Science.gov

Sample records for 3d nonlinear optical

  1. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

    PubMed Central

    Wu, Yicong; Leng, Yuxin; Xi, Jiefeng; Li, Xingde

    2009-01-01

    An extremely compact all-fiber-optic scanning endomicroscopy system was developed for two-photon fluorescence (TPF) and second harmonic generation (SHG) imaging of biological samples. A conventional double-clad fiber (DCF) was employed in the endomicroscope for single-mode femtosecond pulse delivery, multimode nonlinear optical signals collection and fast two-dimensional scanning. A single photonic bandgap fiber (PBF) with negative group velocity dispersion at two-photon excitation wavelength (i.e. ~810 nm) was used for pulse prechirping in replacement of a bulky grating/lens-based pulse stretcher. The combined use of DCF and PBF in the endomicroscopy system made the endomicroscope basically a plug-and-play unit. The excellent imaging ability of the extremely compact all-fiber-optic nonlinear optical endomicroscopy system was demonstrated by SHG imaging of rat tail tendon and depth-resolved TPF imaging of epithelial tissues stained with acridine orange. The preliminary results suggested the promising potential of this extremely compact all-fiber-optic endomicroscopy system for real-time assessment of both epithelial and stromal structures in luminal organs. PMID:19434122

  2. Nonlinear Optical Macroscopic Assessment of 3-D Corneal Collagen Organization and Axial Biomechanics

    PubMed Central

    Winkler, Moritz; Chai, Dongyul; Kriling, Shelsea; Nien, Chyong Jy; Brown, Donald J.; Jester, Bryan; Juhasz, Tibor

    2011-01-01

    Purpose. To characterize and quantify the collagen fiber (lamellar) organization of human corneas in three dimensions by using nonlinear optical high-resolution macroscopy (NLO-HRMac) and to correlate these findings with mechanical data obtained by indentation testing of corneal flaps. Methods. Twelve corneas from 10 donors were studied. Vibratome sections, 200 μm thick, from five donor eyes were cut along the vertical meridian from limbus to limbus (arc length, 12 mm). Backscattered second harmonic–generated (SHG) NLO signals from these sections were collected as a series of overlapping 3-D images, which were concatenated to form a single 3-D mosaic (pixel resolution: 0.44 μm lateral, 2 μm axial). Collagen fiber intertwining was quantified by determining branching point density as a function of stromal depth. Mechanical testing was performed on corneal flaps from seven additional eyes. Corneas were cut into three layers (anterior, middle, and posterior) using a femtosecond surgical laser system and underwent indentation testing to determine the elastic modulus for each layer. Results. The 3-D reconstructions revealed complex collagen fiber branching patterns in the anterior cornea, with fibers extending from the anterior limiting lamina (ALL, Bowman's layer), intertwining with deeper fibers and reinserting back to the ALL, forming bow spring–like structures. Measured branching-point density was four times higher in the anterior third of the cornea than in the posterior third and decreased logarithmically with increasing distance from the ALL. Indentation testing showed an eightfold increase in elastic modulus in the anterior stroma. Conclusions. The axial gradient in lamellar intertwining appears to be associated with an axial gradient in the effective elastic modulus of the cornea, suggesting that collagen fiber intertwining and formation of bow spring–like structures provide structural support similar to cross-beams in bridges and large-scale structures

  3. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-02-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  4. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    PubMed Central

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  5. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    PubMed

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  6. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  7. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  8. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C(3v) C60F18 and D(3d) C60Cl30.

    PubMed

    Tang, Shu-Wei; Feng, Jing-Dong; Qiu, Yong-Qing; Sun, Hao; Wang, Feng-Di; Chang, Ying-Fei; Wang, Rong-Shun

    2010-11-15

    Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic character (with nucleus-independent chemical shifts varying from -15.08 to -23.71 ppm) of C(60)F(18) and C(60)Cl(30) indicate their high stabilities. Further investigations of electronic property show that C(60)F(18) and C(60)Cl(30) could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states and frontier molecular orbitals are also calculated, which present that HOMOs and LUMOs are mainly distributed in the tortoise shell subunit of C(60)F(18) and the aromatic [18] trannulene ring of C(60)Cl(30), and the influence from halogen atoms is secondary. In addition, the static linear polarizability and second-order hyperpolarizability of C(60)F(18) and C(60)Cl(30) are calculated using finite-field approach. The values of and for C(60)F(18) and C(60)Cl(30) molecules are significantly larger than those of C(60) because of their lower symmetric structures and high delocalization of pi electrons.

  9. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.

  10. Optical microcavity scanning 3D tomography.

    PubMed

    Di Donato, Andrea; Criante, Luigino; LoTurco, Sara; Farina, Marco

    2014-10-01

    A scanning optical microcavity is exploited to achieve lens-free 3D tomography of microfluidic channels. The microcavity, powered by a low-coherence source, is realized by approaching a cleaved fiber to few tens of micrometers over the sample. The interference of scattered waves inside the cavity shapes the transverse field distribution by focusing the beam and overcoming the diffraction limit due to the optical-fiber numerical aperture. The focusing effect is also preserved in the inner layers of the sample, allowing optical 3D tomography. Analysis of microfluidic channels was demonstrated through this noninvasive technique. Although the experimental setup recalls the well-known fiber-optic Fourier-domain common-path optical coherence tomography, the proposed method has intrinsic characteristics that distinguish it from the former one.

  11. 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  12. 3D nanopillar optical antenna photodetectors.

    PubMed

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  13. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  14. Deep Nonlinear Metric Learning for 3-D Shape Retrieval.

    PubMed

    Xie, Jin; Dai, Guoxian; Zhu, Fan; Shao, Ling; Fang, Yi

    2016-12-28

    Effective 3-D shape retrieval is an important problem in 3-D shape analysis. Recently, feature learning-based shape retrieval methods have been widely studied, where the distance metrics between 3-D shape descriptors are usually hand-crafted. In this paper, motivated by the fact that deep neural network has the good ability to model nonlinearity, we propose to learn an effective nonlinear distance metric between 3-D shape descriptors for retrieval. First, the locality-constrained linear coding method is employed to encode each vertex on the shape and the encoding coefficient histogram is formed as the global 3-D shape descriptor to represent the shape. Then, a novel deep metric network is proposed to learn a nonlinear transformation to map the 3-D shape descriptors to a nonlinear feature space. The proposed deep metric network minimizes a discriminative loss function that can enforce the similarity between a pair of samples from the same class to be small and the similarity between a pair of samples from different classes to be large. Finally, the distance between the outputs of the metric network is used as the similarity for shape retrieval. The proposed method is evaluated on the McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human shape datasets. Experimental results on the three datasets validate the effectiveness of the proposed method.

