PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-11-01
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
Progress in the Peeling-Ballooning Model of ELMs: Numerical Studies of 3D Nonlinear ELM Dynamics
Snyder, P B; Wilson, H R; Xu, X Q
2004-12-13
Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the non-linear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outer wall. Similarities to non-linear linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.
Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs
NASA Astrophysics Data System (ADS)
Snyder, P. B.
2004-11-01
Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS
SNYDER,P.B; WILSON,H.R; XU,X.Q; WEBSTER,A.J
2004-06-01
Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.
ELM suppression in helium plasmas with 3D magnetic fields
Evans, T. E.; Loarte, A.; Orlov, D. M.; ...
2017-06-21
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less
ELM suppression in helium plasmas with 3D magnetic fields
NASA Astrophysics Data System (ADS)
Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.
2017-08-01
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.
Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.
2009-11-01
Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.
Non-linear MHD Simulation of ELMs including Pellet Triggered ones for KSTAR tokamak
NASA Astrophysics Data System (ADS)
Han, Hyunsun; Park, G.; Strauss, H.; Kim, J. Y.
2011-10-01
Three-dimensional non-linear MHD simulations have been conducted to investigate the qualitative characteristics of ELM(Edge Localized Mode)s including pellet induced ones using the M3D code. A linearized velocity perturbation of initial equilibrium is employed to trigger the ELM instability for the simulation of natural ELM, while a density blob, which represents the ionized pellet ablation and is located within the edge pedestal, is adopted in an adiabatic condition for that of pellet induced one. The initial equilibrium is constructed based on a H-mode plasma of KSTAR(Korea Superconducting Tokamak Advanced Research) device. It is found that characteristics of natural ELM simulation are in qualitative agreement with the experimental observations including that density perturbation is much larger than temperature one during ELM instability. Regarding the pellet induced ELM, it is observed that the locally increased pressure due to the fast parallel heat conduction compared to the spread of density perturbation triggers the peeling-ballooning instability resulting in ELM-like relaxation. Detailed results will be presented in the discussion of underlying mechanism and application to KSTAR tokamak.
3-D Mesh Generation Nonlinear Systems
Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B
1994-04-07
INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.
Simulations of ELMs in realistic tokamak geometry with the nonlinear MHD code JOREK
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Hoelzl, Matthias; Jardin, Stephen; Lackner, Karl; Guenter, Sibylle; Max-Planck/Princeton CenterPlasma Physics Collaboration
2013-10-01
Edge-localized modes (ELMs) are relaxation-oscillation instabilities which occur at the edge of high confinement (H-mode) plasmas, ejecting particles and energy. The suitability of H-mode as operational regime for future fusion devices depends crucially on the occurrence and detailed dynamics of ELMs. We simulate ELMs in realistic ASDEX Upgrade geometry including the scrape-off layer using the nonlinear MHD code JOREK. Emphasis is put on including many toroidal Fourier harmonics in the simulations in order to study nonlinear interaction between these. Several experimental observations, such as a toroidal and poloidal localization of the perturbation and a drive of Fourier components with low toroidal mode numbers, are reproduced by the simulations. A simple model describing the three-wave interaction by quadratic terms in the equations is used to explain and interpret the nonlinear evolution of the toroidal Fourier spectrum in the simulations. It is investigated how sheared toroidal plasma rotation influences the nonlinear coupling between the toroidal Fourier harmonics. A benchmark of the two-fluid versions of JOREK and M3D-C1 is in progress.
Nonlinear dynamics of 3D massive gravity
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Gabadadze, Gregory; Pirtskhalava, David; Tolley, Andrew J.; Yavin, Itay
2011-06-01
We explore the nonlinear classical dynamics of the three-dimensional theory of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find that the theory passes remarkably highly nontrivial consistency checks at the nonlinear level. In particular, we show that: (1) In the decoupling limit of the theory, the interactions of the helicity-0 mode are described by a single cubic term — the so-called cubic Galileon — previously found in the context of the DGP model and in certain 4D massive gravities. (2) The conformal mode of the metric coincides with the helicity-0 mode in the decoupling limit. Away from this limit the nonlinear dynamics of the former is described by a certain generalization of Galileon interactions, which like the Galileons themselves have a well-posed Cauchy problem. (3) We give a non-perturbative argument based on the presence of additional symmetries that the full theory does not lead to any extra degrees of freedom, suggesting that a 3D analog of the 4D Boulware-Deser ghost is not present in this theory. Last but not least, we generalize "New Massive Gravity" and construct a class of 3D cubic order massive models that retain the above properties.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team
2015-11-01
The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.
Can the Non-linear Ballooning Model describe ELMs?
NASA Astrophysics Data System (ADS)
Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.
2015-11-01
The explosive, filamentary plasma eruptions described by the non-linear ideal MHD ballooning model is tested quantitatively against experimental observations of ELMs in MAST. The equations describing this model were derived by Wilson and Cowley for tokamak-like geometry which includes two differential equations: the linear ballooning equation which describes the spatial distribution along the field lines and the non-linear ballooning mode envelope equation, which is a two-dimensional, non-linear differential equation which can involve fractional temporal-derivatives, but is often second-order in time and space. To employ the second differential equation for a specific geometry one has to evaluate the coefficients of the equation which is non-trivial as it involves field line averaging of slowly converging functions. We have solved this system for MAST, superimposing the solutions of both differential equations and mapping them onto a MAST plasma. Comparisons with the evolution of ELM filaments in MAST will be reported in order to test the model. The support of the EPSRC for the FCDT (Grant EP/K504178/1), of Euratom research and training programme 2014-2018 (No 633053) and of the RCUK Energy Programme [grant number EP/I501045] is gratefully acknowledged.
3D ELM fluctuation measurements with the new dual array ECE-Imaging diagnostic on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Classen, Ivo; Vanovac, Branka; Domier, Calvin; Luhmann, Neville; Bogomolov, Anton; Suttrop, Wolfgang; Tobias, Benjamin; ASDEX Upgrade Team
2015-11-01
In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECE-Imaging) at ASDEX Upgrade (AUG) has been equipped with a second detector array, and has been successfully commissioned. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle, to enable quasi-3D measurements of the electron temperature. The system measures a total of 288 channels, in two toroidally separated 2D arrays of approximately 50 cm vertically by 10 cm radially. The toroidal separation between the two poloidal observation planes is about 40 cm, such that the majority of the field lines is observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like ELM filaments. The toroidal separation of 40 cm is sufficient for the accurate measurement of both phase differences and transit times of (rotating) plasma structures, enabling a distinction between time varying 2D structures and true 3D structures (not possible with 2D diagnostics). The research will mainly focus on the investigation of the 3D structure of the temperature fluctuations related to edge localized modes (ELMs), in particular precursors and filaments. The first results on ELMs will be reported.
Identification and control of nonlinear system based on Laguerre-ELM Wiener model
NASA Astrophysics Data System (ADS)
Tang, Yinggan; Han, Zhenzhen; Liu, Fucai; Guan, Xinping
2016-09-01
In this paper, a new Wiener model is presented for identification and control of single-input single-output (SISO) nonlinear systems. The proposed Wiener model consists of a linear Laguerre filter in cascaded with an extreme learning machine (ELM) neural network (called Laguerre-ELM Wiener model). Laguerre filter can approximate a stable linear system to any degree of accuracy with a small number of Laguerre filters, which provides a parsimony structure and high level accuracy simultaneously. To determine the appropriated number of Laguerre filters in Laguerre-ELM Wiener model, Lipschitz quotient criterion is adapted to determine the order of linear part. A generalized ELM algorithm is proposed to estimate the parameters of Laguerre-ELM Wiener model. Once the unknown nonlinear system is identified using Laguerre-ELM Wiener model, a generalized predictive control (GPC) algorithm is designed for control of nonlinear system. The advantage of the proposed control method is that it transfers a nonlinear control problem to a linear one by inserting the inverse of static nonlinear section. Simulation results demonstrate the effectiveness of the proposed identification and control algorithms.
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Schafer, M. W.; Canik, J. M.; Unterberg, E. A.; Wingen, A.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.
2016-10-01
Significant 3D variation in broadband density fluctuations is observed using beam emission spectroscopy and Doppler backscattering near the boundary of weakly 3D plasmas in DIII-D when non-axisymmetric fields are applied to suppress ELMs. The increase in fluctuations is concomitant with an increase in the density gradient measured using profile reflectometry, suggesting that this toroidally localized density gradient could be a mechanism for turbulence destabilization in localized flux tubes. Although changes to magnetic surface topology are shown to be too small to affect turbulence stability directly, two-fluid M3D-C1 simulations find that there is a significant 3D variation of density within flux surfaces in the pedestal. These modeled local density changes modify the local pressure- and density- gradient scale lengths, and measured turbulence is shown to increase on flux tubes with larger gradients. Work supported by the US DOE under contracts DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-08ER54999 and DE-FG02-08ER54984.
Deep Nonlinear Metric Learning for 3-D Shape Retrieval.
Xie, Jin; Dai, Guoxian; Zhu, Fan; Shao, Ling; Fang, Yi
2016-12-28
Effective 3-D shape retrieval is an important problem in 3-D shape analysis. Recently, feature learning-based shape retrieval methods have been widely studied, where the distance metrics between 3-D shape descriptors are usually hand-crafted. In this paper, motivated by the fact that deep neural network has the good ability to model nonlinearity, we propose to learn an effective nonlinear distance metric between 3-D shape descriptors for retrieval. First, the locality-constrained linear coding method is employed to encode each vertex on the shape and the encoding coefficient histogram is formed as the global 3-D shape descriptor to represent the shape. Then, a novel deep metric network is proposed to learn a nonlinear transformation to map the 3-D shape descriptors to a nonlinear feature space. The proposed deep metric network minimizes a discriminative loss function that can enforce the similarity between a pair of samples from the same class to be small and the similarity between a pair of samples from different classes to be large. Finally, the distance between the outputs of the metric network is used as the similarity for shape retrieval. The proposed method is evaluated on the McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human shape datasets. Experimental results on the three datasets validate the effectiveness of the proposed method.
A Nonlinear Modal Aeroelastic Solver for FUN3D
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Yun, Gunsu; Choi, Minjun; Kwon, Jae-Min; Jeon, Young-Mu; Lee, Woochang; Luhmann, Neville C., Jr.; Park, Hyeon K.
2016-10-01
Mutual interactions between edge-localized modes (ELMs) and turbulent eddies have been investigated in 2-D by using the KSTAR electron cyclotron emission imaging (ECEI) system. ECEI shows that ELM filaments still exist in the edge when the usual large scale collapse of the edge pedestal, i.e., the ELM crash, is completely suppressed by n = 1 resonant magnetic perturbation (RMP). Correlation analysis among ECEI channels reveals that the RMP enhances turbulent fluctuations in the edge and that ELM crashes are suppressed when the RMP exceeds a certain threshold. The spectral power distribution of turbulence shows a clear dispersion for a wide range of wavenumber (kθ < 1 cm-1) and frequency (f < 70 kHz). The radial velocity and ECE intensity fluctuations of the turbulent eddies are approximately in-phase and thus the turbulence involves a net radial energy transport. Bispectral analysis indicates the coexisting ELMs and turbulent eddies nonlinearly interact with each other. Both the enhancement of radial transport and the nonlinear interaction with ELMs may be the key to the physics mechanism of ELM-crash-suppression by low-n RMP. This work was supported by National Research Foundation of Korea under Grant No. NRF-2014M1A7A1A03029865 and NRF-2014M1A7AA03029881.
Nonlinear simulation of ELM dynamics in the presence of resonant magnetic perturbations
NASA Astrophysics Data System (ADS)
Chandra, D.; Thyagaraja, A.; Sen, A.; Kaw, P.
2017-07-01
We report on nonlinear simulation studies on the dynamical behaviour of ELMs under the influence of resonant magnetic perturbations (RMPs) using a two-fluid initial value electromagnetic nonlinear global code (CUTIE). To simulate ELMs we introduce a particle source in the confinement region and a particle sink in the edge region. To study ELM control using RMPs we have applied an n = 2 static external magnetic perturbation at the edge and made detailed parametric studies under varying conditions for the machine and plasma parameters typical of COMPASS-D. Our results show that ELM mitigation is possible for RMP powers beyond a specific threshold. The results also provide valuable insights into the RMP induced modifications of the complex nonlinear dynamics of the ELMs, in particular on the redistribution of mode energy and the cascading of energy to shorter scale lengths. We also observe a hysteresis in states as we increase the amplitude of RMPs and then decrease it to the same value.
Postprocessing techniques for 3D non-linear structures
NASA Technical Reports Server (NTRS)
Gallagher, Richard S.
1987-01-01
How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.
3D nonlinear complex-diffusion filter on GPU.
Rodrigues, Pedro; Serranho, Pedro; Bernardes, Rui
2012-01-01
The ramp preserving 2D nonlinear complex-diffusion filter introduced by Gilboa et al. (2004) was extended to 3D (Maduro et al., 2012). We propose a graphical processing unit implementation of the 3D filter for an overall faster processing in order to be used in a clinical setting. We perform a search for the best diffusion parameters (the number of iterations and spread of the diffusivity) for the 2D and 3D filters and compare their results resorting to synthetic spectral-domain optical coherence tomography volumetric data and several quantitative metrics. Execution time improvement of our implementation versus a single-core approach is also presented, showing that it allows for a full 3D volume to be processed under 7.5 seconds.
NASA Astrophysics Data System (ADS)
Moyer, R. A.
2016-10-01
Suppression of Edge Localized Modes (ELMs) is lost in ITER Baseline Scenario discharges when the torque Tinj and toroidal rotation νϕ are reduced. This is due to a shift in the tearing response deeper into the plasma. ELM suppression is recovered by reducing the normalized plasma pressure βN. In H-mode plasmas, edge turbulence is suppressed in a ``pedestal'' region, leading to large pressure gradients that trigger MHD instabilities (ELMs), causing rapid heat expulsion. 3D magnetic fields are used to drive resonances that limit the pedestal width preventing the ELM. Reducing Tinj changes the νϕ profile such that the drive shifts to a resonance deeper in the plasma, allowing the pedestal to grow again to MHD instability. Reducing βN reduces the edge pressure, which reduces the electron diamagnetic flow and moves the drive to a resonance that is closer to the boundary, recovering suppression. In two-fluid theory, the tearing response occurs at a resonant surface where the electron perpendicular rotation ω (⊥ e) 0 . Linear two-fluid resistive MHD simulations show that the tearing response shifts to a resonance deeper in the plasma when Tinj is reduced. The experimental results confirm that the tearing response occurs for a resonance where ω (⊥ e) 0 , and suggest that the transport which limits the pedestal width is linked to the tearing response, even if any islands are predicted to be small. Although this model describes the differences between ELMing and ELM suppressed H-modes, it doesn't address the transition from ELMs to suppression, because ω (⊥ e) 0 is initially too deep (ψN <= 0.9, q = 3) for the tearing response to limit the pedestal width. Although understanding this transition is important, ITER must apply the RMP in L-mode to avoid the first ELM. These results suggest that manipulation of the edge rotation profile will be important to optimize ELM suppression in future tokamaks. Supported by the US DOE under DE-FG02-07ER54917 and DE-FG02
NASA Astrophysics Data System (ADS)
Moyer, R. A.; Paz-Soldan, C.; Nazikian, R.; Orlov, D. M.; Ferraro, N. M.; Grierson, B. A.; Knölker, M.; Lyons, B. C.; McKee, G. R.; Osborne, T. H.; Rhodes, T. L.; Meneghini, O.; Smith, S.; Evans, T. E.; Fenstermacher, M. E.; Groebner, R. J.; Hanson, J. M.; La Haye, R. J.; Luce, T. C.; Mordijck, S.; Solomon, W. M.; Turco, F.; Yan, Z.; Zeng, L.; DIII-D Team
2017-10-01
Experiments have been executed in the DIII-D tokamak to extend suppression of Edge Localized Modes (ELMs) with Resonant Magnetic Perturbations (RMPs) to ITER-relevant levels of beam torque. The results support the hypothesis for RMP ELM suppression based on transition from an ideal screened response to a tearing response at a resonant surface that prevents expansion of the pedestal to an unstable width [Snyder et al., Nucl. Fusion 51, 103016 (2011) and Wade et al., Nucl. Fusion 55, 023002 (2015)]. In ITER baseline plasmas with I/aB = 1.4 and pedestal ν* ˜ 0.15, ELMs are readily suppressed with co- Ip neutral beam injection. However, reducing the beam torque from 5 Nm to ≤ 3.5 Nm results in loss of ELM suppression and a shift in the zero-crossing of the electron perpendicular rotation ω⊥e ˜ 0 deeper into the plasma. The change in radius of ω⊥e ˜ 0 is due primarily to changes to the electron diamagnetic rotation frequency ωe*. Linear plasma response modeling with the resistive MHD code m3d-c1 indicates that the tearing response location tracks the inward shift in ω⊥e ˜ 0. At pedestal ν*˜ 1, ELM suppression is also lost when the beam torque is reduced, but the ω⊥e change is dominated by collapse of the toroidal rotation vT. The hypothesis predicts that it should be possible to obtain ELM suppression at reduced beam torque by also reducing the height and width of the ωe* profile. This prediction has been confirmed experimentally with RMP ELM suppression at 0 Nm of beam torque and plasma normalized pressure βN ˜ 0.7. This opens the possibility of accessing ELM suppression in low torque ITER baseline plasmas by establishing suppression at low beta and then increasing beta while relying on the strong RMP-island coupling to maintain suppression.
A 3D printed electromagnetic nonlinear vibration energy harvester
NASA Astrophysics Data System (ADS)
Constantinou, P.; Roy, S.
2016-09-01
A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.
Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Cappello, S.; Chacon, L.
2010-11-01
A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...
2017-07-28
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
3-D Nonlinear Constitutive Modeling Approach for Composite Materials
1992-05-01
material nonlinearities, damage , and interfacial debonding [1]. These nonlinearities must be considered for accurate prediction of strength or stability...the overall nonlinear behavior covers plasticity and damage effects, both of which could have significant impact on structural analysis results...through a user-written material ( UMAT ) subroutine. D Micromechanical Analyse Micromechanical methods and selective experimentation are used to develop an
3-D adaptive nonlinear complex-diffusion despeckling filter.
Rodrigues, Pedro; Bernardes, Rui
2012-12-01
This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.
Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...
2011-09-23
A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less
Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; Umansky, M. V.; Wilson, H. R.; Casper, T.
2011-09-23
A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and E × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.
Vector algorithms for geometrically nonlinear 3D finite element analysis
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1989-01-01
Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.
Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading
2013-07-11
advanced composites like 3D -OWC. On the other hand, a microscale simulation with resolution of individual fiber filament is impractical due to enormous...REPORT Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The objective of...analysis of 3D woven fiber composites under ballistic loading. Since material behavior is determined by its microstructure, it is essential to
Moyer, Richard A.; Paz-Soldan, Carlos; Nazikian, Raffi; ...
2017-09-18
Here, experiments have been executed in the DIII-D tokamak to extend suppression of Edge Localized Modes (ELMs) with Resonant Magnetic Perturbations (RMPs) to ITER-relevant levels of beam torque. The results support the hypothesis for RMP ELM suppression based on transition from an ideal screened response to a tearing response at a resonant surface that prevents expansion of the pedestal to an unstable width.
Adeeb A. Rahman; Thomas J. Urbanik; Mustafa Mahamid
2003-01-01
Collapse of fiberboard packaging boxes, in the shipping industry, due to rise in humidity conditions is common and very costly. A 3D FE nonlinear model is developed to predict the moisture flow throughout a corrugated packaging fiberboard sandwich structure. The model predicts how the moisture diffusion will permeate through the layers of a fiberboard (medium and...
High-resolution nonlinear ellipse rotation measurements for 3D microscopy
NASA Astrophysics Data System (ADS)
Miguez, M. L.; Barbano, E. C.; Coura, J. A.; Zilio, S. C.; Misoguti, L.
2015-03-01
Nonlinear optical effects have been widely explored for microscopy due to the possibility of three-dimension (3D) image acquisition. Harmonic generation and nonlinear absorption, for instance, were used for this purpose. Each nonlinear effect has its own characteristic, complexity, type of contrast, advantage and disadvantage, etc. Recently, we developed a new simple and sensitive method for measuring nonlinear ellipse rotation (NER) using a dual-phase lock-in amplifier, which could be successfully applied for measuring local nonlinearity distribution on a sample and, consequently, the image acquisition. The NER is a particular refractive nonlinear effect which appears when strong elliptical polarized laser beam propagates along one nonlinear material. It is type of refractive Kerr nonlinearity similar to self-focalization responsible for the signal in the Z-scan technique. The self-focalization is one of the most important refractive effects, but it cannot be used for image acquisition. On the other hand, NER does. Furthermore, such refractive nonlinearities signal can be very strong and serves as a new contrast for nonlinear microscopy.
John W. Peacock
1989-01-01
Dutch elm disease was found in Cleveland, Ohio, in 1930, and is now in most of the contiguous 48 states. The disease is caused by a fungus that has killed millions of wild and planted elms. Losses have been the greatest in the eastern United States. The fungus attacks all elms, but our native species, American, slippery, and rock elm have little or no resistance to the...
Nonlinear Numerical Modeling of Shape Control in IGNITOR in the Presence of 3D Structures
NASA Astrophysics Data System (ADS)
Albanese, R.; Ambrosino, G.; de Tommasi, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.; Coppi, B.
2014-10-01
IGNITOR is a high field compact machine designed for the investigation of fusion burning plasmas at or close to ignition. The integrated plasma position, shape and current control plays an important role in its safe operation. The analysis of its behavior taking into account nonlinear and 3D effects can be of great interest for assessing its performances. In fact, the system was designed on the basis of an axisymmetric linearized model. To this purpose, we use a computational tool, called CarMa0NL, with the unprecedented capability of simultaneously considering three-dimensional effects of conductors surrounding the plasma and the inherent nonlinearity of the plasma behaviour itself, in the presence of the complex set of circuit equations describing the control system. Preliminary results already lead to the conclusion that the vertical position response is not much influenced by nonlinear and 3D effects, as the vertical stabilization controller is able to ``hide'' the differences in open-loop models. Here we assess the performance of the shape controller, by coupling the nonlinear plasma evolution in the presence of the 3D vessel with ports to the complex circuit dynamics simulating the integrated closed loop control system.
3-D zebrafish embryo image filtering by nonlinear partial differential equations.
Rizzi, Barbara; Campana, Matteo; Zanella, Cecilia; Melani, Camilo; Cunderlik, Robert; Krivá, Zuzana; Bourgine, Paul; Mikula, Karol; Peyriéras, Nadine; Sarti, Alessandro
2007-01-01
We discuss application of nonlinear PDE based methods to filtering of 3-D confocal images of embryogenesis. We focus on the mean curvature driven and the regularized Perona-Malik equations, where standard as well as newly suggested edge detectors are used. After presenting the related mathematical models, the practical results are given and discussed by visual inspection and quantitatively using the mean Hausdorff distance.
3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk
NASA Astrophysics Data System (ADS)
Pardo, Enric; Kapolka, Milan
2017-09-01
Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.
Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.
Idkaidek, Ashraf; Jasiuk, Iwona
2015-12-01
We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.
Scattering for a 3D coupled nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Farah, Luiz Gustavo; Pastor, Ademir
2017-07-01
We consider a three-dimensional coupled cubic nonlinear Schrödinger system appearing in nonlinear optics. If (P, Q) is a ground state solution, we show that for any initial data (u0, v0) in H1(R3 ) ×H1(R3 ) satisfying M (u0,v0 ) A (u0,v0 )
Comparative Results on 3D Navigation of Quadrotor using two Nonlinear Model based Controllers
NASA Astrophysics Data System (ADS)
Bouzid, Y.; Siguerdidjane, H.; Bestaoui, Y.
2017-01-01
Recently the quadrotors are being increasingly employed in both military and civilian areas where a broad range of nonlinear flight control techniques are successfully implemented. With this advancement, it has become necessary to investigate the efficiency of these flight controllers by studying theirs features and compare their performance. In this paper, the control of Unmanned Aerial Vehicle (UAV) quadrotor, using two different approaches, is presented. The first controller is Nonlinear PID (NLPID) whilst the second one is Nonlinear Internal Model Control (NLIMC) that are used for the stabilization as well as for the 3D trajectory tracking. The numerical simulations have shown satisfactory results using nominal system model or disturbed model for both of them. The obtained results are analyzed with respect to several criteria for the sake of comparison.
NASA Technical Reports Server (NTRS)
Mangalgiri, P. D.; Prabhakaran, R.
1986-01-01
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.
2016-06-01
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
Non-linear Tearing and Flux rope Formation in 3D Null Current Sheets
NASA Astrophysics Data System (ADS)
Wyper, P. F.; Pontin, D. I.
2014-12-01
The manner in which small scale structure affects the large scale reconnection process in realistic 3D geometries is still an unsolved problem. With the increase in computational resources and improvements in satellite instrumentation, signatures of flux ropes or "plasmoids" are now observed with increasing regularity, yet their formation and dynamics are poorly understood. It has been demonstrated that even at MHD scales, in 2D rapid non-linear tearing of Sweet-Parker-like layers forms multiple magnetic islands ("plasmoids") and allows the reconnection rate to become almost independent of the Lundquist number (the "plasmoid instability"). This work presents some of our recent theoretical work focussing on an analogous instability in a fully 3D geometry. Using results from a series of 3D high resolution MHD simulations, the formation and evolution of fully three dimensional "flux rope" structures following the 3D plasmoid instability will be presented, and their effects on the manner of the reconnection process as a whole discussed.
PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis
Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.
1998-06-01
This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
NASA Astrophysics Data System (ADS)
Zhao, Jing; Vollebregt, Edwin A. H.; Oosterlee, Cornelis W.
2015-05-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar coordinate system, using azimuth angles as variables instead of conventional traction variables. The new variables are scaled by the diagonal of the underlying Jacobian. The fast Fourier transform (FFT) technique accelerates all matrix-vector products encountered, exploiting the matrix' Toeplitz structure. Numerical tests demonstrate a significant reduction of the computational time compared to existing solvers for concentrated contact problems.
Non-linear tearing of 3D null point current sheets
Wyper, P. F. Pontin, D. I.
2014-08-15
The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.
A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields
NASA Astrophysics Data System (ADS)
Dorn, O.; Bertete-Aguirre, H.; Berryman, J. G.; Papanicolaou, G. C.
1999-12-01
Electromagnetic imaging is modelled as an inverse problem for the 3D system of Maxwell's equations of which the isotropic conductivity distribution in the domain of interest has to be reconstructed. The main application we have in mind is the monitoring of conducting contaminant plumes out of surface and borehole electromagnetic imaging data. The essential feature of the method developed here is the use of adjoint fields for the reconstruction task, combined with a splitting of the data into smaller groups which define subproblems of the inversion problem. The method works iteratively, and can be considered as a nonlinear generalization of the algebraic reconstruction technique in x-ray tomography. Starting out from some initial guess for the conductivity distribution, an update for this guess is computed by solving one forward and one adjoint problem of the 3D Maxwell system at a time. Numerical experiments are performed for a layered background medium in which one or two localized (3D) inclusions are immersed. These have to be monitored out of surface to borehole and cross-borehole electromagnetic data. We show that the algorithm is able to recover a single inclusion in the earth which has high contrast to the background, and to distinguish between two separated inclusions in the earth given certain borehole geometries.
