thus, the degree of polarization cannot be calculated. We suggest using a Total Variation Denoising filter as a way to improve the quality of the generated 3D images. As a result, noise is suppressed but high frequency information is preserved. Finally, the degree of polarization is obtained successfully.

  7. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  8. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System.

    PubMed

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R² = 0.98) and 0.57 mm (R² = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  9. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System.

    PubMed

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-06-14

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R² = 0.98) and 0.57 mm (R² = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency.

  10. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    PubMed Central

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  11. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  12. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Longmire, Ellen K.

    2013-02-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator-prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success.

  13. Correspondence estimation from non-rigid motion information

    NASA Astrophysics Data System (ADS)

    Wulff, Jonas; Lotz, Thomas; Stehle, Thomas; Aach, Til; Chase, J. Geoffrey

    2011-03-01

    The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

  14. Estimation of ground motion parameters

    USGS Publications Warehouse

    Boore, David M.; Oliver, Adolph A.; Page, Robert A.; Joyner, William B.

    1978-01-01

    Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. Data from the San Fernando earthquake are examined to assess the effects of associated structures and of geologic site conditions on peak recorded motions. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity, and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. Values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Three recently published relationships for predicting peak horizontal acceleration are compared and discussed. Considerations are reviewed relevant to ground motion predictions at close distances where there are insufficient recorded data points.

  15. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  16. Fast local motion estimation algorithm using elementary motion detectors

    NASA Astrophysics Data System (ADS)

    Nakamura, Eiji; Nakamura, Takehito; Sawada, Katsutoshi

    2003-06-01

    This paper presnts a fast local motion estimation algorithm based on so called elementary motion detectors or EMDs. EMDs, modeling insect"s visual signal processing systems, have low computational complexity aspects and can thus be key components to realize such a fast local motion estimation algorithm. The contribution of the presented work is to introduce dual parameter estimators or DPEs by configuring EMDs so that they can estimate local motions in terms of both direction and speed mode parameters simultaneously. The estimated local motion vectors are displayed as arrows superimposed over video image frames. The developed algorithm is implmented in a DirectShow application by using Mircosoft"s DirectX runtime library and is evaluated using various types of video image sequences. It is found to be able to estimate local motion vectors in real time even in moderate PC computing platforms and hece no high profile hardware devices are needed for its real time operation.

  17. Human body 3D posture estimation using significant points and two cameras.

    PubMed

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures.

  18. Nonlinear circuits for naturalistic visual motion estimation.

    PubMed

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator.

  19. Field testing of a 3D automatic target recognition and pose estimation algorithm

    NASA Astrophysics Data System (ADS)

    Ruel, Stephane; English, Chad E.; Melo, Len; Berube, Andrew; Aikman, Doug; Deslauriers, Adam M.; Church, Philip M.; Maheux, Jean

    2004-09-01

    Neptec Design Group Ltd. has developed a 3D Automatic Target Recognition (ATR) and pose estimation technology demonstrator in partnership with the Canadian DND. The system prototype was deployed for field testing at Defence Research and Development Canada (DRDC)-Valcartier. This paper discusses the performance of the developed algorithm using 3D scans acquired with an imaging LIDAR. 3D models of civilian and military vehicles were built using scans acquired with a triangulation laser scanner. The models were then used to generate a knowledge base for the recognition algorithm. A commercial imaging LIDAR was used to acquire test scans of the target vehicles with varying range, pose and degree of occlusion. Recognition and pose estimation results are presented for at least 4 different poses of each vehicle at each test range. Results obtained with targets partially occluded by an artificial plane, vegetation and military camouflage netting are also presented. Finally, future operational considerations are discussed.

  20. Estimation of ground motion parameters

    USGS Publications Warehouse

    Boore, David M.; Joyner, W.B.; Oliver, A.A.; Page, R.A.

    1978-01-01

    Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. A subset of the data (from the San Fernando earthquake) is used to assess the effects of structural size and of geologic site conditions on peak motions recorded at the base of structures. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. The peak acceleration tends to b3e less and the peak velocity and displacement tend to be greater on the average at the base of large structures than at the base of small structures. In the distance range used in the regression analysis (15-100 km) the values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Some consideration is given to the prediction of ground motions at close distances where there are insufficient recorded data points. As might be expected from the lack of data, published relations for predicting peak horizontal acceleration give widely divergent estimates at close distances (three well known relations predict accelerations between 0.33 g to slightly over 1 g at a distance of 5 km from a magnitude 6.5 earthquake). After considering the physics of the faulting process, the few available data close to faults, and the modifying effects of surface topography, at the present time it would be difficult to accept estimates less than about 0.8 g, 110 cm/s, and 40 cm, respectively, for the mean values of peak acceleration, velocity, and displacement at rock sites

  1. A study of the effects of degraded imagery on tactical 3D model generation using structure-from-motion

    NASA Astrophysics Data System (ADS)

    Bolick, Leslie; Harguess, Josh

    2016-05-01

    An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.

  2. DTI template-based estimation of cardiac fiber orientations from 3D ultrasound

    PubMed Central

    Qin, Xulei; Fei, Baowei

    2015-01-01

    Purpose: Cardiac muscle fibers directly affect the mechanical, physiological, and pathological properties of the heart. Patient-specific quantification of cardiac fiber orientations is an important but difficult problem in cardiac imaging research. In this study, the authors proposed a cardiac fiber orientation estimation method based on three-dimensional (3D) ultrasound images and a cardiac fiber template that was obtained from magnetic resonance diffusion tensor imaging (DTI). Methods: A DTI template-based framework was developed to estimate cardiac fiber orientations from 3D ultrasound images using an animal model. It estimated the cardiac fiber orientations of the target heart by deforming the fiber orientations of the template heart, based on the deformation field of the registration between the ultrasound geometry of the target heart and the MRI geometry of the template heart. In the experiments, the animal hearts were imaged by high-frequency ultrasound, T1-weighted MRI, and high-resolution DTI. Results: The proposed method was evaluated by four different parameters: Dice similarity coefficient (DSC), target errors, acute angle error (AAE), and inclination angle error (IAE). Its ability of estimating cardiac fiber orientations was first validated by a public database. Then, the performance of the proposed method on 3D ultrasound data was evaluated by an acquired database. Their average values were 95.4% ± 2.0% for the DSC of geometric registrations, 21.0° ± 0.76° for AAE, and 19.4° ± 1.2° for IAE of fiber orientation estimations. Furthermore, the feasibility of this framework was also performed on 3D ultrasound images of a beating heart. Conclusions: The proposed framework demonstrated the feasibility of using 3D ultrasound imaging to estimate cardiac fiber orientation of in vivo beating hearts and its further improvements could contribute to understanding the dynamic mechanism of the beating heart and has the potential to help diagnosis and therapy

  3. Motion models in attitude estimation

    NASA Technical Reports Server (NTRS)

    Chu, D.; Wheeler, Z.; Sedlak, J.

    1994-01-01

    Attitude estimator use observations from different times to reduce the effects of noise. If the vehicle is rotating, the attitude at one time needs to be propagated to that at another time. If the vehicle measures its angular velocity, attitude propagating entails integrating a rotational kinematics equation only. If a measured angular velocity is not available, torques can be computed and an additional rotational dynamics equation integrated to give the angular velocity. Initial conditions for either of these integrations come from the estimation process. Sometimes additional quantities, such as gyro and torque parameters, are also solved for. Although the partial derivatives of attitude with respect to initial attitude and gyro parameters are well known, the corresponding partial derivatives with respect to initial angular velocity and torque parameters are less familiar. They can be derived and computed numerically in a way that is analogous to that used for the initial attitude and gyro parameters. Previous papers have demonstrated the feasibility of using dynamics models for attitude estimation but have not provided details of how each angular velocity and torque parameters can be estimated. This tutorial paper provides some of that detail, notably how to compute the state transition matrix when closed form expressions are not available. It also attempts to put dynamics estimation in perspective by showing the progression from constant to gyro-propagated to dynamics-propagated attitude motion models. Readers not already familiar with attitude estimation will find this paper an introduction to the subject, and attitude specialists may appreciate the collection of heretofore scattered results brought together in a single place.

  4. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  5. Volume estimation of tonsil phantoms using an oral camera with 3D imaging.

    PubMed

    Das, Anshuman J; Valdez, Tulio A; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C; Raskar, Ramesh

    2016-04-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky's classification of tonsillar hypertrophy as well as intraoperative volume estimations.

  6. Volume estimation of tonsil phantoms using an oral camera with 3D imaging

    PubMed Central

    Das, Anshuman J.; Valdez, Tulio A.; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C.; Raskar, Ramesh

    2016-01-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky’s classification of tonsillar hypertrophy as well as intraoperative volume estimations. PMID:27446667

  7. Volume estimation of tonsil phantoms using an oral camera with 3D imaging.

    PubMed

    Das, Anshuman J; Valdez, Tulio A; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C; Raskar, Ramesh

    2016-04-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky's classification of tonsillar hypertrophy as well as intraoperative volume estimations. PMID:27446667

  8. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    SciTech Connect

    Kolbitsch, Christoph Prieto, Claudia; Schaeffter, Tobias; Tsoumpas, Charalampos

    2014-08-15

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than

  9. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  10. The effect of motion on IMRT – looking at interplay with 3D measurements

    PubMed Central

    Thomas, A; Yan, H; Oldham, M; Juang, T; Adamovics, J; Yin, FF

    2013-01-01

    Six base of skull IMRT treatment plans were delivered to 3D dosimeters within the RPC Head and Neck Phantom for QA verification. Isotropic 2mm 3D data was obtained using the DLOS-PRESAGE system and compared to an Eclipse (Varian) treatment plan. Normalized Dose Distribution pass rates were obtained for a number of criteria. High quality 3D dosimetry data was observed from the DLOS system, illustrated here through colormaps, isodose lines, profiles, and NDD 3D maps. Excellent agreement with the planned dose distributions was also observed with NDD analysis revealing > 90% NDD pass rates [3%, 2mm], noise < 0.5%. This paper focuses on a detailed exploration of the quality and use of 3D dosimetry data obtained with the DLOS-PRESAGE system. PMID:26877756

  11. On the Significance of Motion Degradation in High-Resolution 3D μMRI of Trabecular Bone

    PubMed Central

    Bhagat, Yusuf A.; Rajapakse, Chamith S.; Magland, Jeremy F.; Wald, Michael J.; Song, Hee Kwon; Leonard, Mary B.; Wehrli, Felix W.

    2011-01-01

    Rationale and Objectives Subtle subject movement during high-resolution 3D μMR imaging of trabecular bone (TB) causes blurring, thereby rendering the data unreliable for quantitative analysis. In this work, the effects of translational and rotational motion displacements have been evaluated qualitatively and quantitatively. Materials and Methods In Experiment I, motion was induced by applying various simulated and previously observed in vivo trajectories as phase shifts to k-space or rotation angles to k-space segments of a virtually motion-free data set. In Experiment II, images that were visually free of motion artifacts from two groups of 10 healthy individuals, differing in age, were selected for probing the effects of motion on TB parameters. In both experiments, images were rated for motion severity and the scores were compared to a focus criterion, the normalized gradient squared (NGS). Results Strong correlations were observed between the motion quality scores and the corresponding NGS values (R2= 0.52–0.64; p<0.01). The results from Experiment I demonstrated consistently lower image quality and alterations in structural parameters of 9–45% with increased amplitude of displacements. In Experiment II, the significant differences in structural parameter group means of the motion-free images were lost upon motion degradation. Autofocusing, a post-processing correction method, partially recovered the sharpness of the original motion-free images in 13/20 subjects. Conclusion Quantitative TB structural measures are highly sensitive to subtle motion-induced degradation which adversely affects precision and statistical power. The results underscore the influence of subject movement in high-resolution 3D μMRI and its correction for TB structure analysis. PMID:21816638

  12. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  13. Estimating 3D tilt from local image cues in natural scenes

    PubMed Central

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702

  14. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human.

    PubMed

    Cottereau, Benoit R; McKee, Suzanne P; Norcia, Anthony M

    2014-02-01

    The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth.

  15. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human

    PubMed Central

    McKee, Suzanne P.; Norcia, Anthony M.

    2013-01-01

    The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth. PMID:24198326

  16. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  17. 3D position estimation using an artificial neural network for a continuous scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhu, W.; Cheng, X.; Li, D.

    2013-03-01

    Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.

  18. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson’s Disease

    PubMed Central

    Piro, Neltje E.; Piro, Lennart K.; Kassubek, Jan; Blechschmidt-Trapp, Ronald A.

    2016-01-01

    Remote monitoring of Parkinson’s Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  19. Estimation of line dimensions in 3D direct laser writing lithography

    NASA Astrophysics Data System (ADS)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  20. Intensity-Based Registration for Lung Motion Estimation

    NASA Astrophysics Data System (ADS)

    Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.

    Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.

  1. Strain estimation in 3D by fitting linear and planar data to the March model

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Talbot, Christopher J.

    2016-08-01

    The probability density function associated with the March model is derived and used in a maximum likelihood method to estimate the best fit distribution and 3D strain parameters for a given set of linear or planar data. Typically it is assumed that in the initial state (pre-strain) linear or planar data are uniformly distributed on the sphere which means the number of strain parameters estimated needs to be reduced so that the numerical technique succeeds. Essentially this requires that the data are rotated into a suitable reference frame prior to analysis. The method has been applied to a suitable example from the Dalradian of SW Scotland and results obtained are consistent with those from an independent method of strain analysis. Despite March theory having been incorporated deep into the fabric of geological strain analysis, its full potential as a simple direct 3D strain analytical tool has not been achieved. The method developed here may help remedy this situation.

  2. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    PubMed

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique.

  3. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  4. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  5. Probabilistic 3D object recognition and pose estimation using multiple interpretations generation.

    PubMed

    Lu, Zhaojin; Lee, Sukhan

    2011-12-01

    This paper presents a probabilistic object recognition and pose estimation method using multiple interpretation generation in cluttered indoor environments. How to handle pose ambiguity and uncertainty is the main challenge in most recognition systems. In order to solve this problem, we approach it in a probabilistic manner. First, given a three-dimensional (3D) polyhedral object model, the parallel and perpendicular line pairs, which are detected from stereo images and 3D point clouds, generate pose hypotheses as multiple interpretations, with ambiguity from partial occlusion and fragmentation of 3D lines especially taken into account. Different from the previous methods, each pose interpretation is represented as a region instead of a point in pose space reflecting the measurement uncertainty. Then, for each pose interpretation, more features around the estimated pose are further utilized as additional evidence for computing the probability using the Bayesian principle in terms of likelihood and unlikelihood. Finally, fusion strategy is applied to the top ranked interpretations with high probabilities, which are further verified and refined to give a more accurate pose estimation in real time. The experimental results show the performance and potential of the proposed approach in real cluttered domestic environments.

  6. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  7. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  8. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  9. PRIMAS: a real-time 3D motion-analysis system

    NASA Astrophysics Data System (ADS)

    Sabel, Jan C.; van Veenendaal, Hans L. J.; Furnee, E. Hans

    1994-03-01

    The paper describes a CCD TV-camera-based system for real-time multicamera 2D detection of retro-reflective targets and software for accurate and fast 3D reconstruction. Applications of this system can be found in the fields of sports, biomechanics, rehabilitation research, and various other areas of science and industry. The new feature of real-time 3D opens an even broader perspective of application areas; animations in virtual reality are an interesting example. After presenting an overview of the hardware and the camera calibration method, the paper focuses on the real-time algorithms used for matching of the images and subsequent 3D reconstruction of marker positions. When using a calibrated setup of two cameras, it is now possible to track at least ten markers at 100 Hz. Limitations in the performance are determined by the visibility of the markers, which could be improved by adding a third camera.

  10. Detecting and estimating errors in 3D restoration methods using analog models.

    NASA Astrophysics Data System (ADS)

    José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis

    2015-04-01

    Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values

  11. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone.

  12. Fast motion deblurring using sensor-aided motion trajectory estimation.

    PubMed

    Lee, Eunsung; Chae, Eunjung; Cheong, Hejin; Paik, Joonki

    2014-01-01

    This paper presents an image deblurring algorithm to remove motion blur using analysis of motion trajectories and local statistics based on inertial sensors. The proposed method estimates a point-spread-function (PSF) of motion blur by accumulating reweighted projections of the trajectory. A motion blurred image is then adaptively restored using the estimated PSF and spatially varying activity map to reduce both restoration artifacts and noise amplification. Experimental results demonstrate that the proposed method outperforms existing PSF estimation-based motion deconvolution methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed in various imaging devices because of its efficient implementation without an iterative computational structure.

  13. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-01

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  14. Toward 3D-guided prostate biopsy target optimization: an estimation of tumor sampling probabilities

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the ~23% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still yields false negatives. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. We obtained multiparametric MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy. Given an RMS needle delivery error of 3.5 mm for a contemporary fusion biopsy system, P >= 95% for 21 out of 81 tumors when the point of optimal sampling probability was targeted. Therefore, more than one biopsy core must be taken from 74% of the tumors to achieve P >= 95% for a biopsy system with an error of 3.5 mm. Our experiments indicated that the effect of error along the needle axis on the percentage of core involvement (and thus the measured tumor burden) was mitigated by the 18 mm core length.

  15. Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation.

    PubMed

    Matei, Bogdan; Shan, Ying; Sawhney, Harpreet S; Tan, Yi; Kumar, Rakesh; Huber, Daniel; Hebert, Martial

    2006-07-01

    We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive Hashing (LSH), a probabilistic approximate nearest neighbor method. Progressively complex geometric constraints are subsequently enforced to further prune the initial candidates and eliminate false correspondences due to inaccuracies in the surface descriptors and the errors of the LSH algorithm. The indexed models are selected based on the MAP rule using posterior probability of the models estimated in the joint 3D-signature space. Experiments with real 3D data employing a large database of vehicles, most of them very similar in shape, containing 1,000,000 features from more than 365 models demonstrate a high degree of performance in the presence of occlusion and obscuration, unmodeled vehicle interiors and part articulations, with an average processing time between 50 and 100 seconds per query.

  16. Maximum likelihood estimation of parameterized 3-D surfaces using a moving camera

    NASA Technical Reports Server (NTRS)

    Hung, Y.; Cernuschi-Frias, B.; Cooper, D. B.

    1987-01-01

    A new approach is introduced to estimating object surfaces in three-dimensional space from a sequence of images. A surface of interest here is modeled as a 3-D function known up to the values of a few parameters. The approach will work with any parameterization. However, in work to date researchers have modeled objects as patches of spheres, cylinders, and planes - primitive objects. These primitive surfaces are special cases of 3-D quadric surfaces. Primitive surface estimation is treated as the general problem of maximum likelihood parameter estimation based on two or more functionally related data sets. In the present case, these data sets constitute a sequence of images taken at different locations and orientations. A simple geometric explanation is given for the estimation algorithm. Though various techniques can be used to implement this nonlinear estimation, researches discuss the use of gradient descent. Experiments are run and discussed for the case of a sphere of unknown location. These experiments graphically illustrate the various advantages of using as many images as possible in the estimation and of distributing camera positions from first to last over as large a baseline as possible. Researchers introduce the use of asymptotic Bayesian approximations in order to summarize the useful information in a sequence of images, thereby drastically reducing both the storage and amount of processing required.

  17. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations. PMID:23218511

  18. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations.

  19. Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees.