  15. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  16. Multi-resolution optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Heinze, Matthias; Schmidt, Ingo; Breitbarth, Martin; Notni, Gunther

    2007-06-01

    A new multi resolution self calibrating optical 3D measurement system using fringe projection technique named "kolibri FLEX multi" will be presented. It can be utilised to acquire the all around shape of small to medium objects, simultaneously. The basic measurement principle is the phasogrammetric approach /1,2,3/ in combination with the method of virtual landmarks for the merging of the 3D single views. The system consists in minimum of two fringe projection sensors. The sensors are mounted on a rotation stage illuminating the object from different directions. The measurement fields of the sensors can be chosen different, here as an example 40mm and 180mm in diameter. In the measurement the object can be scanned at the same time with these two resolutions. Using the method of virtual landmarks both point clouds are calculated within the same world coordinate system resulting in a common 3D-point cloud. The final point cloud includes the overview of the object with low point density (wide field) and a region with high point density (focussed view) at the same time. The advantage of the new method is the possibility to measure with different resolutions at the same object region without any mechanical changes in the system or data post processing. Typical parameters of the system are: the measurement time is 2min for 12 images and the measurement accuracy is below 3μm up to 10 μm. The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  17. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  18. New skeletal 3D polymeric inorganic cluster [W4S16Cu16Cl16]n with Cu in mixed-valence states: solid-state synthesis, crystal structure, and third-order nonlinear optical properties.

    PubMed

    Cai, Ya; Wang, Yan; Li, Yizhi; Wang, Xiaoshu; Xin, Xinquan; Liu, Caiming; Zheng, Hegen

    2005-12-12

    A new 3D polymeric inorganic cluster with Cu in mixed-valence states was synthesized by the solid-state reaction of (NH4)2WS4, S8, CuCl, and Et4NCl; S8 may be regarded as the oxidizing agent converting Cu(I) to Cu(II) and causing the polymerization of [WS4]2-. The third-order nonlinear optical (NLO) properties are determined, and the results show that the cluster exhibits both large NLO absorptive and strong refractive behaviors.

  19. Postprocessing techniques for 3D non-linear structures

    NASA Technical Reports Server (NTRS)

    Gallagher, Richard S.

    1987-01-01

    How graphics postprocessing techniques are currently used to examine the results of 3-D nonlinear analyses, some new techniques which take advantage of recent technology, and how these results relate to both the finite element model and its geometric parent are reviewed.

  20. 3-D adaptive nonlinear complex-diffusion despeckling filter.

    PubMed

    Rodrigues, Pedro; Bernardes, Rui

    2012-12-01

    This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.

  1. Manufacturing: 3D printed micro-optics

    NASA Astrophysics Data System (ADS)

    Juodkazis, Saulius

    2016-08-01

    Uncompromised performance of micro-optical compound lenses has been achieved by high-fidelity shape definition during two-photon absorption microfabrication. The lenses have been made directly onto image sensors and even onto the tip of an optic fibre.

  2. 3D-additive manufactured optical mount

    NASA Astrophysics Data System (ADS)

    Mammini, Paul V.; Ciscel, David; Wooten, John

    2015-09-01

    The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.

  3. 3D printed long period gratings for optical fibers.

    PubMed

    Iezzi, Victor Lambin; Boisvert, Jean-Sébastien; Loranger, Sébastien; Kashyap, Raman

    2016-04-15

    We demonstrate a simple technique for implementing long period grating (LPG) structures by the use of a 3D printer. This Letter shows a way of manipulating the mode coupling within an optical fiber by applying stress through an external 3D printed periodic structure. Different LPG lengths and periods have been studied, as well as the effect of the applied stress on the coupling efficiency from the fundamental mode to cladding modes. The technique is very simple, highly flexible, affordable, and easy to implement without the need of altering the optical fiber. This Letter is part of a growing line of interest in the use of 3D printers for optical applications.

  4. A 3D printed electromagnetic nonlinear vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Roy, S.

    2016-09-01

    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.

  5. Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Chacon, L.

    2010-11-01

    A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)

  6. Optical 3D imaging and visualization of concealed objects

    NASA Astrophysics Data System (ADS)

    Berginc, G.; Bellet, J.-B.; Berechet, I.; Berechet, S.

    2016-09-01

    This paper gives new insights on optical 3D imagery. In this paper we explore the advantages of laser imagery to form a three-dimensional image of the scene. 3D laser imaging can be used for three-dimensional medical imaging and surveillance because of ability to identify tumors or concealed objects. We consider the problem of 3D reconstruction based upon 2D angle-dependent laser images. The objective of this new 3D laser imaging is to provide users a complete 3D reconstruction of objects from available 2D data limited in number. The 2D laser data used in this paper come from simulations that are based on the calculation of the laser interactions with the different meshed objects of the scene of interest or from experimental 2D laser images. We show that combining the Radom transform on 2D laser images with the Maximum Intensity Projection can generate 3D views of the considered scene from which we can extract the 3D concealed object in real time. With different original numerical or experimental examples, we investigate the effects of the input contrasts. We show the robustness and the stability of the method. We have developed a new patented method of 3D laser imaging based on three-dimensional reflective tomographic reconstruction algorithms and an associated visualization method. In this paper we present the global 3D reconstruction and visualization procedures.

  7. Research of 3D display using anamorphic optics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kenji; Honda, Toshio

    1997-05-01

    This paper describes the auto-stereoscopic display which can reconstruct more reality and viewer friendly 3-D image by increasing the number of parallaxes and giving motion parallax horizontally. It is difficult to increase number of parallaxes to give motion parallax to the 3-D image without reducing the resolution, because the resolution of display device is insufficient. The magnification and the image formation position can be selected independently in horizontal direction and the vertical direction by projecting between the display device and the 3-D image with the anamorphic optics. The anamorphic optics is an optics system with different magnification in horizontal direction and the vertical direction. It consists of the combination of cylindrical lenses with different focal length. By using this optics, even if we use a dynamic display such as liquid crystal display (LCD), it is possible to display the realistic 3-D image having motion parallax. Motion parallax is obtained by assuming width of the single parallax at the viewing position to be about the same size as the pupil diameter of viewer. In addition, because the focus depth of the 3-D image is deep in this method, conflict of accommodation and convergence is small, and natural 3-D image can be displayed.