3D early embryogenesis image filtering by nonlinear partial differential equations.
Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O
2010-08-01
We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which
Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability
Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.
2005-12-31
The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation {sigma}{sub rms} grows as {alpha}{sub {sigma}}gt{sup 2}, where g is the foil acceleration, t is the time, and {alpha}{sub {sigma}} is constant. The number of bubbles evolves as N(t){proportional_to}({omega}t{radical}(g)+C){sup -4} and the average size evolves as <{lambda}>(t){proportional_to}{omega}{sup 2}gt{sup 2}, where C is a constant and {omega}=0.83{+-}0.1 is the measured scaled bubble-merging rate.
3D non-linear analysis of the acetabular construct following impaction grafting.
Phillips, A T M; Pankaj, P; Howie, C R; Usmani, A S; Simpson, A H R W
2006-06-01
The study investigates the short-term behaviour of the acetabular construct following revision hip arthroplasty, carried out using the Slooff-Ling impaction grafting technique; using 3D finite element analyses. An elasto-plastic material model is used to describe the constitutive behaviour of morsellised cortico-cancellous bone (MCB) graft, since it has been shown that MCB undergoes significant plastic deformation under normal physiological loads. Based on previous experimental studies carried out by the authors and others, MCB is modelled using non-linear elasticity and Drucker Prager Cap (DPC) plasticity. Loading associated with walking, sitting down, and standing up is applied to the acetabular cup through a femoral head using smooth sliding surfaces. The analyses yield distinctive patterns of migration and rotation due to different activities. These are found to be similar to those observed in the clinical setting.
Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability.
Sadot, O; Smalyuk, V A; Delettrez, J A; Meyerhofer, D D; Sangster, T C; Betti, R; Goncharov, V N; Shvarts, D
2005-12-31
The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation sigma(rms) grows as alpha(sigma)gt(2), where g is the foil acceleration, t is the time, and alpha(sigma) is constant. The number of bubbles evolves as N(t) alpha(omegat sq.rt(9) + C)(-4) and the average size evolves as
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
NASA Astrophysics Data System (ADS)
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
Development and evaluation of a 3D model observer with nonlinear spatiotemporal contrast sensitivity
NASA Astrophysics Data System (ADS)
Avanaki, Ali R. N.; Espig, Kathryn S.; Maidment, Andrew D. A.; Marchessoux, Cedric; Bakic, Predrag R.; Kimpe, Tom R. L.
2014-03-01
We investigate improvements to our 3D model observer with the goal of better matching human observer performance as a function of viewing distance, effective contrast, maximum luminance, and browsing speed. Two nonlinear methods of applying the human contrast sensitivity function (CSF) to a 3D model observer are proposed, namely the Probability Map (PM) and Monte Carlo (MC) methods. In the PM method, the visibility probability for each frequency component of the image stack, p, is calculated taking into account Barten's spatiotemporal CSF, the component modulation, and the human psychometric function. The probability p is considered to be equal to the perceived amplitude of the frequency component and thus can be used by a traditional model observer (e.g., LG-msCHO) in the space-time domain. In the MC method, each component is randomly kept with probability p or discarded with 1-p. The amplitude of the retained components is normalized to unity. The methods were tested using DBT stacks of an anthropomorphic breast phantom processed in a comprehensive simulation pipeline. Our experiments indicate that both the PM and MC methods yield results that match human observer performance better than the linear filtering method as a function of viewing distance, effective contrast, maximum luminance, and browsing speed.
A non-linear 3D printed electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Constantinou, P.; Roy, S.
2015-12-01
This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm3 at a frame acceleration of 1g and a density of 0.04mW/cm3 from a generated power of 25μW at 0.1g.
1992-03-01
COSATI CODES 18 SuBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROlP Underwater Explosion 19. ABSTRACT...Continue on reverse if necessary and dentify by block number) Nonlinear 3-D Dynamic Analysis Code (VEC/DYNA3D) has been interfaced with Underwater...whipping mode. Large plastic strains occurred at the center of the cylinder on the reverse side to the explosive and near the ends of the cylinder on
NASA Astrophysics Data System (ADS)
Vaidyanathan, S.
2014-06-01
This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L 1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.
3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography
NASA Astrophysics Data System (ADS)
Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer
Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.
Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the Kidney.
Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin
2016-08-01
Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and soundspeed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0.1 dB. Focal point shifting due to refraction effects resulted in -1.3, 2.6 and 1.3 mm displacements in x-, y- and z-directions respectively. Furthermore, focal point splitting into several smaller subvolumes was observed. The total volume of the secondary focal points was approximately 46% of the largest primary focal point. This could potentially lead to undesired heating outside the target location and longer therapy times.
Nonlinear evolution of 3D-inertial Alfvén wave and turbulent spectra in Auroral region
NASA Astrophysics Data System (ADS)
Rinawa, M. L.; Modi, K. V.; Sharma, R. P.
2014-10-01
In the present paper, we have investigated nonlinear interaction of three dimensional (3D) inertial Alfvén wave and perpendicularly propagating magnetosonic wave for low β-plasma ( β≪ m e / m i ). We have developed the set of dimensionless equations in the presence of ponderomotive nonlinearity due to 3D-inertial Alfvén wave in the dynamics of perpendicularly propagating magnetosonic wave. Stability analysis and numerical simulation has been carried out to study the effect of nonlinear coupling on the formation of localized structures and turbulent spectra, applicable to auroral region. The results reveal that the localized structures become more and more complex as the nonlinear interaction progresses. Further, we have studied the turbulent spectrum which follows spectral index (˜ k -3.57) at smaller scales. Relevance of the obtained results has been shown with the observations received by various spacecrafts like FAST, Hawkeye and Heos 2.
The PerkinElmer Elm (formerly the AirBase CanarIT) is a multi-sensor air quality monitoring device that measures particulate matter (PM), total volatile organic compounds (VOCs), nitrogen dioxide (NO_{2}), and several other atmospheric components. PM, VOCs, and NO_{2 }
The PerkinElmer Elm (formerly the AirBase CanarIT) is a multi-sensor air quality monitoring device that measures particulate matter (PM), total volatile organic compounds (VOCs), nitrogen dioxide (NO_{2}), and several other atmospheric components. PM, VOCs, and NO_{2 }
Non-linear 3-D Born shear waveform tomography in Southeast Asia
NASA Astrophysics Data System (ADS)
Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.
2012-07-01
Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The n
Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.
2005-12-05
Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.
Smalyuk, V A; Sadot, O; Delettrez, J A; Meyerhofer, D D; Regan, S P; Sangster, T C
2005-11-18
Nonlinear growth of 3D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.
Whirley, R.G.
1991-05-01
This report is the User Manual for the 1991 version of DYNA3D, and also serves as an interim User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems. 73 refs., 49 figs.
James W. Walters
1992-01-01
Since its discovery in the United States in 1930, Dutch elm disease has killed thousands of native elms. The three native elms, American, slippery, and rock, have little or no resistance to Dutch elm disease, but individual trees within each species vary in susceptibility to the disease. The most important of these, American elm, is scattered in upland stands but is...
ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER
Baylor, Larry R.; Lang, P. T.; Allen, Steve L.; ...
2014-10-05
The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components. Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected.more » Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation. A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.« less
ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER
Baylor, Larry R.; Lang, P. T.; Allen, Steve L.; Combs, S. K.; Commaux, N.; Evans, Todd E.; Fenstermacher, Max E.; Huijsmans, G.; Jernigan, T. C.; Lasnier, Charles J.; Leonard, Anthony W.; Loarte, Alberto; Maingi, Rajesh; Maruyama, S.; Meitner, S. J.; Moyer, Richard A.; Osborne, Thomas H.
2014-10-05
The triggering of rapid small edge localized modes (ELMs) by high frequency pellet injection has been proposed as a method to prevent large naturally occurring ELMs that can erode the ITER plasma facing components. Deuterium pellet injection has been used to successfully demonstrate the on-demand triggering of edge localized modes (ELMs) at much higher rates and with much smaller intensity than natural ELMs. The proposed hypothesis for the triggering mechanism of ELMs by pellets is the local pressure perturbation resulting from reheating of the pellet cloud that can exceed the local high-n ballooning mode threshold where the pellet is injected. Nonlinear MHD simulations of the pellet ELM triggering show destabilization of high-n ballooning modes by such a local pressure perturbation. A review of the recent pellet ELM triggering results from ASDEX Upgrade (AUG), DIII-D, and JET reveals that a number of uncertainties about this ELM mitigation technique still remain. These include the heat flux impact pattern on the divertor and wall from pellet triggered and natural ELMs, the necessary pellet size and injection location to reliably trigger ELMs, and the level of fueling to be expected from ELM triggering pellets and synergy with larger fueling pellets. The implications of these issues for pellet ELM mitigation in ITER and its impact on the PFCs are presented along with the design features of the pellet injection system for ITER.
NASA Astrophysics Data System (ADS)
Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.
2016-02-01
This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves
Linear and nonlinear instability and ligament dynamics in 3D laminar two-layer liquid/liquid flows
NASA Astrophysics Data System (ADS)
Ó Náraigh, Lennon; Valluri, Prashant; Scott, David; Bethune, Iain; Spelt, Peter
2013-11-01
We consider the linear and nonlinear stability of two-phase density-matched but viscosity contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. The Orr-Sommerfeld-Squire analysis is used along with DNS of the 3D two-phase Navier-Stokes equations using our newly launched TPLS Solver (http://edin.ac/10cRKzS). For the parameter regimes considered, we demonstrate the existence of two distinct mechanisms whereby 3D waves enter the system, and dominate at late time. There exists a direct route, whereby 3D waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of most-dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave couples to a streamwise mode and grows exponentially. We demonstrate these mechanisms in isolation and in concert. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ``sheets,'' or ``interfacial turbulence.'' HECToR RAP/dCSE Project e174, HPC-Europa 2.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; Unterberg, Ezekial A.; Canik, John M.; Evans, Todd E.; Hillis, Donald Lee; Hirshman, Steven Paul; Seal, Sudip K.; Snyder, Philip B.; Sontag, Aaron C.
2015-09-03
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMs to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.
Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2006-01-01
Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.
NASA Astrophysics Data System (ADS)
Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing
2016-10-01
This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.
NASA Astrophysics Data System (ADS)
Wingen, A.; Ferraro, N. M.; Shafer, M. W.; Unterberg, E. A.; Canik, J. M.; Evans, T. E.; Hillis, D. L.; Hirshman, S. P.; Seal, S. K.; Snyder, P. B.; Sontag, A. C.
2015-10-01
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling-ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMs to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. Kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.
User's manuals for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimensions
Hallquist, J.O.
1981-07-01
This report provides a user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. Post-processors for DYNA3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories. A user's manual for DYNAP is also provided in this report.
NASA Astrophysics Data System (ADS)
Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.
2017-08-01
This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.
Visualization of high-density 3D graphs using nonlinear visual space transformations
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Garg, Pankaj; Machiraju, Vijay
2002-03-01
The real world data distribution is seldom uniform. Clutter and sparsity commonly occur in visualization. Often, clutter results in overplotting, in which certain data items are not visible because other data items occlude them. Sparsity results in the inefficient use of the available display space. Common mechanisms to overcome this include reducing the amount of information displayed or using multiple representations with a varying amount of detail. This paper describes out experiments on Non-Linear Visual Space Transformations (NLVST). NLVST encompasses several innovative techniques: (1) employing a histogram for calculating the density of data distribution; (2) mapping the raw data values to a non-linear scale for stretching a high-density area; (3) tightening the sparse area to save the display space; (4) employing different color ranges of values on a non-linear scale according to the local density. We have applied NLVST to several web applications: market basket analysis, transactions observation, and IT search behavior analysis.
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
NASA Astrophysics Data System (ADS)
Lin, Neil Y. C.; Bierbaum, Matthew; Schall, Peter; Sethna, James P.; Cohen, Itai
2016-11-01
The mechanical, structural and functional properties of crystals are determined by their defects, and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements have important implications for strain hardening, yield and fatigue.
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M
2014-07-01
The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.
ŠIL'NIKOV Homoclinic Orbits in Two Classes of 3d Autonomous Nonlinear Systems
NASA Astrophysics Data System (ADS)
Chen, Baoying; Zhou, Tianshou
The Šil'nikov homoclinic theorem provides one analytic criterion for proving the existence of chaos in three-dimensional autonomous nonlinear systems. In applications of the theorem, however, the existence of a homoclinic orbit that usually determines the geometric structure of the chaotic attractor is not easily verified mainly because there are no available efficient methods. In this paper, based on the undetermined coefficient approach we present a framework of how to find homoclinic orbits in two classes of three-dimensional autonomous nonlinear systems of normal forms, including how to set a reasonable form of expanding series of the homoclinic orbit, how to determine all coefficients in the expansion, and how to find a numerical homoclinic orbit. Numerical examples show that the proposed framework in combination with computer simulation is very efficient.
Identifiability of 3D attributed scattering features from sparse nonlinear apertures
NASA Astrophysics Data System (ADS)
Jackson, Julie Ann; Moses, Randolph L.
2007-04-01
Attributed scattering feature models have shown potential in aiding automatic target recognition and scene visualization from radar scattering measurements. Attributed scattering features capture physical scattering geometry, including the non-isotropic response of target scattering over wide angles, that is not discerned from traditional point scatter models. In this paper, we study the identifiability of canonical scattering primitives from complex phase history data collected over sparse nonlinear apertures that have both azimuth and elevation diversity. We study six canonical shapes: a flat plate, dihedral, trihedral, cylinder, top-hat, and sphere, and three flight path scenarios: a monostatic linear path, a monostatic nonlinear path, and a bistatic case with a fixed transmitter and a nonlinear receiver flight path. We modify existing scattering models to account for nonzero object radius and to scale peak scattering intensities to equate to radar cross section. Similarities in some canonical scattering responses lead to confusion among multiple shapes when considering only model fit errors. We present additional model discriminators including polarization consistency between the model and the observed feature and consistency of estimated object size with radar cross section. We demonstrate that flight path diversity and combinations of model discriminators increases identifiability of canonical shapes.
Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences
NASA Astrophysics Data System (ADS)
Mozerov, M.; Rius, I.; Roca, X.; González, J.
2009-12-01
A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.
Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.
Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé
2015-02-28
Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-01-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.
Wu, Yicong; Leng, Yuxin; Xi, Jiefeng; Li, Xingde
2009-01-01
An extremely compact all-fiber-optic scanning endomicroscopy system was developed for two-photon fluorescence (TPF) and second harmonic generation (SHG) imaging of biological samples. A conventional double-clad fiber (DCF) was employed in the endomicroscope for single-mode femtosecond pulse delivery, multimode nonlinear optical signals collection and fast two-dimensional scanning. A single photonic bandgap fiber (PBF) with negative group velocity dispersion at two-photon excitation wavelength (i.e. ~810 nm) was used for pulse prechirping in replacement of a bulky grating/lens-based pulse stretcher. The combined use of DCF and PBF in the endomicroscopy system made the endomicroscope basically a plug-and-play unit. The excellent imaging ability of the extremely compact all-fiber-optic nonlinear optical endomicroscopy system was demonstrated by SHG imaging of rat tail tendon and depth-resolved TPF imaging of epithelial tissues stained with acridine orange. The preliminary results suggested the promising potential of this extremely compact all-fiber-optic endomicroscopy system for real-time assessment of both epithelial and stromal structures in luminal organs. PMID:19434122
Hribar, K.C; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S.
2015-01-01
Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propogation. Here, we used a continuous 3D projection printing approach – with an important modification of nonlinear exposure — to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-02
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan
2007-01-01
This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.
Transport and MHD simulations of intrinsic and pellet induced ELMs
NASA Astrophysics Data System (ADS)
Kim, Ki Min; Na, Yong-Su; Yi, Sumin; Kim, Hyunseok; Kim, Jin Yong
2010-11-01
Verification of ELM mechanism and demonstration of ELM control are important issues in current fusion researches targeting ITER and DEMO. This work investigates the physics and operational characteristics of intrinsic and pellet induced ELMs throughout transport simulations using 1.5 D transport codes (C1.5/ASTRA) and MHD simulations using M3D code. Transport simulations are focused on prediction of the global parameters such as ELM energy loss in the type-I ELMy H-mode discharges with and without pellet pace making to examine an applicability of pellet injection for ELM mitigation in KSTAR and ITER. On the other hand, MHD simulations are conducted to explore the physics of intrinsic and pellet induced ELMs by applying the artificial free energy sources of velocity stream and density perturbations on the marginally stable equilibrium, respectively. Similarities and differences of triggering phenomena between intrinsic and pellet induced ELMs are discussed from the MHD approach.
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...
2015-09-03
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load
NASA Astrophysics Data System (ADS)
Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun
2016-08-01
This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
A natural flow wing design employing 3-D nonlinear analysis applied at supersonic speeds
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S.; Wood, Richard M.; Brown, S. Melissa
1989-01-01
A wing-design study has been conducted on a 65-deg-swept leading-edge delta wing in which a near-conical geometry was employed to take advantage of the naturally occurring conical flow which arises over such a wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study. In preliminary design, wing planform, design conditions, and near-conical concept were derived and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and the near-conical delta wing. Modifications due to airfoil thickness, leading-edge radius, and camber were then applied to the baseline near-conical wing. The final design employed a Euler solver to analyze the best wing configurations found in the initial design, and to extend this study to develop a more refined wing. Benefits due to each modification are discussed, and a final natural flow wing geometry is chosen and its aerodynamic characteristics are compared with the baseline wings.
Wingen, Andreas; Ferraro, N. M.; Shafer, Morgan W.; ...
2015-09-03
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Nonlinear rheology in ASPECT: benchmarking and an application to 3D subduction
NASA Astrophysics Data System (ADS)
Glerum, Anne; Thieulot, Cedric; Fraters, Menno; Spakman, Wim
2014-05-01
ASPECT (Advanced Solver for Problems in Earth's ConvecTion) is a promising new code designed for modelling thermal convection in the mantle (Kronbichler et al. 2012). The massively parallel code uses state-of-the-art numerical methods, such as high performance solvers and adaptive mesh refinement. It builds on tried-and-well-tested libraries and works with plug-ins allowing easy extension to fine-tune it to the user's specific needs. We extended the code by implementing a frictional plasticity criterion that can be combined with a viscous creep rheology, allowing for thermo-mechanically coupled visco-plastic flow. This way we can accommodate for the nonlinear behavior of the Earth's materials and incorporate for instance the localization of deformation through plastic yielding. This has been shown to be of great importance for modelling lithosphere deformation. Three well-known benchmarks are used to test and validate our implementation of plasticity: the punch benchmark (e.g. Thieulot et al. 2008), which considers the indentation of a perfectly plastic material and allows for comparison with an analytical solution; the brick benchmark (Kaus 2010), performed in both a compressional and tensional regime with shear band angles bounded by results of other codes and theory; and the sandbox experiment by Buiter et al. (2006) modelling the time evolution of the extension of viscous and plastic layers in the presence of a free surface. We further showcase ASPECT's capabilities with a more geodynamical application: the subduction of an oceanic plate in a three-dimensional thermo-mechanically coupled system. We compare the use of nonlinear rheologies versus that of constant mantle and plate viscosities with an adaptation of the subducting/overriding plate setup of Schellart and Moresi (2013). These models also demonstrate how the adaptive mesh refinement allows for high resolutions locally while the code remains computationally efficient even in the presence of large
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Fagan, Dean; Lemieux, George
2017-03-01
The capability of a software algorithm to automatically align same-patient dental bitewing and panoramic x-rays over time is complicated by differences in collection perspectives. We successfully used image correlation with an affine transform for each pixel to discover common image borders, followed by a non-linear homography perspective adjustment to closely align the images. However, significant improvements in image registration could be realized if images were collected from the same perspective, thus facilitating change analysis. The perspective differences due to current dental image collection devices are so significant that straightforward change analysis is not possible. To address this, a new custom dental tray could be used to provide the standard reference needed for consistent positioning of a patient's mouth. Similar to sports mouth guards, the dental tray could be fabricated in standard sizes from plastic and use integrated electronics that have been miniaturized. In addition, the x-ray source needs to be consistently positioned in order to collect images with similar angles and scales. Solving this pose correction is similar to solving for collection angle in aerial imagery for change detection. A standard collection system would provide a method for consistent source positioning using real-time sensor position feedback from a digital x-ray image reference. Automated, robotic sensor positioning could replace manual adjustments. Given an image set from a standard collection, a disparity map between images can be created using parallax from overlapping viewpoints to enable change detection. This perspective data can be rectified and used to create a three-dimensional dental model reconstruction.
Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.
2008-07-02
We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G.; Cummings, J.; Chang, C. S.; Klasky, Scott A; Ku, S.; Podhorszki, Norbert; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Strauss, H.; Sugiyama, L.; CPES Team, the
2007-01-01
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G-Y; Cummings, J.; Chang, C S; Podhorszki, Norbert; Klasky, Scott A; Ku, S.; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Sugiyama, L.
2009-01-01
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations
NASA Astrophysics Data System (ADS)
Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
NASA Astrophysics Data System (ADS)
Peng, Yingping; Xiang, Zhaoyin
2017-06-01
In this paper, we investigate the 3D Keller-Segel-Stokes (K-S-S) system with nonlinear diffusion term Δ nm (m>0) and rotational flux posed in a bounded domain Ω with smooth boundary. Under the assumption that the Frobenius norm of the tensor-valued chemotactic sensitivity S( x, n, c) satisfies |S(x,n,c)|≤ CS(1+n)^{-α }, by seeking some new functionals and using the bootstrap arguments on the regularized system, we establish the existence and boundedness of global weak solutions to K-S-S system for arbitrarily large initial data under the assumption m+2α >2 and m>3/4, which includes both the degenerate (m>1) and the singular (m<1) case.
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil
2017-01-01
3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.
Validation of BOUT++ ELM simulations for the EAST Tokamak discharges
NASA Astrophysics Data System (ADS)
Liu, Zixi; Xu, Xueqiao; Gao, Xiang; Liu, Shaocheng; Xia, Tianyang; Xu, Guosheng; Li, Jianggang; EAST Team
2013-10-01
EAST ELM experiments validate BOUT++ predictions that low-n modes become dominant at high plasma current, and the bright stripes from visible camera on EAST match ELM filamentary structures of BOUT++ simulations. Four phases of the ELM dynamics including linear growth, nonlinear saturation, pedestal crash, and L-mode-like post-ELM state have been observed in BOUT++ simulations. The simulated radial velocity of ELM explosive event is consistent with the experimental data by Gas Puffing Image (GPI). Energy loss is about 2 percent; more particle and power fluxes are deposited on the outer divertor plate. The small ELMs on EAST are resistive ballooning modes, and higher plasma current and the pressure result in higher growth rate for the lower toroidal numbers. Effect of the diamagnetic drift is stronger than the ballooning instability drive when the pressure gradient increases and the ELM crashes start at the outer mid-plane.
HOW to Differentiate Dutch Elm Disease from Elm Phloem Necrosis
Lester Paul Gibson; Arthur R. Hastings; Leon A. LeMadeliene
1981-01-01
Dutch elm disease (DED) and elm phloem necrosis are the two most serious diseases of elm in the United States (Figs. 1 and 2). Most native species of elm are susceptible to both diseases. Dutch elm disease is caused by a fungus, Ceratocystis u1mi (Buisman) C. Moreau, and is transmitted by two species of elm bark beetles-the smaller European elm bark beetle, Scolytus...
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-01-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255
NASA Astrophysics Data System (ADS)
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng
2016-02-01
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-02-29
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
NASA Astrophysics Data System (ADS)
Loarte, A.; Huijsmans, G.; Futatani, S.; Baylor, L. R.; Evans, T. E.; Orlov, D. M.; Schmitz, O.; Becoulet, M.; Cahyna, P.; Gribov, Y.; Kavin, A.; Sashala Naik, A.; Campbell, D. J.; Casper, T.; Daly, E.; Frerichs, H.; Kischner, A.; Laengner, R.; Lisgo, S.; Pitts, R. A.; Saibene, G.; Wingen, A.
2014-03-01
Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ˜2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix
NASA Astrophysics Data System (ADS)
Elkoteshy, Yasser; Jiao, L. C.; Chen, Weisheng
2014-05-01
In this work, the adaptive backstepping neural control technique is proposed for a class of uncertain multi-input multi-output nonlinear systems in block-triangular form with the ultimate tracking accuracy assumed to be known a priori. The stability analysis of the closed-loop control system is derived based on Barbalat's Lemma instead of Lyapunov stability theory. Semi-global uniform ultimate boundedness of all the signals in the closed-loop system is achieved and after a sufficiently large interval of time, the outputs of the system are proven to converge to the predefined value. A single hidden layer feed-forward neural network based on the extreme learning machine is used in this work to approximate the unknown nonlinear functions in the control laws. Two simulation examples, including a mathematical one and a practical one, are given to verify the effectiveness of the proposed controller and its superiority over the existing techniques.
Progress and issues in understanding the physics of ELM dynamics, ELM mitigation, and ELM control
NASA Astrophysics Data System (ADS)
Oyama, N.
2008-07-01
Recent experimental progress in understanding the dynamics of type I ELM, small/no ELM regimes to achieve ELM mitigation and active ELM controls is reviewed. As for the type I ELM dynamics, the smaller growth rate of the ELM precursor relative to the Alfvén frequency, the importance of ELM filaments to evaluate the ELM heat load, the evolution of pedestal pressure in the recovery phase, and the effects of edge toroidal rotation and toroidal field ripple on ELM energy loss have been observed in many devices. In low collisionality (ve*) small/no ELM regimes, the type V ELM has been obtained with one or two filaments in ve*<1 condition. Small normalized ELM energy loss less than 1% has been achieved in the grassy ELM regime in non-rotating plasmas. The highest pedestal pressure has been achieved with smaller edge toroidal rotation counter to the plasma current in the QH-mode. ELM control/suppression by pellet pacing and external magnetic field perturbation has been demonstrated, and so that a design activity of ELM control coils for ITER has started. Various effects of the edge toroidal rotation upon ELM characteristics have been found such as ELM energy loss (ELM frequency) in the type I ELM regime and the grassy ELM regime, changes in edge harmonic oscillation and achievable pedestal pressure in the QH-mode regime, and a screening effect in evaluation of island formation by ELM control coils.