    PubMed

    Omasa, Kenji; Qiu, Guo Yu; Watanuki, Kenichi; Yoshimi, Kenji; Akiyama, Yukihide

    2003-03-15

    Forests are one of the most important carbon sinks on Earth. However, owing to the complex structure, variable geography, and large area of forests, accurate estimation of forest carbon stocks is still a challenge for both site surveying and remote sensing. For these reasons, the Kyoto Protocol requires the establishment of methodologies for estimating the carbon stocks of forests (Kyoto Protocol, Article 5). A possible solution to this challenge is to remotely measure the carbon stocks of every tree in an entire forest. Here, we present a methodology for estimating carbon stocks of a Japanese cedar forest by using a high-resolution, helicopter-borne 3-dimensional (3-D) scanning lidar system that measures the 3-D canopy structure of every tree in a forest. Results show that a digital image (10-cm mesh) of woody canopy can be acquired. The treetop can be detected automatically with a reasonable accuracy. The absolute error ranges for tree height measurements are within 42 cm. Allometric relationships of height to carbon stocks then permit estimation of total carbon storage by measurement of carbon stocks of every tree. Thus, we suggest that our methodology can be used to accurately estimate the carbon stocks of Japanese cedar forests at a stand scale. Periodic measurements will reveal changes in forest carbon stocks.

  20. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  1. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  2. An eliminating method of motion-induced vertical parallax for time-division 3D display technology

    NASA Astrophysics Data System (ADS)

    Lin, Liyuan; Hou, Chunping

    2015-10-01

    A time difference between the left image and right image of the time-division 3D display makes a person perceive alternating vertical parallax when an object is moving vertically on a fixed depth plane, which causes the left image and right image perceived do not match and makes people more prone to visual fatigue. This mismatch cannot eliminate simply rely on the precise synchronous control of the left image and right image. Based on the principle of time-division 3D display technology and human visual system characteristics, this paper establishes a model of the true vertical motion velocity in reality and vertical motion velocity on the screen, and calculates the amount of the vertical parallax caused by vertical motion, and then puts forward a motion compensation method to eliminate the vertical parallax. Finally, subjective experiments are carried out to analyze how the time difference affects the stereo visual comfort by comparing the comfort values of the stereo image sequences before and after compensating using the eliminating method. The theoretical analysis and experimental results show that the proposed method is reasonable and efficient.

  3. Stereo and motion parallax cues in human 3D vision: can they vanish without a trace?

    PubMed

    Rauschecker, Andreas M; Solomon, Samuel G; Glennerster, Andrew

    2006-01-01

    In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the "correct" size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues. PMID:17209749

  4. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  5. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras

    PubMed Central

    Morris, Mark; Sellers, William I.

    2015-01-01

    Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778

  6. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments.

    PubMed

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system's capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  7. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  8. Super-resolved position and orientation estimation of fluorescent dipoles using 3-D steerable filters

    NASA Astrophysics Data System (ADS)

    Geissbuehler, S.; Aguet, F.; Maerki, I.; Lasser, T.

    2010-02-01

    The diffraction patterns of fixed fluorophores are characteristic of the orientation of the molecules' underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by sequentially imaging sparse subsets of fluorophores, which are localized by means of Gaussian-based localization. This approach is based on the assumption of isotropic emitters, where the diffraction pattern corresponds to a section of the point spread function. Applied to fixed fluorophores, it can lead to an estimation bias in the range of 5-20nm. We introduce a method for the joint estimation of position and orientation of single fluorophores, based on an accurate image formation model expressed as a 3-D steerable filter. We demonstrate experimental estimation accuracies of 5 nm for position and 2 degrees for orientation.

  9. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    PubMed

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  10. Efficient 3D movement-based kernel density estimator and application to wildlife ecology

    USGS Publications Warehouse

    Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.

    2014-01-01

    We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.

  11. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  12. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: A 4DCT based study

    SciTech Connect

    Yue, Ning J.; Li Xiang; Beriwal, Sushil; Heron, Dwight E.; Sontag, Marc R.; Huq, M. Saiful

    2007-07-15

    The question remains regarding the dosimetric impact of intrafraction motion in 3D breast treatment. This study was conducted to investigate this issue utilizing the 4DCT scan. The 4D and helical CT scan sets were acquired for 12 breast cancer patients. For each of these patients, based on the helical CT scan, a conventional 3D conformal plan was generated. The breast treatment was then simulated based on the 4DCT scan. In each phase of the 4DCT scan, dose distribution was generated with the same beam parameters as the conventional plan. A software package was developed to compute the cumulative dose distribution from all the phases. Since the intrafraction organ motion is reflected by the 4DCT images, the cumulative dose computed based on the 4DCT images should be closer to what the patient received during treatment. Various dosimetric parameters were obtained from the plan and 4D cumulative dose distribution for the target volume and heart, and were compared to deduce the motion-induced impacts. The studies were performed for both whole breast and partial breast treatment. In the whole breast treatment, the average intrafraction motion induced changes in D{sub 95}, D{sub 90}, V{sub 100}, V{sub 95}, and V{sub 90} of the target volume were -5.4%, -3.1%, -13.4%, -5.1%, and -3.2%, respectively, with the largest values at -26.2%, -14.1%, -91.0%, -15.1%, and -9.0%, respectively. Motion had little impact on the D{sub max} of the target volume, but its impact on the D{sub min} of the target volume was significant. For left breast treatment, the motion-induced D{sub max} change to the heart could be negative or positive, with the largest increase at about 6 Gy. In partial breast treatment, the only non-insignificant impact was in the D{sub min} of the CTV (ranging from -15.2% to 11.7%). The results showed that the intrafraction motion may compromise target dose coverage in breast treatments and the degree of that compromise was correlated with motion magnitude. However

  13. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    PubMed

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F; Lutti, Antoine; Weiskopf, Nikolaus

    2015-06-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

  14. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking

    PubMed Central

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F.; Lutti, Antoine; Weiskopf, Nikolaus

    2015-01-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0 mm or 1.5 mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5 mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p < 0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies. PMID:25783205

  15. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  16. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  17. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  18. Estimating Motion From MRI Data

    PubMed Central

    OZTURK, CENGIZHAN; DERBYSHIRE, J. ANDREW; MCVEIGH, ELLIOT R.

    2007-01-01

    Invited Paper Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI. PMID:18958181

  19. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  20. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3D modeling

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Lopez, John J.; Pennington, Edward C.; Meeks, Sanford L.; Braddy, Kathleen C.; Fox, James M.; Brennan, Theresa M. H.; Buatti, John M.; Rossen, James D.; Sonka, Milan

    2003-05-01

    Intravascular brachytherapy has shown to reduce re-occurrence of in-stent restenosis in coronary arteries. For beta radiation, application time is determined from source activity and the angiographically estimated vessel diameter. Conventionally used dosing models assume a straight vessel with the catheter centered and a constant-diameter circular cross section. Aim of this study was to compare the actual dose delivered during in-vivo intravascular brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, differences in dose distribution between a simplified tubular model (STM) and a geometrically correct 3-D model (GCM) obtained from fusion between biplane angiography and intravascular ultrasound were quantified. The tissue enclosed by the segmented lumen/plaque and media/adventitia borders was simulated using a structured finite-element mesh. The beta-radiation sources were modeled as 3-D objects in their angiographically determined locations. The accumulated dose was estimated using a fixed distance function based on the patient-specific radiation parameters. For visualization, the data was converted to VRML with the accumulated doses represented by color encoding. The statistical comparison between STM and GCM models in 8 patients showed that the STM significantly underestimates the dose delivered and its variability. The analysis revealed substantial deviations from the target dose range in curved vessels.

  1. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  2. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    PubMed

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups. PMID:25333145

  3. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  4. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  5. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  6. Free-breathing 3D cardiac MRI using iterative image-based respiratory motion correction.

    PubMed

    Moghari, Mehdi H; Roujol, Sébastien; Chan, Raymond H; Hong, Susie N; Bello, Natalie; Henningsson, Markus; Ngo, Long H; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V; Manning, Warren J; Nezafat, Reza

    2013-10-01

    Respiratory motion compensation using diaphragmatic navigator gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Because of the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm(3) resolution were acquired from 11 healthy subjects (seven females, 25 ± 9 years); one using a navigator with a 5 mm gating window acquired in 12.0 ± 2.0 min and one with a 15 mm gating window acquired in 7.1 ± 1.0 min. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (P-value > 0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549

  7. Integrating eye tracking and motion sensor on mobile phone for interactive 3D display

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Wei; Chiang, Chen-Kuo; Lai, Shang-Hong

    2013-09-01

    In this paper, we propose an eye tracking and gaze estimation system for mobile phone. We integrate an eye detector, cornereye center and iso-center to improve pupil detection. The optical flow information is used for eye tracking. We develop a robust eye tracking system that integrates eye detection and optical-flow based image tracking. In addition, we further incorporate the orientation sensor information from the mobile phone to improve the eye tracking for accurate gaze estimation. We demonstrate the accuracy of the proposed eye tracking and gaze estimation system through experiments on some public video sequences as well as videos acquired directly from mobile phone.

  8. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. PMID:27590974

  9. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  10. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    SciTech Connect

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S; Senneville, B Denis de

    2015-06-15

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axial volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the

  11. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  12. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  13. Spatial synchronization of an insole pressure distribution system with a 3D motion analysis system for center of pressure measurements.

    PubMed

    Fradet, Laetitia; Siegel, Johannes; Dahl, Marieke; Alimusaj, Merkur; Wolf, Sebastian I

    2009-01-01

    Insole pressure systems are often more appropriate than force platforms for analysing center of pressure (CoP) as they are more flexible in use and indicate the position of the CoP that characterizes the contact foot/shoe during gait with shoes. However, these systems are typically not synchronized with 3D motion analysis systems. The present paper proposes a direct method that does not require a force platform for synchronizing an insole pressure system with a 3D motion analysis system. The distance separating 24 different CoPs measured optically and their equivalents measured by the insoles and transformed in the global coordinate system did not exceed 2 mm, confirming the suitability of the method proposed. Additionally, during static single limb stance, distances smaller than 7 mm and correlations higher than 0.94 were found between CoP trajectories measured with insoles and force platforms. Similar measurements were performed during gait to illustrate the characteristics of the CoP measured with each system. The distance separating the two CoPs was below 19 mm and the coefficient of correlation above 0.86. The proposed method offers the possibility to conduct new experiments, such as the investigation of proprioception in climbing stairs or in the presence of obstacles.

  14. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.

    PubMed

    Canu, Marie-Hélène; Garnier, Cyril

    2009-07-01

    During locomotion, muscles are controlled by a network of neurones located in the spinal cord and by supraspinal structures. Alterations in that neuromuscular system have a functional impact, in particular on locomotion. The hindlimb unloading (HU) model in rat has been commonly used to generate disuse since it suppresses the hindlimb loading and limits movements. In consequence, it induces plastic mechanisms in the muscle, the spinal cord and the sensorimotor cortex. The aim of this study was to assess the locomotion in HU rats in two conditions: (1) on a runway and (2) in a challenging situation involving the participation of supraspinal structures (ladder walking). For that purpose, the motor pattern has been investigated by means of 3D motion analysis of the right fore- and hindlimbs as well as electromyographic recording of the soleus and tibialis anterior muscles. The 3D motion results show that HU induces a support-dependent alteration of the kinematics: increased duration of step, stance and swing; increased ankle flexion during stance and hyperextension at toe-off; lower protraction during swing. The electromyographic results show that whatever the support, the flexor and extensor burst duration was longer in HU rats. In addition, results show that ladder exacerbates some effects of HU. As ladder walking is a situation which requires precision, it is suggested that the control of hindlimb movement by supraspinal structures is affected in HU rats. PMID:19393236

  15. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  16. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfield, A.

    1977-01-01

    A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.

  17. Estimation of foot pressure from human footprint depths using 3D scanner

    NASA Astrophysics Data System (ADS)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  18. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  19. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  20. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  1. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  2. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. PMID:27138460

  3. Dynamic force measurements for a high bar using 3D motion capturing.

    PubMed

    Cagran, C; Huber, P; Müller, W

    2010-03-01

    The displacement of a calibrated horizontal bar is used as a measure for forces acting on the bar itself during dynamic performances in artistic gymnastics. The high bar is loaded with known forces and the displacement is monitored by means of a Vicon motion capturing system. The calibration results are fitted according to the Euler-Bernoulli beam theory. After calibration, forces can straightforwardly be measured by multiplication of the bar displacement with the determined fit parameter. This approach is also able to account for non-central force application (two hands on the bar) and the effect of the bar's inertia. Uncertainties in measured forces are assessed to be +/-25 N plus an additional 1% for the unknown weight distribution between the two hands. PMID:19906379

  4. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices.

  5. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  6. Estimation of single cell volume from 3D confocal images using automatic data processing

    NASA Astrophysics Data System (ADS)

    Chorvatova, A.; Cagalinec, M.; Mateasik, A.; Chorvat, D., Jr.

    2012-06-01

    Cardiac cells are highly structured with a non-uniform morphology. Although precise estimation of their volume is essential for correct evaluation of hypertrophic changes of the heart, simple and unified techniques that allow determination of the single cardiomyocyte volume with sufficient precision are still limited. Here, we describe a novel approach to assess the cell volume from confocal microscopy 3D images of living cardiac myocytes. We propose a fast procedure based on segementation using active deformable contours. This technique is independent on laser gain and/or pinhole settings and it is also applicable on images of cells stained with low fluorescence markers. Presented approach is a promising new tool to investigate changes in the cell volume during normal, as well as pathological growth, as we demonstrate in the case of cell enlargement during hypertension in rats.

  7. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  8. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  9. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  10. A Hierarchical Bayesian Approcah for Earthquake Location and Data Uncertainty Estimation in 3D Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Custodio, S.

    2014-12-01

    Solving inverse problems requires an estimate of data uncertainties. This usually takes the form of a data covariance matrix, which determines the shape of the model posterior distribution. Those uncertainties are yet not always known precisely and it is common practice to simply set them to a fixed, reasonable value. In the case of earthquake location, the hypocentral parameters (longitude, latitude, depth and origin time) are typically inverted for using seismic phase arrival times. But quantitative data variance estimates are rarely provided. Instead, arrival time catalogs usually associate phase picks with a quality factor, which is subsequently interpreted more or less arbitrarily in terms of data uncertainty in the location procedure. Here, we present a hierarchical Bayesian algorithm for earthquake location in 3D heterogeneous media, in which not only the earthquake hypocentral parameters, but also the P- and S-wave arrival time uncertainties, are inverted for, hence allowing more realistic posterior model covariance estimates. Forward modeling is achieved by means of the Fast Marching Method (FMM), an eikonal solver which has the ability to take interfaces into account, so direct, reflected and refracted phases can be used in the inversion. We illustrate the ability of our algorithm to retrieve earthquake hypocentral parameters as well as data uncertainties through synthetic examples and using a subset of arrival time catalogs for mainland Portugal and its Atlantic margin.

  11. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  12. 3D pore-network analysis and permeability estimation of deformation bands hosted in carbonate grainstones.

    NASA Astrophysics Data System (ADS)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Trias, F. Xavier; Arzilli, Fabio; Lanzafame, Gabriele; Aibibula, Nijiati

    2016-04-01

    In porous rocks strain is commonly localized in narrow Deformation Bands (DBs), where the petrophysical properties are significantly modified with respect the pristine rock. As a consequence, DBs could have an important effect on production and development of porous reservoirs representing baffles zones or, in some cases, contribute to reservoir compartmentalization. Taking in consideration that the decrease of permeability within DBs is related to changes in the porous network properties (porosity, connectivity) and the pores morphology (size distribution, specific surface area), an accurate porous network characterization is useful for understanding both the effect of deformation banding on the porous network and their influence upon fluid flow through the deformed rocks. In this work, a 3D characterization of the microstructure and texture of DBs hosted in porous carbonate grainstones was obtained at the Elettra laboratory (Trieste, Italy) by using two different techniques: phase-contrast synchrotron radiation computed microtomography (micro-CT) and microfocus X-ray micro-CT. These techniques are suitable for addressing quantitative analysis of the porous network and implementing Computer Fluid Dynamics (CFD)experiments in porous rocks. Evaluated samples correspond to grainstones highly affected by DBs exposed in San Vito Lo Capo peninsula (Sicily, Italy), Favignana Island (Sicily, Italy) and Majella Mountain (Abruzzo, Italy). For the analysis, the data were segmented in two main components porous and solid phases. The properties of interest are porosity, connectivity, a grain and/or porous textural properties, in order to differentiate host rock and DBs in different zones. Permeability of DB and surrounding host rock were estimated by the implementation of CFD experiments, permeability results are validated by comparing with in situ measurements. In agreement with previous studies, the 3D image analysis and flow simulation indicate that DBs could be constitute

  13. Population Estimation Using a 3D City Model: A Multi-Scale Country-Wide Study in the Netherlands

    PubMed Central

    Arroyo Ohori, Ken; Ledoux, Hugo; Peters, Ravi; Stoter, Jantien

    2016-01-01

    The remote estimation of a region’s population has for decades been a key application of geographic information science in demography. Most studies have used 2D data (maps, satellite imagery) to estimate population avoiding field surveys and questionnaires. As the availability of semantic 3D city models is constantly increasing, we investigate to what extent they can be used for the same purpose. Based on the assumption that housing space is a proxy for the number of its residents, we use two methods to estimate the population with 3D city models in two directions: (1) disaggregation (areal interpolation) to estimate the population of small administrative entities (e.g. neighbourhoods) from that of larger ones (e.g. municipalities); and (2) a statistical modelling approach to estimate the population of large entities from a sample composed of their smaller ones (e.g. one acquired by a government register). Starting from a complete Dutch census dataset at the neighbourhood level and a 3D model of all 9.9 million buildings in the Netherlands, we compare the population estimates obtained by both methods with the actual population as reported in the census, and use it to evaluate the quality that can be achieved by estimations at different administrative levels. We also analyse how the volume-based estimation enabled by 3D city models fares in comparison to 2D methods using building footprints and floor areas, as well as how it is affected by different levels of semantic detail in a 3D city model. We conclude that 3D city models are useful for estimations of large areas (e.g. for a country), and that the 3D approach has clear advantages over the 2D approach. PMID:27254151

  14. Population Estimation Using a 3D City Model: A Multi-Scale Country-Wide Study in the Netherlands.

    PubMed

    Biljecki, Filip; Arroyo Ohori, Ken; Ledoux, Hugo; Peters, Ravi; Stoter, Jantien

    2016-01-01

    The remote estimation of a region's population has for decades been a key application of geographic information science in demography. Most studies have used 2D data (maps, satellite imagery) to estimate population avoiding field surveys and questionnaires. As the availability of semantic 3D city models is constantly increasing, we investigate to what extent they can be used for the same purpose. Based on the assumption that housing space is a proxy for the number of its residents, we use two methods to estimate the population with 3D city models in two directions: (1) disaggregation (areal interpolation) to estimate the population of small administrative entities (e.g. neighbourhoods) from that of larger ones (e.g. municipalities); and (2) a statistical modelling approach to estimate the population of large entities from a sample composed of their smaller ones (e.g. one acquired by a government register). Starting from a complete Dutch census dataset at the neighbourhood level and a 3D model of all 9.9 million buildings in the Netherlands, we compare the population estimates obtained by both methods with the actual population as reported in the census, and use it to evaluate the quality that can be achieved by estimations at different administrative levels. We also analyse how the volume-based estimation enabled by 3D city models fares in comparison to 2D methods using building footprints and floor areas, as well as how it is affected by different levels of semantic detail in a 3D city model. We conclude that 3D city models are useful for estimations of large areas (e.g. for a country), and that the 3D approach has clear advantages over the 2D approach. PMID:27254151

  15. 3D Model Uncertainty in Estimating the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Yang, J.; Wolf, E. T.; Leconte, J.; Merlis, T. M.; Koll, D. D. B.; Goldblatt, C.; Ding, F.; Forget, F.; Toon, B.