  8. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  9. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  10. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  11. Progresses in 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Navarro, Héctor; Pons, Amparo; Javidi, Bahram

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  12. Optical Approach to Resin Formulation for 3D Printed Microfluidics†

    PubMed Central

    Gong, Hua; Beauchamp, Michael; Perry, Steven; Woolley, Adam T.

    2015-01-01

    Microfluidics imposes different requirements on 3D printing compared to many applications because the critical features for microfluidics consist of internal microvoids. Resins for general 3D printing applications, however, are not necessarily formulated to meet the requirements of microfluidics and minimize the size of fabricated voids. In this paper we use an optical approach to guide custom formulation of resins to minimize the cross sectional size of fabricated flow channels as exemplars of such voids. We focus on stereolithgraphy (SL) 3D printing with Digital Light Processing (DLP) based on a micromirror array and use a commercially available 3D printer. We develop a mathematical model for the optical dose delivered through the thickness of a 3D printed part, including the effect of voids. We find that there is a fundamental trade-off between the homogeneity of the optical dose within individual layers and how far the critical dose penetrates into a flow channel during fabrication. We also experimentally investigate the practical limits of flow channel miniaturization given the optical properties of a resin and find that the minimum flow channel height is ~3.5–5.5ha where ha is the optical penetration depth of the resin, and that the minimum width is 4 pixels in the build plane. We also show that the ratio of the build layer thickness to ha should be in the range 0.3–1.0 to obtain the minimum flow channel height for a given resin. The minimum flow channel size that we demonstrate for a custom resin is 60 μm × 108 μm for a 10 μm build layer thickness. This work lays the foundation for 3D printing of <100 μm microfluidic features. PMID:26744624

  13. Optical fabrication of lightweighted 3D printed mirrors

    NASA Astrophysics Data System (ADS)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  14. Optically Nonlinear Polymeric Materials.

    DTIC Science & Technology

    1983-01-01

    optical chromophores into the hydrophobic portions of the polymer, second order . ,nonlinear optical effects may be obtained. Experimental 01 0...8217V cinnamaldehyde , giving the polymer shown in Figure 3. This chromophore should have greater optical nonlinearity because of its better electron

  15. 3-D Nonlinear Constitutive Modeling Approach for Composite Materials

    DTIC Science & Technology

    1992-05-01

    material nonlinearities, damage , and interfacial debonding [1]. These nonlinearities must be considered for accurate prediction of strength or stability...the overall nonlinear behavior covers plasticity and damage effects, both of which could have significant impact on structural analysis results...through a user-written material ( UMAT ) subroutine. D Micromechanical Analyse Micromechanical methods and selective experimentation are used to develop an

  16. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  17. 3D optical measuring technologies for dimensional inspection

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.

    2005-01-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented.

  18. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  19. Unity Occupation of Sites in a 3D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Depue, Marshall T.; McCormick, Colin; Winoto, S. Lukman; Oliver, Steven; Weiss, David S.

    1999-03-01

    An average filling factor of one atom per lattice site has been obtained in a submicron scale far-off-resonance optical lattice (FORL). High site occupation is obtained through a compression sequence that includes laser cooling in a 3D FORL and adiabatic toggling between the 3D FORL and a 1D FORL trap. After the highest filling factor is achieved, laser cooling causes collisional loss from lattice sites with more than one atom. Ultimately 44% of the sites have a single atom cooled to near its vibrational ground state. A theoretical model of site occupation based on Poisson statistics agrees well with the experimental results.

  20. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    PubMed

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  1. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  2. Open-source 3D-printable optics equipment.

    PubMed

    Zhang, Chenlong; Anzalone, Nicholas C; Faria, Rodrigo P; Pearce, Joshua M

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  3. Open-Source 3D-Printable Optics Equipment

    PubMed Central

    Zhang, Chenlong; Anzalone, Nicholas C.; Faria, Rodrigo P.; Pearce, Joshua M.

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods. PMID:23544104

  4. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  5. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer.

    PubMed

    Park, So-Yeon; Kim, Jung-In; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min

    2017-05-07

    We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam's eye view. To test the system's performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from  -6.7% to 2.4% inside the phantom and from  -2.3% to 0.6% on the phantom's surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within  ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.

  6. Efficient physics-based predictive 3D image modeling and simulation of optical atmospheric refraction phenomena

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Hammel, Stephen M.; Tsintikidis, Dimitris

    2016-09-01

    We present some preliminary results and discussion of our ongoing effort to develop a prototype volumetric atmospheric optical refraction simulator which uses 3D nonlinear ray-tracing and state-of-art physics-based rendering techniques. The tool will allow simulation of optical curved-ray propagation through nonlinear refractivity gradient profiles in volumetric atmospheric participating media, and the generation of radiometrically accurate images of the resulting atmospheric refraction phenomena, including inferior and superior mirages, over-the-horizon viewing conditions, looming and sinking, towering and stooping of distant objects. The ability to accurately model and predict atmospheric optical refraction conditions and phenomena is important in both defense and commercial applications. Our nonlinear refractive ray-trace method is currently CPU-parallelized and is well-suited for GPU compute implementation.

  7. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  8. Constructing 3D microtubule networks using holographic optical trapping

    PubMed Central

    Bergman, J.; Osunbayo, O.; Vershinin, M.

    2015-01-01

    Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices. PMID:26657337

  9. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  10. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  11. Optic flow aided navigation and 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Rollason, Malcolm

    2013-10-01

    An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.

  12. 3D high resolution pure optical photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2012-02-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After some refinedment of in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM of high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5μm and an axial resolution of 8μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue

  13. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  14. Optical characterization of different types of 3D displays

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    All 3D displays have the same intrinsic method to induce depth perception. They provide different images in the left and right eye of the observer to obtain the stereoscopic effect. The three most common solutions already available on the market are active glass, passive glass and auto-stereoscopic 3D displays. The three types of displays are based on different physical principle (polarization, time selection or spatial emission) and consequently require different measurement instruments and techniques. In the proposed paper, we present some of these solutions and the technical characteristics that can be obtained to compare the displays. We show in particular that local and global measurements can be made in the three cases to access to different characteristics. We also discuss the new technologies currently under development and their needs in terms of optical characterization.

  15. Innovations in 3D printing: a 3D overview from optics to organs.

    PubMed

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  16. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  17. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  18. Ultracold Heteronuclear Molecules in a 3D Optical Lattice

    SciTech Connect

    Ospelkaus, C.; Ospelkaus, S.; Humbert, L.; Ernst, P.; Sengstock, K.; Bongs, K.