NASA Astrophysics Data System (ADS)
Nardon, E.; Fil, A.; Hoelzl, M.; Huijsmans, G.; contributors, JET
2017-01-01
3D non-linear MHD simulations of a D 2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficientmore » $${{\\alpha}_{j}}$$ , free streaming model with $${{\\alpha}_{j}}=1$$ , sheath-limit with $${{\\alpha}_{j}}=0.05$$ , and one value in between. The studies show that a 20 times increase in $${{\\alpha}_{j}}$$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of $${{n}_{\\text{e}}}$$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient ${{\\alpha}_{j}}$ , free streaming model with ${{\\alpha}_{j}}=1$ , sheath-limit with ${{\\alpha}_{j}}=0.05$ , and one value in between. The studies show that a 20 times increase in ${{\\alpha}_{j}}$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of ${{n}_{\\text{e}}}$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures
Solitary magnetic perturbations at the ELM onset
NASA Astrophysics Data System (ADS)
Wenninger, R. P.; Zohm, H.; Boom, J. E.; Burckhart, A.; Dunne, M. G.; Dux, R.; Eich, T.; Fischer, R.; Fuchs, C.; Garcia-Munoz, M.; Igochine, V.; Hölzl, M.; Luhmann N., C., Jr.; Lunt, T.; Maraschek, M.; Müller, H. W.; Park, H. K.; Schneider, P. A.; Sommer, F.; Suttrop, W.; Viezzer, E.; the ASDEX Upgrade Team
2012-11-01
Tokamak H-mode plasmas frequently exhibit edge-localized modes (ELMs). ELMs allow maintaining sufficient plasma purity and thus enable stationary H-mode. On the other hand in a future device ELMs may cause divertor power flux densities far in excess of tolerable material limits. The size of the energy loss per ELM is determined by saturation effects in the non-linear phase of the ELM, which at present is hardly understood. ASDEX Upgrade is now equipped with a set of fast sampling diagnostics, which is well suited to investigate the chain of events around the ELM crash with appropriate temporal resolution (⩽10 µs). Solitary magnetic perturbations (SMPs) are identified as dominant features in the radial magnetic fluctuations below 100 kHz. They are typically observed close (±100 µs) to the onset of pedestal erosion. SMPs are field aligned structures rotating in the electron diamagnetic drift direction with perpendicular velocities of about 10 km s-1. A comparison of perpendicular velocities suggests that the perturbation evoking SMPs is located at or inside the separatrix. Analysis of very pronounced examples showed that the number of peaks per toroidal turn is 1 or 2, which is clearly lower than the corresponding numbers in linear stability calculations. In combination with strong peaking of the magnetic signals this results in a solitary appearance resembling modes like palm tree modes, edge snakes or outer modes. This behaviour has been quantified as solitariness and correlated with main plasma parameters. SMPs may be considered as a signature of the non-linear ELM phase originating at the separatrix or further inside. Thus they provide a handle to investigate the transition from linear to non-linear ELM phase. By comparison with data from gas puff imaging processes in the non-linear phase at or inside the separatrix and in the scrape-off layer (SOL) can be correlated. A connection between the passing of an SMP and the onset of radial filament propagation has
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM
NASA Astrophysics Data System (ADS)
Popov, Anton; Kaus, Boris
2016-04-01
LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG
NASA Astrophysics Data System (ADS)
Kaus, B.; Popov, A.
2015-12-01
The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results
NASA Astrophysics Data System (ADS)
Levin, David; Dey, Damini; Slomka, Piotr
2005-04-01
We have implemented two hardware accelerated Thin Plate Spline (TPS) warping algorithms. The first algorithm is a hardware-software approach (HW-TPS) that uses OpenGL Vertex Shaders to perform a grid warp. The second is a Graphics Processor based approach (GPU-TPS) that uses the OpenGL Shading Language to perform all warping calculations on the GPU. Comparison with a software TPS algorithm was used to gauge the speed and quality of both hardware algorithms. Quality was analyzed visually and using the Sum of Absolute Difference (SAD) similarity metric. Warping was performed using 92 user-defined displacement vectors for 512x512x173 serial lung CT studies, matching normal-breathing and deep-inspiration scans. On a Xeon 2.2 Ghz machine with an ATI Radeon 9800XT GPU the GPU-TPS required 26.1 seconds to perform a per-voxel warp compared to 148.2 seconds for the software algorithm. The HW-TPS needed 1.63 seconds to warp the same study while the GPU-TPS required 1.94 seconds and the software grid transform required 22.8 seconds. The SAD values calculated between the outputs of each algorithm and the target CT volume were 15.2%, 15.4% and 15.5% for the HW-TPS, GPU-TPS and both software algorithms respectively. The computing power of ubiquitous 3D graphics cards can be exploited in medical image processing to provide order of magnitude acceleration of nonlinear warping algorithms without sacrificing output quality.
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
ELM Destabilization by Externally Applied Non-Axisymmetric Magnetic Perturbations in NSTX
Canik, John; Maingi, Rajesh; Evans, T.E.; Bell, R. E.; Gerhardt, S. P.; Kugel, H. W.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Osborne, T. H.; Park, Jin Myung; Paul, S.; Snyder, P. B.; Sabbagh, S. A.; Unterberg, Ezekial A
2010-01-01
We report on a recent set of experiments performed in NSTX to explore the effects of non-axisymmetric magnetic perturbations on the stability of edge-localized modes (ELMs). The application of these 3D fields in NSTX was found to have a strong effect on ELM stability, including the destabilization of ELMs in H-modes otherwise free of large ELMs. Exploiting the effect of the perturbations, ELMs have been controllably introduced into lithium-enhanced ELM-free H-modes, causing a reduction in impurity accumulation while maintaining high confinement. Although these experiments show the principle of the combined use of lithium coatings and 3D fields, further optimization is required in order to reduce the size of the induced ELMs.
Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations
NASA Astrophysics Data System (ADS)
Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish
2010-11-01
The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.
Ulmus crassifolia Nutt. Cedar Elm
John J. Stransky; Sylvia M. Bierschenk
1990-01-01
Cedar elm (Ulmus cassifolia) grows rapidly to medium or large size in the Southern United States and northeastern Mexico, where it may sometimes be called basket elm, red elm, southern rock elm, or olmo (Spanish) It usually is found on moist, limestone soils along water courses with other bottomland trees, but it also paws on dry limestone hills. The...
Type-I ELM substructure on the divertor target plates in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Eich, T.; Herrmann, A.; Neuhauser, J.; Dux, R.; Fuchs, J. C.; Günter, S.; Horton, L. D.; Kallenbach, A.; Lang, P. T.; Maggi, C. F.; Maraschek, M.; Rohde, V.; Schneider, W.; ASDEX Upgrade Team
2005-06-01
In the ASDEX Upgrade tokamak, the power deposition structures on the divertor target plates during type-I edge localized modes (ELMs) have been investigated by infrared thermography. In addition to the axisymmetric strike line, several poloidally displaced stripes are resolved, identifying an ELM as a composite of several subevents. This pattern is interpreted as being a signature of the helical perturbations in the low field side edge during the non-linear ELM evolution. Based on this observation, the ELM related magnetic perturbation in the midplane can be derived from the target load pattern. In the start phase of an ELM collapse, average toroidal mode numbers around n ap 3-5 are found evolving to values of n ap 12-14 during the ELM power deposition maximum. Further information about the non-linear evolution of the ELM mode structure is obtained from statistical analyses of the spatial distribution, heat flux amplitudes and number of single stripes.
NASA Astrophysics Data System (ADS)
Bertolesi, Elisa; Milani, Gabriele; Casolo, Siro
2016-12-01
A simple homogenized rigid body and spring model (HRBSM) is presented and applied for the non-linear dynamic analysis of 3D masonry structures. The approach, previously developed by the authors for the modeling of in-plane loaded walls is herein extended to real 3D buildings subjected to in- and out-of-plane deformation modes. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. All the simulations here presented are performed using the commercial software Abaqus. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.
NASA Astrophysics Data System (ADS)
Belashov, V. Yu.; Belashova, E. S.
2016-11-01
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B / B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4 πnT/ B 2 ≪ 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = ( B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.
VIEW OF ELM DRIVE FROM ITS INTERSECTION WITH ELM CIRCLE. ...
VIEW OF ELM DRIVE FROM ITS INTERSECTION WITH ELM CIRCLE. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
NASA Astrophysics Data System (ADS)
Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.
2012-12-01
NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function
NASA Astrophysics Data System (ADS)
Akemann, Walther; Ventalon, Cathie; Léger, Jean-François; Mathieu, Benjamin; Dieudonné, Stéphane; Blochet, Baptiste; Gigan, Sylvain; Bourdieu, Laurent
2017-04-01
Decoding of information in the brain requires the imaging of large neuronal networks using e.g. two-photon microscopy (TPM). Fast control of the focus in 3D can be achieved with phase shaping of the light beam using acoustooptic deflectors (AODs). However, beam shaping using AODs is not straightforward because of non-stationary of acousto-optic diffraction. Here, we demonstrated a new stable AOD-based phase modulator, which operates at a rate of up to about hundred kHz. It provides opportunity for 3D scanning in TPM with the possibility to correct aberrations independently for every focus position or to achieve refocusing of scattered photons in rapidly decorrelating tissues.
The impact of peeling-ballooning turbulence on ELMs
NASA Astrophysics Data System (ADS)
Xi, Pengwei
2013-10-01
Although the onset of ELMs has possibly been determined by linear peeling-ballooning (P-B) instabilities and, the nonlinear BOUT + + simulations show that nonlinear mode coupling starts before the onset of ELMs, which can lead to finite amplitude peeling-ballooning (P-B) turbulence at the H-mode pedestal and play a crucial role in ELM dynamics in two aspects: (1) since the P-B turbulence can suppress ELM crash, for a given power input, pedestal can keep evolving to a state with larger pedestal pressure and current gradients. Accordingly, the drives of P-B modes also keep increasing. Therefore the onset of ELM is determined by the competition between linear drive and nonlinear mode coupling. We find that only when a single mode can overcome the nonlinear damping to become dominant, an ELM crash is triggered by this mode. This means with the P-B turbulence, the onset of ELM is determined by a nonlinear criterion γ >γc rather than the previous linear criterion γ > 0 , where γc is the critical growth rate which depends on the P-B turbulence. (2) We find that the P-B turbulence can generate enough self-constant hyper-resistivity needed in ELM simulations when electron inertial is included in Ohm's law. This hyper-resistivity represents anomalous current transport and can set the limit of the narrow current layer width resolved in the simulations. Except the P-B turbulence, the impact of other micro-turbulence, such as KBM turbulence, will be presented via a newly developed electro-magnetic Gyro-Landau-Fluid extension of BOUT + + code. Work was performed for USDOE by LLNL under DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022, and also supported by the NSFC under Grant Nos.10935004, 11261140326.
NASA Astrophysics Data System (ADS)
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Ferraro, N.
2016-10-01
We use the finite element 3D MHD code M3D-C1 to study large-scale instabilities in the center of tokamak plasmas. It has been shown that in 3D MHD simulations of plasmas with a flat central q 1 , an ideal interchange instability can develop that keeps the current density from peaking despite central heating. The instability yields a (m = 1 , n = 1) perturbation of the core plasma, i.a. a helical flow that flattens the central current density by (1) flattening the temperature profile and (2) combining with the perturbed magnetic field to generate a negative loop voltage through a dynamo effect. This might explain the ``flux-pumping'' effect observed in hybrid discharges. We study in which parameter range the two effects are strong enough to prevent sawtoothing. We describe a new regime of quasi-stationary oscillating states and analyze cases in between the stationary and the cycling regime in which the sawtooth behaviour is modified by the current flattening mechanisms. To connect to experimental observations, we have set up simulations starting with a scenario comparable to the current ramp-up phase.
Dutch Elm Disease (DED) and the American Elm (Pest Alert)
USDA Forest Service
1999-01-01
For decades the American elm was one of our most treasured trees, gracing streets and parks of many cities with beautiful form and dense foliage. The American elm was particularly well suited to urban sites because it grows quickly, is long-lived, and is tolerant of compacted soils and air pollution. However, in most communities Dutch elm disease (DED) killed a...
Elms and Dutch elm disease: a quick overview
Michael. Marcotrigiano
2017-01-01
In the 1930s Dutch elm disease (DED) was accidentally introduced from Europe into the United States. It had a devastating impact on American elm (Ulmus americana) and its relatives in urban and riparian environments. In the United States, the three-part pathosystem for DED is unique in that the affected elm species are North American, the pathogen originated in Asia,...
Modeling elm growth and Dutch elm disease susceptibility
Alberto Santini; Luisa Ghelardini
2012-01-01
Elm susceptibility to Dutch elm disease (DED) displays strong seasonal variation. The period during which elms can become infected and express DED symptoms is generally restricted to several weeks after growth resumption in spring, although it can vary among species, provenances, and environmental conditions. The reason for this phenomenon is not understood, but the...
NASA Astrophysics Data System (ADS)
Kong, Fande; Cai, Xiao-Chuan
2017-07-01
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear in many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexact Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here ;geometry; includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.
Kong, Fande; Cai, Xiao-Chuan
2017-03-24
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexactmore » Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here ''geometry'' includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.« less
Elm genetic diversity and hybridization in the presence of Dutch elm disease
Johanne Brunet; Raymond P. Guries
2017-01-01
The impact of Dutch elm disease (DED) on the genetic diversity of slippery elm (Ulmus rubra) is summarized and its potential impact on the genetic diversity of other North American native elms, American elm (U. americana), rock elm (U. thomasii), winged elm (U. alata), cedar elm (
High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.
Rodenas, Airan; Kar, Ajoy K
2011-08-29
We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.
Fast intra-operative non-linear registration of 3D-CT to tracked, selected 2D-ultrasound slices
NASA Astrophysics Data System (ADS)
Olesch, Janine; Beuthien, Björn; Heldmann, Stefan; Papenberg, Nils; Fischer, Bernd
2011-03-01
In navigated liver surgery it is an important task to align intra-operative data to pre-operative planning data. This work describes a method to register pre-operative 3D-CT-data to tracked intra-operative 2D US-slices. Instead of reconstructing a 3D-volume out of the two-dimensional US-slice sequence we directly apply the registration scheme to the 2D-slices. The advantage of this approach is manyfold. We circumvent the time consuming compounding process, we use only known information, and the complexity of the scheme reduces drastically. As the liver is a non-rigid organ, we apply non-linear techniques to take care of deformations occurring during the intervention. During the surgery, computing time is a crucial issue. As the complexity of the scheme is proportional to the number of acquired slices, we devise a scheme which starts out by selecting a few "key-slices" to be used in the non-linear registration scheme. This step is followed by multi-level/multi-scale strategies and fast optimization techniques. In this abstract we briefly describe the new method and show first convincing results.
NASA Astrophysics Data System (ADS)
Smith, David R.; Fonck, R. J.; McKee, G. R.; Diallo, A.; Kaye, S. M.; Leblanc, B. P.; Sabbagh, S. A.
2016-10-01
Edge localized mode (ELM) saturation mechanisms, filament dynamics, and multi-mode interactions require nonlinear models, and validation of nonlinear ELM models requires fast, localized measurements on Alfven timescales. Recently, we investigated characteristic ELM evolution patterns with Alfven-scale measurements from the NSTX/NSTX-U beam emission spectroscopy (BES) system. We applied clustering algorithms from the machine learning domain to ELM time-series data. The algorithms identified two or three groups of ELM events with distinct evolution patterns. In addition, we found that the identified ELM groups correspond to distinct parameter regimes for plasma current, shape, magnetic balance, and density pedestal profile. The observed characteristic evolution patterns and corresponding parameter regimes suggest genuine variation in the underlying physical mechanisms that influence the evolution of ELM events and motivate nonlinear MHD simulations. Here, we review the previous results for characteristic ELM evolution patterns and parameter regimes, and we report on a new effort to explore the identified ELM groups with 2D BES measurements and nonlinear MHD simulations. Supported by U.S. Department of Energy Award Numbers DE-SC0001288 and DE-AC02-09CH11466.
Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O
2000-03-24
This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.
NASA Astrophysics Data System (ADS)
Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.
2004-05-01
Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, A.; Yeates, A. R.
2013-12-01
During the last decade, axisymmetric kinematic dynamo models have contributed greatly to our understanding of the solar cycle. However, with the advent of more powerful computers the limitation to axisymmetry has been lifted. Here we present a 3D kinematic dynamo model where active regions are driven by velocity perturbations calibrated to reproduce observed active region properties (including the size and flux of active regions, and the distribution of tilt angle with latitude), resulting in a more consistent treatment of flux-tube emergence in kinematic dynamo models than artificial flux deposition. We demonstrate how this technique can be used to assimilate active region observations obtained from the US National Solar Observatory/Kitt Peak (NSO/KP) synoptic magnetograms and how our model couples naturally with three-dimensional simulations of the Sun's coronal magnetic field paving the way for the simultaneous study of the evolution of the magnetic field in the solar interior as well as its impact on the heliosphere. This research is supported by the NASA Living With a Star Jack Eddy Postdoctoral Fellowship Program, administered by the UCAR Visiting Scientist Programs.
Blehm, Benjamin H; Devine, Alexus; Staunton, Jack R; Tanner, Kandice
2016-03-01
Variation in matrix elasticity has been shown to determine cell fate in both differentiation and development of malignant phenotype. The tissue microenvironment provides complex biochemical and biophysical signals in part due to the architectural heterogeneities found in extracellular matrices (ECMs). Three dimensional cell cultures can partially mimic in vivo tissue architecture, but to truly understand the role of viscoelasticity on cell fate, we must first determine in vivo tissue mechanical properties to improve in vitro models. We employed Active Microrheology by Optical Trapping InVivo (AMOTIV), using in situ calibration to measure in vivo zebrafish tissue mechanics. Previously used trap calibration methods overestimate complex moduli by ∼ 2-20 fold compared to AMOTIV. Applying differential microscale stresses and strains showed that hyaluronic acid (HA) gels display semi-flexible polymer behavior, while laminin-rich ECM hydrogels display flexible polymer behavior. In contrast, zebrafish tissues displayed different moduli at different stresses, with higher power law exponents at lower stresses, indicating that living tissue has greater stress dependence than the 3D hydrogels examined. To our knowledge, this work is the first vertebrate tissue rheological characterization performed in vivo. Our fundamental observations are important for the development and refinement of in vitro platforms.
Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut
2014-12-10
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.
NASA Astrophysics Data System (ADS)
Hervas, Jaime Rubio; Reyhanoglu, Mahmut; Tang, Hui
2014-12-01
This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
Edge Localised Modes (ELMs): Experiments and Theory
Connor, J. W.; Kirk, A.
2008-05-14
Edge Localised Modes (ELMs) are periodic disturbances of the plasma periphery occurring in tokamaks with an H-mode edge transport barrier. As a result, a fraction of the plasma energy present in the confined hot edge plasma is transferred to the open field lines in the divertor region, ultimately appearing at the divertor target plates. These events can result in high transient heat loads being deposited on the divertor target plates in large tokamaks, potentially causing damage in devices such as ITER. Consequently it is important to find means to mitigate their effects, either avoiding them or, at least, controlling them. This in turn means it is essential to understand the physics causing ELMs so that appropriate steps can be taken. It is generally agreed that ELMs originate as MHD instability caused by the steep plasma pressure gradients or edge plasma current present in H-mode, the so-called 'peeling-ballooning' model. Normally this is considered to be an ideal MHD instability but resistivity may be involved. Much less clear is the non-linear evolution of these instabilities and the mechanisms by which the confined edge plasma is transferred to the divertor plasma. There is evidence for the non-linear development of 'filamentary' structures predicted by theory, but the reconnection processes by which these are detached from the plasma core remain uncertain. In this paper the experimental and theoretical evidence for the peeling-ballooning model is presented, drawing data from a number of tokamaks, e.g. JET, DIII-D, ASDEX-Upgrade, MAST etc. Some theoretical models for the non-linear evolution of ELMs are discussed; as well as ones related to the 'peeling-ballooning' model, other candidate models for the ELM cycle are mentioned. The consequential heat loads on divertor target plates are discussed. Based on our current understanding of the physics of ELMs, means to avoid them, or mitigate their consequences, are described, e.g. the use of plasma shaping or
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Geiger, J.
2016-06-01
The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b = 5/5, periodicity), namely, at high-iota (ι b = 5/4) and at low-iota (ι b = 5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.
Toward integrated multi-scale simulations for a full ELM cycle with ELM dynamics
NASA Astrophysics Data System (ADS)
Xu, Xueqiao
2015-11-01
The high-fidelity BOUT + + two-fluid and Gyro-Landau-Fluid code suites have demonstrated significant recent progresses toward integrated multi-scale simulations for a full ELM cycle with ELM dynamics. In order to improve the computational efficiency for a full ELM cycle with ELM dynamics, the basic set of dynamical equations has been separated into equations in the fluctuating and averaged parts over binormal direction. The two parts are advanced together in time but with different time steps, and dynamically exchange the turbulence fluxes and averaged profiles. Nonlinear ELM simulations show three stages of an ELM event: (1) a linear growing phase; (2) a fast crash phase; and (3) a slow inward propagation phase lasting until the core heating flux balances the ELM energy loss and the ELM is terminated. To better understand the inter-ELM pedestal dynamics during the pedestal recovery, BOUT + + simulations started from a kinetic equilibrium reconstruction using measured plasma profiles from DIII-D show that quasi-coherent fluctuations (QCFs) can provide the necessary transport to limit and saturate the H-mode pedestal gradient. The simulations predict that (1) QCFs are localized in the pedestal region as observed on DIII-D; (2) the QCFs are near marginal instability for ideal ballooning modes combined with drift-Alfven wave modes; (3) the dominant mode is around n =15, kθρi = 0.034, comparable to the measured value of 0.04; (4) the frequency of the mode is around 80kHz, close to that of the measured QCF; and (5) particle transport is smaller than the heat transport. BOUT + + simulations have also been performed to elucidate the nature and underlying physics mechanisms of the weakly-quasi-coherent mode (WCM) with higher collisionality, which causes particle transport in I-mode pedestals of Alcator C-Mod. Key simulation results are that (1) there is no ideal peeling-ballooning mode instability for the I-mode studied; (2) a strong instability exists at n >= 20; (3
NASA Astrophysics Data System (ADS)
Germaschewski, K.; Grauer, R.; Bergé, L.; Mezentsev, V. K.; Juul Rasmussen, J.
2001-05-01
The self-focusing and splitting mechanisms of waves governed by the cubic nonlinear Schrödinger equation with anisotropic dispersion are investigated numerically by means of an adaptive mesh refinement code. Wave-packets having a power far above the self-focusing threshold undergo a transversal compression and are shown to split into two symmetric peaks. These peaks can sequentially decay into smaller-scale structures developing near the front edge of a shock, as long as their individual power remains above threshold, until the final dispersion of the wave. Their phase and amplitude dynamics are detailed and compared with those characterizing collapsing objects with no anisotropic dispersion. Their ability to mutually coalesce is also analyzed and modeled from the interaction of Gaussian components. Next, bunch-type and snake-type instabilities, which result from periodic modulations driven by even and odd localized modes, are studied. The influence of the initial wave amplitude, the amplitude and wavenumber of the perturbations on the interplay of snake and bunch patterns are finally discussed.
Long-term time series prediction using OP-ELM.
Grigorievskiy, Alexander; Miche, Yoan; Ventelä, Anne-Mari; Séverin, Eric; Lendasse, Amaury
2014-03-01
In this paper, an Optimally Pruned Extreme Learning Machine (OP-ELM) is applied to the problem of long-term time series prediction. Three known strategies for the long-term time series prediction i.e. Recursive, Direct and DirRec are considered in combination with OP-ELM and compared with a baseline linear least squares model and Least-Squares Support Vector Machines (LS-SVM). Among these three strategies DirRec is the most time consuming and its usage with nonlinear models like LS-SVM, where several hyperparameters need to be adjusted, leads to relatively heavy computations. It is shown that OP-ELM, being also a nonlinear model, allows reasonable computational time for the DirRec strategy. In all our experiments, except one, OP-ELM with DirRec strategy outperforms the linear model with any strategy. In contrast to the proposed algorithm, LS-SVM behaves unstably without variable selection. It is also shown that there is no superior strategy for OP-ELM: any of three can be the best. In addition, the prediction accuracy of an ensemble of OP-ELM is studied and it is shown that averaging predictions of the ensemble can improve the accuracy (Mean Square Error) dramatically. Copyright © 2013 Elsevier Ltd. All rights reserved.
NSTX ELM Pacing and L-H Threshold Experiments for ITER
NASA Astrophysics Data System (ADS)
Canik, J. M.; Maingi, R.; Sontag, A. C.; Gerhardt, S. P.; Kaye, S.; Bell, R. E.; Gates, D.; Goldston, R.; Leblanc, B. P.; Menard, J.; Park, J.-K.; Evans, T.; Osborne, T.; Sabbagh, S.; Unterberg, E. A.
2009-11-01
We present a summary of recent edge-localized mode (ELM) pacing and L-H power threshold (PLH) experiments performed in NSTX in support of ITER. ELM triggering using 3D magnetic perturbations was used to perform pacing during ELM-free H-modes induced by lithium conditioning, mitigating the impurity accumulation typically observed in these conditions. The waveform of the applied field has been tailored to provide high reliability triggering at frequencies of >60 Hz to reduce the average ELM size. ELM pacing was also performed using vertical position oscillations, with the ELM frequency increased to ˜30 Hz from a natural frequency of ˜15 Hz. PLH is reduced by ˜50% at low triangularity, and also decreased by ˜50% during discharge with thick lithium wall coatings. PLH was observed to increase strongly with plasma current during sustained H-modes. The influence of heating method, non-axisymmetric fields, and magnetic balance on PLH will be presented.
Report from the street: elm reintroduction
Tom. Zetterstrom
2017-01-01
Since the introduction of Dutch elm disease (DED) to North America, heritage elm preservation was paramount, but elm restoration is held as the long-term solution. Various elm restoration efforts have been advanced and encouraged over the past half century, and all have inspired the euphoria of the "Return of the American Elm." The changing cast of characters...
NASA Astrophysics Data System (ADS)
Kao, Chien-Ting; Wei, Ming-Liang; Liao, Yi-Hua; Sun, Chi-Kuang
2017-02-01
Intraoperative assessment of excision tissues during cancer surgery is clinically important. The assessment is used to be guided by the examination for residual tumor with frozen pathology, while it is time consuming for preparation and is with low accuracy for diagnosis. Recently, reflection confocal microscopy (RCM) and nonlinear microscopy (NLM) were demonstrated to be promising methods for surgical border assessment. Intraoperative RCM imaging may enable detection of residual tumor directly on skin cancers patients during Mohs surgery. The assessment of benign and malignant breast pathologies in fresh surgical specimens was demonstrated by NLM. Without using hematoxylin and eosin (H and E) that are common dyes for histopathological diagnosis, RCM was proposed to image in vivo by using aluminum chloride for nuclear contrast on surgical wounds directly, while NLM was proposed to detect two photon fluorescence nuclear contrast from acrdine orange staining. In this paper, we propose and demonstrate 3D imaging of H and E stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based NLM. With a 1260 nm femtosecond Cr:forsterite laser as the excitation source, the hematoxylin will strongly enhance the third-harmonic generation (THG) signals, while eosin will illuminate strong fluorescence under three photon absorption. Compared with previous works, the 1260 nm excitation light provide high penetration and low photodamage to the exercised tissues so that the possibility to perform other follow-up examination will be preserved. The THG and three-photon process provides high nonlinearity so that the super resolution in 3D is now possible. The staining and the contrast of the imaging is also fully compatible with the current clinical standard on frozen pathology thus facilitate the rapid intraoperative assessment of excision tissues. This work is sponsored by National Health Research Institutes and supported by National Taiwan University
NASA Astrophysics Data System (ADS)
Wawerzinek, B.; Ritter, J. R. R.; Roy, C.
2013-08-01
We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.
NASA Astrophysics Data System (ADS)
Letellier, C.; Aguirre, L. A.; Maquet, J.; Lefebvre, B.