    2015-12-01

    Accurate estimates of the width of the habitable zone are critical for determining which exoplanets are potentially habitable and estimating the frequency of Earth-like planets in the galaxy. Recently, the inner edge of the habitable zone has been calculated using 3D atmospheric general circulation models (GCMs) that include the effects of subsaturation and clouds, but different models obtain different results. We study potential sources of differences in five GCMs through a series of comparisons of radiative transfer, clouds, and dynamical cores for a rapidly rotating planet around the Sun and a synchronously rotating planet around an M star. We find that: (1) Cloud parameterization leads to the largest differences among the models; (2) Differences in water vapor longwave radiative transfer are moderate as long as the surface temperature is lower than 360 K; (3) Differences in shortwave absorption influences atmospheric humidity of synchronously rotating planet through a positive feedback; (4) Differences in atmospheric dynamical core have a very small effect on the surface temperature; and (5) Rayleigh scattering leads to very small differences among models. These comparisons suggest that future model development should focus on clouds and water vapor radiative transfer.

  16. Estimating 3D movements from 2D observations using a continuous model of helical swimming.

    PubMed

    Gurarie, Eliezer; Grünbaum, Daniel; Nishizaki, Michael T

    2011-06-01

    Helical swimming is among the most common movement behaviors in a wide range of microorganisms, and these movements have direct impacts on distributions, aggregations, encounter rates with prey, and many other fundamental ecological processes. Microscopy and video technology enable the automated acquisition of large amounts of tracking data; however, these data are typically two-dimensional. The difficulty of quantifying the third movement component complicates understanding of the biomechanical causes and ecological consequences of helical swimming. We present a versatile continuous stochastic model-the correlated velocity helical movement (CVHM) model-that characterizes helical swimming with intrinsic randomness and autocorrelation. The model separates an organism's instantaneous velocity into a slowly varying advective component and a perpendicularly oriented rotation, with velocities, magnitude of stochasticity, and autocorrelation scales defined for both components. All but one of the parameters of the 3D model can be estimated directly from a two-dimensional projection of helical movement with no numerical fitting, making it computationally very efficient. As a case study, we estimate swimming parameters from videotaped trajectories of a toxic unicellular alga, Heterosigma akashiwo (Raphidophyceae). The algae were reared from five strains originally collected from locations in the Atlantic and Pacific Oceans, where they have caused Harmful Algal Blooms (HABs). We use the CVHM model to quantify cell-level and strain-level differences in all movement parameters, demonstrating the utility of the model for identifying strains that are difficult to distinguish by other means. PMID:20725795

  17. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  18. A Fourier approach to cloud motion estimation

    NASA Technical Reports Server (NTRS)

    Arking, A.; Lo, R. C.; Rosenfeld, A.

    1978-01-01

    A Fourier phase-difference technique for cloud motion estimation from pairs of pictures is described, and results obtained using this technique are compared with the results of a Fourier-domain cross-correlation scheme. The phase-difference technique makes use of the phase of the cross-spectral density and allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. When objects being tracked do not change their shape, size, and orientation to more than a limited degree, both techniques are effective. The phase difference technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects; in these circumstances, the cross-correlation scheme is preferable. It is suggested that the Fourier transform phase difference estimation methods can be applied in problems such as landmark matching.

  19. 3D-MAD: A Full Reference Stereoscopic Image Quality Estimator Based on Binocular Lightness and Contrast Perception.

    PubMed

    Zhang, Yi; Chandler, Damon M

    2015-11-01

    Algorithms for a stereoscopic image quality assessment (IQA) aim to estimate the qualities of 3D images in a manner that agrees with human judgments. The modern stereoscopic IQA algorithms often apply 2D IQA algorithms on stereoscopic views, disparity maps, and/or cyclopean images, to yield an overall quality estimate based on the properties of the human visual system. This paper presents an extension of our previous 2D most apparent distortion (MAD) algorithm to a 3D version (3D-MAD) to evaluate 3D image quality. The 3D-MAD operates via two main stages, which estimate perceived quality degradation due to 1) distortion of the monocular views and 2) distortion of the cyclopean view. In the first stage, the conventional MAD algorithm is applied on the two monocular views, and then the combined binocular quality is estimated via a weighted sum of the two estimates, where the weights are determined based on a block-based contrast measure. In the second stage, intermediate maps corresponding to the lightness distance and the pixel-based contrast are generated based on a multipathway contrast gain-control model. Then, the cyclopean view quality is estimated by measuring the statistical-difference-based features obtained from the reference stereopair and the distorted stereopair, respectively. Finally, the estimates obtained from the two stages are combined to yield an overall quality score of the stereoscopic image. Tests on various 3D image quality databases demonstrate that our algorithm significantly improves upon many other state-of-the-art 2D/3D IQA algorithms. PMID:26186775

  20. Numerical estimation of transport properties of cementitious materials using 3D digital images

    NASA Astrophysics Data System (ADS)

    Ukrainczyk, N.; Koenders, E. A. B.; van Breugel, K.

    2013-07-01

    A multi-scale characterisation of the transport process within cementitious microstructure possesses a great challenge in terms of modelling and schematization. In this paper a numerical method is proposed to mitigate the resolution problems in numerical methods for calculating effective transport properties of porous materials using 3D digital images. The method up-scales sub-voxel information from the fractional occupancy level of the interface voxels, i.e. voxels containing phaseboundary, to increase the accuracy of the pore schematization and hence the accuracy of the numerical transport calculation as well. The numerical identification of the subvoxels that is associated with their level of occupancy by each phase is obtained by increasing the pre-processing resolution. The proposed method is presented and employed for hydrated cement paste microstructures obtained from Hymostruc, a numerical model for cement hydration and microstructure simulation. The new method significantly reduces computational efforts, is relatively easy to implement, and improves the accuracy of the estimation of the effective transport property.

  1. Angle estimation of simultaneous orthogonal rotations from 3D gyroscope measurements.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2011-01-01

    A 3D gyroscope provides measurements of angular velocities around its three intrinsic orthogonal axes, enabling angular orientation estimation. Because the measured angular velocities represent simultaneous rotations, it is not appropriate to consider them sequentially. Rotations in general are not commutative, and each possible rotation sequence has a different resulting angular orientation. None of these angular orientations is the correct simultaneous rotation result. However, every angular orientation can be represented by a single rotation. This paper presents an analytic derivation of the axis and angle of the single rotation equivalent to three simultaneous rotations around orthogonal axes when the measured angular velocities or their proportions are approximately constant. Based on the resulting expressions, a vector called the simultaneous orthogonal rotations angle (SORA) is defined, with components equal to the angles of three simultaneous rotations around coordinate system axes. The orientation and magnitude of this vector are equal to the equivalent single rotation axis and angle, respectively. As long as the orientation of the actual rotation axis is constant, given the SORA, the angular orientation of a rigid body can be calculated in a single step, thus making it possible to avoid computing the iterative infinitesimal rotation approximation. The performed test measurements confirm the validity of the SORA concept. SORA is simple and well-suited for use in the real-time calculation of angular orientation based on angular velocity measurements derived using a gyroscope. Moreover, because of its demonstrated simplicity, SORA can also be used in general angular orientation notation.

  2. Relative Scale Estimation and 3D Registration of Multi-Modal Geometry Using Growing Least Squares.

    PubMed

    Mellado, Nicolas; Dellepiane, Matteo; Scopigno, Roberto

    2016-09-01

    The advent of low cost scanning devices and the improvement of multi-view stereo techniques have made the acquisition of 3D geometry ubiquitous. Data gathered from different devices, however, result in large variations in detail, scale, and coverage. Registration of such data is essential before visualizing, comparing and archiving them. However, state-of-the-art methods for geometry registration cannot be directly applied due to intrinsic differences between the models, e.g., sampling, scale, noise. In this paper we present a method for the automatic registration of multi-modal geometric data, i.e., acquired by devices with different properties (e.g., resolution, noise, data scaling). The method uses a descriptor based on Growing Least Squares, and is robust to noise, variation in sampling density, details, and enables scale-invariant matching. It allows not only the measurement of the similarity between the geometry surrounding two points, but also the estimation of their relative scale. As it is computed locally, it can be used to analyze large point clouds composed of millions of points. We implemented our approach in two registration procedures (assisted and automatic) and applied them successfully on a number of synthetic and real cases. We show that using our method, multi-modal models can be automatically registered, regardless of their differences in noise, detail, scale, and unknown relative coverage.

  3. Angle Estimation of Simultaneous Orthogonal Rotations from 3D Gyroscope Measurements

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2011-01-01

    A 3D gyroscope provides measurements of angular velocities around its three intrinsic orthogonal axes, enabling angular orientation estimation. Because the measured angular velocities represent simultaneous rotations, it is not appropriate to consider them sequentially. Rotations in general are not commutative, and each possible rotation sequence has a different resulting angular orientation. None of these angular orientations is the correct simultaneous rotation result. However, every angular orientation can be represented by a single rotation. This paper presents an analytic derivation of the axis and angle of the single rotation equivalent to three simultaneous rotations around orthogonal axes when the measured angular velocities or their proportions are approximately constant. Based on the resulting expressions, a vector called the simultaneous orthogonal rotations angle (SORA) is defined, with components equal to the angles of three simultaneous rotations around coordinate system axes. The orientation and magnitude of this vector are equal to the equivalent single rotation axis and angle, respectively. As long as the orientation of the actual rotation axis is constant, given the SORA, the angular orientation of a rigid body can be calculated in a single step, thus making it possible to avoid computing the iterative infinitesimal rotation approximation. The performed test measurements confirm the validity of the SORA concept. SORA is simple and well-suited for use in the real-time calculation of angular orientation based on angular velocity measurements derived using a gyroscope. Moreover, because of its demonstrated simplicity, SORA can also be used in general angular orientation notation. PMID:22164090

  4. Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    NASA Astrophysics Data System (ADS)

    Verrier, N.; Grosjean, N.; Dib, E.; Méès, L.; Fournier, C.; Marié, J.-L.

    2016-04-01

    Digital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed set-up (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative precision of 0.13% (for a 60 μm diameter droplet) for droplet size estimation, and a tracking precision of {σx}× {σy}× {σz}=0.15× 0.15× 1~\\text{pixels} .

  5. High resolution diameter estimation of microthin wires by a novel 3D diffraction model

    NASA Astrophysics Data System (ADS)

    Vyas, Khushi; Lolla, Kameswara Rao

    2011-08-01

    Micro-thin wires are of significant importance to academia, research laboratories as well as industries engaged in micro-fabrication of products related to diverse fields like micromechanics, bio-instrumentation, optoelectronics etc. Critical dimension metrology of such wires often demands diameter estimation with tight tolerances. Amongst other measurement techniques, Optical Diffractometry under Fraunhofer approximation has emerged over years as a nondestructive, robust and precise technique for on-line diameter estimation of thin wires. However, it is observed that existing Fraunhofer models invariably result in experimental overestimation of wire diameter, leading to unacceptable error performances particularly for diameters below 50 μm. In this paper, a novel diffraction model based on Geometric theory is proposed and demonstrated to theoretically quantify this diameter overestimation. The proposed model utilizes hitherto unused paths-ways for the two lateral rays that contribute to the first diffraction minimum. Based the 3-D geometry of the suggested model, a new 'diffraction formulation' is proposed. The theoretical analysis reveals the following. For diffraction experiment, the Actual diameter of the diffracting wire is a function of four parameters: source wavelength 'λ', axial distance 'z', diffraction angle corresponding to first diffraction minimum 'θd' and a newly defined characteristic parameter 'm'. The analysis reveals further that the proposed characteristic parameter 'm' varies non-linearly with diameter and presents a dependence only on the experimentally measured diffraction angle 'θd'. Based on the proposed model, the communication reports for the first time, a novel diameter-inversion procedure which, not only corrects for the overestimated but also facilitates wire diameter-inversion with high resolution. Micro-thin metallic wires having diameters spanning the range 1-50 μm are examined. Experimental results are obtained that

  6. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    PubMed Central

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  7. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  8. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  9. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  10. ILIAD Testing; and a Kalman Filter for 3-D Pose Estimation

    NASA Technical Reports Server (NTRS)

    Richardson, A. O.

    1996-01-01

    This report presents the results of a two-part project. The first part presents results of performance assessment tests on an Internet Library Information Assembly Data Base (ILIAD). It was found that ILLAD performed best when queries were short (one-to-three keywords), and were made up of rare, unambiguous words. In such cases as many as 64% of the typically 25 returned documents were found to be relevant. It was also found that a query format that was not so rigid with respect to spelling errors and punctuation marks would be more user-friendly. The second part of the report shows the design of a Kalman Filter for estimating motion parameters of a three dimensional object from sequences of noisy data derived from two-dimensional pictures. Given six measured deviation values represendng X, Y, Z, pitch, yaw, and roll, twelve parameters were estimated comprising the six deviations and their time rate of change. Values for the state transiton matrix, the observation matrix, the system noise covariance matrix, and the observation noise covariance matrix were determined. A simple way of initilizing the error covariance matrix was pointed out.

  11. System for conveyor belt part picking using structured light and 3D pose estimation

    NASA Astrophysics Data System (ADS)

    Thielemann, J.; Skotheim, Ø.; Nygaard, J. O.; Vollset, T.

    2009-01-01

    Automatic picking of parts is an important challenge to solve within factory automation, because it can remove tedious manual work and save labor costs. One such application involves parts that arrive with random position and orientation on a conveyor belt. The parts should be picked off the conveyor belt and placed systematically into bins. We describe a system that consists of a structured light instrument for capturing 3D data and robust methods for aligning an input 3D template with a 3D image of the scene. The method uses general and robust pre-processing steps based on geometric primitives that allow the well-known Iterative Closest Point algorithm to converge quickly and robustly to the correct solution. The method has been demonstrated for localization of car parts with random position and orientation. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  12. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal.

    PubMed

    Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H

    2015-01-21

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  13. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  14. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  15. An evaluation of 3-D velocity models of the Kanto basin for long-period ground motion simulations

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Yamanaka, Hiroaki

    2013-07-01

    We performed three-dimensional (3-D) finite difference simulations of long-period ground motions (2-10 s) in the Kanto basin using the Japan Seismic Hazard Information Station (J-SHIS 2009), Yamada and Yamanaka (Exploration Geophysics 65(3):139-150, 2012) (YY), and Head Quarter for Earthquake Research Promotion (HERP 2012) velocity models for two intermediate depth (68-80 km) moderate earthquakes (Mw 5.8-5.9), which occurred beneath the Kanto basin. The models primarily differ in the basic data set used in the construction of the velocity models. The J-SHIS and HERP models are the results of integration of mainly geological, geophysical, and earthquake data. On the other hand, the YY model is oriented towards the microtremor-array-observation data. We obtained a goodness of fit between the observed and synthetic data based on three parameters, peak ground velocities (PGVs), smoothed Fourier spectra (FFT), and cross-correlations, using an algorithm proposed by Olsen and Mayhew (Seism Res Lett 81:715-723, 2010). We found that the three models reproduced the PGVs and FFT satisfactorily at most sites. However, the models performed poorly in terms of cross-correlations especially at the basin edges. We found that the synthetics using the YY model overestimate the observed waveforms at several sites located in the areas having V s 0.3 km/s in the top layer; on the other hand, the J-SHIS and HERP models explain the waveforms better at the sites and perform similarly at most sites. We also found that the J-SHIS and HERP models consist of thick sediments beneath some sites, where the YY model is preferable. Thus, we have concluded that the models require revisions for the reliable prediction of long-period ground motions from future large earthquakes.

  16. Ground motion estimation and nonlinear seismic analysis

    SciTech Connect

    McCallen, D.B.; Hutchings, L.J.

    1995-08-14

    Site specific predictions of the dynamic response of structures to extreme earthquake ground motions are a critical component of seismic design for important structures. With the rapid development of computationally based methodologies and powerful computers over the past few years, engineers and scientists now have the capability to perform numerical simulations of many of the physical processes associated with the generation of earthquake ground motions and dynamic structural response. This paper describes application of a physics based, deterministic, computational approach for estimation of earthquake ground motions which relies on site measurements of frequently occurring small (i.e. M < 3 ) earthquakes. Case studies are presented which illustrate application of this methodology for two different sites, and nonlinear analyses of a typical six story steel frame office building are performed to illustrate the potential sensitivity of nonlinear response to site conditions and proximity to the causative fault.

  17. Estimation of uncertainties in geological 3D raster layer models as integral part of modelling procedures

    NASA Astrophysics Data System (ADS)

    Maljers, Denise; den Dulk, Maryke; ten Veen, Johan; Hummelman, Jan; Gunnink, Jan; van Gessel, Serge

    2016-04-01

    The Geological Survey of the Netherlands (GSN) develops and maintains subsurface models with regional to national coverage. These models are paramount for petroleum exploration in conventional reservoirs, for understanding the distribution of unconventional reservoirs, for mapping geothermal aquifers, for the potential to store carbon, or for groundwater- or aggregate resources. Depending on the application domain these models differ in depth range, scale, data used, modelling software and modelling technique. Depth uncertainty information is available for the Geological Survey's 3D raster layer models DGM Deep and DGM Shallow. These models cover different depth intervals and are constructed using different data types and different modelling software. Quantifying the uncertainty of geological models that are constructed using multiple data types as well as geological expert-knowledge is not straightforward. Examples of geological expert-knowledge are trend surfaces displaying the regional thickness trends of basin fills or steering points that are used to guide the pinching out of geological formations or the modelling of the complex stratal geometries associated with saltdomes and saltridges. This added a-priori knowledge, combined with the assumptions underlying kriging (normality and second-order stationarity), makes the kriging standard error an incorrect measure of uncertainty for our geological models. Therefore the methods described below were developed. For the DGM Deep model a workflow has been developed to assess uncertainty by combining precision (giving information on the reproducibility of the model results) and accuracy (reflecting the proximity of estimates to the true value). This was achieved by centering the resulting standard deviations around well-tied depths surfaces. The standard deviations are subsequently modified by three other possible error sources: data error, structural complexity and velocity model error. The uncertainty workflow

  18. Shoulder 3D range of motion and humerus rotation in two volleyball spike techniques: injury prevention and performance.