    2006-09-22

    We report on the creation of ultracold heteronuclear molecules assembled from fermionic {sup 40}K and bosonic {sup 87}Rb atoms in a 3D optical lattice. Molecules are produced at a heteronuclear Feshbach resonance on both the attractive and the repulsive sides of the resonance. We precisely determine the binding energy of the heteronuclear molecules from rf spectroscopy across the Feshbach resonance. We characterize the lifetime of the molecular sample as a function of magnetic field and measure lifetimes between 20 and 120 ms. The efficiency of molecule creation via rf association is measured and is found to decrease as expected for more deeply bound molecules.

  19. Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading

    DTIC Science & Technology

    2013-07-11

    advanced composites like 3D -OWC. On the other hand, a microscale simulation with resolution of individual fiber filament is impractical due to enormous...REPORT Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The objective of...analysis of 3D woven fiber composites under ballistic loading. Since material behavior is determined by its microstructure, it is essential to

  20. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  1. Solitons in nonlinear optics

    SciTech Connect

    Maimistov, Andrei I

    2010-11-13

    The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)

  2. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  3. Ultracold polar molecules in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Yan, Bo

    2015-05-01

    Ultracold polar molecules, with their long-range electric dipolar interactions, offer new opportunities for studying quantum magnetism and many-body physics. KRb molecules loaded into a three-dimensional (3D) optical lattice allow one to study such a spin-lattice system in a stable environment without losses arising from chemical reactions. In the case with strong lattice confinement along two directions and a weak lattice potential along the third, we find the loss rate is suppressed by the quantum Zeno effect. In a deep 3D lattice with no tunneling, we observe evidences for spin exchange interactions. We use Ramsey spectroscopy to investigate the spin dynamics. By choosing the appropriate lattice polarizations and implementing a spin echo sequence, the single particle dephasing is largely suppressed, leaving the dipolar exchange interactions as the dominant contribution to the observed dynamics. This is supported by many-body theoretical calculations. While this initial demonstration was done with low lattice fillings, our current experimental efforts are focused on increasing the lattice filling fraction. This will greatly benefit the study of complex many-body dynamics with long-range interactions, such as transport of excitations in an out-of-equilibrium system and spin-orbit coupling in a lattice.

  4. Parsing optical scanned 3D data by Bayesian inference

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    Optical devices are always used to digitize complex objects to get their shapes in form of point clouds. The results have no semantic meaning about the objects, and tedious process is indispensable to segment the scanned data to get meanings. The reason for a person to perceive an object correctly is the usage of knowledge, so Bayesian inference is used to the goal. A probabilistic And-Or-Graph is used as a unified framework of representation, learning, and recognition for a large number of object categories, and a probabilistic model defined on this And-Or-Graph is learned from a relatively small training set per category. Given a set of 3D scanned data, the Bayesian inference constructs a most probable interpretation of the object, and a semantic segment is obtained from the part decomposition. Some examples are given to explain the method.

  5. 3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography

    NASA Astrophysics Data System (ADS)

    Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer

    Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.

  6. Nonlinear optical inves

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Arfan, A.; Allahham, A.

    2017-03-01

    Z-scan technique was used to investigate the nonlinear optical properties of Quinine and 1-(carboxymethyl)-6-methoxy-4-(3-(3-vinylpiperidin-4-yl) propanoyl) quinolin-1-ium chloride (Quinotoxine) salts. The two salts were characterized using UV-visible, FTIR and NMR measurements. The characterization spectra confirm the expected molecular structure of the prepared "Quinotoxine " salt. The z-scan measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient of the samples were determined. Our results reveal that the σex is higher than the σg indicating that the reverse saturable absorption (RSA) is the dominating mechanism for the observed absorption nonlinearities. The results suggest that this material should be considered as a promising candidate for future optical devices applications.

  7. Optical 3D sensor for large objects in industrial application

    NASA Astrophysics Data System (ADS)

    Kuhmstedt, Peter; Heinze, Matthias; Himmelreich, Michael; Brauer-Burchardt, Christian; Brakhage, Peter; Notni, Gunther

    2005-06-01

    A new self calibrating optical 3D measurement system using fringe projection technique named "kolibri 1500" is presented. It can be utilised to acquire the all around shape of large objects. The basic measuring principle is the phasogrammetric approach introduced by the authors /1, 2/. The "kolibri 1500" consists of a stationary system with a translation unit for handling of objects. Automatic whole body measurement is achieved by using sensor head rotation and changeable object position, which can be done completely computer controlled. Multi-view measurement is realised by using the concept of virtual reference points. In this way no matching procedures or markers are necessary for the registration of the different images. This makes the system very flexible to realise different measurement tasks. Furthermore, due to self calibrating principle mechanical alterations are compensated. Typical parameters of the system are: the measurement volume extends from 400 mm up to 1500 mm max. length, the measurement time is between 2 min for 12 images up to 20 min for 36 images and the measurement accuracy is below 50μm.The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  8. Cordless hand-held optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Munkelt, Christoph; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Schmidt, Ingo; Notni, Gunther

    2007-07-01

    A new mobile optical 3D measurement system using phase correlation based fringe projection technique will be presented. The sensor consist of a digital projection unit and two cameras in a stereo arrangement, whereby both are battery powered. The data transfer to a base station will be done via WLAN. This gives the possibility to use the system in complicate, remote measurement situations, which are typical in archaeology and architecture. In the measurement procedure the sensor will be hand-held by the user, illuminating the object with a sequence of less than 10 fringe patterns, within a time below 200 ms. This short sequence duration was achieved by a new approach, which combines the epipolar constraint with robust phase correlation utilizing a pre-calibrated sensor head, containing two cameras and a digital fringe projector. Furthermore, the system can be utilized to acquire the all around shape of objects by using the phasogrammetric approach with virtual land marks introduced by the authors 1, 2. This way no matching procedures or markers are necessary for the registration of multiple views, which makes the system very flexible in accomplishing different measurement tasks. The realized measurement field is approx. 100 mm up to 400 mm in diameter. The mobile character makes the measurement system useful for a wide range of applications in arts, architecture, archaeology and criminology, which will be shown in the paper.

  9. Nonlinear optical Galton board

    SciTech Connect

    Navarrete-Benlloch, C.; Perez, A.; Roldan, Eugenio

    2007-06-15

    We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. [Phys. Rev. A 61, 013410 (2000)], by introducing the possibility of nonlinear self-phase modulation on the wave function during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau-Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of nondispersive pulses in the field distribution (solitonlike structures). These exhibit a variety of dynamical behaviors, including ballistic motion, dynamical localization, nonelastic collisions, and chaotic behavior, in the sense that the dynamics is very sensitive to the nonlinearity strength.