2003-05-01
This paper investigates nonlinear wave-wave interactions in a system that describes a modified decay instability and consists of three Langmuir and one ion-sound waves. As a means to establish that the underlying dynamics exists in a 3D space and that it is of the Lorenz-type, both continuous and discrete-time multivariable global models were obtained from data. These data were obtained from a 10D dynamical system that describes the modified decay instability obtained from Zakharov’s equations which characterise Langmuir turbulence. This 10D model is equivariant under a continuous rotation symmetry and a discrete order-2 rotation symmetry. When the continuous rotation symmetry is modded out, that is, when the dynamics are represented with the continuous rotation symmetry removed under a local diffeomorphism, it is shown that a 3D system may describe the underlying dynamics. For certain parameter values, the models, obtained using global modelling techniques from three time series from the 10D dynamics with the continuous rotation symmetry modded out, generate attractors which are topologically equivalent. These models can be simulated easily and, due to their simplicity, are amenable for analysis of the original dynamics after symmetries have been modded out. Moreover, it is shown that all of these attractors are topologically equivalent to an attractor generated by the well-known Lorenz system.
NASA Astrophysics Data System (ADS)
Weng, W.; Taylor, P. A.
2010-09-01
Based on the early linear and Non-Linear Mixed Spectral Finite-Difference (MSFD and NLMSFD) models, a 3-D non-linear model of planetary boundary-layer flow (NLMSFD-PBL) was developed to study neutral PBL flow over complex terrain. The model assumes upwind or zero-order profiles of mean and turbulence variables about which perturbation quantities are calculated due to the effects of the terrain. In early models, the mean zero-order wind profile was assumed to be a simple logarithmic surface-layer profile and Reynolds stresses were constant throughout the depth of the model domain. This formally limits the applications of model to the surface-layer flow. The new model utilizes the results of early 1-D planetary boundary layer model of Weng and Taylor as the zero-order or upstream profiles of mean and turbulent quantities. The limitations associated with the original MSFD/NLMSFD model (e.g. logarithmic wind profile and constant shear stress layer) are relaxed. The effect of earth's rotation is also included in the model. Model results for planetary boundary-layer flow over complex terrain are discussed, particularly, the flow over Askervein hill - the site of a detailed and much referenced field study of flow over hills in the 1980s. This type of modelling of flow over complex terrain has important applications for wind energy resource assessment and wind farm design.
Elm leaf beetle performance on ozone-fumigated elm
Jack H. Barger; Richard W. Hall; Alden M. Townsend; Alden M. Townsend
1992-01-01
Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhallta) luteola (Muller), to determine host suitability for beetle fecundity...
The Italian elm breeding program for Dutch elm disease resistance
Alberto Santini; Francesco Pecori; Luisa Ghelardini
2012-01-01
In the 20th century, elms across Europe and North America were devastated by two pandemics of Dutch elm disease (DED), caused by the introduction of two fungal pathogens: Ophiostoma ulmi, followed by O. novo-ulmi. At the end of 1920s, research into a resistance to DED began in Europe and then in the United States. No...
NASA Astrophysics Data System (ADS)
Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.
2005-04-01
Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling
Dutch Elm Disease and Methoxychlor
Jack H. Barger
1976-01-01
American elm trees, Ulmus americana L., in Milwaukee, Wisconsin, were sprayed with methoxychlor by helicopter or mist blower once each year for 3 years to control the smaller European elm bark beetle Scolytus multistriatus (Marsham). Twig crotches were collected from sprayed trees each year for bioassay. Methoxychlor residues...
Structure, Stability and ELM Dynamics of the H-Mode Pedestal in DIII-D
Fenstermacher, M E; Leonard, A W; Osborne, T H; Snyder, P B; Thomas, D M; Boedo, J A; Casper, T A; Colchin, R J; Groebner, R J; Groth, M; Kempenaars, M H; Loarte, A; Saibene, G; VanZeeland, M A; Zeng, L; Xu, X Q
2004-10-13
Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n{sub e} pedestal profile and the p{sub e} height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T{sub e} pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n{sub e} pedestal while plasma physics dominates in setting the T{sub e} pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations.
Tang, Shu-Wei; Feng, Jing-Dong; Qiu, Yong-Qing; Sun, Hao; Wang, Feng-Di; Chang, Ying-Fei; Wang, Rong-Shun
2010-11-15
Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic character (with nucleus-independent chemical shifts varying from -15.08 to -23.71 ppm) of C(60)F(18) and C(60)Cl(30) indicate their high stabilities. Further investigations of electronic property show that C(60)F(18) and C(60)Cl(30) could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states and frontier molecular orbitals are also calculated, which present that HOMOs and LUMOs are mainly distributed in the tortoise shell subunit of C(60)F(18) and the aromatic [18] trannulene ring of C(60)Cl(30), and the influence from halogen atoms is secondary. In addition, the static linear polarizability
Elm genetic diversity and hybridization in the presence of Dutch elm disease
USDA-ARS?s Scientific Manuscript database
Dutch elm disease (DED) has devastated native North American elm species for more than 75 years. The impact of DED on the genetic diversity of one native elm species, U. rubra or slippery elm, is summarized and its potential impact on the genetic diversity of the other four North American native elm...
Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi
W. R. Jacobi; R. D. Koski; J. F. Negron
2013-01-01
Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...
ELM frequency feedback control on JET
NASA Astrophysics Data System (ADS)
Lennholm, M.; Beaumont, P. S.; Carvalho, I. S.; Chapman, I. T.; Felton, R.; Frigione, D.; Garzotti, L.; Goodyear, A.; Graves, J.; Grist, D.; Jachmich, S.; Lang, P.; Lerche, E.; de la Luna, E.; Mooney, R.; Morris, J.; Nave, M. F. F.; Rimini, F.; Sips, G.; Solano, E.; Tsalas, M.; EFDA Contributors, JET
2015-06-01
This paper describes the first development and implementation of a closed loop edge localized mode (ELM) frequency controller using gas injection as the actuator. The controller has been extensively used in recent experiments on JET and it has proved to work well at ELM frequencies in the 15-40 Hz range. The controller responds effectively to a variety of disturbances, generally recovering the requested ELM frequency within approximately 500 ms. Controlling the ELM frequency has become of prime importance in the new JET configuration with all metal walls, where insufficient ELM frequency is associated with excessive tungsten influx. The controller has allowed successful operation near the minimum acceptable ELM frequency where the best plasma confinement can be achieved. Use of the ELM frequency controller in conjunction with pellet injection has enabled investigations of ELM triggering by pellets while maintaining the desired ELM frequency even when pellets fail to trigger ELMs.
NASA Astrophysics Data System (ADS)
Osborne, T. H.; Leonard, A. W.; Porter, G. D.
1996-11-01
Three classes of Edge Localized Modes, or ELMs, simply labeled Types I, II, and III, in the DIII--D work, are widely observed. Type I ELMs are distinguished by the fact that their frequency increases with increasing input power. A scaling for the Type I ELM energy loss predicts 3% for ITER. The frequency of Type III ELMs decreases with increasing input power. The energy loss per Type III ELM is a factor of 2 to 4 below that for Type I at the same input power. Experiments on DIII--D suggest that proximity to the H--mode threshold power is the critical parameter for Type III ELMs. In contrast to Type I ELMs, the pressure gradient near the separatrix at a Type III ELM is often well below the ideal ballooning mode limit. Medium n magnetic precursor oscillations are observed with Type III ELMs, while no magnetic precursors are observe with Type I ELMs. Type II ELMs have very high frequency and low energy loss compared to Type I ELMs. Type II ELMs do not require low input power in contrast to Type III ELMs. Type II ELMs are associated with edge second stability in combination with either high q or high β_P.
Observations of Harmonic Oscillations and ELM Magnetic Precursors in NSTX
NASA Astrophysics Data System (ADS)
Kelly, F.; Fredrickson, E.; Bell, R.; Tritz, K.; Maingi, R.; Takahashi, H.
2010-11-01
Recent experiments in the National Spherical Torus Experiment (NSTX) demonstrated the progressive suppression of edge localized modes (ELMs) with increasing lithium deposition. Sufficient lithium suppressed ELMs and made the occurrence of low-frequency, low-n harmonics more frequent. Signatures of these harmonic oscillations with a significant edge component were observed in both the high-n Mirnov magnetic and soft X-ray diagnostics of NSTX. Two distinct sets of harmonic oscillations can be observed during some ELM-free periods. The harmonic oscillations are consistent with modes localized in the edge with the frequency of the n = 1 harmonic near the rotation frequency of the edge plasma. NSTX magnetic diagnostics also observe distinctive signatures of ELMs. Transient n = 1 and n = 2 mode bursts and occasional higher n modes with frequency in the 30 to 90 kHz range occurred simultaneous with the increase in fast Da signal. These bursts of n = 1 and n = 2 modes resemble a model simulation of ELMs by T. Evans in which a bifurcation of magnetic topology is driven by nonlinear feedback amplification of thermoelectric currents from linear peeling-ballooning modes.
Theory and Modeling of ELMs and Constraints on the H-Mode Pedestal
NASA Astrophysics Data System (ADS)
Snyder, P. B.; Ferron, J. R.; Lao, L. L.; Leonard, A. W.; Osborne, T. H.; Turnbull, A. D.; Wilson, H. R.; Webster, A. J.; Xu, X. Q.; Mossessian, D.; Murakami, M.
2002-11-01
We present a theory of edge localized modes (ELMs) and constraints on the H-mode pedestal, based on the stability of intermediate wavelength peeling-ballooning modes driven by the strong pressure gradient and resulting bootstrap current in the pedestal region. Detailed studies of ideal MHD pedestal stability bounds are presented using the ELITE code, and are compared to data from multiple tokamaks. Observed ELM onset times and characteristics, as well as variation in pedestal behavior with discharge shape and collisionality, are studied. In addition, the impact of diamagnetic stabilization and rotation shear are assessed, and progress on dynamic modeling of the ELM cycle which couples transport codes to stability calculations and ELM crash models is briefly discussed. Nonlinear simulations using the BOUT code are used to provide further insight on non-ideal effects and ELM crash dynamics.
Nazikian, R.
2014-09-01
Experiments on DIII-D have expanding the operating window for RMP ELM suppression to higher q95 with dominant electron heating and fully non-inductive current drive relevant to advanced modes of ITER operation. Robust ELM suppression has also been obtained with a reduced coil set, mitigating the risk of coil failure in maintaining ELM suppression in ITER. These results significantly expand the operating space and reduce risk for obtaining RMP ELM suppression in ITER. Efforts have also been made to search for 3D cause of ELM suppression. No internal non-axisymmetric structure is detected at the top of the pedestal, indicating that the dominant effect of the RMP is to produce an n=0 transport modification of the profiles. Linear two fluid MHD simulations using M3D-C1 indicate resonant field penetration and significant magnetic stochasticity at the top of the pedestal, consistent with the absence of detectable 3D structure in that region. A profile database was developed to compare the scaling of the pedestal and global confinement with the applied 3D field strength in ELM suppressed and ELM mitigated plasmas. The EPED pedestal model accurately predicts the measured pedestal pressure at the threshold of ELM suppression, increasing confidence in theoretical projections to ITER pedestal conditions. Both the H-factor (H(sub)98y2) and thermal energy confinement time do not degrade substantially with applied RMP fields near the threshold of ELM suppression, enhancing confidence in the compatibility of ITER high performance operation with RMP ELM suppression.
Edge localized mode rotation and the nonlinear dynamics of filaments
Morales, J. A.; Bécoulet, M.; Garbet, X.; Dif-Pradalier, G.; Huijsmans, G. T. A.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.; Orain, F.; Hoelzl, M.; Pamela, S.; Cahyna, P.
2016-04-15
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.
Edge localized mode rotation and the nonlinear dynamics of filaments
NASA Astrophysics Data System (ADS)
Morales, J. A.; Bécoulet, M.; Garbet, X.; Orain, F.; Dif-Pradalier, G.; Hoelzl, M.; Pamela, S.; Huijsmans, G. T. A.; Cahyna, P.; Fil, A.; Nardon, E.; Passeron, C.; Latu, G.
2016-04-01
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.
Proceedings of the American elm restoration workshop 2016
Cornelia C. Pinchot; Kathleen S. Knight; Linda M. Haugen; Charles E. Flower; James M. Slavicek
2017-01-01
Proceedings from the 2016 American Elm Restoration Workshop in Lewis Center, OH. The published proceedings include 16 papers pertaining to elm pathogens, American elm ecology, and American elm reintroduction.
Optimization of Density and Radiated Power Evolution Control using Magnetic ELM Pace-making in NSTX
Canik, John; Maingi, Rajesh; Sontag, Aaron C; Bell, R. E.; Gates, D.A.; Gerhardt, S.P.; Kugel, H.; LaBlanc, B. P.; Menard, J.; Paul, S.F.; Sabbagh, S. A.; Soukhanovskii, V. A.
2010-01-01
Recent experiments at the National Spherical Torus Experiment (NSTX) have shown that lithium coating of the plasma facing components leads to improved energy confinement, and also the complete suppression of edge-localized modes (ELMs). Due to the lack of ELMs, however, such plasmas suffer from density and radiated power that increase throughout the discharge, often leading to a radiative collapse. Previous experiments have shown that ELMs can be controllably restored into these lithium-conditioned discharges using 3D magnetic perturbations, which reduces impurity accumulation. The use of magnetic ELM pace-making has been optimized to control the evolution of the density and impurity content. Short duration large amplitude 3D field pulses are used, so that the threshold field for destabilization is reached and ELMs triggered quickly, and the field is then removed. A second improvement was made by adding a negative-going pulse to each of the triggering pulses to counteract the vessel eddy currents and reduce time-averaged rotation braking. With these improvements to the triggering waveform, the frequency of the triggered ELMs was increased to over 60 Hz, reducing the average ELM size. The optimum frequency for attaining impurity control while minimizing energy confinement reduction was determined: fairly low frequency ELMs (20 Hz triggering) are sufficient to keep the total radiation fraction below 25% throughout the discharge and avoid radiative collapse, with little reduction in the plasma stored energy. When combined with improved particle fueling, the ELM-pacing technique has been successful in achieving stationary conditions in the line-averaged electron density and total radiated power.
Peeling mode relaxation ELM model
Gimblett, C. G.
2006-11-30
This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made.
Recent progress in the quantitative validation of JOREK simulations of ELMs in JET
NASA Astrophysics Data System (ADS)
Pamela, S. J. P.; Huijsmans, G. T. A.; Eich, T.; Saarelma, S.; Lupelli, I.; Maggi, C. F.; Giroud, C.; Chapman, I. T.; Smith, S. F.; Frassinetti, L.; Becoulet, M.; Hoelzl, M.; Orain, F.; Futatani, S.; Contributors, JET
2017-07-01
Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as inter-ELM and ELM divertor heat fluxes, in order to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from dedicated pedestal models like EPED, and from non-linear MHD codes like JOREK, for which systematic validation against current experiments is necessary. In this paper, we show progress in the quantitative validation of the JOREK code using JET simulations. Results analyse the impact of diamagnetic terms on the dynamics and size of the ELMs, and evidence is provided that the onset of type-I ELMs is not governed by linear MHD stability alone, but that a nonlinear threshold could be responsible for large MHD events at the plasma edge.
ELM-induced transient tungsten melting in the JET divertor
NASA Astrophysics Data System (ADS)
Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA
2015-02-01
from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed. These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
H-mode and ELM Characteristics at Ultralow Aspect Ratio in the Pegasus Experiment
NASA Astrophysics Data System (ADS)
Fonck, R. J.; Barr, J. L.; Bongard, M. W.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Thome, K. E.
2016-10-01
Operation at low BT and A < 1.3 allows access to the H-mode regime in the Pegasus experiment using only Ohmic heating. Modest plasma parameters in this regime permit detailed probe measurements of the edge pedestal region. H-mode plasmas have standard L-H transition phenomena: a drop in Dα radiation; formation of pressure and current pedestals; field-aligned filament ejection during ELMs; and a doubling of τE from H98 0.5 to 1 . The L-H power threshold PLH increases monotonically with ne, consistent with both the ITPA08 scaling, PITPA 08 , used for ITER and the theoretical FM3 power threshold model. Unlike at high A, PLH is comparable in limited and single-null diverted topologies at A 1.2 , consistent with FM3 predictions. PLH /PITPA 08 increases rapidly as A -> 1 , and is > 10 for A < 1.3 . Multiple- n modes are observed during ELMs, consistent with excitation of multiple peeling-ballooning modes. Small, Type-III-like ELMs occur at POH PLH with n <= 4 . Large, Type-I-like ELMs occur with POH >PLH and intermediate 5 < n < 15 . High-resolution spatiotemporal measurements of Jedge(R , t) across single ELMs show the nonlinear generation and expulsion of current-carrying filaments during the large ELM crash. Helical edge current injection appears to suppress small ELM activity. Work supported by US DOE Grant DE-FG02-96ER54375.
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2016-06-07
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.
Study of the spectral properties of ELM precursors by means of wavelets
NASA Astrophysics Data System (ADS)
Poli, F. M.; Sharapov, S. E.; Chapman, S. C.; Contributors, JET-EFDA
2008-09-01
The high confinement regime (H-mode) in tokamaks is accompanied by the occurrence of bursts of MHD activity at the plasma edge, so-called edge localized modes (ELMs), lasting less than 1 ms. These modes are often preceded by coherent oscillations in the magnetic field, the ELM precursors, whose mode numbers along the toroidal and the poloidal directions can be measured from the phase shift between Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few milliseconds, their toroidal mode number and their nonlinear evolution before the ELM crash cannot be studied reliably with standard techniques based on Fourier analysis, since averaging in time is implicit in the computation of the Fourier coefficients. This work demonstrates significant advantages in studying spectral features of the short-lived ELM precursors by using Morlet wavelets. It is shown that the wavelet analysis is suitable for the identification of the toroidal mode numbers of ELM precursors with the shortest lifetime, as well as for studying their nonlinear evolution with a time resolution comparable to the acquisition rate of the Mirnov coils.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Extinguishing ELMs in detached radiative divertor plasmas
NASA Astrophysics Data System (ADS)
Pigarov, Alexander; Krasheninnikov, Sergei; Rognlien, Thomas
2016-10-01
In order to avoid deleterious effects of ELMs on PFCs in next-step fusion devices it has been suggested to operate with small-sized ELMs naturally extinguishing in the divertor. Our modeling effort is focusing at extinguishing type-I ELMs: conditions for expelled plasma dissipation; efficiency of ELM power handling by detached radiative divertors; and the ELM impact on detachment state. Here time-dependent modeling of a sequence of many ELMs was performed with 2-D edge plasma transport code UEDGE-MB-W which incorporates the Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. Three cases were modeled, in which extinguishing ELMs are achieved due to: (i) intrinsic impurities via graphite sputtering, (ii) extrinsic impurity gas puff (Ne), and (iii) =(i) +(ii). For each case, we performed a series of UEDGE-MB-W runs scanning the deuterium and impurity inventories, pedestal losses and ELM frequency. Temporal variations of the degree of detachment, ionization front shape, recombination sink strength, radiated fraction, peak power loads, OSP, impurity charge states, and in/out asymmetries were analyzed. We discuss the onset of extinguishing ELMs, conditions for not burning through and enhanced plasma recombination as functions of scanned parameters. Efficiencies of intrinsic and extrinsic impurities in ELM extinguishing are compared.
Numerical Analysis of the Effects of Normalized Plasma Pressure on RMP ELM Suppression in DIII-D
Orlov, D. M.; Moyer, R.A.; Evans, T. E.; Mordijck, S.; Osborne, T. H.; Fenstermacher, M. E.; Snyder, P. B.; Unterberg, Ezekial A
2010-01-01
The effect of normalized plasma pressure as characterized by normalized pressure parameter (beta(N)) on the suppression of edge localized modes (ELMs) using resonant magnetic perturbations (RMPs) is studied in low-collisionality (nu* <= 0.2) H-mode plasmas with low-triangularity (
Dutch Elm Disease Control: Intensive Sanitation and Survey Economics
William N., Jr. Cannon; Jack H. Barger; David P. Worley
1977-01-01
Recent research has shown that prompt removal of diseased elms reduces the incidence of Dutch elm disease more than sanitation practice that allows diseased elms to remain standing into the dormant season. The key to prompt removal is repeated surveys to detect diseased elms as early as possible. Intensive sanitation can save more elms and cost less than the more...
HOW to Save Dutch Elm Diseased Trees by Pruning
J.R. Allison; G.F. Gregory
1979-01-01
Dutch elm disease (DED), caused by the fungus, Ceratocystis ulmi, is the most devastating shade tree disease in the United States. Healthy elms can become diseased by 1) elm bark beetles that carry the fungus from elm to elm, or 2) through root grafting with already infected trees. Along with wilt symptoms, streaking (sapwood discoloration), a characteristic internal...
Suppression of type-I ELMs with reduced RMP coil set on DIII-D
Orlov, Dmitriy M.; Moyer, Richard A.; Evans, Todd E.; ...
2016-02-19
Recent experiments on DIII-D have demonstrated that having a toroidally-monochromatic spectral content of edge-resonant magnetic perturbations (RMPs) is not a necessary condition for suppression of Edge Localized Modes (ELMs). Robust ELM suppression has been reproducibly obtained on DIII-D during experiments in which various non-axisymmetric coil loops were turned off pseudo-randomly producing a variety of n=1, n=2, and n=3 spectral contributions. It was shown that RMP ELM suppression could be achieved with as few as 5 out of 12 internal coil loops (I-coils) on DIII-D at similar coil currents and with good plasma confinement. Linear MHD plasma response (M3DC1, IPEC, MARS)more » and vacuum (SURFMN, TRIP3D) modeling have been performed in order to understand the effects of the perturbation spectrum on the plasma response and ELM suppression. The results suggest that reduction of the dominant n=3 perturbation field is compensated by increased n=2 field in the plasma that may lead to RMP ELM suppression at lower levels of n=3 perturbative magnetic flux from the I-coils. These results provide additional confidence that ITER may be capable of RMP ELM suppression in the event of multiple internal coil failures.« less
Suppression of type-I ELMs with reduced RMP coil set on DIII-D
Orlov, Dmitriy M.; Moyer, Richard A.; Evans, Todd E.; Paz-Soldan, Carlos; Ferraro, Nathaniel M.; Nazikian, Raffi; deGrassie, John S.; Grierson, Brian A.; Eldon, David; Fenstermacher, Max E.; King, J. D.; Logan, N. C.; Lanctot, M. J.; Maingi, R.; Snyder, P. B.; Strait, E. J.; Wingen, A.
2016-02-19
Recent experiments on DIII-D have demonstrated that having a toroidally-monochromatic spectral content of edge-resonant magnetic perturbations (RMPs) is not a necessary condition for suppression of Edge Localized Modes (ELMs). Robust ELM suppression has been reproducibly obtained on DIII-D during experiments in which various non-axisymmetric coil loops were turned off pseudo-randomly producing a variety of n=1, n=2, and n=3 spectral contributions. It was shown that RMP ELM suppression could be achieved with as few as 5 out of 12 internal coil loops (I-coils) on DIII-D at similar coil currents and with good plasma confinement. Linear MHD plasma response (M3DC1, IPEC, MARS) and vacuum (SURFMN, TRIP3D) modeling have been performed in order to understand the effects of the perturbation spectrum on the plasma response and ELM suppression. The results suggest that reduction of the dominant n=3 perturbation field is compensated by increased n=2 field in the plasma that may lead to RMP ELM suppression at lower levels of n=3 perturbative magnetic flux from the I-coils. These results provide additional confidence that ITER may be capable of RMP ELM suppression in the event of multiple internal coil failures.
Cai, Ya; Wang, Yan; Li, Yizhi; Wang, Xiaoshu; Xin, Xinquan; Liu, Caiming; Zheng, Hegen
2005-12-12
A new 3D polymeric inorganic cluster with Cu in mixed-valence states was synthesized by the solid-state reaction of (NH4)2WS4, S8, CuCl, and Et4NCl; S8 may be regarded as the oxidizing agent converting Cu(I) to Cu(II) and causing the polymerization of [WS4]2-. The third-order nonlinear optical (NLO) properties are determined, and the results show that the cluster exhibits both large NLO absorptive and strong refractive behaviors.
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-01-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007
Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-22
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
NASA Astrophysics Data System (ADS)
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
NASA Astrophysics Data System (ADS)
Pei, Du; Ye, Ke
2016-11-01
We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
ELM heat flux in the ITER divertor
Leonard, A.W.; Osborne, T.H.; Hermann, A.; Suttrop, W.; Itami, K.; Lingertat, J.; Loarte, A.
1998-07-01
Edge-Localized-Modes (ELMs) have the potential to produce unacceptable levels of erosion of the ITER divertor. Ablation of the carbon divertor target will occur if the surface temperature rises above about 2,500 C. Because a large number of ELMs, {ge}1000, are expected in each discharge it is important that the surface temperature rise due to an individual ELM remain below this threshold. Calculations that have been carried out for the ITER carbon divertor target indicate ablation will occur for ELM energy {ge}0.5MJ/m{sup 2} if it is deposited in 0.1 ms, or 1.2 MJ/m{sup 2} if the deposition time is 1.0 ms. Since {Delta}T{proportional_to}Q{Delta}t{sup {minus}1/2}, an ablation threshold can be estimated at Q{Delta}t{sup {minus}1/2}{approx}45 MJm{sup {minus}2} s{sup {minus}1/2} where Q is the divertor ELM energy density in J-m{sup {minus}2} and {Delta}t is the time in seconds for that deposition. If a significant fraction of ELMs exceed this threshold then an unacceptable level of erosion may take place. The ablation parameter in ITER can be determined by scaling four factors from present experiments: the ELM energy loss from the core plasma, the fraction of ELM energy deposited on the divertor target, the area of the ELM profile onto the target, and the time for the ELM deposition. ELM data from JET, ASDEX-Upgrade, JT-60U, DIII-D and Compass-D have been assembled by the ITER Divertor Modeling and Database expert group into a database for the purpose of predicting these factors for ELMs in the ITER divertor.
Digital holography and 3-D imaging.
Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai
2011-03-01
This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.
Static & Dynamic Response of 3D Solids
Lin, Jerry
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
LETTER: Toroidally asymmetric ELM precursors in TCV
NASA Astrophysics Data System (ADS)
Reimerdes, H.; Pochelon, A.; Suttrop, W.
1998-03-01
Coherent magnetic oscillations precede edge localized modes (ELMs) in TCV. The precursor has been detected prior to ELMs considered to be of type III and others previously referred to as TCV large ELMs. This permits the identification of both as type III ELMs according to the usual classification scheme. The strong localization of these precursors on the bad curvature side of the plasma and their medium toroidal mode numbers indicate their ballooning character. Unlike conventional MHD modes, these modes start toroidally localized and grow in amplitude and toroidal extent. When the precursor encompasses the whole toroidal circumference, the increased transport phase, as indicated by the characteristic Dα spike, begins.
Imaging divertor strike point splitting in RMP ELM suppression experiments
NASA Astrophysics Data System (ADS)
Moyer, R. A.; Bykov, I.; Orlov, D. M.; Lee, J. S.; Evans, T. E.; Nazikian, R.; Makowski, M.; Lasnier, C. S.; Wang, H.; Abrams, T.; Watkins, J. G.