    PubMed

    Seminati, Elena; Marzari, Alessandra; Vacondio, Oreste; Minetti, Alberto E

    2015-06-01

    Repetitive stresses and movements on the shoulder in the volleyball spike expose this joint to overuse injuries, bringing athletes to a career threatening injury. Assuming that specific spike techniques play an important role in injury risk, we compared the kinematic of the traditional (TT) and the alternative (AT) techniques in 21 elite athletes, evaluating their safety with respect to performance. Glenohumeral joint was set as the centre of an imaginary sphere, intersected by the distal end of the humerus at different angles. Shoulder range of motion and angular velocities were calculated and compared to the joint limits. Ball speed and jump height were also assessed. Results indicated the trajectory of the humerus to be different for the TT, with maximal flexion of the shoulder reduced by 10 degrees, and horizontal abduction 15 degrees higher. No difference was found for external rotation angles, while axial rotation velocities were significantly higher in AT, with a 5% higher ball speed. Results suggest AT as a potential preventive solution to shoulder chronic pathologies, reducing shoulder flexion during spiking. The proposed method allows visualisation of risks associated with different overhead manoeuvres, by depicting humerus angles and velocities with respect to joint limits in the same 3D space. PMID:26151344

  19. Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation

    PubMed Central

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  20. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    USGS Publications Warehouse

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  1. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    PubMed

    Tracey, Jeff A; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R; Fisher, Robert N

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  2. A Hybrid Antenna Array Design for 3-D Direction of Arrival Estimation

    PubMed Central

    Saqib, Najam-Us; Khan, Imdad

    2015-01-01

    A 3-D beam scanning antenna array design is proposed that gives a whole 3-D spherical coverage and also suitable for various radar and body-worn devices in the Body Area Networks applications. The Array Factor (AF) of the proposed antenna is derived and its various parameters like directivity, Half Power Beam Width (HPBW) and Side Lobe Level (SLL) are calculated by varying the size of the proposed antenna array. Simulations were carried out in MATLAB 2012b. The radiators are considered isotropic and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing cylindrical and coaxial cylindrical arrays in terms of 3-D scanning, size, directivity, HPBW and SLL. PMID:25790103

  3. A hybrid antenna array design for 3-d direction of arrival estimation.

    PubMed

    Saqib, Najam-Us; Khan, Imdad

    2015-01-01

    A 3-D beam scanning antenna array design is proposed that gives a whole 3-D spherical coverage and also suitable for various radar and body-worn devices in the Body Area Networks applications. The Array Factor (AF) of the proposed antenna is derived and its various parameters like directivity, Half Power Beam Width (HPBW) and Side Lobe Level (SLL) are calculated by varying the size of the proposed antenna array. Simulations were carried out in MATLAB 2012b. The radiators are considered isotropic and hence mutual coupling effects are ignored. The proposed array shows a considerable improvement against the existing cylindrical and coaxial cylindrical arrays in terms of 3-D scanning, size, directivity, HPBW and SLL.

  4. SU-E-J-80: Interplay Effect Between VMAT Intensity Modulation and Tumor Motion in Hypofractioned Lung Treatment, Investigated with 3D Pressage Dosimeter

    SciTech Connect

    Touch, M; Wu, Q; Oldham, M

    2014-06-01

    Purpose: To demonstrate an embedded tissue equivalent presage dosimeter for measuring 3D doses in moving tumors and to study the interplay effect between the tumor motion and intensity modulation in hypofractioned Volumetric Modulated Arc Therapy(VMAT) lung treatment. Methods: Motion experiments were performed using cylindrical Presage dosimeters (5cm diameter by 7cm length) mounted inside the lung insert of a CIRS thorax phantom. Two different VMAT treatment plans were created and delivered in three different scenarios with the same prescribed dose of 18 Gy. Plan1, containing a 2 centimeter spherical CTV with an additional 2mm setup margin, was delivered on a stationary phantom. Plan2 used the same CTV except expanded by 1 cm in the Sup-Inf direction to generate ITV and PTV respectively. The dosimeters were irradiated in static and variable motion scenarios on a Truebeam system. After irradiation, high resolution 3D dosimetry was performed using the Duke Large Field-of-view Optical-CT Scanner, and compared to the calculated dose from Eclipse. Results: In the control case (no motion), good agreement was observed between the planned and delivered dose distributions as indicated by 100% 3D Gamma (3% of maximum planned dose and 3mm DTA) passing rates in the CTV. In motion cases gamma passing rates was 99% in CTV. DVH comparisons also showed good agreement between the planned and delivered dose in CTV for both control and motion cases. However, differences of 15% and 5% in dose to PTV were observed in the motion and control cases respectively. Conclusion: With very high dose nature of a hypofraction treatment, significant effect was observed only motion is introduced to the target. This can be resulted from the motion of the moving target and the modulation of the MLC. 3D optical dosimetry can be of great advantage in hypofraction treatment dose validation studies.

  5. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  6. Calculating the Probability of Strong Ground Motions Using 3D Seismic Waveform Modeling - SCEC CyberShake

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Callaghan, S.; Graves, R.; Mehta, G.; Zhao, L.; Deelman, E.; Jordan, T. H.; Kesselman, C.; Okaya, D.; Cui, Y.; Field, E.; Gupta, V.; Vahi, K.; Maechling, P. J.

    2006-12-01

    Researchers from the SCEC Community Modeling Environment (SCEC/CME) project are utilizing the CyberShake computational platform and a distributed high performance computing environment that includes USC High Performance Computer Center and the NSF TeraGrid facilities to calculate physics-based probabilistic seismic hazard curves for several sites in the Southern California area. Traditionally, probabilistic seismic hazard analysis (PSHA) is conducted using intensity measure relationships based on empirical attenuation relationships. However, a more physics-based approach using waveform modeling could lead to significant improvements in seismic hazard analysis. Members of the SCEC/CME Project have integrated leading-edge PSHA software tools, SCEC-developed geophysical models, validated anelastic wave modeling software, and state-of-the-art computational technologies on the TeraGrid to calculate probabilistic seismic hazard curves using 3D waveform-based modeling. The CyberShake calculations for a single probablistic seismic hazard curve require tens of thousands of CPU hours and multiple terabytes of disk storage. The CyberShake workflows are run on high performance computing systems including multiple TeraGrid sites (currently SDSC and NCSA), and the USC Center for High Performance Computing and Communications. To manage the extensive job scheduling and data requirements, CyberShake utilizes a grid-based scientific workflow system based on the Virtual Data System (VDS), the Pegasus meta-scheduler system, and the Globus toolkit. Probabilistic seismic hazard curves for spectral acceleration at 3.0 seconds have been produced for eleven sites in the Southern California region, including rock and basin sites. At low ground motion levels, there is little difference between the CyberShake and attenuation relationship curves. At higher ground motion (lower probability) levels, the curves are similar for some sites (downtown LA, I-5/SR-14 interchange) but different for

  7. Motion patterns in activities of daily living: 3- year longitudinal follow-up after total shoulder arthroplasty using an optical 3D motion analysis system

    PubMed Central

    2014-01-01

    Background Total shoulder arthroplasty (TSA) can improve function in osteoarthritic shoulders, but the ability to perform activities of daily living (ADLs) can still remain impaired. Routinely, shoulder surgeons measure range of motion (ROM) using a goniometer. Objective data are limited, however, concerning functional three-dimensional changes in ROM in ADLs after TSA in patients with degenerative glenohumeral osteoarthritis. Methods This study included ten consecutive patients, who received TSA for primary glenohumeral osteoarthritis. The patients were examined the day before, 6 months, and 3 years after shoulder replacement as well. We compared them with a control group (n = 10) without any shoulder pathology and measured shoulder movement by 3D motion analysis using a novel 3 D model. The measurement included static maximum values, the ability to perform and the ROM of the ADLs “combing the hair”, “washing the opposite armpit”, “tying an apron”, and “taking a book from a shelf”. Results Six months after surgery, almost all TSA patients were able to perform the four ADLs (3 out of 40 tasks could not be performed by the 10 patients); 3 years postoperatively all patients were able to carry out all ADLs (40 out of 40 tasks possible). In performing the ADLs, comparison of the pre- with the 6-month and 3-year postoperative status of the TSA group showed that the subjects did not fully use the available maximum flexion/extension ROM in performing the four ADLs. The ROM used for flexion/extension did not change significantly (preoperatively 135°-0° -34° vs. 3 years postoperatively 131° -0° -53°). For abduction/adduction, ROM improved significantly from 33°-0° -27° preoperatively to 76° -0° -35° postoperatively. Compared to the controls (118°) the TSA group used less ROM for abduction to perform the four ADLs 3 years postoperatively. Conclusion TSA improves the ability to perform ADL and the individual ROM in ADLs in patients with

  8. Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Li, Zhengning; Zhou, Yuan

    2016-06-01

    Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.

  9. Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging.

    PubMed

    Axer, Markus; Strohmer, Sven; Gräßel, David; Bücker, Oliver; Dohmen, Melanie; Reckfort, Julia; Zilles, Karl; Amunts, Katrin

    2016-01-01

    Research of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal.

  10. Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging

    PubMed Central

    Axer, Markus; Strohmer, Sven; Gräßel, David; Bücker, Oliver; Dohmen, Melanie; Reckfort, Julia; Zilles, Karl; Amunts, Katrin

    2016-01-01

    Research of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal. PMID:27147981

  11. Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging.

    PubMed

    Axer, Markus; Strohmer, Sven; Gräßel, David; Bücker, Oliver; Dohmen, Melanie; Reckfort, Julia; Zilles, Karl; Amunts, Katrin

    2016-01-01

    Research of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal. PMID:27147981

  12. Vegetation Height Estimation Near Power transmission poles Via satellite Stereo Images using 3D Depth Estimation Algorithms

    NASA Astrophysics Data System (ADS)

    Qayyum, A.; Malik, A. S.; Saad, M. N. M.; Iqbal, M.; Abdullah, F.; Rahseed, W.; Abdullah, T. A. R. B. T.; Ramli, A. Q.

    2015-04-01

    Monitoring vegetation encroachment under overhead high voltage power line is a challenging problem for electricity distribution companies. Absence of proper monitoring could result in damage to the power lines and consequently cause blackout. This will affect electric power supply to industries, businesses, and daily life. Therefore, to avoid the blackouts, it is mandatory to monitor the vegetation/trees near power transmission lines. Unfortunately, the existing approaches are more time consuming and expensive. In this paper, we have proposed a novel approach to monitor the vegetation/trees near or under the power transmission poles using satellite stereo images, which were acquired using Pleiades satellites. The 3D depth of vegetation has been measured near power transmission lines using stereo algorithms. The area of interest scanned by Pleiades satellite sensors is 100 square kilometer. Our dataset covers power transmission poles in a state called Sabah in East Malaysia, encompassing a total of 52 poles in the area of 100 km. We have compared the results of Pleiades satellite stereo images using dynamic programming and Graph-Cut algorithms, consequently comparing satellites' imaging sensors and Depth-estimation Algorithms. Our results show that Graph-Cut Algorithm performs better than dynamic programming (DP) in terms of accuracy and speed.

  13. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    logging, porosity varies by a factor of 2.5 whilst hydraulic conductivity varies by 2 to 3 orders of magnitude. In addition, a 3D numerical reconstruction of the internal structure of the fault zone inferred from borehole imagery has been built to estimate the permeability tensor variations. First results indicate that hydraulic conductivity values calculated for this structure are 2 to 3 orders of magnitude above those measured in situ. Such high values are due to the imaging method that only takes in to account open fractures of simple geometry (sine waves). Even though improvements are needed to handle more complex geometry, outcomes are promising as the fault damaged zone clearly appears as the highest permeability zone, where stress analysis show that the actual stress state may favor tensile reopening of fractures. Using shale samples cored from the different internal structures of the fault zone, we aim now to characterize the advection and diffusion using laboratory petrophysical tests combined with radial and through-diffusion experiments.

  14. Respiratory motion estimation in x-ray angiography for improved guidance during coronary interventions.

    PubMed

    Baka, N; Lelieveldt, B P F; Schultz, C; Niessen, W; van Walsum, T

    2015-05-01

    During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).

  15. Respiratory motion estimation in x-ray angiography for improved guidance during coronary interventions

    NASA Astrophysics Data System (ADS)

    Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.

    2015-05-01

    During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).

  16. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    PubMed

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  17. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT

    NASA Astrophysics Data System (ADS)

    Müller, K.; Maier, A. K.; Schwemmer, C.; Lauritsch, G.; De Buck, S.; Wielandts, J.-Y.; Hornegger, J.; Fahrig, R.

    2014-06-01

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  18. SLIMMER: SLIce MRI motion estimation and reconstruction tool for studies of fetal anatomy

    NASA Astrophysics Data System (ADS)

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2011-03-01

    We describe a free software tool which combines a set of algorithms that provide a framework for building 3D volumetric images of regions of moving anatomy using multiple fast multi-slice MRI studies. It is specifically motivated by the clinical application of unsedated fetal brain imaging, which has emerged as an important area for image analysis. The tool reads multiple DICOM image stacks acquired in any angulation into a consistent patient coordinate frame and allows the user to select regions to be locally motion corrected. It combines algorithms for slice motion estimation, bias field inconsistency correction and 3D volume reconstruction from multiple scattered slice stacks. The tool is built onto the RView (http://rview.colin-studholme.net) medical image display software and allows the user to inspect slice stacks, and apply both stack and slice level motion estimation that incorporates temporal constraints based on slice timing and interleave information read from the DICOM data. Following motion estimation an algorithm for bias field inconsistency correction provides the user with the ability to remove artifacts arising from the motion of the local anatomy relative to the imaging coils. Full 3D visualization of the slice stacks and individual slice orientations is provided to assist in evaluating the quality of the motion correction and final image reconstruction. The tool has been evaluated on a range of clinical data acquired on GE, Siemens and Philips MRI scanners.

  19. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    NASA Astrophysics Data System (ADS)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  20. 3D velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements

    NASA Astrophysics Data System (ADS)

    Gan, W.

    2013-12-01

    Using the measurements of 564 GPS stations around the Tibetan plateau for over 10 years, we derived a high-resolution 3D velocity field for the present-day crustal motion of the plateau with improved precision. The horizontal velocity field of the plateau relative to stable Eurasia displays in details the crustal movement and tectonic deformation features of India-Eurasia continental collision zone with thrust compression, lateral extrusion and clockwise rotation. The vertical velocities reveal that the plateau is still rising as a whole relative to its stable north neighbor. However, in some subregions uplift is insignificant or even negative. The main features of the vertical crustal deformation are: a) The Himalayan range is rising at a rate of ~3mm/yr, the most significant in the whole plateau. The uplift rate of the Himalayan range is ~6mm/a relative to its south foot; b) The mid-eastern plateau has an typical uplift rate between 1~2 mm/a, and some high mountain ranges in this area have surprising uplift rates as large as 2~3mm/a; c) In the mid-southern plateau, there is a basin and endorheic subregion with a series of NE striking normal faults, showing obvious sinking with the rates between 0 to -4mm/a; d) The present-day rising and sinking subregions generally correspond well to the Cenozoic orogenic belts and basins, respectively; e) At the southeastern corner of the plateau, although the horizontal velocity field demonstrates an outstanding clockwise rotation and fan-like front of a flow zone, the vertical velocity field does not show a general uplift or incline trend. Horizontal GPS velocities of the Tibetan plateau relative to stable Eurasia Vertical GPS velocities of the Tibetan plateau relative to its stable northern neighbor

  1. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  2. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  3. A Bayesian model to estimate the true 3-D shadowing correction in sonic anemometers

    NASA Astrophysics Data System (ADS)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2015-12-01

    Sonic anemometers are the principal instruments used in micrometeorological studies of turbulence and ecosystem fluxes. Recent studies have shown the most common designs underestimate vertical wind measurements because they lack a correction for transducer and structural shadowing; there is no consensus describing a true correction. We introduce a novel Bayesian analysis with the potential to resolve the three-dimensional (3-D) correction by optimizing differences between anemometers mounted simultaneously vertical and horizontal. The analysis creates a geodesic grid around the sonic anemometer, defines a state variable for the 3-D correction at each point, and assigns each a prior distribution based on literature with ±10% uncertainty. We use the Markov chain Monte Carlo (MCMC) method to update and apply the 3-D correction to a dataset of 20-Hz sonic anemometer measurements, calculate five-minute standard deviations of the Cartesian wind components, and compare these statistics between vertical and horizontal anemometers. We present preliminary analysis of the CSAT3 anemometer using 642 grid points (±4.5° resolution) from 423 five-minute periods (8,964,000 samples) collected during field experiments in 2011 and 2013. The 20-Hz data was not equally distributed around the grid; half of the samples occurred in just 8% of the grid points. For populous grid points (weighted by the abundance of samples) the average correction increased from prior to posterior (+5.4±10.0% to +9.1±9.5%) while for desolate grid points (weighted by the sparseness of samples) there was minimal change (+6.4±10.0% versus +6.6±9.8%), demonstrating that with a sufficient number of samples the model can determine the true correction is ~67% higher than proposed in recent literature. Future adaptions will increase the grid resolution and sample size to reduce the uncertainty in the posterior distributions and more precisely quantify the 3-D correction.

  4. Model-based 3D human shape estimation from silhouettes for virtual fitting

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Kouchi, Makiko; Mochimaru, Masaaki; Aoki, Yoshimitsu

    2014-03-01

    We propose a model-based 3D human shape reconstruction system from two silhouettes. Firstly, we synthesize a deformable body model from 3D human shape database consists of a hundred whole body mesh models. Each mesh model is homologous, so that it has the same topology and same number of vertices among all models. We perform principal component analysis (PCA) on the database and synthesize an Active Shape Model (ASM). ASM allows changing the body type of the model with a few parameters. The pose changing of our model can be achieved by reconstructing the skeleton structures from implanted joints of the model. By applying pose changing after body type deformation, our model can represents various body types and any pose. We apply the model to the problem of 3D human shape reconstruction from front and side silhouette. Our approach is simply comparing the contours between the model's and input silhouettes', we then use only torso part contour of the model to reconstruct whole shape. We optimize the model parameters by minimizing the difference between corresponding silhouettes by using a stochastic, derivative-free non-linear optimization method, CMA-ES.

  5. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    NASA Astrophysics Data System (ADS)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  6. Anthropological facial approximation in three dimensions (AFA3D): computer-assisted estimation of the facial morphology using geometric morphometrics.

    PubMed

    Guyomarc'h, Pierre; Dutailly, Bruno; Charton, Jérôme; Santos, Frédéric; Desbarats, Pascal; Coqueugniot, Hélène

    2014-11-01

    This study presents Anthropological Facial Approximation in Three Dimensions (AFA3D), a new computerized method for estimating face shape based on computed tomography (CT) scans of 500 French individuals. Facial soft tissue depths are estimated based on age, sex, corpulence, and craniometrics, and projected using reference planes to obtain the global facial appearance. Position and shape of the eyes, nose, mouth, and ears are inferred from cranial landmarks through geometric morphometrics. The 100 estimated cutaneous landmarks are then used to warp a generic face to the target facial approximation. A validation by re-sampling on a subsample demonstrated an average accuracy of c. 4 mm for the overall face. The resulting approximation is an objective probable facial shape, but is also synthetic (i.e., without texture), and therefore needs to be enhanced artistically prior to its use in forensic cases. AFA3D, integrated in the TIVMI software, is available freely for further testing.

  7. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    NASA Astrophysics Data System (ADS)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  8. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

  9. Volume estimation of cerebral aneurysms from biplane DSA: a comparison with measurements on 3D rotational angiography data

    NASA Astrophysics Data System (ADS)

    Olivan Bescos, Javier; Slob, Marian; Sluzewski, Menno; van Rooij, Willem J.; Slump, Cornelis H.

    2003-05-01

    A cerebral aneurysm is a persistent localized dilatation of the wall of a cerebral vessel. One of the techniques applied to treat cerebral aneurysms is the Guglielmi detachable coil (GDC) embolization. The goal of this technique is to embolize the aneurysm with a mesh of platinum coils to reduce the risk of aneurysm rupture. However, due to the blood pressure it is possible that the platinum wire is deformed. In this case, re-embolization of the aneurysm is necessary. The aim of this project is to develop a computer program to estimate the volume of cerebral aneurysms from archived laser hard copies of biplane digital subtraction angiography (DSA) images. Our goal is to determine the influence of the packing percentage, i.e., the ratio between the volume of the aneurysm and the volume of the coil mesh, on the stability of the coil mesh in time. The method we apply to estimate the volume of the cerebral aneurysms is based on the generation of a 3-D geometrical model of the aneurysm from two biplane DSA images. This 3-D model can be seen as an stack of 2-D ellipsis. The volume of the aneurysm is the result of performing a numerical integration of this stack. The program was validated using balloons filled with contrast agent. The availability of 3-D data for some of the aneurysms enabled to perform a comparison of the results of this method with techniques based on 3-D data.