  10. Mathematical Nonlinear Optics

    DTIC Science & Technology

    1994-01-03

    August, 1991. Thesis - "Applications of the Inverse Spectral Transform to a Korteweg - DeVries Equation with a Kuramoto-Sivashinsky-Type Perturbation... equations , the mathematical theory of nematic optics involves strong coupling between the electromagnetic and nematic director (molecular orientation... equations for the electric field E coupled to a nonlinear parabolic equation for the director n, a field of unit vectors which describes the local molecular

  11. Air-structured optical fiber drawn from a 3D-printed preform.

    PubMed

    Cook, Kevin; Canning, John; Leon-Saval, Sergio; Reid, Zane; Hossain, Md Arafat; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding

    2015-09-01

    A structured optical fiber is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica, and other materials are likely to come on line in the not-so-distant future. 3D printing of optical preforms signals a new milestone in optical fiber manufacture.

  12. Nonlinear Numerical Modeling of Shape Control in IGNITOR in the Presence of 3D Structures

    NASA Astrophysics Data System (ADS)

    Albanese, R.; Ambrosino, G.; de Tommasi, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.; Coppi, B.

    2014-10-01

    IGNITOR is a high field compact machine designed for the investigation of fusion burning plasmas at or close to ignition. The integrated plasma position, shape and current control plays an important role in its safe operation. The analysis of its behavior taking into account nonlinear and 3D effects can be of great interest for assessing its performances. In fact, the system was designed on the basis of an axisymmetric linearized model. To this purpose, we use a computational tool, called CarMa0NL, with the unprecedented capability of simultaneously considering three-dimensional effects of conductors surrounding the plasma and the inherent nonlinearity of the plasma behaviour itself, in the presence of the complex set of circuit equations describing the control system. Preliminary results already lead to the conclusion that the vertical position response is not much influenced by nonlinear and 3D effects, as the vertical stabilization controller is able to ``hide'' the differences in open-loop models. Here we assess the performance of the shape controller, by coupling the nonlinear plasma evolution in the presence of the 3D vessel with ports to the complex circuit dynamics simulating the integrated closed loop control system.

  13. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  14. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  15. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  16. Design of 3D isotropic metamaterial device using smart transformation optics.

    PubMed

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  17. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  18. 3-D zebrafish embryo image filtering by nonlinear partial differential equations.

    PubMed

    Rizzi, Barbara; Campana, Matteo; Zanella, Cecilia; Melani, Camilo; Cunderlik, Robert; Krivá, Zuzana; Bourgine, Paul; Mikula, Karol; Peyriéras, Nadine; Sarti, Alessandro

    2007-01-01

    We discuss application of nonlinear PDE based methods to filtering of 3-D confocal images of embryogenesis. We focus on the mean curvature driven and the regularized Perona-Malik equations, where standard as well as newly suggested edge detectors are used. After presenting the related mathematical models, the practical results are given and discussed by visual inspection and quantitatively using the mean Hausdorff distance.

  19. NONLINEAR ATOM OPTICS

    SciTech Connect

    T. MILONNI; G. CSANAK; ET AL

    1999-07-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project objectives were to explore theoretically various aspects of nonlinear atom optics effects in cold-atom waves and traps. During the project a major development occurred the observation, by as many as a dozen experimental groups, of Bose-Einstein condensation (BEC) in cold-atom traps. This stimulated us to focus our attention on those aspects of nonlinear atom optics relating to BEC, in addition to continuing our work on a nonequilibrium formalism for dealing with the interaction of an electromagnetic field with multi-level atomic systems, allowing for macroscopic coherence effects such as BEC. Studies of several problems in BEC physics have been completed or are near completion, including the suggested use of external electric fields to modify the nature of the interatomic interaction in cold-atom traps; properties of two-phase condensates; and molecular loss processes associated with BEC experiments involving a so-called Feshbach resonance.

  20. Quantum and Nonlinear Optical Imaging

    DTIC Science & Technology

    2007-11-02

    Quantum and Nonlinear Optical Imaging Final Report Robert W. Boyd, Institute of Optics, University of Rochester, Rochester, NY 14627 716-275-2329...boyd@optics.rochester.edu July 1, 2004 Year 1 Accomplishments This project is aimed at developing quantum and nonlinear optical techniques for...importantly began the experimental portion of the research. We showed theoretically that the quantum statistical features of spontaneous parametric

  1. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  2. Comparative Results on 3D Navigation of Quadrotor using two Nonlinear Model based Controllers

    NASA Astrophysics Data System (ADS)

    Bouzid, Y.; Siguerdidjane, H.; Bestaoui, Y.

    2017-01-01

    Recently the quadrotors are being increasingly employed in both military and civilian areas where a broad range of nonlinear flight control techniques are successfully implemented. With this advancement, it has become necessary to investigate the efficiency of these flight controllers by studying theirs features and compare their performance. In this paper, the control of Unmanned Aerial Vehicle (UAV) quadrotor, using two different approaches, is presented. The first controller is Nonlinear PID (NLPID) whilst the second one is Nonlinear Internal Model Control (NLIMC) that are used for the stabilization as well as for the 3D trajectory tracking. The numerical simulations have shown satisfactory results using nominal system model or disturbed model for both of them. The obtained results are analyzed with respect to several criteria for the sake of comparison.

  3. 3D optical Yagi–Uda nanoantenna array

    PubMed Central

    Dregely, Daniel; Taubert, Richard; Dorfmüller, Jens; Vogelgesang, Ralf; Kern, Klaus; Giessen, Harald

    2011-01-01

    Future photonic circuits with the capability of high-speed data processing at optical frequencies will rely on the implementation of efficient emitters and detectors on the nanoscale. Towards this goal, bridging the size mismatch between optical radiation and subwavelength emitters or detectors by optical nanoantennas is a subject of current research in the field of plasmonics. Here we introduce an array of three-dimensional optical Yagi–Uda antennas, fabricated using top-down fabrication techniques combined with layer-by-layer processing. We show that the concepts of radiofrequency antenna arrays can be applied to the optical regime proving superior directional properties compared with a single planar optical antenna, particularly for emission and reception into the third dimension. Measuring the optical properties of the structure reveals that impinging light on the array is efficiently absorbed on the subwavelength scale because of the high directivity. Moreover, we show in simulations that combining the array with suitable feeding circuits gives rise to the prospect of beam steering at optical wavelengths. PMID:21468019

  4. Optical 3D shape, surface, and material analysis

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2001-06-01

    Different techniques are available for macro- and micro- topometry. The methods are basically known but their industrial implementation requires robust measuring systems, where calibration is an important necessity. Different techniques will be presented. New elements such as liquid crystal displays and micromirror devices are available leading to new applications to be discussed. Combinative methods and integration in measuring systems becomes interesting. The state of the art and new developments will be presented. Together with calibration for 3D-shock or vibration analysis an object shape measuring systems will be directly combined with a vibration measuring system.