2016-10-01
Fast visible imaging of the lower divertor has been implemented at DIII-D to study the structure and dynamics of lobes induced by 3D fields in RMP ELM suppression experiments. The sharpest imaging was obtained with spatially localized molecular D2 emission indicative of the D flux to the surface. Multiple D2 emission peaks are readily resolved during RMPs, in contrast to the heat flux profile (from IR), which often shows little structure. The brightest D2 lobe is often farthest from the primary inner strike point (ISP). Mitigated ELMs perturb the position and intensity of the ISP lobes and spread the outer strike point emission into the far SOL, where it may be caused by ELM filament propagation. RMP current ramps affect the lobe locations and separations. Implications of the lobe dynamics for plasma response is being studied. Work supported by U.S. DOE under Grants DE-FG02-07ER54917 and DE-FG02-05ER54809, and Contracts DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-AC05-06OR23100 and DE-AC02-09CH11466.
Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?
John Moser; Heino Konrad; Stacy Blomquist; Thomas Kirisits
2010-01-01
Dutch elm disease (DED) is a destructive vascular wilt disease of elm (Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this...
Elm yellows: a widespread and overlooked killer of elm trees across the United States
Charles E. Flower; Nancy Hayes-Plazolles; Christina Rosa; James M. Slavicek
2017-01-01
The elm yellows phytoplasma (Candidatus Phytoplasma ulmi) is a geographically widespread pathogen that poses a significant threat to most native wild elms in North America (Ulmus americana, U. rubra, U. alata, U. crassifolia, and U. serotina) (MÃ¤urer et al. 1993), as well as to the success of American elm...
Response of smaller European elm bark beetles to pruning wounds on American elm
Jack H. Barger; William N. Cannon
1987-01-01
From 1982 to 1984, inflight smaller European elm bark beetles, Scolytus multistriatus, were captured on American elms, Ulmus americana, that were therapeutically pruned for Dutch elm disease control. Pruning wounds were treated with wound dressing or left untreated to determine effects of the treatments on beetle attraction....
Alberto Santini; Francesco Pecori; Alessia L. Pepori; Luisa Ghelardini
2012-01-01
The elm breeding program carried out in Italy at the Institute of Plant Protection - Consiglio Nazionale delle Ricercje (CNR) during the last 40 years aimed to develop Dutch elm disease (DED)-resistant elm selections specific to the Mediterranean environment. The need for genotypes adapted to Mediterranean conditions was evident from the poor performance of the Dutch...
Christina Rosa; Paolo Margaria; Scott M. Geib; Erin D. Scully
2017-01-01
In North America, American elms were historically present throughout the northeastern United States and southeastern Canada. The longevity of these trees, their resistance to the harsh urban environment, and their aesthetics led to their wide use in landscaping and streetscaping over several decades. American elms were one of most cultivated plants in the United States...
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Astrophysics Data System (ADS)
Colombeau, M.
2015-06-01
We construct a family of classical continuous functions S(x, y, z, t, ɛ) which tend to satisfy asymptotically the system of selfgravitating pressureless fluids when ɛ → 0. This produces a weak asymptotic method in the sense of Danilov, Omel'yanov, and Shelkovich. The construction is based on a family of two ordinary differential equations (ODEs) (one for the continuity equation and one for the Euler equation) in classical Banach spaces of continuous functions. This construction applies to 3-D self-gravitating pressureless fluids even in presence of point and string concentrations of matter. The method is constructive which permits to check numerically from standard methods for ODEs that these functions tend to the known or admitted solutions when the latter exist. As a direct application, we present a simulation of formation and evolution of a planetary system from a rotating disk of dust: a theorem in this paper asserts that the observed results are a depiction of functions that satisfy the system with arbitrary precision.
NASA Astrophysics Data System (ADS)
Terletska, Kateryna; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae
2013-04-01
In the freshwater lakes in moderate latitudes stratification occurs as a result of the seasonal warming of the surface water layer. Than the intense wind surges (usually in autumn) tilt the surface and generate long basin-scale low-frequency standing internal waves (seiches). Depending on the initial interface tilt and stratification wide spectra of possible flow regimes can be observed [1]-[2].They varied from small amplitude symmetric seiches to large amplitude nonlinear waves.Nonlinearity leads to an asymmetry of internal waves and appearance of the surge or bore and further disintegration of it on a sequence of solitary waves. In present study degeneration of the strongly nonlinear internal seiches in elongated lakes with a concave "spoon-like" topography is investigated.Two different three-dimensional non-hydrostatic free-surface numerical models are used to investigate degeneration of large internal waves and its subsequent interaction with the concave lake slope. One of this model is non-hydrostatic model [3] and the other is a well-known MIT model. At first we consider idealized elongated elliptic-shape lake with the dimension of 5 km X 1 km with the maximal depth 30 m. The stratification in lake is assumed to be given in a form of the tangent function with a density difference between upper and lower layers 2 kgm-3 . It is assumed that motion in such lake is initiated by inclination of thermocline on a certain angle. Than lake adjusts to return to its original state producing internal seiches which begin interacting with a bottom topography. The process of degeneration of internal seiches in the lake with concave ends consist of chain of elementary processes: 1) steeping of long basin scale large amplitude wave, that evolve into internal surge, 2) surge interact with concave lake ends that leads the concentration of the flow and formation of down slope bottom jet along the lake axis, 3) due to cumulative effect local velocity in the jet accelerates up to
NASA Astrophysics Data System (ADS)
Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark
2017-04-01
We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S^{3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S_{b}^{3}. This enables us to see clearly, at the level of partition function, to what extent G_{C} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
2004-08-20
This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.
2015-01-01
Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.
Modelling of edge localised modes and edge localised mode control [Modelling of ELMs and ELM control
Huijsmans, G. T. A.; Chang, C. S.; Ferraro, N.; ...
2015-02-07
Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. In order to avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Thus, the extrapolation of the ELM properties andmore » the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. Here, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues.« less
Modelling of edge localised modes and edge localised mode control [Modelling of ELMs and ELM control
Huijsmans, G. T. A.; Chang, C. S.; Ferraro, N.; Sugiyama, L.; Waelbroeck, F.; Xu, X. Q.; Loarte, A.; Futatani, S.
2015-02-07
Edge Localised Modes (ELMs) in ITER Q = 10 H-mode plasmas are likely to lead to large transient heat loads to the divertor. In order to avoid an ELM induced reduction of the divertor lifetime, the large ELM energy losses need to be controlled. In ITER, ELM control is foreseen using magnetic field perturbations created by in-vessel coils and the injection of small D2 pellets. ITER plasmas are characterised by low collisionality at a high density (high fraction of the Greenwald density limit). These parameters cannot simultaneously be achieved in current experiments. Thus, the extrapolation of the ELM properties and the requirements for ELM control in ITER relies on the development of validated physics models and numerical simulations. Here, we describe the modelling of ELMs and ELM control methods in ITER. The aim of this paper is not a complete review on the subject of ELM and ELM control modelling but rather to describe the current status and discuss open issues.
3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS
Tremblay, P.-E.; Gianninas, A.; Kilic, M.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Hermes, J. J.
2015-08-20
We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.
HOW to Identify and Manage Dutch Elm Disease
Linda Haugen
1998-01-01
At one time, the American elm was considered to be an ideal street tree because it was graceful, long-lived, fast growing, and tolerant of compacted soils and air pollution. Then Dutch elm disease (DED) was introduced and began devastating the elm population. Estimates of DED losses of elm in communities and woodlands across the U.S. are staggering (figure 1). Because...
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
NIKE3D96. Static & Dynamic Response of 3D Solids
Maker, B.; Hallquist, J.O.; Ferencz, R.M.
1991-02-01
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
2011-01-01
In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)
1997-07-13
Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.
2015-09-16
NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.
Spong, Donald A
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
Elm-ash-cottonwood forest type bibliography.
Stephen R Shifley; Kenneth M. Brown
1978-01-01
Lists 679 references, arranged by author's names, on the biology, ecology, silviculture and mensuration of the elm-ash-cottonwood type and its component species. Indices for species, subjects, and second authors are appended.
USDA-ARS?s Scientific Manuscript database
Ulmus pumila (Siberian elm) is an invasive elm species, non-native to the United States, which hybridizes with Ulmus rubra (red elm), a U.S. native. While Siberian elm is highly tolerant to Dutch elm disease (DED), red elm populations in North America have been decimated by DED. In order to study ...
Explicit 3-D Hydrodynamic FEM Program
2000-11-07
DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
Characteristics of ELM precursors on NSTX
NASA Astrophysics Data System (ADS)
Ridha, Philipp; Menard, Jonathan; Stutman, Dan
2005-10-01
The precursor characteristics of Edge Localized Modes (ELMs) on NSTX were analyzed with Mirnov and USXR diagnostics in terms of toroidal mode number, growth rate, oscillation frequency, growth times before crash, and edge localization. Mode identification is especially difficult for most ELMs studied, as the precursor growth rates are often comparable to the oscillation period. Details of the mode identification process will be described. The Mirnov diagnostic does not tell whether the ELM is edge localized or not, thus the USXR array was used to discriminate between the edge and core plasma using an analysis of the X-ray emission with different metallic filters (Ti 0.4μm - E > 100eV, Be 10μm - E > 500eV, Be 100 μm - E > 1.2keV). Using the titanium filter, a strong correlation between Mirnov and USXR data during an ELM crash was observed. Analysis of the USXR data using a constrained tomographic inversion shows relative USXR fluctuation amplitudes from ELM precursors in the range of 1% to 5%. This analysis combined with an edge displacement model provides an estimate of the transient boundary displacements for typical ELMs of < 5 mm.
Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks
NASA Astrophysics Data System (ADS)
Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.
2015-11-01
The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C_{T}. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Furlow, Bryant
2017-05-01
Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.
1993-01-01
Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.
Identification of nonlinear system using extreme learning machine based Hammerstein model
NASA Astrophysics Data System (ADS)
Tang, Yinggan; Li, Zhonghui; Guan, Xinping
2014-09-01
In this paper, a new method for nonlinear system identification via extreme learning machine neural network based Hammerstein model (ELM-Hammerstein) is proposed. The ELM-Hammerstein model consists of static ELM neural network followed by a linear dynamic subsystem. The identification of nonlinear system is achieved by determining the structure of ELM-Hammerstein model and estimating its parameters. Lipschitz quotient criterion is adopted to determine the structure of ELM-Hammerstein model from input-output data. A generalized ELM algorithm is proposed to estimate the parameters of ELM-Hammerstein model, where the parameters of linear dynamic part and the output weights of ELM neural network are estimated simultaneously. The proposed method can obtain more accurate identification results with less computation complexity. Three simulation examples demonstrate its effectiveness.
NASA Astrophysics Data System (ADS)
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
American elm clones of importance in Dutch elm disease tolerance studies
Linda M. Haugen; Susan E. Bentz
2017-01-01
We present the background and characteristics of American elm clones that are commercially available or of interest in research on Dutch elm disease (DED) tolerance in the United States. The characteristics of interest include origin, ploidy level, whether available in nursery trade, evidence of DED tolerance, and other comments. The list includes 10 named commercially...
James M. Slavicek; Kathleen S. Knight
2012-01-01
The goal of our research and development efforts is to generate new and/or improved selections of the American elm (Ulmus americana L.) with tolerance/resistance to Dutch elm disease (DED). The approaches we are taking for this effort include: 1) controlled breeding using known DED -tolerant selections, 2) controlled breeding using DED-tolerant...
Elm leaf beetle performance on ozone-fumigated elm. Forest Service research paper (Final)
Barger, J.H.; Hall, R.W.; Townsend, A.M.
1992-01-01
Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhalta) luteola (Muller), to determine host suitability for beetle fecundity and survivorship. ELB females fed ozone-fumigated leaves laid significantly fewer eggs than females fed CFA-fumigated leaves. Leaf nitrogen or water content was unaffected. Hybrid '970' (1988) was fumigated with CFA or with ozone concentrations to determine effects on ELB fecundity, leaf consumption, and survivorship. Significantly fewer eggs were laid at the higher concentration of ozone. Because higher levels of ozone are found in urban areas and because municipalities often replace American elms, Ulmus americana L., with Dutch elm disease-resistant elm hybrids that are susceptible to ELB defoliation, it is important to explore the relationships between ozone sensitivity of elm and susceptibility to ELB herbivory before recommending replacement use of these elms to municipal arborists. The study was conducted to determine whether ozone pollution influences host quality of elm for ELB and how ELB fecundity, leaf consumption rate, and survivorship are affected.
Using Dutch elm disease-tolerant elm to restore floodplains impacted by emerald ash borer
Kathleen S. Knight; James M. Slavicek; Rachel Kappler; Elizabeth Pisarczyk; Bernadette Wiggin; Karen. Menard
2012-01-01
American elm (Ulmus Americana L.) was a dominant species in floodplains and swamps of the Midwest before Dutch elm disease (DED) (Ophiostoma ulmi and O.novo-ulmi) reduced its populations. In many areas, ash (Fraxinus spp.) became dominant in these ecosystems. Emerald ash borer (EAB) (...
The impact of ELMs on the ITER divertor
Leonard, A.W.; Osborne, T.H.; Suttrop, W.; Hermann, A.; Itami, K.; Lingertat, J.; Loarte, A.
1998-07-01
Edge-Localized-Modes (ELMs) are expected to present a significant transient flux of energy and particles to the ITER divertor. The threshold for ablation of the graphite target will be reached if the ELM transient exceeds Q/t{sup 1/2} {approximately} 45 MJ-m{sup {minus}2}-s{sup {minus}1/2} where Q is the ELM deposition energy density and t is the ELM deposition time. The ablation parameter in ITER can be determined by scaling four factors from present experiments: the ELM energy loss from the core plasma, the fraction of ELM energy deposited on the divertor target, the area of the ELM profile onto the target, and finally the time for the ELM deposition. Review of the ELM energy loss of Type 1 ELM data suggests an ITER ELM energy loss of 2--6% of the stored energy or 25--80 MJ. The fraction of heating power crossing the separatrix due to ELMs is nearly constant (20--40%) resulting in an inverse relationship between ELM amplitude and frequency. Measurements on DIII-D and ASDEX-Upgrade indicate that 50--80% of the ELM energy is deposited on the target. There is currently no evidence for a large fraction of the ELM energy being dissipated through radiation. Profiles of the ELM heat flux are typically 1--2 times the width of steady heat flux between ELMs, with the ELM amplitude usually larger on the inboard target. The ELM deposition time varies from about 0.1 ms in JET to as high as 1.0 ms in ASDEX-Upgrade and DIII-D. The ELM deposition time for ITER will depend upon the level of conductive versus convective transport determined by the ratio of energy to particles released by the ELM. Preliminary analysis suggests that large Type 1 ELMs for low recycling H-mode may exceed the ablation parameter by a factor of 5. Promising regimes with smaller ELMS have been found at other edge operational regimes, including high density with gas puffing, use of rf heating and operation with Type 3 ELMs.
Pacing control of sawtooth and ELM oscillations in tokamaks
NASA Astrophysics Data System (ADS)
Lauret, M.; Lennholm, M.; de Baar, M. R.; Heemels, W. P. M. H.
2016-12-01
In tokamak plasmas, the sawtooth oscillation (ST) and the edge-localized-mode (ELM) are characterized by a phase of a slow evolution of the plasma conditions, followed by a crash-like instability that resets the plasma conditions when certain criteria of the plasma conditions are satisfied. Typically, the crashes induce losses of heat and energetic particles and may also trigger secondary instabilities. As the amplitude of the crash-like perturbation scales with the period between two crashes, period control of these oscillations is important for operations of large fusion facilities such as ITER and DEMO. In several present-day experimental facilities, a pacing control algorithm has been successfully applied for controlling the sawtooth period and the ELM period. However, a formal analysis has been lacking so far, which therefore forms the objective of the present paper. For this purpose, a reset model for the sawtooth period is introduced and, after a proper transformation a nonlinear discrete-time system is obtained, which is used for the formal analysis of pacing control. By representing the model in a Lur’e (or Lurie) form, we can derive conditions under which global asymptotic stability of the closed-loop (pacing) period control system is guaranteed. Moreover, we will show that the controller exhibits inherent robustness for model uncertainties. We envision that the analytical results in the area of pacing control of the sawtooth are also applicable to pacing period control of the ELM oscillation period. The presented reset model also explains why in recent experiments the sawtooth period locks with a periodically modulated power.
NASA Astrophysics Data System (ADS)
Thornton, A. J.; Allan, S. Y.; Dudson, B. D.; Elmore, S. D.; Fishpool, G. M.; Harrison, J. R.; Kirk, A.; The MAST Team; The EUROfusion MST1 Team
2017-01-01
The ELM wetted area is a key factor in the peak power load during an ELM, as it sets the region over which the ELM energy is deposited. The deposited heat flux at the target is seen to have striations in the profiles that are generated by the arrival of filaments ejected from the confined plasma. The effect of the filaments arriving at the target on the ELM wetted area, and the relation to the midplane mode number is investigated in this paper using infrared (IR) thermography and high speed visible imaging (>10 kHz). Type I ELMs are analysed, as these have the largest heat fluxes and are observed to have toroidal mode numbers of between 5 and 15. The IR profiles during the ELMs show clear filamentary structures that evolve during the ELM cycle. An increasing number of striations at the target is seen to correspond to an increase in the wetted area. Analysis shows that the ratio of the ELM wetted area to the inter-ELM wetted area, a key parameter for ITER, for the type I ELMs is between 3 and 6 for lower single null plasmas and varies with the ELM midplane mode number, as determined by visible measurements. Monte-Carlo modelling of the ELMs is used to understand the variation seen in the wetted area and the effect of an increased mode number; the modelling replicates the trends seen in the experimental data and supports the observation of increased toroidal mode number generating larger target ELM wetted areas. ITER is thought to be peeling unstable which would imply a lower ELM mode number compared to MAST which is peeling-ballooning unstable. The results of this analysis suggest that the lower n peeling unstable ELMs expected for ITER will have smaller wetted areas than peeling-ballooning unstable ELMs. A smaller wetted area will increase the level of ELM control required, therefore a key prediction required for ITER is the expected ELM mode number.
NASA Astrophysics Data System (ADS)
Connors, M. G.; Schofield, I. S.
2012-12-01
Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.
Lovejoy, S.C.; Whirley, R.G.
1990-10-10
This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.
NASA Astrophysics Data System (ADS)
Bhardwaj, Lakshya
2017-05-01
This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.
Lin, Hua; Chen, Hong; Zheng, Yu-Jun; Yu, Ju-Song; Wu, Xin-Tao; Wu, Li-Ming
2017-06-28
Mid- and far-infrared (MFIR) nonlinear optical (NLO) crystals with excellent performances are critical to laser frequency-conversion technology. However, the current commercial MFIR NLO crystals, including AgGaS2 (AGS), AgGaSe2 and ZnGeP2, suffer from certain intrinsic drawbacks and cannot achieve a good balance between large second-harmonic generation (SHG) efficiency and high laser-induced damage thresholds (LIDTs). Herein, we report two new phase-matchable MFIR NLO chalcogenides, specifically RbXSn2Se6 (X = Ga, In), which were successfully synthesized by high-temperature solid-state reactions. The remarkable structural feature of these materials was their 3D diamond-like framework (DLF) stacked by M3Se9 (M = X/Sn) asymmetric building units of vertex-sharing MSe4 tetrahedra along the c axis. Significantly, both of the materials showed the excellent NLO performances with the desired balance between their large SHG efficiencies (4.2 and 4.8 × benchmark AGS) and large LIDTs (8.9 and 8.1 × benchmark AGS), demonstrating that the title compounds meet the crucial conditions as promising MFIR NLO candidates. Furthermore, the crystal structures, synthesis, and theoretical analysis, as well as optical properties are presented herein.
Quantum dot based 3D photonic devices
NASA Astrophysics Data System (ADS)
Sakellari, Ioanna; Kabouraki, Elmina; Gray, David; Vamvakaki, Maria; Farsari, Maria
2017-02-01
In this work, we present our most recent results on the fabrication of 3D high-resolution woodpile photonic crystals containing an organic-inorganic silicon-zirconium (Si-Zr) composite and cadmium sulfide (CdS) quantum dots (QDs). The structures are fabricated by combining 3D Direct Laser Writing by two-photon absorption and in-situ synthesis of CdS nanoparticles inside the 3D photonic matrix. The CdS-Zr-Si composite material exhibits a high nonlinear refractive index value measured by means of Z-scan method. 3D woodpile photonic structures with varying inlayer periodicity from 600nm to 500nm show clear photonic stop bands in the wavelength region between 1000nm to 450nm.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Xu, Xueqiao; Yun, Gunsu S.; Lee, Jaehyun; Park, Hyeon K.
2012-10-01
The BOUT++ simulations [1] of edge localized modes (ELMs) have been quantitatively compared with high resolution 2D images of ELMs observed in typical KSTAR H-mode plasmas through an electron cyclotron emission imaging (ECEI) system [2]. The poloidal structure of the most unstable mode predicted by the linear 3-field simulation qualitatively matches with the observed ELM structure. As the next step, simulation studies for the nonlinear aspects of the ELM dynamics are planned; in particular, the transient mode structure change prior to the ELM crash [2] will be investigated. In addition, the parametric dependence of the observed ELM suppression/mitigation process during resonant magnetic perturbation (RMP) [2, 3] and supersonic molecular beam injection (SMBI) experiments will be studied using 5-field BOUT++ simulation.[4pt] [1] X.Q. Xu et al., PRL, 105 (2010).[0pt] [2] G.S. Yun et al., Phys. Plasmas, 19 (2012).[0pt] [3] Y.M. Jeon et al., accepted for publication in PRL.
NASA Astrophysics Data System (ADS)
Liu, Yueqiang
2016-10-01
The type-I edge localized mode (ELM), bursting at low frequency and with large amplitude, can channel a substantial amount of the plasma thermal energy into the surrounding plasma-facing components in tokamak devices operating at the high-confinement mode, potentially causing severe material damages. Learning effective ways of controlling this instability is thus an urgent issue in fusion research, in particular in view of the next generation large devices such as ITER and DEMO. Among other means, externally applied, three-dimensional resonant magnetic perturbation (RMP) fields have been experimentally demonstrated to be successful in mitigating or suppressing the type-I ELM, in multiple existing devices. In this work, we shall report results of a comparative study of ELM control using RMPs. Comparison is made between the modelled plasma response to the 3D external fields and the observed change of the ELM behaviour on multiple devices, including MAST, ASDEX Upgrade, EAST, DIII-D, JET, and KSTAR. We show that toroidal modelling of the plasma response, based on linear and quasi-linear magnetohydrodynamic (MHD) models, provides essential insights that are useful in interpreting and guiding the ELM control experiments. In particular, linear toroidal modelling results, using the MARS-F code, reveal the crucial role of the edge localized peeling-tearing mode response during ELM mitigation/suppression on all these devices. Such response often leads to strong peaking of the plasma surface displacement near the region of weak equilibrium poloidal field (e.g. the X-point), and this provides an alternative practical criterion for ELM control, as opposed to the vacuum field based Chirikov criteria. Quasi-linear modelling using MARS-Q provides quantitative interpretation of the side effects due to the ELM control coils, on the plasma toroidal momentum and particle confinements. The particular role of the momentum and particle fluxes, associated with the neoclassical toroidal
The global build-up to intrinsic ELM bursts and comparison with pellet triggered ELMs seen in JET
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Dendy, R. O.; Lang, P. T.; Watkins, N. W.; Calderon, F. A.; Romanelli, M.; Todd, T. N.; Contributors, JET
2017-02-01
We focus on JET plasmas in which ELMs are triggered by pellets in the presence of ELMs which occur naturally. We perform direct time domain analysis of signals from fast radial field coils and toroidal full flux azimuthal loops. These toroidally integrating signals provide simultaneous high time resolution measurements of global plasma dynamics and its coupling to the control system. We examine the time dynamics of these signals in plasmas where pellet injection is used to trigger ELMs in the presence of naturally occurring ELMs. Pellets whose size and speed are intended to provide maximum local perturbation for ELM triggering are launched at pre-programmed times, without correlation to the occurrence times of intrinsic ELMs. Pellet rates were sufficiently low to prevent sustained changes of the underlying plasma conditions and natural ELM behaviour. We find a global signature of the build-up to natural ELMs in the temporal analytic phase of both the full flux loops and fast radial field coil signals. Before a natural ELM, the signal phases align to the same value on a ˜ 2-5 ms timescale. This global build up to a natural ELM occurs whilst the amplitude of the full flux loop and fast radial field coil signals are at their background value: it precedes the response seen in these signals to the onset of ELMing. In contrast these signals do not clearly phase align before the ELM for ELMs which are the first to occur following pellet injection. This provides a direct test that can distinguish when an ELM is triggered by a pellet as opposed to occurring naturally. It further supports the idea [1-4] of a global build up phase that precedes natural ELMs; pellets can trigger ELMs even when the signal phase is at a value when a natural ELM is unlikely to occur.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Technical Reports Server (NTRS)
1997-01-01
The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.
The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
NASA Astrophysics Data System (ADS)
Yamasaki, Tadashi; Houseman, Gregory; Hamling, Ian; Postek, Elek
2010-05-01
We have developed a new parallelized 3-D numerical code, OREGANO_VE, for the solution of the general visco-elastic problem in a rectangular block domain. The mechanical equilibrium equation is solved using the finite element method for a (non-)linear Maxwell visco-elastic rheology. Time-dependent displacement and/or traction boundary conditions can be applied. Matrix assembly is based on a tetrahedral element defined by 4 vertex nodes and 6 nodes located at the midpoints of the edges, and within which displacement is described by a quadratic interpolation function. For evaluating viscoelastic relaxation, an explicit time-stepping algorithm (Zienkiewicz and Cormeau, Int. J. Num. Meth. Eng., 8, 821-845, 1974) is employed. We test the accurate implementation of the OREGANO_VE by comparing numerical and analytic (or semi-analytic half-space) solutions to different problems in a range of applications: (1) equilibration of stress in a constant density layer after gravity is switched on at t = 0 tests the implementation of spatially variable viscosity and non-Newtonian viscosity; (2) displacement of the welded interface between two blocks of differing viscosity tests the implementation of viscosity discontinuities, (3) displacement of the upper surface of a layer under applied normal load tests the implementation of time-dependent surface tractions (4) visco-elastic response to dyke intrusion (compared with the solution in a half-space) tests the implementation of all aspects. In each case, the accuracy of the code is validated subject to use of a sufficiently small time step, providing assurance that the OREGANO_VE code can be applied to a range of visco-elastic relaxation processes in three dimensions, including post-seismic deformation and post-glacial uplift. The OREGANO_VE code includes a capability for representation of prescribed fault slip on an internal fault. The surface displacement associated with large earthquakes can be detected by some geodetic observations
ELM-induced W sputtering sources in JET
NASA Astrophysics Data System (ADS)
Brezinsek, S.; den Harder, N.; Guillemaut, C.