  10. Transient Hydraulic Tomography in the Field: 3-D K Estimation and Validation in a Highly Heterogeneous Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Hochstetler, D. L.; Barrash, W.; Kitanidis, P. K.

    2014-12-01

    Characterizing subsurface hydraulic properties is essential for predicting flow and transport, and thus, for making informed decisions, such as selection and execution of a groundwater remediation strategy; however, obtaining accurate estimates at the necessary resolution with quantified uncertainty is an ongoing challenge. For over a decade, the development of hydraulic tomography (HT) - i.e., conducting a series of discrete interval hydraulic tests, observing distributed pressure signals, and analyzing the data through inversion of all tests together - has shown promise as a subsurface imaging method. Numerical and laboratory 3-D HT studies have enhanced and validated such methodologies, but there have been far fewer 3-D field characterization studies. We use 3-D transient hydraulic tomography (3-D THT) to characterize a highly heterogeneous unconfined alluvial aquifer at an active industrial site near Assemini, Italy. With 26 pumping tests conducted from 13 isolated vertical locations, and pressure responses measured at 63 spatial locations through five clusters of continuous multichannel tubing, we recorded over 800 drawdown curves during the field testing. Selected measurements from each curve were inverted in order to obtain an estimate of the distributed hydraulic conductivity field K(x) as well as uniform ("effective") values of specific storage Ss and specific yield Sy. The estimated K values varied across seven orders of magnitude, suggesting that this is one of the most heterogeneous sites at which HT has ever been conducted. Furthermore, these results are validated using drawdown observations from seven independent tests with pumping performed at multiple locations other than the main pumping well. The validation results are encouraging, especially given the uncertain nature of the problem. Overall, this research demonstrates the ability of 3-D THT to provide high-resolution of structure and local K at a non-research site at the scale of a contaminant

  11. Fast-coding robust motion estimation model in a GPU

    NASA Astrophysics Data System (ADS)

    García, Carlos; Botella, Guillermo; de Sande, Francisco; Prieto-Matias, Manuel

    2015-02-01

    Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However, the real-time requirements in most applications has limited its consolidation, considering the adoption of high performance systems to meet response times. With the emergence of so-called highly parallel devices known as accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the efficient exploitation of any parallelism in the target application. This task is not easy because performance rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC standard, a programming model with directives which favors porting any code to a GPU in the context of motion estimation application. The results confirm that this programming paradigm is suitable for this image processing applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas & Kanade method.

  12. Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI.

    PubMed

    Hadjicharalambous, Myrianthi; Chabiniok, Radomir; Asner, Liya; Sammut, Eva; Wong, James; Carr-White, Gerald; Lee, Jack; Razavi, Reza; Smith, Nicolas; Nordsletten, David

    2015-08-01

    An unresolved issue in patient-specific models of cardiac mechanics is the choice of an appropriate constitutive law, able to accurately capture the passive behavior of the myocardium, while still having uniquely identifiable parameters tunable from available clinical data. In this paper, we aim to facilitate this choice by examining the practical identifiability and model fidelity of constitutive laws often used in cardiac mechanics. Our analysis focuses on the use of novel 3D tagged MRI, providing detailed displacement information in three dimensions. The practical identifiability of each law is examined by generating synthetic 3D tags from in silico simulations, allowing mapping of the objective function landscape over parameter space and comparison of minimizing parameter values with original ground truth values. Model fidelity was tested by comparing these laws with the more complex transversely isotropic Guccione law, by characterizing their passive end-diastolic pressure-volume relation behavior, as well as by considering the in vivo case of a healthy volunteer. These results show that a reduced form of the Holzapfel-Ogden law provides the best balance between identifiability and model fidelity across the tests considered. PMID:25510227

  13. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  14. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing. PMID:22163926

  15. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  16. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa L.; Schrama, Ernst J. O.

    2015-03-01

    Seismic data indicate that there are large viscosity variations in the mantle beneath Antarctica. Consideration of such variations would affect predictions of models of Glacial Isostatic Adjustment (GIA), which are used to correct satellite measurements of ice mass change. However, most GIA models used for that purpose have assumed the mantle to be uniformly stratified in terms of viscosity. The goal of this study is to estimate the effect of lateral variations in viscosity on Antarctic mass balance estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data. To this end, recently-developed global GIA models based on lateral variations in mantle temperature are tuned to fit constraints in the northern hemisphere and then compared to GPS-derived uplift rates in Antarctica. We find that these models can provide a better fit to GPS uplift rates in Antarctica than existing GIA models with a radially-varying (1D) rheology. When 3D viscosity models in combination with specific ice loading histories are used to correct GRACE measurements, mass loss in Antarctica is smaller than previously found for the same ice loading histories and their preferred 1D viscosity profiles. The variation in mass balance estimates arising from using different plausible realizations of 3D viscosity amounts to 20 Gt/yr for the ICE-5G ice model and 16 Gt/yr for the W12a ice model; these values are larger than the GRACE measurement error, but smaller than the variation arising from unknown ice history. While there exist 1D Earth models that can reproduce the total mass balance estimates derived using 3D Earth models, the spatial pattern of gravity rates can be significantly affected by 3D viscosity in a way that cannot be reproduced by GIA models with 1D viscosity. As an example, models with 1D viscosity always predict maximum gravity rates in the Ross Sea for the ICE-5G ice model, however, for one of the three preferred 3D models the maximum (for the same ice model) is found

  17. Intensity of joints associated with an extensional fault zone: an estimation by poly3d .

    NASA Astrophysics Data System (ADS)

    Minelli, G.

    2003-04-01

    The presence and frequency of joints in sedimentary rocks strongly affects the mechanical and fluid flow properties of the host layers. Joints intensity is evaluated by spacing, S, the distance between neighbouring fractures, or by density, D = 1/S. Joint spacing in layered rocks is often linearly related to layer thickness T, with typical values of 0.5 T < S < 2.0 T . On the other hand, some field cases display very tight joints with S << T and nonlinear relations between spacing and thickness , most of these cases are related to joint system “genetically” related to a nearby fault zone. The present study by using the code Poly3D (Rock Fracture Project at Stanford), numerically explores the effect of the stress distribution in the neighbour of an extensional fault zone with respect to the mapped intensity of joints both in the hanging wall and in the foot wall of it (WILLEMSE, E. J. M., 1997; MARTEL, S. J, AND BOGER, W. A,; 1998). Poly3D is a C language computer program that calculates the displacements, strains and stresses induced in an elastic whole or half-space by planar, polygonal-shaped elements of displacement discontinuity (WILLEMSE, E. J. M., POLLARD, D. D., 2000) Dislocations of varying shapes may be combined to yield complex three-dimensional surfaces well-suited for modeling fractures, faults, and cavities in the earth's crust. The algebraic expressions for the elastic fields around a polygonal element are derived by superposing the solution for an angular dislocation in an elastic half-space. The field data have been collected in a quarry located close to Noci town (Puglia) by using the scan line methodology. In this quarry a platform limestone with a regular bedding with very few shale or marly intercalations displaced by a normal fault are exposed. The comparison between the mapped joints intensity and the calculated stress around the fault displays a good agreement. Nevertheless the intrinsic limitations (isotropic medium and elastic behaviour

  18. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  19. Anechoic Sphere Phantoms for Estimating 3-D Resolution of Very High Frequency Ultrasound Scanners

    PubMed Central

    Madsen, Ernest L.; Frank, Gary R.; McCormick, Matthew M.; Deaner, Meagan E.; Stiles, Timothy A.

    2013-01-01

    Two phantoms have been constructed for assessing the performance of high frequency ultrasound imagers. They also allow for periodic quality assurance tests. The phantoms contain eight blocks of tissue-mimicking material where each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the backscatter coefficient of the background material in which the spheres are suspended. The mean scatterer diameter for one phantom is larger than that for the other phantom resulting in a lesser increase in backscatter coefficient for the second phantom; however, the backscatter curves cross at about 35 MHz. Since spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high frequency scanners are compared. One employs single-element (fixed focus) transducers, and the other employs variable focus linear arrays. The nominal frequency for the single element transducers were 25 and 55 MHz and for the linear array transducers were 20, 30 and 40 MHz. The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. Note that these phantoms could also be useful for training technicians in using higher frequency scanners. PMID:20889416

  20. Application of optical 3D measurement on thin film buckling to estimate interfacial toughness

    NASA Astrophysics Data System (ADS)

    Jia, H. K.; Wang, S. B.; Li, L. A.; Wang, Z. Y.; Goudeau, P.

    2014-03-01

    The shape-from-focus (SFF) method has been widely studied as a passive depth recovery and 3D reconstruction method for digital images. An important step in SFF is the calculation of the focus level for different points in an image by using a focus measure. In this work, an image entropy-based focus measure is introduced into the SFF method to measure the 3D buckling morphology of an aluminum film on a polymethylmethacrylate (PMMA) substrate at a micro scale. Spontaneous film wrinkles and telephone-cord wrinkles are investigated after the deposition of a 300 nm thick aluminum film onto the PMMA substrate. Spontaneous buckling is driven by the highly compressive stress generated in the Al film during the deposition process. The interfacial toughness between metal films and substrates is an important parameter for the reliability of the film/substrate system. The height profiles of different sections across the telephone-cord wrinkle can be considered a straight-sided model with uniform width and height or a pinned circular model that has a delamination region characterized by a sequence of connected sectors. Furthermore, the telephone-cord geometry of the thin film can be used to calculate interfacial toughness. The instability of the finite element model is introduced to fit the buckling morphology obtained by SFF. The interfacial toughness is determined to be 0.203 J/m2 at a 70.4° phase angle from the straight-sided model and 0.105 J/m2 at 76.9° from the pinned circular model.

  1. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  2. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  3. CO2 mass estimation visible in time-lapse 3D seismic data from a saline aquifer and uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Lueth, S.; Bergmann, P.; Ivandic, M.

    2014-12-01

    At Ketzin (Germany) the first European onshore pilot scale project for geological storage of CO2 was initiated in 2004. This project is multidisciplinary and includes 3D time-lapse seismic monitoring. A 3D pre-injection seismic survey was acquired in 2005. Then CO2 injection into a sandstone saline aquifer started at a depth of 650 m in 2008. A 1st 3D seismic repeat survey was acquired in 2009 after 22 kilotons had been injected. The imaged CO2 signature was concentrated around the injection well (200-300 m). A 2nd 3D seismic repeat survey was acquired in 2012 after 61 kilotons had been injected. The imaged CO2 signature further extended (100-200 m). The injection was terminated in 2013. Totally 67 kilotons of CO2 were injected. Time-lapse seismic processing, petrophysical data and geophysical logging on CO2 saturation have allowed for an estimate of the amount of CO2 visible in the seismic data. This estimate is dependent upon a choice of a number of parameters and contains a number of uncertainties. The main uncertainties are following. The constant reservoir porosity and CO2 density used for the estimation are probably an over-simplification since the reservoir is quite heterogeneous. May be velocity dispersion is present in the Ketzin reservoir rocks, but we do not consider it to be large enough that it could affect the mass of CO2 in our estimation. There are only a small number of direct petrophysical observations, providing a weak statistical basis for the determination of seismic velocities based on CO2 saturation and we have assumed that the petrophysical experiments were carried out on samples that are representative for the average properties of the whole reservoir. Finally, the most of the time delay values in the both 3D seismic repeat surveys within the amplitude anomaly are near the noise level of 1-2 ms, however a change of 1 ms in the time delay affects significantly the mass estimate, thus the choice of the time-delay cutoff is crucial. In spite

  4. From 1D to 2D via 3D: dynamics of surface motion segmentation for ocular tracking in primates.

    PubMed

    Masson, Guillaume S

    2004-01-01

    In primates, tracking eye movements help vision by stabilising onto the retinas the images of a moving object of interest. This sensorimotor transformation involves several stages of motion processing, from the local measurement of one-dimensional luminance changes up to the integration of first and higher-order local motion cues into a global two-dimensional motion immune to antagonistic motions arising from the surrounding. The dynamics of this surface motion segmentation is reflected into the various components of the tracking responses and its underlying neural mechanisms can be correlated with behaviour at both single-cell and population levels. I review a series of behavioural studies which demonstrate that the neural representation driving eye movements evolves over time from a fast vector average of the outputs of linear and non-linear spatio-temporal filtering to a progressive and slower accurate solution for global motion. Because of the sensitivity of earliest ocular following to binocular disparity, antagonistic visual motion from surfaces located at different depths are filtered out. Thus, global motion integration is restricted within the depth plane of the object to be tracked. Similar dynamics were found at the level of monkey extra-striate areas MT and MST and I suggest that several parallel pathways along the motion stream are involved albeit with different latencies to build-up this accurate surface motion representation. After 200-300 ms, most of the computational problems of early motion processing (aperture problem, motion integration, motion segmentation) are solved and the eye velocity matches the global object velocity to maintain a clear and steady retinal image. PMID:15477021

  5. Building continental-scale 3D subsurface layers in the Digital Crust project: constrained interpolation and uncertainty estimation.

    NASA Astrophysics Data System (ADS)

    Yulaeva, E.; Fan, Y.; Moosdorf, N.; Richard, S. M.; Bristol, S.; Peters, S. E.; Zaslavsky, I.; Ingebritsen, S.

    2015-12-01

    The Digital Crust EarthCube building block creates a framework for integrating disparate 3D/4D information from multiple sources into a comprehensive model of the structure and composition of the Earth's upper crust, and to demonstrate the utility of this model in several research scenarios. One of such scenarios is estimation of various crustal properties related to fluid dynamics (e.g. permeability and porosity) at each node of any arbitrary unstructured 3D grid to support continental-scale numerical models of fluid flow and transport. Starting from Macrostrat, an existing 4D database of 33,903 chronostratigraphic units, and employing GeoDeepDive, a software system for extracting structured information from unstructured documents, we construct 3D gridded fields of sediment/rock porosity, permeability and geochemistry for large sedimentary basins of North America, which will be used to improve our understanding of large-scale fluid flow, chemical weathering rates, and geochemical fluxes into the ocean. In this talk, we discuss the methods, data gaps (particularly in geologically complex terrain), and various physical and geological constraints on interpolation and uncertainty estimation.

  6. Curvature and torsion estimation for coronary-artery motion analysis

    NASA Astrophysics Data System (ADS)

    Medina, Ruben; Wahle, Andreas; Olszewski, Mark E.; Sonka, Milan

    2004-04-01

    The dynamics of curvature and torsion are important for the geometric description of arteries and for the distribution of accumulating plaque. In this research, two methods for estimating curvature and torsion are analyzed with respect to their accuracy. The first method is based on estimating the curvature and torsion of the artery centerline using the Fourier transform. Since the centerline always represents an open curve, extensions ensuring a minimal spectral energy are added on both ends to obtain a closed curve suitable for Fourier analysis. The second method has been previously used for analyzing the motion of coronary arteries and is based on the least squares fitting of a cubic polynomial to the centerline of the artery. Validation is performed using two mathematical, time-varying phantoms as well as 4-D (3-D plus time) in-vivo data of coronary arteries reconstructed by fusion of biplane angiograms and intravascular ultrasound images. Results show that both methods are accurate for estimating curvature and torsion, and that both methods have average errors below 2.15%.

  7. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  8. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  9. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model

    PubMed Central

    Song, Jin-Myoung; Cho, Jin-Hyoung

    2016-01-01

    Purpose The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Materials and Methods Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Results Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Conclusions Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement. PMID:27065238

  10. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  11. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    NASA Astrophysics Data System (ADS)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  12. Estimation of 3-D Cloud Effects on TOMS Satellite Retrieval of Surface UV Irradiance

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Geogdzhayev, I.; Herman, J. R.

    1998-01-01

    To improve surface UV irradiance retrieval from the Total Ozone Mapping Spectrometer (TOMS) we simulate errors of the TOMS cloud correction algorithm for summertime broken cloud conditions. Cloud scenes (50 km by 50 km) are modeled by a normal random (Gaussian) field with a fixed lower boundary and conservative scattering. The model relates stochastic field characteristics with the cloud amount, mean cloud diameter and aspect ratio. Clouds are embedded into Rayleigh atmosphere with standard ozone profile. Radiative transfer calculations of the radiance at the top of the atmosphere and irradiance at the surface were performed using 3-D Monte Carlo (MC) code. The results are averaged over the satellite field of view on the surface (50 km by 50 km) and compared with TOMS predicted surface irradiance for the same scene reflectance. The TOMS algorithm assumes horizontally homogeneous Cl-type cloud between 3 km and 5.5 km. The effective optical depth is determined by fitting observed (MC) radiance at 380 nm. Having the same radiance at the satellite the homogeneous and broken cloud models predict different average irradiances at the surface. This is due to the differences in Bidirectional Reflection Distribution Function (BRDF) for homogeneous and broken cloud scenes with the same hemispherical albedo. For typical TOMS observational geometry at mid-latitudes the simulated single pixels errors may be as large as +/- 20%. Qualitatively these errors are due to the dominance of the non-horizontal cloud surfaces, which are not accounted for in the homogeneous cloud model. However, due to high variability of the real cloud shapes and types it is unclear how these single pixel errors would affect TOMS time-integrated UV exposure over extended periods (weeks to months) for different regions.

  13. Suspect Height Estimation Using the Faro Focus(3D) Laser Scanner.

    PubMed

    Johnson, Monique; Liscio, Eugene

    2015-11-01

    At present, very little research has been devoted to investigating the ability of laser scanning technology to accurately measure height from surveillance video. The goal of this study was to test the accuracy of one particular laser scanner to estimate suspect height from video footage. The known heights of 10 individuals were measured using an anthropometer. The individuals were then recorded on video walking along a predetermined path in a simulated crime scene environment both with and without headwear. The difference between the known heights and the estimated heights obtained from the laser scanner software were compared using a one-way t-test. The height estimates obtained from the software were not significantly different from the known heights whether individuals were wearing headwear (p = 0.186) or not (p = 0.707). Thus, laser scanning is one technique that could potentially be used by investigators to determine suspect height from video footage.

  14. In-room breathing motion estimation from limited projection views using a sliding deformation model

    NASA Astrophysics Data System (ADS)

    Delmon, V.; Vandemeulebroucke, J.; Pinho, R.; Vila Oliva, M.; Sarrut, D.; Rit, S.

    2014-03-01

    Purpose: To estimate in-room breathing motion from a limited number of 2D cone-beam (CB) projection images by registering them to a phase of the 4D planning CT. Methods: Breathing motion was modelled using a piecewise continuous B-spline representation [1], allowing to preserve the sliding along the thoracic wall while limiting the degrees of freedom. The deformed target 3D image was subsequently used to generate Digitally Reconstructed Radiographs (DRR). The Normalized Correlation Coefficient (NCC) between the measured projection images and the DRR was computed in the 2D projection space. However, the partial derivatives of the NCC relative to the transform parameters were backprojected into the 3D space, avoiding the projection of the transform Jacobian matrix which is computationally intractable [2]. Results: The method was quantitatively evaluated on 16 lung cancer patients. 40 CB projection images were simulated using the end-exhale phase of the 4D planning CT and the geometric parameters of a clinical CB protocol. The end-inhale phase was deformed to match these simulated projections. The Target Registration Error (TRE) decreased from 8.8 mm to 2.0 mm while the TRE obtained from the 3D/3D registration of the reconstructed CBCT was significantly worse (2.6 mm), due to view aliasing artefacts. We also provide the motion compensated image reconstructed from a real CB acquisition showing the quality improvement brought by the in-room deformation model compared to the planning motion model. Conclusions: We have developed a 2D/3D deformable registration algorithm that enables in-room breathing motion estimation from cone-beam projection images.