  5. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  6. Polysilane-based 3D waveguides for optical interconnects

    NASA Astrophysics Data System (ADS)

    Ogura, Kouhei; Oka, Takeshi; Watanabe, Emi; Aoi, Kazunori; Tsushima, Hiroshi; Okano, Hiroaki; Suzuki, Shuji; Hiramatsu, Seiki

    2008-02-01

    We have been developing the optical waveguide for the multimode using the photo-bleaching property of polysilane. The refractive index of polysilane can be easily changed by exposing to UV light as photobleaching. Using this property, we can make waveguide with simple processes as spin coating, exposing and annealing. We found that this waveguide has thermal adhesive property with glass substrate. And we applied this feature to fabricate multilayered optical waveguides that have three-dimensional structure and can change the optical light at right angle.

  7. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  8. A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.

    2016-06-01

    Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.

  9. Kinect the dots: 3D control of optical tweezers

    NASA Astrophysics Data System (ADS)

    Shaw, Lucy; Preece, Daryl; Rubinsztein-Dunlop, Halina

    2013-07-01

    Holographically generated optical traps confine micron- and sub-micron sized particles close to the center of focused light beams. They also provide a way of trapping multiple particles and moving them in three dimensions. However, in many systems the user interface is not always advantageous or intuitive especially for collaborative work and when depth information is required. We discuss and evaluate a set of multi-beam optical tweezers that utilize off the shelf gaming technology to facilitate user interaction. We use the Microsoft Kinect sensor bar as a way of getting the user input required to generate arbitrary optical force fields and control optically trapped particles. We demonstrate that the system can also be used for dynamic light control.

  10. An Optically-Assisted 3-D Cellular Array Machine

    DTIC Science & Technology

    1993-11-05

    Presented by: Physical Optics Corporation 0 Research & Development Division 20600 Gramercy Place, Suite 103 Torrance, California 90501 Principal...Computer Machine (Constructed Hardware) (Planned Hardware Design) Processing Techniques Digital Only Digital and Analog Analog Processor N/A Celular Neural

  11. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    SciTech Connect

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  12. Non-linear Tearing and Flux rope Formation in 3D Null Current Sheets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; Pontin, D. I.

    2014-12-01

    The manner in which small scale structure affects the large scale reconnection process in realistic 3D geometries is still an unsolved problem. With the increase in computational resources and improvements in satellite instrumentation, signatures of flux ropes or "plasmoids" are now observed with increasing regularity, yet their formation and dynamics are poorly understood. It has been demonstrated that even at MHD scales, in 2D rapid non-linear tearing of Sweet-Parker-like layers forms multiple magnetic islands ("plasmoids") and allows the reconnection rate to become almost independent of the Lundquist number (the "plasmoid instability"). This work presents some of our recent theoretical work focussing on an analogous instability in a fully 3D geometry. Using results from a series of 3D high resolution MHD simulations, the formation and evolution of fully three dimensional "flux rope" structures following the 3D plasmoid instability will be presented, and their effects on the manner of the reconnection process as a whole discussed.

  13. Programmable Bidirectional Folding of Metallic Thin Films for 3D Chiral Optical Antennas.

    PubMed

    Mao, Yifei; Zheng, Yun; Li, Can; Guo, Lin; Pan, Yini; Zhu, Rui; Xu, Jun; Zhang, Weihua; Wu, Wengang

    2017-03-10

    3D structures with characteristic lengths ranging from nanometer to micrometer scale often exhibit extraordinary optical properties, and have been becoming an extensively explored field for building new generation nanophotonic devices. Albeit a few methods have been developed for fabricating 3D optical structures, constructing 3D structures with nanometer accuracy, diversified materials, and perfect morphology is an extremely challenging task. This study presents a general 3D nanofabrication technique, the focused ion beam stress induced deformation process, which allows a programmable and accurate bidirectional folding (-70°-+90°) of various metal and dielectric thin films. Using this method, 3D helical optical antennas with different handedness, improved surface smoothness, and tunable geometries are fabricated, and the strong optical rotation effects of single helical antennas are demonstrated.

  14. Nonlinear and quantum atom optics.

    PubMed

    Rolston, S L; Phillips, W D

    2002-03-14

    Coherent matter waves in the form of Bose-Einstein condensates have led to the development of nonlinear and quantum atom optics - the de Broglie wave analogues of nonlinear and quantum optics with light. In nonlinear atom optics, four-wave mixing of matter waves and mixing of combinations of light and matter waves have been observed; such progress culminated in the demonstration of phase-coherent matter-wave amplification. Solitons represent another active area in nonlinear atom optics: these non-dispersing propagating modes of the equation that governs Bose-Einstein condensates have been created experimentally, and observed subsequently to break up into vortices. Quantum atom optics is concerned with the statistical properties and correlations of matter-wave fields. A first step in this area is the measurement of reduced number fluctuations in a Bose-Einstein condensate partitioned into a series of optical potential wells.

  15. Parallel beam optical tomography apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2005-06-01

    Since the discovery of X rays radiotherapy has had the same aim - to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to surrounding healthy tissue. Recent developments in radiotherapy such as intensity modulated radiotherapy (IMRT) can generate complex shapes of dose distributions. Until recently it has not been possible to verify that the delivered dose matches the planned dose. However, one often wants to know the real three-dimensional dose distribution. Three-dimensional radiation dosimeters have been developed since the early 1980s. Most chemical formulations involve a radiosensitive species immobilised in space by gelling agent. Magnetic Resonance Imaging (MRI) and optical techniques have been the most successful gel scanning techniques so far. Optical techniques rely on gels changing colour once irradiated. Parallel beam optical tomography has been developed at the University of Surrey since the late 1990s. The apparatus involves light emitting diode light source collimated to a wide (12cm) parallel beam. The beam is attenuated or scattered (depending on the chemical formulation) as it passes through the gel. Focusing optics projects the beam onto a CCD chip. The dosimeter sits on a rotation stage. The tomography scan involves continuously rotating the dosimeter and taking CCD images. Once the dosimeter has been rotated over 180 degrees the images are processed by filtered back projection. The work presented discusses the optics of the apparatus in more detail.

  16. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.