2015-11-01
JET equipped with Be wall and W divertor showed after one year of operation intact W surfaces at the target plates. Eroded W from both divertor legs contributes to the total W source and content in the plasma. Detailed analysis of the intra-ELM and inter-ELM W source in H-mode discharges has been carried out using spectroscopy of W, D and Be emission and, independently, using ECE and LP to determine respectively the ion impact energies and fluxes to the target plate. The inter-ELM W source can be eliminated in detached conditions due to impact energies below the sputtering threshold, leaving the intra-ELM source to be the dominant one (80%). Comparison between inner and outer divertor showed that both sources are comparable in the intra-ELM phase. Dedicated composition analysis reveals that sputtering by Be ions can account for the residual inter-ELM source, but cannot explain the intra-ELM source due to the low Be concentration in the plasma (1%). D + with energies above 1keV dominate the intra-ELM W sputtering whereas in the inter-ELM phase energies of D + are below the threshold. These energetic ions are transported from the pedestal region to the target plate during ELM excursion. The W source and content as function of the ELM frequency and ion impact energy has been studied for a set of plasmas showing initially a linear increase before decoupling due to ELM-flushing of W from the confined region sets in at about 40Hz. The range of ELM frequencies in JET covers the frequencies predicted for the ITER H-mode baseline scenarios with ELM pacing and detached inter-ELM phase. The W source in ITER will be determined by the intra-ELM phase.
1. EXTERIOR VIEW OF ELM CITY PLANT (A. FRANCIS WALKER, ...
1. EXTERIOR VIEW OF ELM CITY PLANT (A. FRANCIS WALKER, 1905-07) FROM SECOND AVENUE ON OPPOSITE SIDE OF ENTRANCE. THIS STRUCTURE WAS ORIGINALLY BUILT AS THE ELM CITY COTTON MILL OF CALLAWAY MILLS. NOTE RESERVOIR IN FOREGROUND. THIS PHOTOGRAPH IS THE LEFT SIDE OF A PANORAMA VIEW THAT INCLUDES HAER Nos. GA-128-2 AND GA-128-3. - Elm City Cotton Mill, 1000 Elm Street, La Grange, Troup County, GA
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
3. RIGHT SIDE OF PANORAMA VIEW OF REAR OF ELM ...
3. RIGHT SIDE OF PANORAMA VIEW OF REAR OF ELM CITY PLANT FROM SECOND AVENUE. NOTE BOILER STACK ON LEFT. THE FULLER E. CALLAWAY MEMORIAL CLOCK TOWER IS THE POINTED STRUCTURE IN THE DISTANCE TO THE RIGHT OF THE TELEPHONE POLE. - Elm City Cotton Mill, 1000 Elm Street, La Grange, Troup County, GA
Establishment and characterization of American elm cell suspension cultures
Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy
2000-01-01
Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...
2. CENTER PORTION OF PANORAMA VIEW OF REAR OF ELM ...
2. CENTER PORTION OF PANORAMA VIEW OF REAR OF ELM CITY PLANT FROM SECOND AVENUE. NOTE ORIGINAL WATER TANK TOWER IN CENTER AND NEWER ADDITIONS TO THIS STILL OPERATIONAL TEXTILE MILL. - Elm City Cotton Mill, 1000 Elm Street, La Grange, Troup County, GA
Antibiotic Injections Control Elm Phloem Necrosis in the Urban Ecosystem
T. H. Filer
1976-01-01
When nine American and cedar elms showing symptoms of elm phloem necrosis were given repeated injections of tetracycline antibiotics for several years, all treated trees recovered and appeared healthy by 1976. All but one of the untreated checks died. Of 10 severely infected American elms treated only during the summer of 1972, seven died and the other three showed...
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U
NASA Astrophysics Data System (ADS)
Oyama, N.; Sakamoto, Y.; Isayama, A.; Takechi, M.; Gohil, P.; Lao, L. L.; Snyder, P. B.; Fujita, T.; Ide, S.; Kamada, Y.; Miura, Y.; Oikawa, T.; Suzuki, T.; Takenaga, H.; Toi, K.; JT-60 Team
2005-08-01
The energy loss for grassy edge localized modes (ELMs) has been studied to investigate the applicability of the grassy ELM regime to ITER. The grassy ELM regime is characterized by high frequency periodic collapses of 800-1500 Hz, which is ~15 times faster than that for type I ELMs. The divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by a narrower radial extent of the collapse of the temperature pedestal. The different radial extent between type I ELMs and grassy ELMs agrees qualitatively with the different radial distribution of the eigenfunctions as determined from ideal MHD stability analysis. The dominant ELM energy loss for grassy ELMs appears to be caused by temperature reduction, and its ratio to the pedestal stored energy was 0.4-1%. This ratio is lower by a factor of about 10 than that for type I ELMs, which typically have between 2-10% fractional loss of the pedestal energy. A systematic study of the effects of counter (CTR) plasma rotation on the ELM characteristics has been performed using a combination of tangential and perpendicular neutral beam injections (NBIs) in JT-60U. In the high plasma triangularity (δ) regime, ELM characteristics (e.g. amplitude, frequency and type) can be changed from type I ELMs to high frequency grassy ELMs as the CTR plasma rotation is increased. On the other hand, in the low δ regime, complete ELM suppression (QH-mode) can be sustained for long periods up to 3.4 s (~18τE or energy confinement times), when the plasma position in terms of the clearance between the first wall and the plasma separatrix is optimized during the application of CTR-NBIs. In JT-60U, a transient QH phase was also observed during the CO-NBI phase with almost no net toroidal rotation at the plasma edge.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Superplastic forming using NIKE3D
Puso, M.
1996-12-04
The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.
C.C. Pinchot; C.E. Flower; K.S. Knight; C. Marks; R. Minocha; D. Lesser; K. Woeste; P.G. Schaberg; B. Baldwin; D.M. Delatte; T.D. Fox; N. Hayes-Plazolles; B. Held; K. Lehtoma; S. Long; S. Mattix; A. Sipes; J.M. Slavicek
2017-01-01
The goal of our research and development efforts is to restore American elm (Ulmus americana) as a species in both natural and urban landscapes. Accomplishing this goal requires identification/generation of additional American elm cultivars that are tolerant to Dutch elm disease (DED) caused by Ophiostoma ulmi and O. novo-ulmi, and development of methods to reintroduce...
USDA-ARS?s Scientific Manuscript database
In response to the first Dutch elm disease (DED) pandemic, Siberian elm, Ulmus pumila, was planted to replace the native elm, U. minor, in Italy. The potential for hybridization between these two species is high and repeated hybridization could result in the genetic swamping of the native species an...
Nonlinear magnetohydrodynamics of edge localized mode precursors
NASA Astrophysics Data System (ADS)
Guo, Z. B.; Wang, Lu; Wang, X. G.
2015-02-01
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ωpr e˜x1 /3ξ̂ψ,i n 2 /3n , with x position in radial direction, ξ̂ ψ,i n strength of initial perturbation, and n toroidal mode number.
The banded elm bark beetle: A new threat to elms in North America
Jose F. Negron; Jeffrey J. Witcosky; Robert J. Cain; James R. LaBonte; Donald A. Duerr; Sally J. McElwey; Jana C. Lee; Steven J. Seybold
2005-01-01
An exotic bark beetle from Asia, the banded elm bark beetle, Scolytus schevyrewi, has been discovered in 21 states of the United States. Although its point of entry is not known, a survey of museum specimens suggests that it has been in the US for at least 10 years. It is most abundant in western states, attacks primarily American and Siberian elms, and carries spores...
The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak
NASA Astrophysics Data System (ADS)
Fu, Chao; Zhong, Fangchuan; Hu, Liqun; Yang, Jianhua; Yang, Zhendong; Gan, Kaifu; Zhang, Bin; East Team
2016-09-01
A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos. supported by National Natural Science Foundation of China (No. 11275047), the National Magnetic Confinement Fusion Science Program of China (No. 2013GB102000)
ELM experimental study on the EAST Tokamak
NASA Astrophysics Data System (ADS)
Liu, Zixi; Gao, Xiang; Xu, Xueqiao; Li, Jiangang; EAST Team
2013-10-01
Atypical Type III ELM is observed on EAST tokamak. This type of ELM has MHD precursor and high collisionality at the edge, and also the threshold power is close to the scaling law. But the frequency of the ELM does not decrease with the injected power. Power threshold is lower with the molybdenum wall in double null (DN) on EAST. Considering the effects of the plasma surface (S) to the threshold power, Double Null has the lowest power threshold. Better energy confinement has been observed in DN compared to Single-null (SN) at same power loss. But with the same power loss, Upper Single Null (USN) with the grad-B drift pointing backwards the active X-point (favorable direction) on EAST has the lower energy confinement time than Lower Single Null (LSN). Low Hybrid Wave (LHW) can mitigate ELMs. The power deposition should be near the edge in the H-mode phase. Not only the LHW decreases the max gradient of the density in the pedestal region, but also brings the density oscillations. Low X-point configurations in Lower single null have a lower power threshold. The low X-point discharges on EAST is closer to the DN. Approaching to the DN configuration should be the reason of the lower power threshold caused by the lower X-point on EAST.
Dutch elm disease control: performance and costs
William N., Jr. Cannon; David P. Worley
1980-01-01
Municipal programs to suppress Dutch elm disease have had highly variable results. Performance as measured by tree mortality was unrelated to control strategies. Costs for control programs were 37 to 76 percent less than costs without control programs in the 15-year time-span of the study. Only those municipalities that conducted a high-performance program could be...
Dutch elm disease control: performance and costs
William N., Jr. Cannon; David P. Worley
1976-01-01
Municipal programs to suppress Dutch elm disease have had highly variable results. Performance as measured by tree mortality was unrelated to control strategies. Costs for control programs were 37 to 76 percent less than costs without control programs in the 15-year time-span of the study. Only those municipalities that conducted a high-performance program could be...
ELM structure in the boundary plasma on COMPASS-D
NASA Astrophysics Data System (ADS)
Fielding, S. J.; Axon, K. B.; Booth, M. G.; Buttery, R. J.; Dowling, J.; Gates, D.; Hunt, C.; Silva, C.; Valovic, M.
1997-02-01
ELM experimental analysis on COMPASS-D, which has previously catalogued magnetic precursor behaviour, has been extended to consider effects in the SOL. ELM precursors are observed at the divertor. Profile changes are measured with high resolution and power and particle losses in ELMs are estimated. High speed videos of an ELM show a turbulent edge extending to the outboard limiter, in broad agreement with reciprocating probe observations. A model which describes well the magnetic features of the ELM, is being extended to include predictions of power deposition structure at the divertor target, for comparison with experimental data.
Assessing 3d Photogrammetry Techniques in Craniometrics
NASA Astrophysics Data System (ADS)
Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.
2016-06-01
Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.
Statistical physics of inter-ELM time interval sequences
NASA Astrophysics Data System (ADS)
Webster, Anthony; Dendy, Richard; Chapman, Sandra; JET-EFDA Team
2013-10-01
We report recent studies of the statistical properties of the sequence of time intervals between successive edge localised modes (ELMs). We have compared theoretically derived and empirical probability density functions (pdfs) for the waiting time intervals between ELMs from 85 long steady H-mode plasmas from the Joint European Torus (JET). The Weibull distribution provides a good fit to both type I and type III ELMs, with different parameters. We infer (A J Webster and R O Dendy, Phys Rev Lett 110, 155004 (2013)) that the type III ELMs were generated by a memoryless process, whereas the type I ELMs were consistent with build-up and release. Delay time analysis (F A Calderon, R O Dendy, S C Chapman, A J Webster et al., Phys. Plasmas 20, 042306 (2013)) of six similar JET H-mode plasmas with different levels of gas puffing strongly suggests that the underlying ELMing process is low dimensional. A current study of a dataset of 15,000 ELMs from two weeks of equivalent JET plasmas yields a combined pdf for inter-ELM time intervals which, surprisingly, displays a series of sharp maxima. All three studies show that rigorous statistical analysis of inter-ELM time intervals can contribute to quantitative classification of ELM types and to physical insight into the ELMing processes.
OP-ELM: optimally pruned extreme learning machine.
Miche, Yoan; Sorjamaa, Antti; Bas, Patrick; Simula, Olli; Jutten, Christian; Lendasse, Amaury
2010-01-01
In this brief, the optimally pruned extreme learning machine (OP-ELM) methodology is presented. It is based on the original extreme learning machine (ELM) algorithm with additional steps to make it more robust and generic. The whole methodology is presented in detail and then applied to several regression and classification problems. Results for both computational time and accuracy (mean square error) are compared to the original ELM and to three other widely used methodologies: multilayer perceptron (MLP), support vector machine (SVM), and Gaussian process (GP). As the experiments for both regression and classification illustrate, the proposed OP-ELM methodology performs several orders of magnitude faster than the other algorithms used in this brief, except the original ELM. Despite the simplicity and fast performance, the OP-ELM is still able to maintain an accuracy that is comparable to the performance of the SVM. A toolbox for the OP-ELM is publicly available online.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
2015-10-23
Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032
NASA Astrophysics Data System (ADS)
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
3D Printing and 3D Bioprinting in Pediatrics
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-01-01
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542
3D Printing and 3D Bioprinting in Pediatrics.
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-07-13
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.
Target Plate Profiles During ELM Suppression Experiments on DIII-D
NASA Astrophysics Data System (ADS)
Watkins, J. G.; Evans, T. E.; Murphy, C. J.; Martin, M. J.; Nelson, A.; Jakubowski, M.; Joseph, I.; Moyer, R. A.; Lasnier, C. J.; Fenstermacher, M. E.
2007-11-01
Radial profiles of target plate plasma conditions during ELM suppressed conditions have been measured with the new DIII-D lower divertor Langmuir probe array. ELM suppression was accomplished using n=3 resonant magnetic perturbations [1]. Evidence of the n=3 mode structure of the perturbation can be seen most clearly in the Vf profile on the target plate. The spacing of the multiple peaks in the Vf profile is similar to predictions of the TRIP3D field line integration code. Te values >100 eV and Vf values down to --150 V were measured. We observe resonant behavior of the target plate parameters near the q95 value for maximum magnetic perturbation. Heat flux from the Langmuir probe measurements will be compared with infrared cameras and thermocouples. The resulting sheath power transmission factor profile will be shown. [1] T.E. Evans, et al., Phys. Rev. Lett. 92, 235003 (2004).
Full-color holographic 3D printer
NASA Astrophysics Data System (ADS)
Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio
2003-05-01
A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.
Making Sense Out of Pulsating Pre-ELM and ELM White Dwarfs
NASA Astrophysics Data System (ADS)
Fontaine, G.; Istrate, A.; Gianninas, A.; Brassard, P.; Van Grootel, V.
2017-03-01
We present a unified view of pulsations in both pre-ELM and ELM white dwarfs within the framework of state-of-the-art binary evolution calculations that take into account the combined effects of diffusion and rotational mixing. We find that rotational mixing is able to maintain against settling a sufficient amount of helium in the envelope in order to fuel pulsations through He II-He III ionization on the pre-ELM branch of the evolutionary track in the spectroscopic HR diagram. By the time such a low-mass white dwarf enters the ZZ Ceti instability strip on the cooling branch, settling has taken over rotational mixing and produced a pure H envelope. Such a star then pulsates again, but, this time, as a DA white dwarf of the ZZ Ceti type.
3D effects on energetic particle confinement and stability
NASA Astrophysics Data System (ADS)
Spong, Don
2010-11-01
Understanding the confinement and stability of energetic particle (EP) populations in 3D magnetic configurations is crucial to the future of all toroidal devices. Tokamaks will have weak symmetry-breaking effects from discrete coils, heterogeneous distributions of ferritic materials and non-symmetric (ELM/RWM) control coils, while stellarators and helical RFP states have dominant 3D features by design. Significant EP issues for 3D systems include: modifications of the plasma equilibrium and potential amplification of field errors, asymmetry enhanced EP losses and their impact both on wall heat loads and the confined EP distribution, 3D modifications to the Alfvén gap and mode structure, and the stability properties of EP-destabilized Alfvén modes. 3D equilibria that resolve localized TBM (test blanket module) asymmetries have now been developed for DIII-D and ITER. Such symmetry breaking leads to enhanced EP losses and focused wall deposition. 3D effects also modify the Alfvén spectrum by increasing the number of possibilities for mode coupling and introducing new gap structures, including the helical and mirror gaps, fine scale ripple-induced gaps and continuum crossing gaps. Improved methods have recently been developed for evaluating these modes and their stability, taking into account the large number of coupled modes and finite orbit width effects. Successful Alfvén mode identifications have been made for a range of stellarators, including W7-AS, LHD, HSX and TJ-II. A comprehensive understanding of energetic particle physics with 3D effects is a necessary prerequisite for wall protection, plasma control and flexibility and for new diagnostic development possibilities in future ignited systems.
3-D Cavern Enlargement Analyses
EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.
2002-03-01
Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.
Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?
NASA Astrophysics Data System (ADS)
Moser, John C.; Konrad, Heino; Blomquist, Stacy R.; Kirisits, Thomas
2010-02-01
Dutch elm disease (DED) is a destructive vascular wilt disease of elm ( Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this study was to record and quantify conidia and ascospores of O. novo-ulmi on phoretic mites on the three elm bark beetle species Scolytus multistriatus, Scolytus pygmaeus, and Scolytus scolytus. Spores of O. novo-ulmi were found on four of the ten mite species phoretic on Scolytus spp. These included Elattoma fraxini, Proctolaelaps scolyti, Pseudotarsonemoides eccoptogasteri, and Tarsonemus crassus. All four species had spores attached externally to their body surfaces. However, T. crassus carried most spores within its sporothecae, two paired pocket-like structures adapted for fungal transmission. Individuals of Pr. scolyti also had O. novo-ulmi conidia and ascospores frequently in their digestive system, where they may remain viable. While E. fraxini and P. eccoptogasteri rarely had spores attached to their bodies, large portions of Pr. scolyti and T. crassus carried significant numbers of conidia and/or ascospores of O. novo-ulmi. P. scolyti and T. crassus, which likely are fungivores, may thus contribute to the transmission of O. novo-ulmi, by increasing the spore loads of individual Scolytus beetles during their maturation feeding on twigs of healthy elm trees, enhancing the chance for successful infection with the pathogen. Only S. scolytus, which is the most efficient vector of O. novo-ulmi in Europe, carried high numbers of Pr. scolyti and T. crassus, in contrast to S. multistriatus and S. pygmaeus, which are known as less efficient vectors. The high efficiency of S. scolytus in spreading Dutch elm disease may be partly due to its association with these two mites and the hyperphoretic spores of O. novo-ulmi they carry.
Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?
Moser, John C; Konrad, Heino; Blomquist, Stacy R; Kirisits, Thomas
2010-02-01
Dutch elm disease (DED) is a destructive vascular wilt disease of elm (Ulmus) trees caused by the introduced Ascomycete fungus Ophiostoma novo-ulmi. In Europe, this DED pathogen is transmitted by elm bark beetles in the genus Scolytus. These insects carry phoretic mites to new, suitable habitats. The aim of this study was to record and quantify conidia and ascospores of O. novo-ulmi on phoretic mites on the three elm bark beetle species Scolytus multistriatus, Scolytus pygmaeus, and Scolytus scolytus. Spores of O. novo-ulmi were found on four of the ten mite species phoretic on Scolytus spp. These included Elattoma fraxini, Proctolaelaps scolyti, Pseudotarsonemoides eccoptogasteri, and Tarsonemus crassus. All four species had spores attached externally to their body surfaces. However, T. crassus carried most spores within its sporothecae, two paired pocket-like structures adapted for fungal transmission. Individuals of Pr. scolyti also had O. novo-ulmi conidia and ascospores frequently in their digestive system, where they may remain viable. While E. fraxini and P. eccoptogasteri rarely had spores attached to their bodies, large portions of Pr. scolyti and T. crassus carried significant numbers of conidia and/or ascospores of O. novo-ulmi. P. scolyti and T. crassus, which likely are fungivores, may thus contribute to the transmission of O. novo-ulmi, by increasing the spore loads of individual Scolytus beetles during their maturation feeding on twigs of healthy elm trees, enhancing the chance for successful infection with the pathogen. Only S. scolytus, which is the most efficient vector of O. novo-ulmi in Europe, carried high numbers of Pr. scolyti and T. crassus, in contrast to S. multistriatus and S. pygmaeus, which are known as less efficient vectors. The high efficiency of S. scolytus in spreading Dutch elm disease may be partly due to its association with these two mites and the hyperphoretic spores of O. novo-ulmi they carry.
ELM studies on the COMPASS-D tokamak
NASA Astrophysics Data System (ADS)
Colton, A. L.; Buttery, R. J.; Fielding, S. J.; Gates, D. A.; Hender, T. C.; Hugill, J.; Morris, A. W.; Valovic, M.; COMPASS-D, the; ECRH Teams
1996-08-01
A description of the various ELM types observed in single null divertor plasmas in COMPASS-D is given, including type I and type III ELMs in both ECRH and ohmically heated plasmas. Precursor oscillations to both type I and type III ELMs have been observed. The large variation in the precursor mode structure is discussed, as well as models of the effect on the plasma.
ELM behavior in ASDEX Upgrade with and without nitrogen seeding
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Dunne, M. G.; Beurskens, M.; Wolfrum, E.; Bogomolov, A.; Carralero, D.; Cavedon, M.; Fischer, R.; Laggner, F. M.; McDermott, R. M.; Meyer, H.; Tardini, G.; Viezzer, E.; the EUROfusion MST1 Team; the ASDEX-Upgrade Team
2017-02-01
The Type I ELM behavior in ASDEX Upgrade with full W plasma facing components is studied in terms of time scales and energy losses for a large set of shots characterized by similar operational parameters but different nitrogen seeding rate and input power. ELMs with no nitrogen can have two typical behaviors, that can be classified depending on their duration, the long and the short ELMs. The work shows that both short and long ELMs have a similar first phase, but the long ELMs are characterized by a second phase with further energy losses. The second phase disappears when nitrogen is seeded with a flux rate above 1022 (e s-1). The phenomenon is compatible with a threshold effect. The presence of the second phase is related to a high divertor/scrape-off layer (SOL) temperature and/or to a low pedestal temperature. The ELM energy losses of the two phases are regulated by different mechanisms. The energy losses of the first phase increase with nitrogen which, in turn, produce the increase of the pedestal temperature. So the energy losses of the first phase are regulated by the pedestal top parameters and the increase with nitrogen is due to the decreasing pedestal collisionality. The energy losses of the second phase are related to the divertor/SOL conditions. The long ELMs energy losses increase with increasing divertor temperature and with the number of the expelled filaments. In terms of the power lost by the plasma, the nitrogen seeding increases the power losses of the short ELMs. The long ELMs have a first phase with power losses comparable to the short ELMs losses. Assuming no major difference in the wetted area, these results suggest that (i) the nitrogen might increase the divertor heat fluxes during the short ELMs and that (ii) the long ELMs, despite the longer time scale, are not beneficial in terms of divertor heat loads.
Advances in understanding and utilising ELM control in JET
NASA Astrophysics Data System (ADS)
Chapman, I. T.; de la Luna, E.; Lang, P. T.; Liang, Y.; Alper, B.; Denner, P.; Frigione, D.; Garzotti, L.; Ham, C. J.; Huijsmans, G. T. A.; Jachmich, S.; Kocsis, G.; Lennholm, M.; Lupelli, I.; Rimini, F. G.; Sips, A. C. C.; Contributors, JET
2016-01-01
Edge localised mode (ELM) control may be essential to develop ITER scenarios with a reasonable lifetime of divertor components, whilst ELM pacing may be essential to develop stationary ITER scenarios with a tungsten divertor. Resonant magnetic perturbations (RMPs) have mitigated ELMs in high collisionality plasmas in JET. The efficacy of RMPs in mitigating the ELMs is found to depend on plasma shaping, with the change in magnetic boundary achieved when non-axisymmetric fields are applied facilitating access to small ELM regimes. The understanding of ELM pacing by vertical kicks or pellets has also been improved in a range of pedestal conditions in JET ({{T}\\text{ped}}=0.7 -1.3 keV) encompassing the ITER-expected domain ({β\\text{N}}=1.4 -2.4, H 98(y, 2) = 0.8-1.2, {{f}\\text{GW}}˜ 0.7 ). ELM triggering is reliable provided the perturbation is above a threshold which depends on pedestal parameters. ELM triggering is achieved even in the first 10% of the natural ELM cycle suggesting no inherent maximum frequency. At high normalised pressure, the peeling-ballooning modes are stabilised as predicted by ELITE, necessitating a larger perturbation from either kicks or pellets in order to trigger ELMs. Both kicks and pellets have been used to pace ELMs for tungsten flushing. This has allowed stationary plasma conditions with low gas injection in plasmas where the natural ELM frequency is such that it would normally preclude stationary conditions.
3D simulation for solitons used in optical fibers
NASA Astrophysics Data System (ADS)
Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.
2016-12-01
In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.
Adaptive Online Sequential ELM for Concept Drift Tackling
Basaruddin, Chan
2016-01-01
A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting” condition. PMID:27594879
Inboard and outboard observations of ELMs on EAST tokamak
NASA Astrophysics Data System (ADS)
Yan, Ning; Li, Jie; Xu, Sheng; Chen, Liang
2016-10-01
Understanding the edge-localized modes (ELMs) are considered essential for the H-mode operation such as impurity transport and safety of the first wall of future magnetic fusion devices Over last decades, important information on ELMs has been gained from a variety of diagnostics. However, the ELM behavior on high field side is still poorly understood due to less diagnostic there. Recently, two sweeping probes have been set up near inboard mid-plane of EAST tokamak, which provides a unique capability on characterizing the in-out asymmetry of ELMs together with fast reciprocating probe on outboard mid-plane. In our measurements, ELMs are manifested as propagating filaments in the outboard scrape-off layer (SOL). However plasma in the inboard SOL react as density pumping during ELM crash. Two bands of coherent fluctuations preceding ELMs are observed at outboard mid-plane. They are propagating in opposite poloidal direction in the plasma frame The fluctuations saturate before ELM crash, and their frequency alter with pedestal pressure The coherence of higher frequency band fluctuations are significantly reduced on high field side, and plasma appear as broad turbulence instead. These findings can potentially improve our understanding on ELM dynamics.
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-04-14
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Filament-length-controlled elasticity in 3D fiber networks.
Broedersz, C P; Sheinman, M; Mackintosh, F C
2012-02-17
We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing linear response regime in the limit of flexible or long filaments.
3D toroidal physics: testing the boundaries of symmetry breaking
NASA Astrophysics Data System (ADS)
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE
Numerical integration of structural elements in NIKE3D and DYNA3D
NASA Astrophysics Data System (ADS)
Maker, B. N.; Whirley, R. G.; Engelmann, B. E.
1992-08-01
The beam and shell elements found in many linear elastic finite element codes accept integrated cross sectional properties as input, and produce solutions using classical beam and shell theory. These theories are built upon the equation of resultant forces and moments with integrals of assumed stress distributions over the cross section. In contrast, the structural elements in NIKE3D and DYNA3D are formulated to represent nonlinear geometric and material behavior. Thus stress distributions may not necessarily be representable by simple functions of cross section variables. In NIKE3D and DYNA3D, the Hughes-Liu beam element and all shell elements accommodate these more general stress distributions by computing stresses at various points in the cross section. The integration of stresses within each element is then performed numerically, using a variety of methods. This report describes these numerical integration procedures in detail, and highlights their application to engineering problems. Several other features of the structural elements are also described, including force and moment resultants, user-defined reference surfaces, and user-defined integration rules. Finally, the shear correction factor is described in a section which relates results from NIKE3D and DYNA3D to those obtained from classical beam theory.