  15. Guided wave-based J-integral estimation for dynamic stress intensity factors using 3D scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Owens, C. T.; Liu, K. C.; Swenson, E.; Ghoshal, A.; Weiss, V.

    2013-01-01

    The application of guided waves to interrogate remote areas of structural components has been researched extensively in characterizing damage. However, there exists a sparsity of work in using piezoelectric transducer-generated guided waves as a method of assessing stress intensity factors (SIF). This quantitative information enables accurate estimation of the remaining life of metallic structures exhibiting cracks, such as military and commercial transport vehicles. The proposed full wavefield approach, based on 3D laser vibrometry and piezoelectric transducer-generated guided waves, provides a practical means for estimation of dynamic stress intensity factors (DSIF) through local strain energy mapping via the J-integral. Strain energies and traction vectors can be conveniently estimated from wavefield data recorded using 3D laser vibrometry, through interpolation and subsequent spatial differentiation of the response field. Upon estimation of the Jintegral, it is possible to obtain the corresponding DSIF terms. For this study, the experimental test matrix consists of aluminum plates with manufactured defects representing canonical elliptical crack geometries under uniaxial tension that are excited by surface mounted piezoelectric actuators. The defects' major to minor axes ratios vary from unity to approximately 133. Finite element simulations are compared to experimental results and the relative magnitudes of the J-integrals are examined.

  16. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    NASA Astrophysics Data System (ADS)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  17. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  18. Estimation of vocal fold plane in 3D CT images for diagnosis of vocal fold abnormalities.

    PubMed

    Hewavitharanage, Sajini; Gubbi, Jayavardhana; Thyagarajan, Dominic; Lau, Ken; Palaniswami, Marimuthu

    2015-01-01

    Vocal folds are the key body structures that are responsible for phonation and regulating air movement into and out of lungs. Various vocal fold disorders may seriously impact the quality of life. When diagnosing vocal fold disorders, CT of the neck is the commonly used imaging method. However, vocal folds do not align with the normal axial plane of a neck and the plane containing vocal cords and arytenoids does vary during phonation. It is therefore important to generate an algorithm for detecting the actual plane containing vocal folds. In this paper, we propose a method to automatically estimate the vocal fold plane using vertebral column and anterior commissure localization. Gray-level thresholding, connected component analysis, rule based segmentation and unsupervised k-means clustering were used in the proposed algorithm. The anterior commissure segmentation method achieved an accuracy of 85%, a good estimate of the expert assessment. PMID:26736949

  19. Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.

    PubMed

    Lang, Nadine R; Münster, Stefan; Metzner, Claus; Krauss, Patrick; Schürmann, Sebastian; Lange, Janina; Aifantis, Katerina E; Friedrich, Oliver; Fabry, Ben

    2013-11-01

    The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter--the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration. PMID:24209841

  20. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.

    PubMed

    Saraee, Mahdieh B; Korayem, Moharam H

    2015-08-01

    Determining the motion modes and the exact position of a particle displaced during the manipulation process is of special importance. This issue becomes even more important when the studied particles are biological micro/nanoparticles and the goals of manipulation are the transfer of these particles within body cells, repair of cancerous cells and the delivery of medication to damaged cells. However, due to the delicate nature of biological nanoparticles and their higher vulnerability, by obtaining the necessary force of manipulation for the considered motion mode, we can prevent the sample from interlocking with or sticking to the substrate because of applying a weak force or avoid damaging the sample due to the exertion of excessive force. In this paper, the dynamic behaviors and the motion modes of biological micro/nanoparticles such as DNA, yeast, platelet and bacteria due to the 3D manipulation effect have been investigated. Since the above nanoparticles generally have a cylindrical shape, the cylindrical contact models have been employed in an attempt to more precisely model the forces exerted on the nanoparticle during the manipulation process. Also, this investigation has performed a comprehensive modeling and simulation of all the possible motion modes in 3D manipulation by taking into account the eccentricity of the applied load on the biological nanoparticle. The obtained results indicate that unlike the macroscopic scale, the sliding of nanoparticle on substrate in nano-scale takes place sooner than the other motion modes and that the spinning about the vertical and transverse axes and the rolling of nanoparticle occur later than the other motion modes. The simulation results also indicate that the applied force necessary for the onset of nanoparticle movement and the resulting motion mode depend on the size and aspect ratio of the nanoparticle.

  1. Robust 3D object localization and pose estimation for random bin picking with the 3DMaMa algorithm

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Thielemann, Jens T.; Berge, Asbjørn; Sommerfelt, Arne

    2010-02-01

    Enabling robots to automatically locate and pick up randomly placed and oriented objects from a bin is an important challenge in factory automation, replacing tedious and heavy manual labor. A system should be able to recognize and locate objects with a predefined shape and estimate the position with the precision necessary for a gripping robot to pick it up. We describe a system that consists of a structured light instrument for capturing 3D data and a robust approach for object location and pose estimation. The method does not depend on segmentation of range images, but instead searches through pairs of 2D manifolds to localize candidates for object match. This leads to an algorithm that is not very sensitive to scene complexity or the number of objects in the scene. Furthermore, the strategy for candidate search is easily reconfigurable to arbitrary objects. Experiments reported in this paper show the utility of the method on a general random bin picking problem, in this paper exemplified by localization of car parts with random position and orientation. Full pose estimation is done in less than 380 ms per image. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  2. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Amiri, Nina; Yao, Wei; Heurich, Marco; Krzystek, Peter; Skidmore, Andrew K.

    2016-10-01

    Forest understory and regeneration are important factors in sustainable forest management. However, understanding their spatial distribution in multilayered forests requires accurate and continuously updated field data, which are difficult and time-consuming to obtain. Therefore, cost-efficient inventory methods are required, and airborne laser scanning (ALS) is a promising tool for obtaining such information. In this study, we examine a clustering-based 3D segmentation in combination with ALS data for regeneration coverage estimation in a multilayered temperate forest. The core of our method is a two-tiered segmentation of the 3D point clouds into segments associated with regeneration trees. First, small parts of trees (super-voxels) are constructed through mean shift clustering, a nonparametric procedure for finding the local maxima of a density function. In the second step, we form a graph based on the mean shift clusters and merge them into larger segments using the normalized cut algorithm. These segments are used to obtain regeneration coverage of the target plot. Results show that, based on validation data from field inventory and terrestrial laser scanning (TLS), our approach correctly estimates up to 70% of regeneration coverage across the plots with different properties, such as tree height and tree species. The proposed method is negatively impacted by the density of the overstory because of decreasing ground point density. In addition, the estimated coverage has a strong relationship with the overstory tree species composition.

  3. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT

  4. Estimation and 3-D modeling of seismic parameters for fluvial systems

    SciTech Connect

    Brown, R.L.; Levey, R.A.

    1994-12-31

    Borehole measurements of parameters related to seismic propagation (Vp, Vs, Qp and Qs) are seldom available at all the wells within an area of study. Well logs and other available data can be used along with certain results from laboratory measurements to predict seismic parameters at wells where these measurements are not available. Next, three dimensional interpolation techniques based upon geological constraints can then be used to estimate the spatial distribution of geophysical parameters within a given environment. The net product is a more realistic model of the distribution of geophysical parameters which can be used in the design of surface and borehole seismic methods for probing the reservoir.

  5. Automated voxelization of 3D atom probe data through kernel density estimation.

    PubMed

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-12-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ' interface in a Ni-Al-Cr superalloy. PMID:25825028

  6. Real-time geometric scene estimation for RGBD images using a 3D box shape grammar

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a novel real-time algorithm for the purpose of extracting box-like structures from RGBD image data. In contrast to conventional approaches, the proposed algorithm includes two novel attributes: (1) it divides the geometric estimation procedure into subroutines having atomic incremental computational costs, and (2) it uses a generative "Block World" perceptual model that infers both concave and convex box elements from detection of primitive box substructures. The end result is an efficient geometry processing engine suitable for use in real-time embedded systems such as those on an UAVs where it is intended to be an integral component for robotic navigation and mapping applications.

  7. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  8. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error

    PubMed Central

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. Methods: The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Results: Experiments with simulated datasets, images of an ex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors’ method. Simulated and real cardiac sequences tests showed that results in the authors’ method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors’ method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors’ method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. Conclusions: The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors’ method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods. PMID:24784402

  9. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation

    PubMed Central

    Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S.; Sahn, David J.; Song, Xubo

    2014-01-01

    Purpose: Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. Methods: The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. Results: The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. Conclusions: The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the

  10. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions

    PubMed Central

    Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.

    2015-01-01

    We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428

  11. Estimation of passive and active properties in the human heart using 3D tagged MRI.

    PubMed

    Asner, Liya; Hadjicharalambous, Myrianthi; Chabiniok, Radomir; Peresutti, Devis; Sammut, Eva; Wong, James; Carr-White, Gerald; Chowienczyk, Philip; Lee, Jack; King, Andrew; Smith, Nicolas; Razavi, Reza; Nordsletten, David

    2016-10-01

    Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and-through patient-specific modelling-derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.

  12. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  13. Comparison of parallel and spiral tagged MRI geometries in estimation of 3-D myocardial strains

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Amini, Amir A.

    2005-04-01

    Research involving the quantification of left ventricular myocardial strain from cardiac tagged magnetic resonance imaging (MRI) is extensive. Two different imaging geometries are commonly employed by these methodologies to extract longitudinal deformation. We refer to these imaging geometries as either parallel or spiral. In the spiral configuration, four long-axis tagged image slices which intersect along the long-axis of the left ventricle are collected and in the parallel configuration, contiguous tagged long-axis images spanning the width of the left ventricle between the lateral wall and the septum are collected. Despite the number of methodologies using either or both imaging configurations, to date, no comparison has been made to determine which geometry results in more accurate estimation of strains. Using previously published work in which left ventricular myocardial strain is calculated from 4-D anatomical NURBS models, we compare the strain calculated from these two imaging geometries in both simulated tagged MR images for which ground truth strain is available as well as in in vivo data. It is shown that strains calculated using the parallel imaging protocol are more accurate than that calculated using spiral protocol.

  14. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  15. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  16. Landscape scale estimation of soil carbon stock using 3D modelling.

    PubMed

    Veronesi, F; Corstanje, R; Mayr, T

    2014-07-15

    Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models.

  17. Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial

    NASA Astrophysics Data System (ADS)

    Moult, E.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.; Fallavollita, P.

    2011-03-01

    Motivation: In prostate brachytherapy, real-time dosimetry would be ideal to allow for rapid evaluation of the implant quality intra-operatively. However, such a mechanism requires an imaging system that is both real-time and which provides, via multiple C-arm fluoroscopy images, clear information describing the three-dimensional position of the seeds deposited within the prostate. Thus, accurate tracking of the C-arm poses proves to be of critical importance to the process. Methodology: We compute the pose of the C-arm relative to a stationary radiographic fiducial of known geometry by employing a hybrid registration framework. Firstly, by means of an ellipse segmentation algorithm and a 2D/3D feature based registration, we exploit known FTRAC geometry to recover an initial estimate of the C-arm pose. Using this estimate, we then initialize the intensity-based registration which serves to recover a refined and accurate estimation of the C-arm pose. Results: Ground-truth pose was established for each C-arm image through a published and clinically tested segmentation-based method. Using 169 clinical C-arm images and a +/-10° and +/-10 mm random perturbation of the ground-truth pose, the average rotation and translation errors were 0.68° (std = 0.06°) and 0.64 mm (std = 0.24 mm). Conclusion: Fully automated C-arm pose estimation using a 2D/3D hybrid registration scheme was found to be clinically robust based on human patient data.

  18. Hybrid 3-D rocket trajectory program. Part 1: Formulation and analysis. Part 2: Computer programming and user's instruction. [computerized simulation using three dimensional motion analysis

    NASA Technical Reports Server (NTRS)

    Huang, L. C. P.; Cook, R. A.

    1973-01-01

    Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.

  19. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.

    PubMed

    Garnier, Cyril; Falempin, Maurice; Canu, Marie-Hélène

    2008-01-10

    The locomotor pattern, generated by the central pattern generator, is under the dependence of descending and peripheral pathways. The afferent feedback from peripheral receptors allows the animal to correct for disturbances that occur during walking, while supraspinal structures are important for locomotion in demanding situations such as ladder walking. Such walking, by regards to the control needed for accuracy of movements, is now widely used for description of consequences of nervous system dysfunction on motor performance. It is important to have a good knowledge of the changes in kinematic parameters according to walking conditions, since it might reflect different neural mechanisms. The aim of this work was to perform a 3D kinematic analysis of both hind- and forelimb during overground and ladder walking, to study qualitative and quantitative locomotor characteristics in different modes of locomotion. The analysis was performed on 5 rats. Movements of the right hind- and forelimb were evaluated using a 3D optical analyser, and EMG of the soleus and tibialis anterior muscles was synchronously recorded. Results indicate that kinematic and electromyographic characteristics of locomotion are dependent on the type of support. Changes were more obvious for hindlimb than for forelimb. Velocity, stride length and tibialis anterior burst duration were lower on ladder than on runway. In addition, during ladder walking, a protraction was noticed, rats bring their feet more rostral at the end of the swing phase. All these changes constitute an adaptive strategy to allow a better tactile activity with forelimbs and to avoid foot misplacement. PMID:17764759

  20. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  1. Estimating the detectability of faults in 3D-seismic data - A valuable input to Induced Seismic Hazard Assessment (ISHA)

    NASA Astrophysics Data System (ADS)

    Goertz, A.; Kraft, T.; Wiemer, S.; Spada, M.

    2012-12-01

    In the past several years, some geotechnical operations that inject fluid into the deep subsurface, such as oil and gas development, waste disposal, and geothermal energy development, have been found or suspected to cause small to moderate sized earthquakes. In several cases the largest events occurred on previously unmapped faults, within or in close vicinity to the operated reservoirs. The obvious conclusion drawn from this finding, also expressed in most recently published best practice guidelines and recommendations, is to avoid injecting into faults. Yet, how certain can we be that all faults relevant to induced seismic hazard have been identified, even around well studied sites? Here we present a probabilistic approach to assess the capability of detecting faults by means of 3D seismic imaging. First, we populate a model reservoir with seed faults of random orientation and slip direction. Drawing random samples from a Gutenberg-Richter distribution, each seed fault is assigned a magnitude and corresponding size using standard scaling relations based on a circular rupture model. We then compute the minimum resolution of a 3D seismic survey for given acquisition parameters and frequency bandwidth. Assuming a random distribution of medium properties and distribution of image frequencies, we obtain a probability that a fault of a given size is detected, or respectively overlooked, by the 3D seismic. Weighting the initial Gutenberg-Richter fault size distribution with the probability of imaging a fault, we obtain a modified fault size distribution in the imaged volume from which we can constrain the maximum magnitude to be considered in the seismic hazard assessment of the operation. We can further quantify the value of information associated with the seismic image by comparing the expected insured value loss between the image-weighted and the unweighted hazard estimates.

  2. Simultaneous Multi-Structure Segmentation and 3D Nonrigid Pose Estimation in Image-Guided Robotic Surgery.

    PubMed

    Nosrati, Masoud S; Abugharbieh, Rafeef; Peyrat, Jean-Marc; Abinahed, Julien; Al-Alao, Osama; Al-Ansari, Abdulla; Hamarneh, Ghassan

    2016-01-01

    In image-guided robotic surgery, segmenting the endoscopic video stream into meaningful parts provides important contextual information that surgeons can exploit to enhance their perception of the surgical scene. This information provides surgeons with real-time decision-making guidance before initiating critical tasks such as tissue cutting. Segmenting endoscopic video is a challenging problem due to a variety of complications including significant noise attributed to bleeding and smoke from cutting, poor appearance contrast between different tissue types, occluding surgical tools, and limited visibility of the objects' geometries on the projected camera views. In this paper, we propose a multi-modal approach to segmentation where preoperative 3D computed tomography scans and intraoperative stereo-endoscopic video data are jointly analyzed. The idea is to segment multiple poorly visible structures in the stereo/multichannel endoscopic videos by fusing reliable prior knowledge captured from the preoperative 3D scans. More specifically, we estimate and track the pose of the preoperative models in 3D and consider the models' non-rigid deformations to match with corresponding visual cues in multi-channel endoscopic video and segment the objects of interest. Further, contrary to most augmented reality frameworks in endoscopic surgery that assume known camera parameters, an assumption that is often violated during surgery due to non-optimal camera calibration and changes in camera focus/zoom, our method embeds these parameters into the optimization hence correcting the calibration parameters within the segmentation process. We evaluate our technique on synthetic data, ex vivo lamb kidney datasets, and in vivo clinical partial nephrectomy surgery with results demonstrating high accuracy and robustness. PMID:26151933

  3. Kinematic modeling the 2014 Mw6 South Napa, California, earthquake using near-fault strong-motion data and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Gallovic, F.; Imperatori, W.

    2015-12-01

    On 24 August 2014 an Mw 6.1 earthquake struck the Napa area in the north San Francisco Bay region. We perform slip inversion using method by Gallovič et al. (2015), employing low frequency data (0.05-0.5 Hz) recorded by 10 near-fault strong-motion stations and a 1D velocity model (GIL7). We reveal rupture propagating up-dip and unilaterally along the fault with dominant shallow asperity. While the fit of the data is good in terms of the first main pulses, the observed weaker secondary arrivals at some of the stations remain unexplained. We then perform forward simulation combining the revealed '1D' source model and detailed 3D USGS velocity model of the Bay region. While the 3D crustal model slightly improves the fit at stations located outside of major basin structures, it introduces strong spurious reverberations at stations inside the basins. These strong oscillations disappear when the 3D velocity model is smoothed. We also perform slip inversion using 3D Green's functions, obtaining a source model that effectively suppresses the oscillations, but also worsens the fit at stations outside the basins. Compared to the '1D' rupture model, the '3D' rupture model has longer rise times and lower peak slip rates, but it also contains more spurious features. Thus we conclude that the '1D' rupture model is more robust, suggesting that the 3D USGS velocity model for the Bay area should be improved in some of its parts. As a next step, based on the low-resolution slip models, we follow the approach of Ruiz (Ruiz et al., 2011) to build broadband kinematic source models to simulate deterministically ground motions up to 5Hz, including topography, intrinsic attenuation and random small-scale velocity heterogeneity. Calculations show an extremely complex wave field in comparison with 1D simulations. Finally, we check how our deterministic synthetics compare with those obtained using popular broadband hybrid techniques (e.g., Mai et al., 2010).

  4. Estimating nonrigid motion from inconsistent intensity with robust shape features

    SciTech Connect

    Liu, Wenyang; Ruan, Dan

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided

  5. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.

    PubMed

    Abbott, W W; Faisal, A A

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.

  6. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  7. Estimation of Precambrian basement topography in Central and Southeastern Wisconsin from 3D modeling of gravity and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Skalbeck, John D.; Koski, Adrian J.; Peterson, Matthew T.

    2014-07-01

    Increased concerns about groundwater resources in Wisconsin have brought about the need for better understanding of the subsurface geologic structure that leads to developing conceptual hydrogeologic models for numerical simulation of groundwater flow. Models are often based on sparse data from well logs usually located large distances apart and limited in depth. Model assumptions based on limited spatial data typically require simplification that may add uncertainty to the simulation results and the accuracy of a groundwater model. Three dimensional (3D) modeling of gravity and aeromagnetic data provides another tool for the groundwater modeler to better constrain the conceptual model of a hydrogeologic system. The area near the Waukesha Fault in southeastern Wisconsin provides an excellent research opportunity for our proposed approach because of the strong gravity and aeromagnetic anomalies associated with the fault, the apparent complexity in fault geometry, and uncertainty in Precambrian basement depth and structure. Fond du Lac County provides another opportunity to apply this approach because the Precambrian basement topography throughout the area is known to be very undulated and this uneven basement surface controls water well yields and creates zones of stagnant water. The results of the 3D modeling of gravity and aeromagnetic data provide a detailed estimation of the Precambrian basement topography in Fond Du Lac County and southeastern Wisconsin that may be useful in determining ground water flow and quality in this region.