  17. A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Vollebregt, Edwin A. H.; Oosterlee, Cornelis W.

    2015-05-01

    This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar coordinate system, using azimuth angles as variables instead of conventional traction variables. The new variables are scaled by the diagonal of the underlying Jacobian. The fast Fourier transform (FFT) technique accelerates all matrix-vector products encountered, exploiting the matrix' Toeplitz structure. Numerical tests demonstrate a significant reduction of the computational time compared to existing solvers for concentrated contact problems.

  18. Subtractive 3D Printing of Optically Active Diamond Structures

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Toth, Milos; Aharonovich, Igor

    2014-05-01

    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond.

  19. Towards a 3-D Magneto-Optical Trap for Molecules

    NASA Astrophysics Data System (ADS)

    Collopy, Alejandra; Hummon, Matthew; Yeo, Mark; Stuhl, Benjamin; Hemmerling, Boerge; Drayna, Garrett; Chae, Eunmi; Ravi, Aakash; Lu, Hsin-I.; Doyle, John; Ye, Jun

    2013-05-01

    As the magneto-optical trap revolutionized atomic physics, we anticipate the molecular counterpart to open doors to unexplored molecular physics, including ultra-cold chemistry. While molecules possess more complex structure than atoms, quasi-cycling cooling transitions are still attainable in a variety of species, including the polar molecule YO. In order to remix dark states, we RF modulate the polarization of the light in our trap. In order to maintain a restoring force, we modulate the orientation of our magnetic fields in phase with the light using LC resonant in-vacuum magnetic coils. We demonstrate magneto-optical trapping in two dimensions for YO, and present progress towards a three dimensional implementation of a MOT loaded from a two-stage buffer gas cell source. We acknowledge support from the AFOSR (MURI), DOE, NIST and the NSF.

  20. Rotating and Precessing Dissipative-Optical-Topological-3D Solitons

    NASA Astrophysics Data System (ADS)

    Veretenov, N. A.; Rosanov, N. N.; Fedorov, S. V.

    2016-10-01

    We predict and study a new type of three-dimensional soliton: asymmetric rotating and precessing stable topological-dissipative-optical localized structures in homogeneous media with saturable amplification and absorption. The crucial factor determining their dynamics is the ratio of the diffusion coefficients characterizing the frequency dispersion and angular selectivity (dichroism) of the scheme. These vortex solitons exist and are stable for overcritical values of the selectivity coefficients and can be realized in lasers of large sizes with saturable absorption.

  1. Cytology 3D structure formation based on optical microscopy images

    NASA Astrophysics Data System (ADS)

    Pronichev, A. N.; Polyakov, E. V.; Shabalova, I. P.; Djangirova, T. V.; Zaitsev, S. M.

    2017-01-01

    The article the article is devoted to optimization of the parameters of imaging of biological preparations in optical microscopy using a multispectral camera in visible range of electromagnetic radiation. A model for the image forming of virtual preparations was proposed. The optimum number of layers was determined for the object scan in depth and holistic perception of its switching according to the results of the experiment.

  2. A 3D glass optrode array for optical neural stimulation

    PubMed Central

    Abaya, T.V.F.; Blair, S.; Tathireddy, P.; Rieth, L.; Solzbacher, F.

    2012-01-01

    This paper presents optical characterization of a first-generation SiO2 optrode array as a set of penetrating waveguides for both optogenetic and infrared (IR) neural stimulation. Fused silica and quartz discs of 3-mm thickness and 50-mm diameter were micromachined to yield 10 × 10 arrays of up to 2-mm long optrodes at a 400-μm pitch; array size, length and spacing may be varied along with the width and tip angle. Light delivery and loss mechanisms through these glass optrodes were characterized. Light in-coupling techniques include using optical fibers and collimated beams. Losses involve Fresnel reflection, coupling, scattering and total internal reflection in the tips. Transmission efficiency was constant in the visible and near-IR range, with the highest value measured as 71% using a 50-μm multi-mode in-coupling fiber butt-coupled to the backplane of the device. Transmittance and output beam profiles of optrodes with different geometries was investigated. Length and tip angle do not affect the amount of output power, but optrode width and tip angle influence the beam size and divergence independently. Finally, array insertion in tissue was performed to demonstrate its robustness for optical access in deep tissue. PMID:23243561

  3. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  4. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    DTIC Science & Technology

    2015-11-17

    fabricated using 3D printer . The fill factor decreases radially outwards and the voids are visible in the unit cells as you approach the periphery of the...with thin walls) [29]. Figure 6: Examples of lenses fabricated with AM (a) GRIN lens fabricated using 3D printer . The fill factor decreases...AFRL-RW-EG-TP-2015-002 Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures Jeffery W. Allen Monica S. Allen Brett

  5. Non-linear tearing of 3D null point current sheets

    SciTech Connect

    Wyper, P. F. Pontin, D. I.

    2014-08-15

    The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.

  6. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  7. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2016-10-20

    A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.

  8. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  9. Principles of Nonlinear Optics

    DTIC Science & Technology

    1989-11-01

    Holography 74 6.2 Semiclassical Analysis 77 7. The Nonlinear Schrodinger Equation and Soliton Propagation 81 8. Conclusion Ancession For 86 ETis -GRA...is analyzed through the nonlinear Schrodinger equation , which is first heuristically derived. The distortionless pulses arising out of a balance...Eq. (71) has the same form as the nonlinear Schrodinger equation (2], (4], [17], (20], which is used to explain soliton propagation through fibers (21

  10. 3D objects enlargement technique using an optical system and multiple SLMs for electronic holography.

    PubMed

    Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori; Oi, Ryutaro; Kurita, Taiichiro

    2012-09-10

    One problem in electronic holography, which is caused by the display performance of spatial light modulators (SLM), is that the size of reconstructed 3D objects is small. Although methods for increasing the size using multiple SLMs have been considered, they typically had the problem that some parts of 3D objects were missing as a result of the gap between adjacent SLMs or 3D objects lost the vertical parallax. This paper proposes a method of resolving this problem by locating an optical system containing a lens array and other components in front of multiple SLMs. We used an optical system and 9 SLMs to construct a device equivalent to an SLM with approximately 74,600,000 pixels and used this to reconstruct 3D objects in both the horizontal and vertical parallax with an image size of 63 mm without losing any part of 3D objects.

  11. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    PubMed

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which

  12. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  13. Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability

    SciTech Connect

    Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.

    2005-12-31

    The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation {sigma}{sub rms} grows as {alpha}{sub {sigma}}gt{sup 2}, where g is the foil acceleration, t is the time, and {alpha}{sub {sigma}} is constant. The number of bubbles evolves as N(t){proportional_to}({omega}t{radical}(g)+C){sup -4} and the average size evolves as <{lambda}>(t){proportional_to}{omega}{sup 2}gt{sup 2}, where C is a constant and {omega}=0.83{+-}0.1 is the measured scaled bubble-merging rate.