Liu, Z. X. Xia, T. Y.; Liu, S. C.; Ding, S. Y.; Xu, X. Q.; Joseph, I.; Meyer, W. H.; Gao, X.; Xu, G. S.; Shao, L. M.; Li, G. Q.; Li, J. G.
2014-09-15
Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.
Perception of 3D spatial relations for 3D displays
NASA Astrophysics Data System (ADS)
Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.
2004-05-01
We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
None
2016-07-12
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
NASA Astrophysics Data System (ADS)
van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin
2014-03-01
We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.)
Martín, Juan A.; Witzell, Johanna; Blumenstein, Kathrin; Rozpedowska, Elzbieta; Helander, Marjo; Sieber, Thomas N.; Gil, Luis
2013-01-01
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide. PMID:23468900
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Birds and Dutch elm disease control
DeWitt, J.B.
1958-01-01
Brief, factual review of information on effect of DDT and other insecticides on birds. One program for control of elm disease caused 22% decrease in number of adult birds and 56% mortality of nestlings. Quail fed 3 oz. of DDT per ton of food had 16% reduction in young hatched and 500% increase in defective chicks. Quail fed same dosage during winter and breeding seasons had 30% decrease in fertile eggs and 800% increase in defective chicks. More than 90% of their chicks died in first 6 weeks although fed no insecticide. Almost equally bad results came from feeding Pheasants diets with about 1 oz. DDT per ton. Other common insecticides (chlorinated hydrocarbons) also caused lowered chick survival and higher percentages of crippled chicks. From field data we know that 2 lbs. DDT/acre can affect birds and has even worse effects on cold-blooded animals. Efforts to control elm disease have left as much as 196 lbs. DDT/acre in top 3 inches of soil. Earthworms concentrate DDT in their tissues. Thus the treated areas can be traps for birds and other animals. What can be done? 1) In control of elm disease, use minimum effective amount of insecticide; mist blowers use less than sprayers. 2) Avoid applications during migration and nesting seasons. It has been reported that adequate control can be obtained with dormant sprays and that foliar applications may not be required. Tables of this paper show effects of DDT on reproduction of Quail, relative toxicity to quail of 8 insecticides, and amounts of 7 insecticides required to cause 40% or more decrease in Quail reproduction. These comparisons demonstrate that Aldrin, Endrin, and Dieldrin are 20 to 200 times as toxic as DDT and that Heptachlor and Chlordane are only slightly less toxic than Dieldrin. Methoxychlor and Strobane are less toxic to Quail than is DDT.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
3D Electromagnetic inversion using conjugate gradients
Newman, G.A.; Alumbaugh, D.L.
1997-06-01
In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.
Investigation of ELMs on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Terry, J. L.
2005-10-01
C-Mod typically operates in regimes without large ELMs. Recently, discrete ELMs have been routinely produced by making plasmas with large lower triangularity (i.e. >0.75), compared to the more typical C-Mod values <0.6. The ELM character was substantially modified as the triangularity was reduced, changing from discrete ELMs of ˜60 μsec duration, to H-to-L mode back transitions, lasting ˜4msec. The discrete ELMs are most apparent when the density is just above the low-density H-mode threshold, ne˜8x10^19m-3. Pedestal Te up to 1 keV was measured early in the H-mode phase. The spatial structure and propagation of the discrete ELMs are studied using fast-framing (˜250 kHz) cameras and other high resolution optical diagnostics. The magnetics and the optical diagnostics show a rapidly-growing precursor oscillation (100-200 kHz just prior to the ELM crash) that is localized radially to around the top of the pedestal. Outside the LCFS the enhanced emission from the ELM propagates radially outward with a complicated spatial structure, similar in many respects to `blobs.'
Improved Sanitation Practice for Control of Dutch Elm Disease
Jack H. Barger
1977-01-01
In Detroit, Michigan, 12 plots, each containing about 600 American elm trees, Ulmus americana L., were subjected for 3 years to intensive and conventional sanitation treatments to control Dutch elm disease. In the intensive treatment, three disease surveys were conducted each year; each followed by tree removal within 20 working days. In the...
American elm (Ulmus americana) in restoration plantings: a review
Kathleen S. Knight; Linda M. Haugen; Cornelia C. Pinchot; Paul G. Schaberg; James M. Slavicek
2017-01-01
The development of disease-tolerant American elm (Ulmus americana) trees has led to a need for reintroduction and restoration methods for the species. Here we review the current state of experimental work to inform reintroduction biology and restoration ecology of American elm. Much of this work is ongoing, and within several years the results will...
Genome size variation in elms (Ulmus spp.) and related genera
USDA-ARS?s Scientific Manuscript database
The elms (the genus Ulmus) are one of the most important tree crops for the $4.7-billion per year U.S. nursery industry. Utilization of these plants has been limited in recent decades by diseases introduced from the Old World, especially Dutch elm disease. Past research and breeding have been based ...
Establishment patterns of water-elm at Catahoula Lake, Louisiana
Karen S. Doerr; Sanjeev Joshi; Richard F. Keim
2015-01-01
At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Stanton, M M; Samitier, J; Sánchez, S
2015-08-07
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.
3-D magnetic field calculations for wiggglers using MAGNUS-3D
Pissanetzky, S.; Tompkins, P.
1988-01-01
The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.
2007-11-02
AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems
ELM filament interaction with the JET main chamber
NASA Astrophysics Data System (ADS)
Jakubowski, M. W.; Fundamenski, W.; Arnoux, G.; Eich, Th.; Pitts, R. A.; Reiter, D.; Wolf, R. C.; JET-EFDA contributors
2009-06-01
This work constitutes the first extended analysis of the spatial structure of Type-I ELM filament footprints on the JET outer limiters and upper dump plates. The data is obtained using a wide angle infrared diagnostic (with time resolution of 125 Hz) and concerns ELMs with energy in the range 0.07⩽ΔW/W⩽0.32. Type-III ELM filaments are not observed to deposit significant heat loads. The typical poloidal width of an ELM filament footprint is of order of 4-10° on the outer limiters and of order of 1-4° on the upper dump plates with weak linear dependence on the ELM size. Their quasi-toroidal mode numbers are in the range of 30-60 and 20-30, respectively.
1997-07-13
The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.
This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.
Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik
2011-01-01
We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.
Rich, D.O.; Pope, S.C.; DeLapp, J.G.
1994-10-01
In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.
[Tridimensional (3D) endoscopic ultrasonography].
Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R
2007-01-01
A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
NASA Astrophysics Data System (ADS)
Yadav, Basant; Ch, Sudheer; Mathur, Shashi; Adamowski, Jan
2016-12-01
In-situ bioremediation is the most common groundwater remediation procedure used for treating organically contaminated sites. A simulation-optimization approach, which incorporates a simulation model for groundwaterflow and transport processes within an optimization program, could help engineers in designing a remediation system that best satisfies management objectives as well as regulatory constraints. In-situ bioremediation is a highly complex, non-linear process and the modelling of such a complex system requires significant computational exertion. Soft computing techniques have a flexible mathematical structure which can generalize complex nonlinear processes. In in-situ bioremediation management, a physically-based model is used for the simulation and the simulated data is utilized by the optimization model to optimize the remediation cost. The recalling of simulator to satisfy the constraints is an extremely tedious and time consuming process and thus there is need for a simulator which can reduce the computational burden. This study presents a simulation-optimization approach to achieve an accurate and cost effective in-situ bioremediation system design for groundwater contaminated with BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compounds. In this study, the Extreme Learning Machine (ELM) is used as a proxy simulator to replace BIOPLUME III for the simulation. The selection of ELM is done by a comparative analysis with Artificial Neural Network (ANN) and Support Vector Machine (SVM) as they were successfully used in previous studies of in-situ bioremediation system design. Further, a single-objective optimization problem is solved by a coupled Extreme Learning Machine (ELM)-Particle Swarm Optimization (PSO) technique to achieve the minimum cost for the in-situ bioremediation system design. The results indicate that ELM is a faster and more accurate proxy simulator than ANN and SVM. The total cost obtained by the ELM-PSO approach is held to a minimum
NASA Astrophysics Data System (ADS)
Shinohara, K.; Tani, K.; Oikawa, T.; Putvinski, S.; Schaffer, M.; Loarte, A.
2012-09-01
The energetic ion loss has been assessed using the F3D-OFMC code for a 15 MA inductive scenario with Q = 10 and the latest information on the first wall geometry, the implementation of ferritic inserts (FI) and the ELM mitigation/control coils. Alpha particles and NB ions generated by the neutral beam injectors with the injection energy of 1 MeV are well confined and the heat load on the first wall is negligibly small and allowable for the magnetic background by the toroidal field coils and FI. However, an increase in the loss of these energetic ions is observed when the magnetic field by the ELM coils is applied. The increase in the loss fraction is larger for NB ions than for alpha particles under the ELM coil field. The origin of the expelled NB ions is dominantly trapped ions generated in the peripheral region due to a high-density plasma of the 15 MA scenario.
A Mechanism of ELM Mitigation by External Magnetic Field Perturbations
NASA Astrophysics Data System (ADS)
Singh, Raghvendra; Jhang, H.; Kim, J.-H.; Hahm, T. S.
2016-10-01
We study the impact of external magnetic perturbations (EMP) on the stability of ballooning mode (BM). We use: 1) the two-step process; 2) standard four wave interactions. In two-step process, we consider EMP are long wave-length perturbations interacting with short scale BM and generating side-bands of higher harmonics. This calculates contributions from all the high toroidal mode numbers. EMP can modify the dispersion characteristics of BM - the growth spectrum becomes broader in kBM space. The increase in high kBM can lead to the mitigation of an ELM crash by increasing turbulent transport. New nonlinear instability is also found even below the BM threshold at large EMP amplitude. In four wave interaction, EMP act like a short scale pump wave interacting with BM and creating two sidebands. The side-bands couple with the pump and produce the ponderomotive force, magnetic stress at BM frequency. EMP may enhance the BM instability threshold if RMP K->BM <=K->RMP and reduce the threshold if K->BM >K->RMP .
Personal perceptual and cognitive property for 3D recognition
NASA Astrophysics Data System (ADS)
Matozaki, Takeshi; Tanisita, Akihiko
1996-04-01
3D closed circuit TV which produces stereoscopic vision by observing different images through each eye alternately, has been proposed. But, there are several problems, both physiological and psychological, for 3D image observation in many fields. From this prospective, we are learning personal visual characteristics for 3D recognition in the transition from 2D to 3D. We have separated the mechanism of 3D recognition into several categories, and formed some hypothesis about the personal features. These hypotheses are related to an observer's personal features, as follows: (1) consideration of the angle between the left and the right eye's line of vision and the adjustment of focus, (2) consideration of the angle of vision and the time required for fusion, (3) consideration of depth sense based on life experience, (4) consideration of 3D experience, and (5) consideration of 3D sense based on the observer's age. To establish these hypotheses, and we have analyzed the personal features of the time interval required for 3D recognition through some examinations to examinees. Examinees indicate their response for 3D recognition by pushing a button. Recently, we introduced a method for picking up the reaction of 3D recognition from examinees through their biological information, for example, analysis of pulse waves of the finger. We also bring a hypothesis, as a result of the analysis of pulse waves. (1) We can observe chaotic response when the examinee is recognizing a 2D image. (2) We can observe periodic response when the examinee is recognizing a 3D image. We are making nonlinear forecasts by getting correlation between the forecast and the biological phenomena. Deterministic nonlinear prediction are applied to the data, as a promising method of chaotic time series analysis in order to analyze the long term unpredictability, one of the fundamental characteristics of deterministic chaos.
NASA Astrophysics Data System (ADS)
Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri
2016-03-01
3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.
NASA Astrophysics Data System (ADS)
Galaĭchuk, Yu A.; Kudryashov, V. A.; Strizhevskiĭ, V. L.; Fontaniĭ, V. A.; Yashkir, Yu N.
1985-07-01
A systematic analysis was made of the spectral characteristics of resonance four-photon parametric conversion of infrared radiation as a result of two-photon resonance pumping of the 3S-3D and 3S-5S transitions in sodium and the influence of these characteristics on the threshold sensitivity of a parametric conversion detector was investigated. An experimental study was made of the characteristics of the noise radiation generated as a result of hyperparametric scattering. The results obtained can be used to select the optimal parameters of high-sensitivity detectors of weak infrared signals by parametric conversion in alkali metal vapors.
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
NASA Astrophysics Data System (ADS)
Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen
2008-02-01
Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
Model of ELM suppression by RMPs in DIII-D
NASA Astrophysics Data System (ADS)
Callen, J. D.; Nazikian, R.; Ferraro, N. M.; Beidler, M. T.; Hegna, C. C.; La Haye, R. J.; Paz-Soldan, C.
2016-10-01
Recent DIII-D experiments explored effects of resonant magnetic perturbations (RMPs) near the minimum applied n=2 RMP amplitude required for ELM suppression in ITER-relevant low collisionality pedestals. Comprehensive tokamak forced magnetic reconnection (FMR) theory is used to describe and quantify the many physical processes involved in stages of RMP effects and an ELM crash response that lead to bifurcation into an ELM-suppressed state: 1) in ELMing equilibrium, flow-screening is strong with little magnetic reconnection; 2) the RMP at q=8/2 penetrates via FMR induced by an ELM crash and locks toroidal flow to the lab frame (like error field mode locking); 3) the ELM crash provides a 8/2 seed island (like NTMs) governed by a modified Rutherford equation; 4) if the total 8/2 RMP is large enough the internal tearing response and flow bifurcate and grow; and 5) flutter transport reduces pedestal top gradients which stabilizes P-B modes and hence suppresses ELMs. This analysis is for discharge 158115 in DIII-D; its potential universality is yet to be determined. Work supported by OFES/DOE under DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466 and DE-FC02-04ER54698.
The ELM Survey. VI. Eleven New Double Degenerates
NASA Astrophysics Data System (ADS)
Gianninas, A.; Kilic, Mukremin; Brown, Warren R.; Canton, Paul; Kenyon, Scott J.
2015-10-01
We present the discovery of 11 new double degenerate systems containing extremely low-mass white dwarfs (ELM WDs). Our radial velocity observations confirm that all of the targets have orbital periods ≤slant 1 day. We perform spectroscopic fits and provide a complete set of physical and binary parameters. We review and compare recent evolutionary calculations and estimate that the systematic uncertainty in our mass determinations due to differences in the evolutionary models is small (≈ 0.01 M⊙). Five of the new systems will merge due to gravitational wave radiation within a Hubble time, bringing the total number of merger systems found in the ELM Survey to 38. We examine the ensemble properties of the current sample of ELM WD binaries, including the period distribution as a function of effective temperature, and the implications for the future evolution of these systems. We also revisit the empirical boundaries of instability strip of ELM WDs and identify new pulsating ELM WD candidates. Finally, we consider the kinematic properties of our sample of ELM WDs and estimate that a significant fraction of the WDs from the ELM Survey are members of the Galactic halo. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2015-06-02
A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
USDA-ARS?s Scientific Manuscript database
Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly U. pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to de...
ELM transport in the JET scrape-off layer
NASA Astrophysics Data System (ADS)
Pitts, R. A.; Andrew, P.; Arnoux, G.; Eich, T.; Fundamenski, W.; Huber, A.; Silva, C.; Tskhakaya, D.; EFDA Contributors, JET
2007-11-01
This contribution summarizes a number of aspects of the experimental and modelling programme at JET aimed at improving the characterization and understanding of edge localized mode (ELM) transport in the scrape-off layer (SOL). Divertor target energy deposition asymmetries favouring the inner target for the ion B × ∇B drift directed towards the X-point are observed with infra-red (IR) thermography. Similar trends are seen in the ELM resolved energy radiated in the divertor volume. Particle-in-cell kinetic calculations of the parallel ELM heat transport have been made for a range of ELM energies, revealing the detailed time response of target sheath heat transmission factors and indicating that electrons deposit ~30% of the ELM energy. The simulation results are in good agreement with experimental measurements of the integral energy deposited at the outer target up to the peak in target heat loads. A transient model of ELM filament energy evolution has been developed at JET and is able to reproduce a number of experimental observations, including the high ion energies observed in the far SOL using an electrostatic retarding field electrostatic analyser (RFA) and estimates of ELM heat fluxes deposited on main chamber limiters. During the ELM, the RFA and a second, SOL turbulence probe, clearly show the presence of coherent spikes in the hot ion flux, the plasma flux and the electron temperature. Field aligned structures have also been seen for the first time on JET in the power deposition on main wall limiters and upper dump plate surfaces using a new wide angle IR camera system. The probe signals are interpreted as the arrival of interspaced plasma filaments, with successive filaments carrying less energy. They are also consistent with the ELM out flux entering the SOL primarily on the outboard side and launching a sound wave disturbance along field lines.
First Observation Of ELM Pacing With Vertical Jogs In A Spherical Torus
Gerhardt, S P; Canik, J M; Maingi, R; Bell, R; Gates, d; Goldston, R; Hawryluk, R; Le Blanc, B P; Menard, J; Sontag, A C; Sabbagh, S
2010-07-15
Experiments in a number of conventional aspect ratio tokamaks have been successful in pacing edge localized modes (ELMs) by rapid vertical jogging of the plasma. This paper demonstrates the first pacing of ELMs in a spherical torus plasma. Applied 30 Hz vertical jogs synchronized the ELMs with the upward motion of the plasma. 45 Hz jogs also lead to an increase in the ELM frequency, though the synchronization of the ELMs and jogs was unclear. A reduction in the ELM energy was observed at the higher driven ELM frequencies. __________________________________________________
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.
2016-01-01
Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with
Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique
2011-01-01
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.
2013-01-12
Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (ε_{DA}) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
2010-02-23
This anaglyph from images captured by NASA Cassini spacecraft shows a dramatic, 3-D view of one of the deep fractures nicknamed tiger stripes on Saturn moon Enceladus which are located near the moon south pole, spray jets of water ice.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
1999-06-25
Ganges Chasma is part of the Valles Marineris trough system that stretches nearly 5,000 kilometers 3,000 miles across the western equatorial region of Mars. This stereo anaglyph is from NASA Mars Global Surveyor. 3D glasses are necessary.
2004-02-02
This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
ERIC Educational Resources Information Center
Mayshark, Robin K.
1991-01-01
Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)
2014-11-21
A 3D image shows what it would look like to fly over the surface of comet 67P/Churyumov-Gerasimenko. The image was generated by data collected by ESA Philae spacecraft during the decent to the spacecraft initial touchdown on the comet Nov. 12, 2014.
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
Fast ion transport during applied 3D magnetic perturbations on DIII-D
Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; Heidbrink, William W.; Kramer, Gerrit J.; Lasnier, Charles J.; Pace, David C.; Allen, Steve L.; Chen, Xi; Evans, Todd E.; García-Muñoz, Manuel; Hanson, Jeremy M.; Lanctot, Matthew J.; Lao, Lang L.; Meyer, William H.; Moyer, Richard A.; Nazikian, Raffi; Orlov, Dmitriy M.; Paz-Soldan, Carlos; Wingen, Andreas
2015-06-26
In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $\\rho >0.7$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion ${{\\text{D}}_{\\alpha}}$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed
Fast ion transport during applied 3D magnetic perturbations on DIII-D
Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; ...
2015-06-26
In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile
Pheromone Chemistry of the Smaller European Elm Bark Beetle.
ERIC Educational Resources Information Center
Beck, Keith
1978-01-01
Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)
VIEW OF ELM DRIVE WITH FACILITY 708 ON LEFT. VIEW ...
VIEW OF ELM DRIVE WITH FACILITY 708 ON LEFT. VIEW FACING EAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
VIEW OF ELM DRIVE WITH NORFOLK PINE ON RIGHT. VIEW ...
VIEW OF ELM DRIVE WITH NORFOLK PINE ON RIGHT. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
Comparison of ELM heat loads in snowflake and standard divertors
Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V
2012-05-08
An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.
46. VIEW LOOKING EAST FROM THE OLMSTED ELM IN THE ...
46. VIEW LOOKING EAST FROM THE OLMSTED ELM IN THE SOUTH LAWN TO THE ROCK GARDEN. (NOTE: HISTORIC ENGLISH YEW ON RIGHT, CRAB APPLE IN CENTER VIEW). - Fairsted, 99 Warren Street, Brookline, Norfolk County, MA
Pheromone Chemistry of the Smaller European Elm Bark Beetle.
ERIC Educational Resources Information Center
Beck, Keith
1978-01-01
Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)
ELM induced tungsten melting and its impact on tokamak operation
NASA Astrophysics Data System (ADS)
Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Jachmich, S.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Knaup, M.; Komm, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.
2015-08-01
In JET-ILW dedicated melt exposures were performed using a sequence of 3MA/2.9T H-Mode JET pulses with an input power of PIN = 23 MW, a stored energy of ∼6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ∼ 30 Hz. In order to assess the risk of starting ITER operations with a full W divertor, one of the task was to measure the consequences of W transients melting due to ELMs. JET is the only tokamak able to produce transients/ ELMs large enough (>300 kJ per ELM) to facilitate melting of tungsten. Such ELMs are comparable to mitigated ELMs expected in ITER. By moving the outer strike point (OSP) onto a dedicated leading edge the base temperature was raised within ∼1 s to allow transient ELM-driven melting during the subsequent 0.5 s. Almost 1 mm (∼6 mm3) of W was moved by ∼ 150 ELMs within 5 subsequent discharges. Significant material losses in terms of ejections into the plasma were not observed. There is indirect evidence that some small droplets (∼ 80 μm) were ejected. The impact on the main plasma parameters is minor and no disruptions occurred. The W-melt gradually moved along the lamella edge towards the high field side, driven by j × B forces. The evaporation rate determined is 100 times less than expected from steady state melting and thus only consistent with transient melting during individual ELMs. IR data, spectroscopy, as well as melt modeling point to transient melting. Although the type of damage studied in these JET experiments is unlikely to be experienced in ITER, the results do strongly support the design strategy to avoid exposed edges in the ITER divertor. The JET experiments required a surface at normal incidence and considerable pre-heating to produce tungsten melting. They provide unique experimental evidence for the absence of significant melt splashing at events resembling mitigated ELMs on ITER and establish a unique experimental benchmark for the simulations being used to study transient shallow melting on ITER W
Improving Diamagnetic Flux Temporal Resolution to Measure ELM Energy Loss
NASA Astrophysics Data System (ADS)
Sieck, P. E.; Baylor, L. R.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Strait, E. J.
2010-11-01
When an ELM occurs in a tokamak, a substantial loss of stored thermal energy can occur in a very short time, resulting in a change in the plasma diamagnetism. A diamagnetic loop is therefore an attractive diagnostic for characterizing the change in energy during ELMs. A loop external to the vessel can be used but it is bandwidth-limited by the vessel wall, therefore the signal is severely attenuated above 40 Hz in DIII-D. The temporal resolution can be improved by combining the (slow) diamagnetic signal with a properly scaled internal (fast) toroidal BT signal. The results agree with finely-spaced EFIT equilibrium reconstructions to within 10% before each ELM, but the diamagnetic calculation often shows up to twice the drop in energy at the ELM. The BT signal reveals the magnetic change completes in 0.5 ms or less with occasional dynamics above 10 kHz. This improved temporal resolution allows comparison of phenomenology in natural vs. pellet-triggered ELMs, and also effects of partial ELM suppression under resonant magnetic perturbation.
Crashdynamics with DYNA3D: Capabilities and research directions
NASA Technical Reports Server (NTRS)
Whirley, Robert G.; Engelmann, Bruce E.
1993-01-01
The application of the explicit nonlinear finite element analysis code DYNA3D to crashworthiness problems is discussed. Emphasized in the first part of this work are the most important capabilities of an explicit code for crashworthiness analyses. The areas with significant research promise for the computational simulation of crash events are then addressed.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib
2012-01-01
In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
3D reconstruction of tensors and vectors
Defrise, Michel; Gullberg, Grant T.
2005-02-17
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.
NASA Astrophysics Data System (ADS)
Omelchenko, Yu. A.; Sudan, R. N.
1996-11-01
The FIREX (Field-Reversed Ion Ring Experiment) program is underway at Cornell University to demonstrate an ion ring magnetic field-reversed configuration (IRC) by injecting an intense annular proton beam across a plasma-filled magnetic cusp into a neutral gas immersed in a ramped solenoidal magnetic field. The previous axisymmetric PIC simulations performed with the 21\\over 2-D FIRE code have predicted [1] that strong ion rings (with a self-magnetic field large enough to reverse the applied field on axis) can be produced using this technique. We have constructed a new, parallel, object-oriented (C++), 3-D, hybrid, PIC code, FLAME to study the 3-D aspects of the ion ring formation in strongly magnetized plasmas and stability of ion ring configurations to the toroidal perturbations. These questions are extremely important for the practical realization of the FIREX ideas and are expected to be clarified in the course of investigation of the ion beam injection and ring formation in a toroidally aberrated applied magnetic field. The nonlinear evolution of ion ring tilt and precession modes as well as code testing and performance issues will also be addressed. 1. Yu.A. Omelchenko and R.N. Sudan, Phys. Plasmas, 2773 (1995)
Elastoplastic shell analysis in DYNA3D
Whirley, R.G. )
1991-01-01
Computer simulation of the elastoplastic behavior of thin shell structures under transient dynamic loads play an important role in many programs at Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. Often the loads are severe and the structure undergoes plastic (or permanent) deformation. These simulations are effectively performed using DYNA3D, an explicit nonlinear finite element code developed at LLNL for simulating and analyzing the large-deformation dynamic response of solids and structures. It is generally applicable to problems where the loading and response are of short duration and contain significant high-frequency components. Typical problems of this type include the contact of two impacting bodies and the resulting elastoplastic structural behavior. The objective of this investigation was to examine and improve upon the elastoplastic shell modeling capability in DYNA3D. This article summarizes the development of a new four-node quadrilateral finite element shell formulation, the YASE shell, and compares two basic methods (the stress-resultant and the thickness-resultant methods) employed in elastoplastic constitutive algorithms for shell structure modeling.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana
2013-01-01
Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
Millar, J G; Zhao, C H; Lanier, G N; O'Callaghan, D P; Griggs, M; West, J R; Silverstein, R M
1986-03-01
Hylurgopinus rufipes male and female beetles were attracted to American elms infected with Dutch elm disease, and to American elms killed by injection of cacodylic acid.H. rufipes was also attracted to solvent extracts of elm, or to Porapak Q-trapped volatiles from elm. The major components of attractive fractions of Porapak Q-trapped volatiles were isolated, identified, and tested in field bioassays. Several artificially compounded mixtures of sesquiterpenes were attractive toH. rufipes, although no bait tested was as attractive as diseased tree controls. Laboratory bioassays with H. rufipes were marginally successful. In laboratory bioassays, nine of 14 sequiterpenes identified from active fractions of Porapak extracts elicited significant response from Scolytus multistriatus male and female beetles: δ- and γ-cadinene, α-cubebene, γ-muurolene, and β-elemene were most active. However, in field tests, none of the sesquiterpenes alone or in combination significantly attracted S. multistriatus, nor did they significantly enhance the attraction of S. multistriatus to female-produced pheromone components (4-methyl-3-heptanol [H] and α-multistriatin [M]). In other field tests, α-cubebene (C) significantly enhanced response of S. multistriatus to H plus M, but foliage, logs, or chips of healthy elm did not enhance trap catch to HMC.