  8. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  9. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775

  10. Scatter to volume registration for model-free respiratory motion estimation from dynamic MRIs.

    PubMed

    Miao, S; Wang, Z J; Pan, L; Butler, J; Moran, G; Liao, R

    2016-09-01

    Respiratory motion is one major complicating factor in many image acquisition applications and image-guided interventions. Existing respiratory motion estimation and compensation methods typically rely on breathing motion models learned from certain training data, and therefore may not be able to effectively handle intra-subject and/or inter-subject variations of respiratory motion. In this paper, we propose a respiratory motion compensation framework that directly recovers motion fields from sparsely spaced and efficiently acquired dynamic 2-D MRIs without using a learned respiratory motion model. We present a scatter-to-volume deformable registration algorithm to register dynamic 2-D MRIs with a static 3-D MRI to recover dense deformation fields. Practical considerations and approximations are provided to solve the scatter-to-volume registration problem efficiently. The performance of the proposed method was investigated on both synthetic and real MRI datasets, and the results showed significant improvements over the state-of-art respiratory motion modeling methods. We also demonstrated a potential application of the proposed method on MRI-based motion corrected PET imaging using hybrid PET/MRI.

  11. Quaternionic Spatiotemporal Filtering for Dense Motion Field Estimation in Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Marion, Adrien; Girard, Patrick; Vray, Didier

    2010-12-01

    Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The method was applied to a large set of experimental and simulated flow sequences with low motion ([InlineEquation not available: see fulltext.]1 mm/s) within small vessels ([InlineEquation not available: see fulltext.]1 mm). Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.

  12. Three-dimensional (3D) coseismic deformation map produced by the 2014 South Napa Earthquake estimated and modeled by SAR and GPS data integration

    NASA Astrophysics Data System (ADS)

    Polcari, Marco; Albano, Matteo; Fernández, José; Palano, Mimmo; Samsonov, Sergey; Stramondo, Salvatore; Zerbini, Susanna

    2016-04-01

    In this work we present a 3D map of coseismic displacements due to the 2014 Mw 6.0 South Napa earthquake, California, obtained by integrating displacement information data from SAR Interferometry (InSAR), Multiple Aperture Interferometry (MAI), Pixel Offset Tracking (POT) and GPS data acquired by both permanent stations and campaigns sites. This seismic event produced significant surface deformation along the 3D components causing several damages to vineyards, roads and houses. The remote sensing results, i.e. InSAR, MAI and POT, were obtained from the pair of SAR images provided by the Sentinel-1 satellite, launched on April 3rd, 2014. They were acquired on August 7th and 31st along descending orbits with an incidence angle of about 23°. The GPS dataset includes measurements from 32 stations belonging to the Bay Area Regional Deformation Network (BARDN), 301 continuous stations available from the UNAVCO and the CDDIS archives, and 13 additional campaign sites from Barnhart et al, 2014 [1]. These data constrain the horizontal and vertical displacement components proving to be helpful for the adopted integration method. We exploit the Bayes theory to search for the 3D coseismic displacement components. In particular, for each point, we construct an energy function and solve the problem to find a global minimum. Experimental results are consistent with a strike-slip fault mechanism with an approximately NW-SE fault plane. Indeed, the 3D displacement map shows a strong North-South (NS) component, peaking at about 15 cm, a few kilometers far from the epicenter. The East-West (EW) displacement component reaches its maximum (~10 cm) south of the city of Napa, whereas the vertical one (UP) is smaller, although a subsidence in the order of 8 cm on the east side of the fault can be observed. A source modelling was performed by inverting the estimated displacement components. The best fitting model is given by a ~N330° E-oriented and ~70° dipping fault with a prevailing

  13. Complexity scalable motion estimation for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Kim, Changsung; Xin, Jun; Vetro, Anthony; Kuo, C.-C. Jay

    2006-01-01

    A new complexity-scalable framework for motion estimation is proposed to efficiently reduce the motioncomplexity of encoding process, with focus on long term memory motion-compensated prediction of the H.264 video coding standard in this work. The objective is to provide a complexity scalable scheme for the given motion estimation algorithm such that it reduces the encoding complexity to the desired level with insignificant penalty in rate-distortion performance. In principle, the proposed algorithm adaptively allocates available motion-complexity budget to macroblock based on estimated impact towards overall rate-distortion (RD) performance subject to the given encoding time limit. To estimate macroblock-wise tradeoff between RD coding gain (J) and motion-complexity (C), the correlation of J-C curve between current macroblock and collocated macroblock in previous frame is exploited to predict initial motion-complexity budget of current macroblock. The initial budget is adaptively assigned to each blocksize and block-partition successively and motion-complexity budget is updated at the end of every encoding unit for remaining ones. Based on experiment, proposed J-C slope based allocation is better than uniform motion-complexity allocation scheme in terms of RDC tradeoff. It is demonstrated by experimental results that the proposed algorithm can reduce the H.264 motion estimation complexity to the desired level with little degradation in the rate distortion performance.

  14. Constraints on upper mantle rheology from modeling of plate motions with fully 3D visco-elasto-plastic lithosphere

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.; Popov, A.; Steinberger, B.

    2009-04-01

    The convection in deep Earth is linked to the surface through the heterogeneous and rheologically complex lithosphere and asthenosphere, which are usually strongly simplified in global geodynamic models. We use a newly developed 3D thermomechanical finite element numerical technique (Popov and Sobolev, PEPI 2008) to model a 300 km thick upper layer of the Earth in full 3D, coupled with the convecting mantle. The present day temperature distribution and crustal structure within the layer are taken from existing models. We also assume that the upper layer is composed from non-linear temperature- and stress-dependent visco-elastic rheology, corresponding to the dry or wet olivine (mantle) or naturally wet plagioclase (crust), combined with Mohr-Coulomb frictional plasticity. Plate boundaries are represented by the narrow zones of elasto-visco-plastic rheology with much lower frictional strength than within the plates. The mantle below the 300 km depth is modeled using Hager and O'Connell's mantle flow spectral modeling technique with present day density and viscosity distribution based on either interpretation of global seismic tomography or history of subduction. The upper layer and mantle modeling domains are coupled by iteratively achieved precise continuity of tractions and velocities at 300 km depth. Here we will show modeling results for the present day Earth structure focusing on the effect on the plate velocities of the frictional strength at plate boundaries, of mantle potential temperature and of rheology of the asthenosphere (dry versus wet). Modeling shows that deep convection generates plate tectonic-like velocity pattern only when effective friction at subduction plate boundaries becomes less than 0.1. Both magnitudes and directions of plate velocities are reproduced very well at friction in subduction zones around 0.005-0.05 and friction at other plate boundaries of 0.05-0.1. The best fit of the observed velocities is obtained assuming that

  15. MUlti-Dimensional Spline-Based Estimator (MUSE) for motion estimation: algorithm development and initial results.

    PubMed

    Viola, Francesco; Coe, Ryan L; Owen, Kevin; Guenther, Drake A; Walker, William F

    2008-12-01

    Image registration and motion estimation play central roles in many fields, including RADAR, SONAR, light microscopy, and medical imaging. Because of its central significance, estimator accuracy, precision, and computational cost are of critical importance. We have previously presented a highly accurate, spline-based time delay estimator that directly determines sub-sample time delay estimates from sampled data. The algorithm uses cubic splines to produce a continuous representation of a reference signal and then computes an analytical matching function between this reference and a delayed signal. The location of the minima of this function yields estimates of the time delay. In this paper we describe the MUlti-dimensional Spline-based Estimator (MUSE) that allows accurate and precise estimation of multi-dimensional displacements/strain components from multi-dimensional data sets. We describe the mathematical formulation for two- and three-dimensional motion/strain estimation and present simulation results to assess the intrinsic bias and standard deviation of this algorithm and compare it to currently available multi-dimensional estimators. In 1000 noise-free simulations of ultrasound data we found that 2D MUSE exhibits maximum bias of 2.6 x 10(-4) samples in range and 2.2 x 10(-3) samples in azimuth (corresponding to 4.8 and 297 nm, respectively). The maximum simulated standard deviation of estimates in both dimensions was comparable at roughly 2.8 x 10(-3) samples (corresponding to 54 nm axially and 378 nm laterally). These results are between two and three orders of magnitude better than currently used 2D tracking methods. Simulation of performance in 3D yielded similar results to those observed in 2D. We also present experimental results obtained using 2D MUSE on data acquired by an Ultrasonix Sonix RP imaging system with an L14-5/38 linear array transducer operating at 6.6 MHz. While our validation of the algorithm was performed using ultrasound data, MUSE is

  16. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  17. 3D Motions of Iron in Six-Coordinate {FeNO}(7) Hemes by Nuclear Resonance Vibration Spectroscopy.

    PubMed

    Peng, Qian; Pavlik, Jeffrey W; Silvernail, Nathan J; Alp, E Ercan; Hu, Michael Y; Zhao, Jiyong; Sage, J Timothy; Scheidt, W Robert

    2016-04-25

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1-MeIm)(NO)] (TpFPP=tetra-para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X=N, C, and O) complexes is correlated with the Fe-XO bond lengths. The nature of highest frequency band at ≈560 cm(-1) has also been examined in two additional new derivatives. Previously assigned as the Fe-NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.

  18. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-03-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined by Cone- Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (+/-1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8+/-5.5), superior-inferior (S/I) (-3.5+/-5.2), and left-right (L/R): (0.4+/-4.9). The variations were larger than the CBCT shifts. The largest inter-fractional displacement was from -2 mm to +14 mm in the AP-direction for patient 3. Thus, CBCT bone matching underestimates the uterine positional displacement due to neglecting internal uterine positional change to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match.

  19. The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny

    PubMed Central

    2014-01-01

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092

  20. The birth of a dinosaur footprint: subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny.

    PubMed

    Falkingham, Peter L; Gatesy, Stephen M

    2014-12-23

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal-substrate and substrate-substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air-substrate interface, subsurface displacements maintain a high level of organization owing to grain-grain support. Splitting the substrate volume along "virtual bedding planes" exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term "track ontogeny." This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation.

  1. Wireless capsule endoscopy video reduction based on camera motion estimation.

    PubMed

    Liu, Hong; Pan, Ning; Lu, Heng; Song, Enmin; Wang, Qian; Hung, Chih-Cheng

    2013-04-01

    Wireless capsule endoscopy (WCE) is a novel technology aiming for investigating the diseases and abnormalities in small intestine. The major drawback of WCE examination is that it takes a long time to examine the whole WCE video. In this paper, we present a new reduction scheme for WCE video to reduce the examination time. To achieve this task, a WCE video motion model is proposed. Under this motion model, the WCE imaging motion is estimated in two stages (the coarse level and the fine level). In the coarse level, the WCE camera motion is estimated with a combination of Bee Algorithm and Mutual Information. In the fine level, the local gastrointestinal tract motion is estimated with SIFT flow. Based on the result of WCE imaging motion estimation, the reduction scheme preserves key images in WCE video with scene changes. From experimental results, we notice that the proposed motion model is suitable for the motion estimation in successive WCE images. Through the comparison with APRS and FCM-NMF scheme, our scheme can produce an acceptable reduction sequence for browsing and examination. PMID:22868484

  2. Wireless capsule endoscopy video reduction based on camera motion estimation.

    PubMed

    Liu, Hong; Pan, Ning; Lu, Heng; Song, Enmin; Wang, Qian; Hung, Chih-Cheng

    2013-04-01

    Wireless capsule endoscopy (WCE) is a novel technology aiming for investigating the diseases and abnormalities in small intestine. The major drawback of WCE examination is that it takes a long time to examine the whole WCE video. In this paper, we present a new reduction scheme for WCE video to reduce the examination time. To achieve this task, a WCE video motion model is proposed. Under this motion model, the WCE imaging motion is estimated in two stages (the coarse level and the fine level). In the coarse level, the WCE camera motion is estimated with a combination of Bee Algorithm and Mutual Information. In the fine level, the local gastrointestinal tract motion is estimated with SIFT flow. Based on the result of WCE imaging motion estimation, the reduction scheme preserves key images in WCE video with scene changes. From experimental results, we notice that the proposed motion model is suitable for the motion estimation in successive WCE images. Through the comparison with APRS and FCM-NMF scheme, our scheme can produce an acceptable reduction sequence for browsing and examination.

  3. Extension of the Optimized Virtual Fields Method to estimate viscoelastic material parameters from 3D dynamic displacement fields

    PubMed Central

    Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.

    2015-01-01

    In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416

  4. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  5. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  6. Introducing differential motion estimation into hybrid video coders

    NASA Astrophysics Data System (ADS)

    Cagnazzo, M.; Pesquet-Popescu, B.

    2010-07-01

    Differential motion estimation produces dense motion vector fields which are far too demanding in terms of coding rate in order to be used in video coding. However, a pel-recursive technique like that introduced by Cafforio and Rocca can be modified in order to work using only the information available at the decoder side. This allows to improve the motion vectors produced in the classical predictive modes of H.264. In this paper we describe the modification needed in order to introduce a differential motion estimation method into the H.264 codec. Experimental results will validate a coding mode, opening new perspectives in using differential-based motion estimation techniques into classical hybrid codecs.

  7. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  8. 3D dynamic roadmapping for abdominal catheterizations.

    PubMed

    Bender, Frederik; Groher, Martin; Khamene, Ali; Wein, Wolfgang; Heibel, Tim Hauke; Navab, Nassir

    2008-01-01

    Despite rapid advances in interventional imaging, the navigation of a guide wire through abdominal vasculature remains, not only for novice radiologists, a difficult task. Since this navigation is mostly based on 2D fluoroscopic image sequences from one view, the process is slowed down significantly due to missing depth information and patient motion. We propose a novel approach for 3D dynamic roadmapping in deformable regions by predicting the location of the guide wire tip in a 3D vessel model from the tip's 2D location, respiratory motion analysis, and view geometry. In a first step, the method compensates for the apparent respiratory motion in 2D space before backprojecting the 2D guide wire tip into three dimensional space, using a given projection matrix. To countervail the error connected to the projection parameters and the motion compensation, as well as the ambiguity caused by vessel deformation, we establish a statistical framework, which computes a reliable estimate of the guide wire tip location within the 3D vessel model. With this 2D-to-3D transfer, the navigation can be performed from arbitrary viewing angles, disconnected from the static perspective view of the fluoroscopic sequence. Tests on a realistic breathing phantom and on synthetic data with a known ground truth clearly reveal the superiority of our approach compared to naive methods for 3D roadmapping. The concepts and information presented in this paper are based on research and are not commercially available. PMID:18982662

  9. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.

    PubMed

    Bukhari, W; Hong, S-M

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+) , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+) . The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating

  10. Motion-compensated frame interpolation based on multihypothesis motion estimation and texture optimization.

    PubMed

    Jeong, Seong-Gyun; Lee, Chul; Kim, Chang-Su

    2013-11-01

    A novel motion-compensated frame interpolation (MCFI) algorithm to increase video temporal resolutions based on multihypothesis motion estimation and texture optimization is proposed in this paper. Initially, we form multiple motion hypotheses for each pixel by employing different motion estimation parameters, i.e., different block sizes and directions. Then, we determine the best motion hypothesis for each pixel by solving a labeling problem and optimizing the parameters. In the labeling problem, the cost function is composed of color, shape, and smoothness terms. Finally, we refine the motion hypothesis field based on the texture optimization technique and blend multiple source pixels to interpolate each pixel in the intermediate frame. Simulation results demonstrate that the proposed algorithm provides significantly better MCFI performance than conventional algorithms.

  11. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  12. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    NASA Astrophysics Data System (ADS)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  13. Psychophysical estimation of 3D virtual depth of united, synthesized and mixed type stereograms by means of simultaneous observation

    NASA Astrophysics Data System (ADS)

    Iizuka, Masayuki; Ookuma, Yoshio; Nakashima, Yoshio; Takamatsu, Mamoru

    2007-02-01

    Recently, many types of computer-generated stereograms (CGSs), i.e. various works of art produced by using computer are published for hobby and entertainment. It is said that activation of brain, improvement of visual eye sight, decrease of mental stress, effect of healing, etc. are expected when properly appreciating a kind of CGS as the stereoscopic view. There is a lot of information on the internet web site concerning all aspects of stereogram history, science, social organization, various types of stereograms, and free software for generating CGS. Generally, the CGS is classified into nine types: (1) stereo pair type, (2) anaglyph type, (3) repeated pattern type, (4) embedded type, (5) random dot stereogram (RDS), (6) single image stereogram (SIS), (7) united stereogram, (8) synthesized stereogram, and (9) mixed or multiple type stereogram. Each stereogram has advantages and disadvantages when viewing directly the stereogram with two eyes by training with a little patience. In this study, the characteristics of united, synthesized and mixed type stereograms, the role and composition of depth map image (DMI) called hidden image or picture, and the effect of irregular shift of texture pattern image called wall paper are discussed from the viewpoint of psychophysical estimation of 3D virtual depth and visual quality of virtual image by means of simultaneous observation in the case of the parallel viewing method.

  14. Ubiquitous human upper-limb motion estimation using wearable sensors.

    PubMed

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  15. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    USGS Publications Warehouse

    Olsen, K.B.; Stephenson, W.J.; Geisselmeyer, A.

    2008-01-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  16. From Monotonous Hop-and-Sink Swimming to Constant Gliding via Chaotic Motions in 3D: Is There Adaptive Behavior in Planktonic Micro-Crustaceans?

    NASA Astrophysics Data System (ADS)

    Strickler, J. R.

    2007-12-01

    Planktonic micro-crustaceans, such as Daphnia, Copepod, and Cyclops, swim in the 3D environment of water and feed on suspended material, mostly algae and bacteria. Their mechanisms for swimming differ; some use their swimming legs to produce one hop per second resulting in a speed of one body-length per second, while others scan water volumes with their mouthparts and glide through the water column at 1 to 10 body-lengths per second. However, our observations show that these speeds are modulated. The question to be discussed will be whether or not these modulations show adaptive behavior taking food quality and food abundance as criteria for the swimming performances. Additionally, we investigated the degree these temporal motion patterns are dependant on the sizes, and therefore, on the Reynolds number of the animals.

  17. A fusion of actual motion pictures of scenery and the 3D image constructed from GPS and gyro data and map database

    NASA Astrophysics Data System (ADS)

    Sumiya, Yasuto; Shirakawa, Masayuki; Ozeki, Shigeru

    2003-09-01

    EVS (Enhanced Vision System) and SVS (Synthesized Vision System) are known as effective tools for pilots to improve situation awareness. ENRI has developed an integrated EVS/SVS experimenta system to study the potential of both EVS and SVS in Japan. This paper presents the results of ground and flight experiments of the experimental system. It produces the three-dimensional (3D)artificial images. They are synthesized with the position data of GPS,the attitude data obtained by the gyro sensor and the digital map database,which is supplied from GSI (the Geographical Survey Institute)in Japan. The produced image is compared with the actual motion picture of scenery through HUD (Head Up Display) or a computer screen.The image uses the grid lines' expression for the simultaneous recognition of both the 3D image and the real picture. The picture is obtained from two sensors, that is, a visible ray co or sensor and an infrared sensor. These two kinds of the picture are recorded into respective video recorder. The image recording subsystems are equipped to the ENRI"s experimental aircraft with additional sensors for position and attitude data. The GPS receiver and gyro unit are chosen for additional sensors. Two methods are examined in the simulation of the fusion system.One is a method that the 3D image is overlapped with the picture of the time to acquire the image from video recorders and display it on a computer screen. The other is a method that the observer watches the image through HUD,where both the image and the picture are overlapped.This paper also discusses the difference of two methods for fusion systems and shows the results

  18. Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi

    2014-05-01

    There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the

  19. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    PubMed

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation.