Features of spontaneous and pellet-induced ELMs on the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, C. H.; Nie, L.; Feng, Z.; Ji, X. Q.; Yao, K.; Zhu, G. L.; Liu, Yi; Cui, Z. Y.; Yan, L. W.; Wang, Q. M.; Yang, Q. W.; Ding, X. T.; Dong, J. Q.; Duan, X. R.
2012-11-01
The pellet pacing ELM mitigation concept is being tested in some tokamaks such as ASDEX Upgrade, DIII-D and JET. By increasing the ELM frequency, the ELM size can be reduced and eventually suppressed to meet the lifetime requirements on ITER target plates. In the HL-2A tokamak, ELMy H-mode operation is routinely performed and small type-III ELMs with a high repetition rate and some type-I (or possibly large type-III) ELM events are observed. Large ELMs are often preceded by strong coherent magnetic oscillations, and produce obvious perturbations on plasma current Ip, electron density \\bar {n}_{edge} at the edge, stored energy WE, etc. The coherent magnetic oscillations before an ELM crash or during the ELM are measured by toroidal and poloidal Mirnov coils and analysed by the wavelet technique to study the spectral characteristics of the short time ELM events. Pellet injection experiments are performed in type-III ELMy H-mode plasmas and ELM-free H-mode plasmas to study the physics of pellet triggering ELM. The analyses of pellet-induced ELMs and spontaneous ELMs are presented. Because the pellet size is relatively large, it induces magnetic oscillations lasting longer than that of a natural ELM.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
Love, Lonnie
2015-01-09
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Automatic Reconstruction of Spacecraft 3D Shape from Imagery
NASA Astrophysics Data System (ADS)
Poelman, C.; Radtke, R.; Voorhees, H.
We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.
Steady and unsteady 3D interactive boundary layers
NASA Astrophysics Data System (ADS)
Smith, F. T.
The paper describes theoretical and computational research on 3D steady and unsteady flows at medium-to-high Reynolds numbers (Re), aimed at increasing understanding of 3D separation and boundary-layer transition. Concerning steady 3D flows first, an interactive-boundary-layer (IBL) formulation for 3D laminar flow of an incompressible fluid over a surface-mounted obstacle is addressed computationally and compared with other methods at various Re. The computational approach is designed deliberately to capture the extra ellipicity present due to the three-dimensionality, making use of skewed shears in linear quasi-planar sweeps of the boundary layer and local updating in the 3D interaction law. Results including separation are presented for a range of Re and obstacle heights, together with grid-effect studies, and comparisons are made, first with triple-deck predictions for high Re and, second, with an alternative IBL approach presented in a companion work. The latter and the current work together yield a broad agreement on predictions for the 3D flow, stretching from the triple-deck through the IBL to thin-layer Navier-Stokes predictions, over a wide range of Re. Second, the computational approach is extended to unsteady 3D flows, for the triple-deck limit including linear and nonlinear Tollmien-Schlichting waves. Results for small and nonsmall disturbances and comparisons are presented, showing fairly encouraging agreement between theory, computations and experiments.
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
Bosu, Paul P; Wagner, Michael R
2007-06-01
Seedlings of three elm species with variable susceptibility to the elm leaf beetle (Pyrrhalta luteola Müller) (Coleoptera: Chrysomelidae) were subjected to three water stress treatments (no stress, low stress, and high stress) in a greenhouse experiment. The species tested were Ulmus pumila L. (Siberian elm = highly susceptible), U. parvifolia Jacq. (Chinese elm = resistant), and U. americana L. (American elm = intermediate). The seedlings were analyzed for changes in the levels of selected host traits (trichome density, foliar concentration of nitrogen [N], phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], iron [Fe], and manganese [Mn]), some of which had previously been implicated in resistance to the elm leaf beetle. Density of leaf abaxial surface trichomes (simple, bulbous, and total trichomes) and foliar Fe and Mg concentrations increased significantly in the highly susceptible Siberian elms under water stress. In contrast, stress reduced trichome density in the moderately susceptible American elms, but it had no effect on levels of foliar mineral nutrients. The stress treatments had no influence on host traits in the resistant Chinese elms. The results suggest that environmental stress can alter plant traits that are likely involved in determining resistance of elms to the elm leaf beetle.
Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.
2013-01-01
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
3D Printable Graphene Composite
NASA Astrophysics Data System (ADS)
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
3D medical thermography device
NASA Astrophysics Data System (ADS)
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
3D acoustic atmospheric tomography
NASA Astrophysics Data System (ADS)
Rogers, Kevin; Finn, Anthony
2014-10-01
This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
3D structured illumination microscopy
NASA Astrophysics Data System (ADS)
Dougherty, William M.; Goodwin, Paul C.
2011-03-01
Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Larry Lawrence; Bruce Miller
2004-09-01
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
NASA Astrophysics Data System (ADS)
Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.
2015-01-01
The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.
Nonlinear magnetohydrodynamics of edge localized mode precursors
Guo, Z. B.; Wang, Lu; Wang, X. G.
2015-02-15
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.
Scaling Relationships for ELM Diverter Heat Flux on DIII D
NASA Astrophysics Data System (ADS)
Peters, E. A.; Makowski, M. A.; Leonard, A. W.
2015-11-01
Edge Localized Modes (ELMs) are periodic plasma instabilities that occur during H-mode operation in tokamaks. Left unmitigated, these instabilities result in concentrated particle and heat fluxes at the divertor and stand to cause serious damage to the plasma facing components of tokamaks. The purpose of this research is to find scaling relationships that predict divertor heat flux due to ELMs based on plasma parameters at the time of instability. This will be accomplished by correlating characteristic ELM parameters with corresponding plasma measurements and analyzing the data for trends. One early assessment is the effect of the heat transmission coefficient ? on the in/out asymmetry of the calculated ELM heat fluxes. Using IR camera data, further assessments in this study will continue to emphasize in/out asymmetry in ELMs, as this has important implications for ITER operation. Work supported in part by the US DOE, DE-AC52-07NA27344, DE-FC02-04ER54698, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Modeling of extinguishing ELMs in detached divertor plasmas
NASA Astrophysics Data System (ADS)
Pigarov, A.; Krasheninnikov, S.; Hollmann, E.; Rognlien, T.
2015-11-01
Detached plasmas, the primary operational regime for divertors in next-step fusion devices, should be compatible with both good H-mode confinement and relatively small ELMs providing tolerable heat power loads on divertor targets. Here, dynamics of boundary plasma, impurities and material walls over a sequence of many type-I ELM events under detached divertor plasma conditions is studied with UEGDE-MB-W, the newest version of 2D edge plasma transport code, which incorporates Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. We present the results of multi-parametric analysis on the impact of the size and frequency of ELMs on the divertor plasma parameters where we vary the MB characteristics under different pedestals and divertor configurations. We discuss the conditions, under which small but frequent type-I ELMs (typical for high-power H-mode discharges on current tokamaks with hard deuterium gas puff) are not ``burning through'' the formed detached divertor plasma. In this case, the inner and outer divertors are filled by sub-eV, recombining, highly-impure plasma. Variations of impurity plasma content, radiation pattern, and deuterium wall inventory over the ELM cycle are analyzed. UEDGE-MB-W modeling results are compared to available experimental data.
Comparing magnetic triggering of ELMs in TCV and ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kim, S. H.; Cavinato, M. M.; Dokuka, V.; Ivanov, A. A.; Khayrutdinov, R. R.; Lang, P. T.; Lister, J. B.; Lukash, V. E.; Martin, Y. R.; Medvedev, S. Yu; Villard, L.
2009-05-01
Frequency locking of edge localized modes (ELMs) to the vertical plasma movements induced by magnetic perturbations first demonstrated in TCV was successfully repeated in ASDEX Upgrade. However, the ELMs were triggered in ASDEX Upgrade when the plasma was moving down towards the X-point with a consequent decrease in the plasma current density in the edge region, in contrast to the previous observation on TCV in which ELMs were triggered when the edge current was increased by an upward plasma movement. This opposite behaviour observed in the magnetic triggering of ELMs has been investigated by using a free-boundary tokamak simulator, DINA-CH. The passive stabilization loops (PSLs) located inside the vacuum vessel of ASDEX Upgrade produce similar external linking flux changes to those generated by the G-coil sets in TCV for opposite vertical plasma movements. Therefore, both plasmas experience similar local flux surface expansions near the upper G-coil set and PSL when the ELMs are triggered. In ASDEX Upgrade, however, the localized expansion of the plasma flux surfaces near the upper PSL is observed with the global shrinkage of the plasma column accompanied by the downward plasma movement.
Stability and ELM Characterization in I-Mode Pedestals
NASA Astrophysics Data System (ADS)
Walk, J. R.; Hughes, J. W.; Snyder, P. B.; Hubbard, A. E.; Terry, J. L.; White, A. E.; Whyte, D. G.; Baek, S. G.; Cziegler, I.; Edlund, E.
2014-10-01
The I-mode is a novel high-confinement regime explored on Alcator C-Mod, notable for its formation of an H-mode-like temperature pedestal without the accompanying density pedestal, maintaining L-mode particle confinement. I-mode exhibits a number of desirable properties for a reactor regime: among them, it naturally lacks large ELMs, avoiding the need for externally-applied ELM suppression. However, under certain conditions small, intermittent ELM-like events are seen. These events exhibit a range of phenomena in terms of edge and pedestal behavior, particularly for the ELM trigger - the majority of events are synchronized with the sawtooth heat pulse reaching the edge. The stationary pedestal structure is stable against peeling-ballooning MHD as calculated by ELITE in all cases, necessitating treatment of transient pedestal modification to characterize these events. We characterize these ELM events in terms of edge behavior, particularly the modification of the temperature pedestal, edge turbulence and fluctuations, and peeling-ballooning MHD stability. This work is supported by USDoE Award DE-FC02-99ER54512.
Love, Lonnie
2016-11-02
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energyâs Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a âplug-n-playâ laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Quasi 3D dispersion experiment
NASA Astrophysics Data System (ADS)
Bakucz, P.
2003-04-01
This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.
Sinclair, Michael B
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-06
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.
Impurity migration with RF sheath and ELMs perturbed electric field in tokamak
NASA Astrophysics Data System (ADS)
Gui, Bin; Xiao, Xiaotao; Tang, Tengfei; Xu, Xueqiao
2016-10-01
In radio frequency (RF) experiments, impurity generation and transport are important due to the phenomenon of RF enhanced impurity generation. In BOUT + + framework, the equilibrium radial electric field with RF sheath boundary condition on the limiter or the divertor surface is self-consistently calculated by using a two-field model. Based on this self-consistent calculation, it is found the positive radial electric field forms in the SOL region which qualitatively agrees with the experimental on the TEXTOR. The test particle module is developed in BOUT + + framework to simulate both turbulence and neoclassical physics in realistic geometry. Firstly, the drift orbit is calculated in cylinder coordinates due to singularity of x-point in flux coordinate. The turbulence transport of impurity generated from hot spot of RF limiter is simulated by random walk model. The numerical results show that less impurities will migrate into core and divertor region, more impurities migrate into nearby SOL boundary when turbulence transport enhanced. Then the effect of RF sheath potential on impurity migration will be simulated. Using the perturbed electric field from our BOUT + + nonlinear ELMs simulation, the transport of the impurities in different phase of ELMs are also discussed. USDOE by LLNL under DE-AC52-07NA27344.
ELM-KNN for photometric redshift estimation of quasars
NASA Astrophysics Data System (ADS)
Zhang, Yanxia; Tu, Yang; Zhao, Yongheng; Tian, Haijun
2017-06-01
We explore photometric redshift estimation of quasars with the SDSS DR12 quasar sample. Firstly the quasar sample is separated into three parts according to different redshift ranges. Then three classifiers based on Extreme Learning Machine (ELM) are created in the three redshift ranges. Finally k-Nearest Neighbor (kNN) approach is applied on the three samples to predict photometric redshifts of quasars with multiwavelength photometric data. We compare the performance with different input patterns by ELM-KNN with that only by kNN. The experimental results show that ELM-KNN is feasible and superior to kNN (e.g. rms is 0.0751 vs. 0.2626 for SDSS sample), in other words, the ensemble method has the potential to increase regressor performance beyond the level reached by an individual regressor alone and will be a good choice when facing much more complex data.
Relative importance of root grafts and bark beetles to the spread of Dutch elm disease
R. A. Cuthbert; W. N., Jr. Cannon; J. W. Peacock
1975-01-01
Root-graft transmission of Dutch elm disease (DED) is sometimes ignored in both research studies and city programs to control DED. Our results indicate that elms adjacent to 1-, 2-, or 3-year-old stumps have a disease rate three to five times higher than elms not adjacent to stumps. We conclude that in Detroit, which has elm plantings typical of many United States...
Investigation of dynamics of ELM crashes and their mitigation techniques
Pankin, Alexei Y.
2015-08-14
The accurate prediction of H-mode pedestal dynamics is critical for planning experiments in existing tokamaks and in the design of future tokamaks such as ITER and DEMO. The main objective of the proposed research is to advance the understanding of the physics of H-mode pedestal. Through advances in coupled kinetic-MHD simulations, a new model for H-mode pedestal and ELM crashes as well as an improved model for the bootstrap current will be developed. ELMmitigation techniques will also be investigated. The proposed research will help design efficient confinement scenarios and reduce transient heat loads on the divertor and plasma facing components. During the last two years, the principal investigator (PI) of this proposal actively participated in physics studies related to the DOE Joint Research Targets. These studies include the modeling of divertor heat load in the DIII-D, Alcator C-Mod, and NSTX tokamaks in 2010, and the modeling of H-mode pedestal structure in the DIII-D tokamak in 2011. It is proposed that this close collaboration with experimentalists from major US tokamaks continue during the next funding period. Verification and validation will be a strong component of the proposed research. During the course of the project, advances will be made in the following areas; Dynamics of the H-mode pedestal buildup and recovery after ELM crashes – The effects of neutral fueling, particle and thermal pinches will be explored; Dynamics of ELM crashes in realistic tokamak geometries – Heat loads associated with ELM crashes will be validated against experimental measurements. An improved model for ELM crashes will be developed; ELM mitigation – The effect of resonant magnetic perturbations on ELMs stability and their evolution will be investigated; Development of a new bootstrap current model – A reduced model for will be developed through careful verification of existing models for bootstrap current against first-principle kinetic neoclassical simulations
Ten-year performance of the United States national elm trial
Jason J. Griffin; William R. Jacobi; E. Gregory McPherson; Clifford S. Sadof; James R. McKenna; Mark L. Gleason; Nicole Ward Gauthier; Daniel A. Potter; David R. Smitley; Gerard C. Adams; Ann Brooks Gould; Christian R. Cash; James A. Walla; Mark C. Starrett; Gary Chastagner; Jeff L. Sibley; Vera A. Krischik; Adam F. Newby
2017-01-01
Ulmus americana (American elm) was an important urban tree in North America prior to the introduction of the Dutch elm disease pathogen in 1930. Subsequently, urban and community forests were devastated by the loss of large canopies. Tree improvement programs produced disease tolerant American and Eurasian elm cultivars and introduced them into the...
ELM: an Algorithm to Estimate the Alpha Abundance from Low-resolution Spectra
NASA Astrophysics Data System (ADS)
Bu, Yude; Zhao, Gang; Pan, Jingchang; Bharat Kumar, Yerra
2016-01-01
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSS spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.
Development of methods for the restoration of the American elm in forested landscapes
James M. Slavicek
2013-01-01
A project was initiated in 2003 to establish test sites to develop methods to reintroduce the American elm (Ulmus americana L.) in forested landscapes. American elm tree strains with high levels of tolerance to Dutch elm disease (DED) were established in areas where the trees can naturally regenerate and spread. The process of regeneration will...
Christian O. Marks
2017-01-01
Before Dutch elm disease, the American elm (Ulmus americana L.) was a leading dominant tree species in the better drained parts of floodplain forests where flooding occurs about 1 percent of the time. Although still common in these habitats today, U. americana now rarely lives long enough to reach the forest canopy because elm...
ELM: AN ALGORITHM TO ESTIMATE THE ALPHA ABUNDANCE FROM LOW-RESOLUTION SPECTRA
Bu, Yude; Zhao, Gang; Kumar, Yerra Bharat; Pan, Jingchang E-mail: gzhao@nao.cas.cn
2016-01-20
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSS spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.
Garold F. Gregory; Thomas W. Jones
1973-01-01
A preliminary evaluation of the effectiveness of injecting methyl 2-benzimidazole carbamate hydrochloride solution into elms for prevention or cure of Dutch elm disease is reported. Symptom development was diminished or prevented in elms injected with fungicide before inoculation. Symptom development was arrested in all crown-inoculated diseased trees injected with the...
VizieR Online Data Catalog: The ELM survey. VI. 11 new ELM WD binaries (Gianninas+, 2015)
NASA Astrophysics Data System (ADS)
Gianninas, A.; Kilic, M.; Brown, W. R.; Canton, P.; Kenyon, S. J.
2016-02-01
We used the 6.5m MMT telescope equipped with the Blue Channel spectrograph, the 200 inch Hale telescope equipped with the Double spectrograph, the Kitt Peak National Observatory 4m telescope equipped with the R-C spectrograph, and more recently with Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS), to obtain spectroscopy of our 11 targets in several observing runs. We have also been obtaining radial-velocity measurements for candidates from other sources including the Large Sky Area Multi-Object Spectroscopy Telescope (LAMOST). Those 11 new Extremely low-mass white dwarf (ELM WD) binaries bring the total of ELM WDs identified by the ELM Survey up to 73. (4 data files).
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2013-03-01
Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
NASA Astrophysics Data System (ADS)
Hermanns, Maria
The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
NIF Ignition Target 3D Point Design
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING
Gunár, Stanislav; Mackay, Duncan H.
2015-04-20
We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.
The 3-D inelastic analyses for computational structural mechanics
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1989-01-01
The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.
3-D plasma boundary and plasma wall interaction research at UW-Madison
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Akerson, Adrian; Bader, Aaron; Barbui, Tullio; Effenberg, Florian; Flesch, Kurt; Frerichs, Heinke; Green, Jonathan; Hinson, Edward; Kremeyer, Thierry; Norval, Ryan; Stephey, Laurie; Waters, Ian; Winters, Victoria
2016-10-01
The necessity of considering 3-D effects on the plasma boundary and plasma wall interaction (PWI) in tokamaks, stellarators and reversed field pinches has been highlighted by abundant experimental and numerical results in the recent past. Prominent examples with 3-D boundary situations are numerous: ELM controlled H-modes by RMP fields in tokamaks, research on boundary plasmas and PWI in stellarators in general, quasi-helical states in RFPs, asymmetric fueling situations, and structural and wall elements which are not aligned with the magnetic guiding fields. A systematic approach is being taken at UW-Madison to establish a targeted experimental basis for identifying the most significant effects for plasma edge transport and resulting PWI in such 3-D plasma boundary situations. We deploy advanced 3-D modeling using the EMC3-EIRENE, ERO and MCI codes in combination with laboratory experiments at UW-Madison to investigate the relevance of 3-D effects in large scale devices with a concerted approach on DIII-D, NSTX-U, and Wendelstein 7-X. Highlights of experimental results from the on-site laboratory activities at UW-Madison and the large scale facilities are presented and interlinks will be discussed. This work was supported by US DOE DE-SC0013911, DE-SC00012315 and DE-SC00014210.
America's National Parks 3d (4)
Atmospheric Science Data Center
2017-04-11
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (3)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (2)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (1)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
3D ultrasound in fetal spina bifida.
Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B
2008-12-01
3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.
An interactive multiview 3D display system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui
2013-03-01
The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.
[3D emulation of epicardium dynamic mapping].
Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang
2005-03-01
In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.
3-D Extensions for Trustworthy Systems
2011-01-01
modifications to the floor planning stage of the 3-D design flow that are necessary to support our design approach. We strongly recommend that the 3-D EDA ...and we outline problems, challenges, attacks, solutions, and topics for future research. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Requirements for automated 3-D IC design tools for the physical layout of components. Since fully automated Electronic Design Automation ( EDA ) for 3-D
True 3d Images and Their Applications
NASA Astrophysics Data System (ADS)
Wang, Z.; wang@hzgeospace., zheng.
2012-07-01
A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.
Microfabricating 3D Structures by Laser Origami
2011-11-09
10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
VIEW OF ELM CIRCLE, FROM BETWEEN FACILITIES 750 AND 750. ...
VIEW OF ELM CIRCLE, FROM BETWEEN FACILITIES 750 AND 750. VIEW FACING EAST/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
VIEW OF PLAYGROUND #4 NEAR ELM CIRCLE, SHOWING PICNIC TABLE. ...
VIEW OF PLAYGROUND #4 NEAR ELM CIRCLE, SHOWING PICNIC TABLE. VIEW FACING EAST/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI
An annotated list of the cicadellidae and fulgoridae of elm
Lester P. Gibson
1973-01-01
This annotated list includes 87 cicadellid and 13 fulgorid entries that were found on and probably feed on elm to some extent. Thirteen of the cicadellid species listed are known vectors of virus or mycoplasmalike diseases of plants. Also, the following 18 cicadellid genera contain known vectors of virus or mycoplasmalike diseases of plants: Aceratagallia...
Phloem Necrosis of American Elm in the Mississippi Delta
T. H. Filer
1966-01-01
Phloem necrosis in elms, caused by the virus Morsus ulmi Holmes, has been found at Rolling Fork, Mississippi, 60 miles northwest of Jackson and 47 miles north of Vicksburg, in the Delta hardwoods area. It was first reported in Mississippi in 1941, when it was found at Jackson, and it appeared in the northeastern part of the State in 1945.
Genome-wide analyses of the Dutch elm disease fungi
Louis. Bernier
2017-01-01
The Ascomycete fungi Ophiostoma ulmi and O. novo-ulmi are the pathogens respectively responsible for the two successive pandemics of Dutch elm disease (DED) since the early 1900s. The advent of the highly fit and virulent O. novo-ulmi was a landmark event in the evolution of DED during the last 100 years....
Intra- and interspecific hybridization in invasive Siberian elm
USDA-ARS?s Scientific Manuscript database
Although numerous studies have examined the invasion history of herbaceous plants, few studies have investigated the invasion biology of woody plants. In this study, we determined whether inter-specific hybridization was necessary before invasiveness could evolve in the Siberian elm, Ulmus pumila. P...
Formulation and application of methoxychlor for elm bark beetle control
R. A. Cuthbert; J. H. Barger; A. C. Lincoln; P. A. Reed
1973-01-01
American elm trees, Ulmus americana L., were sprayed with different formulations of methoxychlor by mistblower, hydraulic sprayer or helicopter. Twig-crotches were collected from sprayed trees for GLC assay and Scolytus multistriatus (Marsham) bioassay. Hydraulic deposits were heaviest but the mistblower was more efficient in terms...
VIEW FROM CENTER OF ELM AVENUE, LOOKING WEST INTO SECTION ...
VIEW FROM CENTER OF ELM AVENUE, LOOKING WEST INTO SECTION L. AT LEFT STANDS THE PONDEROUS MCDANIEL MAUSOLEUM, WHICH SHOWS THE INFLUENCE OF FRANK FURNESS ON H. Q. FRENCHS 1887 DESIGN - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA
65. VIEW OF THE OLMSTED ELM, SOUTH LAWN, AND WEST ...
65. VIEW OF THE OLMSTED ELM, SOUTH LAWN, AND WEST SLOPE. SHOWN IN THE LEFT FOREGROUND ARE THE RESTORED LAWN EDGE AND THE HISTORIC ENGLISH YEW. (DUPLICATE OF HABS No. MA-1168-31) - Fairsted, 99 Warren Street, Brookline, Norfolk County, MA
67. VIEW FROM BENEATH THE OLMSTED ELM LOOKING TO THE ...
67. VIEW FROM BENEATH THE OLMSTED ELM LOOKING TO THE SOUTH LAWN AND WEST SLOPE. THERE IS A NEW GRASS BAY ON THE WEST SLOP, SHOWN IN THE BACKGROUND. (DUPLICATE OF HABS No. ma-1168-33) - Fairsted, 99 Warren Street, Brookline, Norfolk County, MA
75. VIEW LOOKING EAST FROM THE OLMSTED ELM IN THE ...
75. VIEW LOOKING EAST FROM THE OLMSTED ELM IN THE SOUTH LAWN TO THE ROCK GARDEN. VIEW INCLUDES HISTORIC ENGLISH YEW ON RIGHT, CRAB APPLE IN CENTER. (DUPLICATE OF HABS No. MA-1168-46) - Fairsted, 99 Warren Street, Brookline, Norfolk County, MA
Bird mortality after spraying for Dutch elm disease with DDT
Wurster, C.F.; Wurster, D.H.; Strickland, W.N.
1965-01-01
In Hanover, New Hampshire, where elms were sprayed with DDT, 151 dead birds were found; 10 dead birds were found in Norwich, Vermont, where no DDT was used. Chemical analyses of dead birds, observation of symptoms of DDT poisoning, and a population decline after spraying all indicate severe mortality among certain species in Hanover.
Fungicide Injection to Control Dutch Elm Disease: Understanding the Options
Linda Haugen; Mark Stennes
1999-01-01
In some situations, injecting trees with fungicides is an effective treatment for the management of Dutch elm disease (DED). Several injection products are on the market, and various means of application are recommended. Each product and method has pros and cons. The "best" product depends on the individual tree? its current condition, the objectives of the...
Saliency Detection of Stereoscopic 3D Images with Application to Visual Discomfort Prediction
NASA Astrophysics Data System (ADS)
Li, Hong; Luo, Ting; Xu, Haiyong
2017-06-01
Visual saliency detection is potentially useful for a wide range of applications in image processing and computer vision fields. This paper proposes a novel bottom-up saliency detection approach for stereoscopic 3D (S3D) images based on regional covariance matrix. As for S3D saliency detection, besides the traditional 2D low-level visual features, additional 3D depth features should also be considered. However, only limited efforts have been made to investigate how different features (e.g. 2D and 3D features) contribute to the overall saliency of S3D images. The main contribution of this paper is that we introduce a nonlinear feature integration descriptor, i.e., regional covariance matrix, to fuse both 2D and 3D features for S3D saliency detection. The regional covariance matrix is shown to be effective for nonlinear feature integration by modelling the inter-correlation of different feature dimensions. Experimental results demonstrate that the proposed approach outperforms several existing relevant models including 2D extended and pure 3D saliency models. In addition, we also experimentally verified that the proposed S3D saliency map can significantly improve the prediction accuracy of experienced visual discomfort when viewing S3D images.
A method to fabricate disconnected silver nanostructures in 3D.
Vora, Kevin; Kang, SeungYeon; Mazur, Eric
2012-11-27
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can
A Method to Fabricate Disconnected Silver Nanostructures in 3D
Vora, Kevin; Kang, SeungYeon; Mazur, Eric
2012-01-01
The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.1,2 Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.3-7 However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.8 Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,9 such as coupled metal dot10,11or coupled metal rod12,13 resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can form structures
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Imaging a Sustainable Future in 3D
NASA Astrophysics Data System (ADS)
Schuhr, W.; Lee, J. D.; Kanngieser, E.
2012-07-01
It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
NASA Astrophysics Data System (ADS)
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.