  20. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    PubMed

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation. PMID:25805426

  1. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    SciTech Connect

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  2. Nonlinear transform for robust dense block-based motion estimation.

    PubMed

    Xu, Rui; Taubman, David; Naman, Aous Thabit

    2014-05-01

    We present a noniterative multiresolution motion estimation strategy, involving block-based comparisons in each detail band of a Laplacian pyramid. A novel matching score is developed and analyzed. The proposed matching score is based on a class of nonlinear transformations of Laplacian detail bands, yielding 1-bit or 2-bit representations. The matching score is evaluated in a dense full-search motion estimation setting, with synthetic video frames and an optical flow data set. Together with a strategy for combining the matching scores across resolutions, the proposed method is shown to produce smoother and more robust estimates than mean square error (MSE) in each detail band and combined. It tolerates more of nontranslational motion, such as rotation, validating the analysis, while providing much better localization of the motion discontinuities. We also provide an efficient implementation of the motion estimation strategy and show that the computational complexity of the approach is closely related to the traditional MSE block-based full-search motion estimation procedure.

  3. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  4. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  5. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  6. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    PubMed

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  7. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    PubMed Central

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.

    2016-01-01

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203

  8. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  9. Estimation of bisphenol A-Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests.

    PubMed

    Lee, Dong Woo; Oh, Woo-Yeon; Yi, Sang Hyun; Ku, Bosung; Lee, Moo-Yeal; Cho, Yoon Hee; Yang, Mihi

    2016-09-30

    Bisphenol A (BPA) has been widely used for manufacturing polycarbonate plastics and epoxy resins and has been extensively tested in animals to predict human toxicity. In order to reduce the use of animals for toxicity assessment and provide further accurate information on BPA toxicity in humans, we encapsulated Hep3B human hepatoma cells in alginate and cultured them in three dimensions (3D) on a micropillar chip coupled to a panel of metabolic enzymes on a microwell chip. As a result, we were able to assess the toxicity of BPA under various metabolic enzyme conditions using a high-throughput and micro assay; sample volumes were nearly 2,000 times less than that required for a 96-well plate. We applied a total of 28 different enzymes to each chip, including 10 cytochrome P450s (CYP450s), 10 UDP-glycosyltransferases (UGTs), 3 sulfotransferases (SULTs), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase 2 (ALDH2). Phase I enzyme mixtures, phase II enzyme mixtures, and a combination of phase I and phase II enzymes were also applied to the chip. BPA toxicity was higher in samples containing CYP2E1 than controls, which contained no enzymes (IC50, 184±16μM and 270±25.8μM, respectively, p<0.01). However, BPA-induced toxicity was alleviated in the presence of ADH (IC50, 337±17.9μM), ALDH2 (335±13.9μM), and SULT1E1 (318±17.7μM) (p<0.05). CYP2E1-mediated cytotoxicity was confirmed by quantifying unmetabolized BPA using HPLC/FD. Therefore, we suggest the present micropillar/microwell chip platform as an effective alternative to animal testing for estimating BPA toxicity via human metabolic systems. PMID:27491884

  10. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    , EGU2014-2424, Vienna, Austria, 1-5. Eppelbaum, L.V. and Katz, Y.I., 2014b. First Maps of Mesozoic and Cenozoic Structural-Sedimentation Floors of the Easternmost Mediterranean and their Relationship with the Deep Geophysical-Geological Zonation. Proceed. of the 19th Intern. Congress of Sedimentologists, Geneva, Switzerland, 1-3. Eppelbaum, L.V. and Katz, Yu.I., 2015a. Newly Developed Paleomagnetic Map of the Easternmost Mediterranean Unmasks Geodynamic History of this Region. Central European Jour. of Geosciences, 6, No. 4 (in Press). Eppelbaum, L.V. and Katz, Yu.I., 2015b. Application of Integrated Geological-Geophysical Analysis for Development of Paleomagnetic Maps of the Easternmost Mediterranean. In: (Eppelbaum L., Ed.), New Developments in Paleomagnetism Research, Nova Publisher, NY (in Press). Eppelbaum, L.V. and Khesin, B.E., 2004. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, 22, No. 11, 53-56. Eppelbaum, L.V., Nikolaev, A.V. and Katz, Y.I., 2014. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), 457, No. 6, 710-714. Haase, J.S., Park, C.H., Nowack, R.L. and Hill, J.R., 2010. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A. Environmental and Engineering Geoscience, 16, No. 4, 369-388. Hough, S.E., Borcherdt, R. D., Friberg, P. A., Busby, R., Field, E. and Jacob, K. N., 1990. The role of sediment-induced amplification in the collapse of the Nimitz freeway. Nature, 344, 853-855. Khesin, B.E. Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publ., Ser.: Advanced Appr. in Geophysics, Dordrecht - London - Boston. Klokočník, J., Kostelecký, J., Eppelbaum, L. and Bezděk, A., 2014. Gravity Disturbances, the Marussi Tensor, Invariants and

  11. Corrections to traditional methods of verifying tangential-breast 3D monitor-unit calculations: use of an equivalent triangle to estimate effective fields.

    PubMed

    Prado, Karl L; Kirsner, Steven M; Erice, Rolly C

    2003-01-01

    This paper describes an innovative method for correctly estimating the effective field size of tangential-breast fields. The method uses an "equivalent triangle" to verify intact breast tangential field monitor-unit settings calculated by a 3D planning system to within 2%. The effects on verification calculations of loss of full scatter due to beam oblique incidence, proximity to field boundaries, and reduced scattering volumes are handled properly. The methodology is validated by comparing calculations performed by the 3D planning system with the respective verification estimates. The accuracy of this technique is established for dose calculations both with and without heterogeneity corrections.

  12. Omnidirectional Perception for Lightweight Uavs Using a Continuously Rotating 3d Laser Scanner

    NASA Astrophysics Data System (ADS)

    Droeschel, D.; Schreiber, M.; Behnke, S.

    2013-08-01

    Many popular unmanned aerial vehicles (UAV) are restricted in their size and weight, making the design of sensory systems for these robots challenging. We designed a small and lightweight continuously rotating 3D laser scanner - allowing for environment perception in a range of 30 m in almost all directions. This sensor it well suited for applications such as 3D obstacle detection, 6D motion estimation, localization, and mapping. We aggregate the distance measurements in a robot-centric grid-based map. To estimate the motion of our multicopter, we register 3D laser scans towards this local map. In experiments, we compare the laser-based ego-motion estimate with ground-truth from a motion capture system. Overall, we can build an accurate 3D obstacle map and can estimate the vehicle's trajectory by 3D scan registration.

  13. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    PubMed

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  14. Self-Motion and Depth Estimation from Image Sequences

    NASA Technical Reports Server (NTRS)

    Perrone, John

    1999-01-01

    An image-based version of a computational model of human self-motion perception (developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center) has been generated and tested. The research included in the grant proposal sought to extend the utility of the self-motion model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. The model can now be tested with video input sequences (including computer generated imagery) which enables simulation of human self-motion estimation in a variety of applied settings.

  15. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    SciTech Connect

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  16. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  17. Glottal space segmentation from motion estimation and Gabor filtering.

    PubMed

    Mendez, A; Ismaili Alaoui, E M; García, B; Ibn-Elhaj, E; Ruiz, I

    2009-01-01

    Obtaining the glottal space segmentation is essential to characterize morphological disorders of vocal folds. In this study, the tested images are been acquired by direct optical inspection of the glottis using an endoscope and most of them are very poor quality. The application of motion estimation is very useful to segment the vocal folds endoscopic videos without user interaction. This approach involves three process steps: 1) Wiener motion estimator--to shift the measurement the next frame regarding to the current frame, and look for similarities between them. The best matching will accurate a shift equal to the displacement vector of the object; 2) Segmentation using motion estimation results and applying Gabor filtering; 3) Experimental results to demonstrate that the proposed method is effective. Our proposal works correctly with 95% of database test videos and it shows a great advance in design, and in the nearby future, a complete method to diagnose vocal folds pathologies.

  18. Phase-Accuracy Comparisons and Improved Far-Field Estimates for 3-D Edge Elements on Tetrahedral Meshes

    NASA Astrophysics Data System (ADS)

    Monk, Peter; Parrott, Kevin

    2001-07-01

    Edge-element methods have proved very effective for 3-D electromagnetic computations and are widely used on unstructured meshes. However, the accuracy of standard edge elements can be criticised because of their low order. This paper analyses discrete dispersion relations together with numerical propagation accuracy to determine the effect of tetrahedral shape on the phase accuracy of standard 3-D edge-element approximations in comparison to other methods. Scattering computations for the sphere obtained with edge elements are compared with results obtained with vertex elements, and a new formulation of the far-field integral approximations for use with edge elements is shown to give improved cross sections over conventional formulations.

  19. Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering

    SciTech Connect

    Goddard, J.S.; Abidi, M.A.

    1998-06-01

    A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.

  20. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. PMID:25872024

  1. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots.

  2. Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana; Pal, Sourav

    2015-07-14

    Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.

  3. Left ventricle motion estimation based on signal-dependent time-frequency representation

    NASA Astrophysics Data System (ADS)

    Gutierrez, Marco A.; Weiderpass, Heinar A.; Furuie, Sergio S.

    2003-05-01

    In current clinical practice, the noninvasive assessment of left ventricular deformation can be determined using all the principal imaging modalities, including contrast angiography, echocardiography, cine computed tomography, single photon emission tomography and magnetic resonance imaging. However, since the heart undergoes complex motion, proper characterization of its motion still remains an open and challenging research problem. A number of approaches for nonrigid motion analysis have been studied in the literature. Much of the effort has confined to estimate the displacement vector for each image point or optical flow. This is a challenging problem in image analysis because of a wide range of possible motions and the presence of noise in the image sets. In this work, we present an algorithm for computation of optical flow based on a signal-dependent radially Gaussian kernel that adapts over time. The adaptive kernel obtained from the proposed algorithm is used to estimate a 3D-frequency spectrum for a given pixel in a series of images. The orientation of the spectrum in the frequency domain is totally governed by the pixel velocity. In a recent contribution, a linear regression model is used over the spectrum to obtain the velocity components that are proportional to the pixel movement.

  4. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal

  5. An Adaptive Motion Estimation Scheme for Video Coding

    PubMed Central

    Gao, Yuan; Jia, Kebin

    2014-01-01

    The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised. PMID:24672313

  6. An adaptive motion estimation scheme for video coding.

    PubMed

    Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2014-01-01

    The unsymmetrical-cross multihexagon-grid search (UMHexagonS) is one of the best fast Motion Estimation (ME) algorithms in video encoding software. It achieves an excellent coding performance by using hybrid block matching search pattern and multiple initial search point predictors at the cost of the computational complexity of ME increased. Reducing time consuming of ME is one of the key factors to improve video coding efficiency. In this paper, we propose an adaptive motion estimation scheme to further reduce the calculation redundancy of UMHexagonS. Firstly, new motion estimation search patterns have been designed according to the statistical results of motion vector (MV) distribution information. Then, design a MV distribution prediction method, including prediction of the size of MV and the direction of MV. At last, according to the MV distribution prediction results, achieve self-adaptive subregional searching by the new estimation search patterns. Experimental results show that more than 50% of total search points are dramatically reduced compared to the UMHexagonS algorithm in JM 18.4 of H.264/AVC. As a result, the proposed algorithm scheme can save the ME time up to 20.86% while the rate-distortion performance is not compromised.

  7. Human heading estimation during visually simulated curvilinear motion

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1997-01-01

    Recent studies have suggested that humans cannot estimate their direction of forward translation (heading) from the resulting retinal motion (flow field) alone when rotation rates are higher than approximately 1 deg/sec. It has been argued that either oculomotor or static depth cues are necessary to disambiguate the rotational and translational components of the flow field and, thus, to support accurate heading estimation. We have re-examined this issue using visually simulated motion along a curved path towards a layout of random points as the stimulus. Our data show that, in this curvilinear motion paradigm, five of six observers could estimate their heading relatively accurately and precisely (error and uncertainty < approximately 4 deg), even for rotation rates as high as 16 deg/sec, without the benefit of either oculomotor or static depth cues signaling rotation rate. Such performance is inconsistent with models of human self-motion estimation that require rotation information from sources other than the flow field to cancel the rotational flow.

  8. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  9. Simultaneous image segmentation and medial structure estimation: application to 2D and 3D vessel tree extraction

    NASA Astrophysics Data System (ADS)

    Makram-Ebeid, Sherif; Stawiaski, Jean; Pizaine, Guillaume

    2011-03-01

    We propose a variational approach which combines automatic segmentation and medial structure extraction in a single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast, our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian) allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.

  10. Improving visual estimates of cervical spine range of motion.

    PubMed

    Hirsch, Brandon P; Webb, Matthew L; Bohl, Daniel D; Fu, Michael; Buerba, Rafael A; Gruskay, Jordan A; Grauer, Jonathan N

    2014-11-01

    Cervical spine range of motion (ROM) is a common measure of cervical conditions, surgical outcomes, and functional impairment. Although ROM is routinely assessed by visual estimation in clinical practice, visual estimates have been shown to be unreliable and inaccurate. Reliable goniometers can be used for assessments, but the associated costs and logistics generally limit their clinical acceptance. To investigate whether training can improve visual estimates of cervical spine ROM, we asked attending surgeons, residents, and medical students at our institution to visually estimate the cervical spine ROM of healthy subjects before and after a training session. This training session included review of normal cervical spine ROM in 3 planes and demonstration of partial and full motion in 3 planes by multiple subjects. Estimates before, immediately after, and 1 month after this training session were compared to assess reliability and accuracy. Immediately after training, errors decreased by 11.9° (flexion-extension), 3.8° (lateral bending), and 2.9° (axial rotation). These improvements were statistically significant. One month after training, visual estimates remained improved, by 9.5°, 1.6°, and 3.1°, respectively, but were statistically significant only in flexion-extension. Although the accuracy of visual estimates can be improved, clinicians should be aware of the limitations of visual estimates of cervical spine ROM. Our study results support scrutiny of visual assessment of ROM as a criterion for diagnosing permanent impairment or disability. PMID:25379754

  11. Validation and Comparison of Approaches to Respiratory Motion Estimation

    NASA Astrophysics Data System (ADS)

    Kabus, Sven; Klinder, Tobias; Murphy, Keelin; Werner, René; Sarrut, David

    The accuracy of respiratory motion estimation has a direct impact on the success of clinical applications such as diagnosis, as well as planning, delivery, and assessment of therapy for lung or other thoracic diseases. While rigid registration is well suited to validation and has reached a mature state in clinical applications, for non-rigid registration no gold-standard exists. This chapter investigates the validation of non-rigid registration accuracy with a focus on lung motion. The central questions addressed in this chapter are (1) how to measure registration accuracy, (2) how to generate ground-truth for validation, and (3) how to interpret accuracy assessment results.

  12. The 2011 Eco3D Flight Campaign: Vegetation Structure and Biomass Estimation from Simultaneous SAR, Lidar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola; Rincon, Rafael; Harding, David; Gatebe, Charles; Ranson, Kenneth Jon; Sun, Guoqing; Dabney, Phillip; Roman, Miguel

    2012-01-01

    The Eco3D campaign was conducted in the Summer of 2011. As part of the campaign three unique and innovative NASA Goddard Space Flight Center airborne sensors were flown simultaneously: The Digital Beamforming Synthetic Aperture Radar (DBSAR), the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Cloud Absorption Radiometer (CAR). The campaign covered sites from Quebec to Southern Florida and thereby acquired data over forests ranging from Boreal to tropical wetlands. This paper describes the instruments and sites covered and presents the first images resulting from the campaign.

  13. Memory bandwidth-scalable motion estimation for mobile video coding

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Hung; Tai, Wei-Cheng; Chang, Tian-Sheuan

    2011-12-01

    The heavy memory access of motion estimation (ME) execution consumes significant power and could limit ME execution when the available memory bandwidth (BW) is reduced because of access congestion or changes in the dynamics of the power environment of modern mobile devices. In order to adapt to the changing BW while maintaining the rate-distortion (R-D) performance, this article proposes a novel data BW-scalable algorithm for ME with mobile multimedia chips. The available BW is modeled in a R-D sense and allocated to fit the dynamic contents. The simulation result shows 70% BW savings while keeping equivalent R-D performance compared with H.264 reference software for low-motion CIF-sized video. For high-motion sequences, the result shows our algorithm can better use the available BW to save an average bit rate of up to 13% with up to 0.1-dB PSNR increase for similar BW usage.

  14. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-01-01

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636

  15. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System

    PubMed Central

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-01-01

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636

  16. Probabilistic point source inversion of strong-motion data in 3-D media using pattern recognition: A case study for the 2008 Mw 5.4 Chino Hills earthquake

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; Trampert, Jeannot

    2016-08-01

    Despite the ever increasing availability of computational power, real-time source inversions based on physical modeling of wave propagation in realistic media remain challenging. We investigate how a nonlinear Bayesian approach based on pattern recognition and synthetic 3-D Green's functions can be used to rapidly invert strong-motion data for point source parameters by means of a case study for a fault system in the Los Angeles Basin. The probabilistic inverse mapping is represented in compact form by a neural network which yields probability distributions over source parameters. It can therefore be evaluated rapidly and with very moderate CPU and memory requirements. We present a simulated real-time inversion of data for the 2008 Mw 5.4 Chino Hills event. Initial estimates of epicentral location and magnitude are available ˜14 s after origin time. The estimate can be refined as more data arrive: by ˜40 s, fault strike and source depth can also be determined with relatively high certainty.

  17. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  18. Travel distance estimation from visual motion by leaky path integration.

    PubMed

    Lappe, Markus; Jenkin, Michael; Harris, Laurence R

    2007-06-01

    Visual motion can be a cue to travel distance when the motion signals are integrated. Distance estimates from visually simulated self-motion are imprecise, however. Previous work in our labs has given conflicting results on the imprecision: experiments by Frenz and Lappe had suggested a general underestimation of travel distance, while results from Redlick, Jenkin and Harris had shown an overestimation of travel distance. Here we describe a collaborative study that resolves the conflict by tracing it to differences in the tasks given to the subjects. With an identical set of subjects and identical visual motion simulation we show that underestimation of travel distance occurs when the task involves a judgment of distance from the starting position, and that overestimation of travel distance occurs when the task requires a judgment of the remaining distance to a particular target position. We present a leaky integrator model that explains both effects with a single mechanism. In this leaky integrator model we introduce the idea that, depending on the task, either the distance from start, or the distance to target is used as a state variable. The state variable is updated during the movement by integration over the space covered by the movement, rather than over time. In this model, travel distance mis-estimation occurs because the integration leaks and because the transformation of visual motion to travel distance involves a gain factor. Mis-estimates in both tasks can be explained with the same leak rate and gain in both conditions. Our results thus suggest that observers do not simply integrate traveled distance and then relate it to the task. Instead, the internally represented variable is either distance from the origin or distance to the goal, whichever is relevant.