  14. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  15. Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.

    2004-11-01

    Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).

  16. Development and evaluation of a 3D model observer with nonlinear spatiotemporal contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn S.; Maidment, Andrew D. A.; Marchessoux, Cedric; Bakic, Predrag R.; Kimpe, Tom R. L.

    2014-03-01

    We investigate improvements to our 3D model observer with the goal of better matching human observer performance as a function of viewing distance, effective contrast, maximum luminance, and browsing speed. Two nonlinear methods of applying the human contrast sensitivity function (CSF) to a 3D model observer are proposed, namely the Probability Map (PM) and Monte Carlo (MC) methods. In the PM method, the visibility probability for each frequency component of the image stack, p, is calculated taking into account Barten's spatiotemporal CSF, the component modulation, and the human psychometric function. The probability p is considered to be equal to the perceived amplitude of the frequency component and thus can be used by a traditional model observer (e.g., LG-msCHO) in the space-time domain. In the MC method, each component is randomly kept with probability p or discarded with 1-p. The amplitude of the retained components is normalized to unity. The methods were tested using DBT stacks of an anthropomorphic breast phantom processed in a comprehensive simulation pipeline. Our experiments indicate that both the PM and MC methods yield results that match human observer performance better than the linear filtering method as a function of viewing distance, effective contrast, maximum luminance, and browsing speed.

  17. A non-linear 3D printed electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Roy, S.

    2015-12-01

    This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm3 at a frame acceleration of 1g and a density of 0.04mW/cm3 from a generated power of 25μW at 0.1g.

  18. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  19. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  20. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  1. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  2. Inspection, 3D modelling, and rapid prototyping of cultural heritage by means of a 3D optical digitiser

    NASA Astrophysics Data System (ADS)

    Docchio, F.; Sansoni, G.; Trebeschi, M.

    2005-06-01

    This paper presents the activity carried out to perform the three-dimensional acquisition of the "Vittoria Alata", a 2m-high, bronze statue, symbol of our City, located at the Civici Musei di Arte e Storia (S. Giulia) of Brescia. The acquisition of the statue has been performed by using a three-dimensional vision system based on active triangulation and on the projection of non-coherent light. This system, called OPL-3D, represents one of the research products of our Laboratory, which has been active for years in the development of techniques and systems for the contactless acquisition of free-form, complex shapes. The study, originally motivated by the need to explore a new hypothesis on the origin of the "Vittoria Alata", led to its complete digitization and description in terms of both polygonal and NURBS-based models. A suite of copies of the whole statue has been obtained in the framework of the collaboration between the City Museum and the EOS Electro Optical Systems GmbH, located in Munich, Germany. As a first step, one 30 cm-high replica of the whole statue has been produced using a low-resolution triangle model of the statue (3.5 millions of triangles). As a second step, two 1:1 scale copies of the statue have been produced. For them, the Laboratory has provided the high resolution STL file (16 millions of triangles). The paper discusses in detail the hardware and the software facilities used to implement the whole process, and gives a comprehensive description of the results.

  3. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution.

    PubMed

    Weisenburger, Siegfried; Boening, Daniel; Schomburg, Benjamin; Giller, Karin; Becker, Stefan; Griesinger, Christian; Sandoghdar, Vahid

    2017-02-01

    We introduce Cryogenic Optical Localization in 3D (COLD), a method to localize multiple fluorescent sites within a single small protein with Angstrom resolution. We demonstrate COLD by determining the conformational state of the cytosolic Per-ARNT-Sim domain from the histidine kinase CitA of Geobacillus thermodenitrificans and resolving the four biotin sites of streptavidin. COLD provides quantitative 3D information about small- to medium-sized biomolecules on the Angstrom scale and complements other techniques in structural biology.

  4. Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element

    NASA Astrophysics Data System (ADS)

    Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo

    2012-03-01

    In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.

  5. Optimized data processing for an optical 3D sensor based on flying triangulation

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja; Arold, Oliver; Häusler, Gerd; Gurov, Igor; Volkov, Mikhail

    2013-05-01

    We present data processing methods for an optical 3D sensor based on the measurement principle "Flying Triangulation". The principle enables a motion-robust acquisition of the 3D shape of even complex objects: A hand-held sensor is freely guided around the object while real-time feedback of the measurement progress is delivered during the captioning. Although of high precision, the resulting 3D data usually may exhibit some weaknesses: e.g. outliers might be present and the data size might be too large. We describe the measurement principle and the data processing and conclude with measurement results.

  6. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  7. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation

    NASA Astrophysics Data System (ADS)

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-01

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  8. Simultaneous calculation of three optical surfaces in the 3D SMS freeform RXI optic

    NASA Astrophysics Data System (ADS)

    Sorgato, Simone; Chaves, Julio; Mohedano, Rubén.; Hernández, Maikel; Blen, José; Benitez, Pablo; Miñano, Juan C.; Grabovickic, Dejan; Thienpont, Hugo; Duerr, Fabian

    2016-09-01

    The Freeform RXI collimator is a remarkable example of advanced nonimaging device designed with the 3D Simultaneous Multiple Surface (SMS) Method. In the original design, two (the front refracting surface and the back mirror) of the three optical surfaces of the RXI are calculated simultaneously and one (the cavity surrounding the source) is fixed by the designer. As a result, the RXI perfectly couples two input wavefronts (coming from the edges of the extended LED source) with two output wavefronts (defining the output beam). This allows for LED lamps able to produce controlled intensity distributions, which can and have been successfully applied to demanding applications like high- and low-beams for Automotive Lighting. Nevertheless, current trends in this field are moving towards smaller headlamps with more shape constraints driven by car design. We present an improved version of the 3D RXI in which also the cavity surface is computed during the design, so that there are three freeform surfaces calculated simultaneously and an additional degree of freedom for controlling the light emission: now the RXI can perfectly couple three input wavefronts with three output wavefronts. The enhanced control over ray beams allows for improved light homogeneity and better pattern definition.

  9. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  10. 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Duan, Jin; Zhai, Di; Wang, LiNing

    2016-10-01

    With the continuous development of industrialization, 3D printing technology steps into individuals' lives gradually, however, the consequential security issue has become the urgent problem which is imminent. This paper proposes the 3D printing optical watermark algorithms based on the combination of DWT and Fresnel transformation and utilizes authorized key to restrict 3D model printing's permissions. Firstly, algorithms put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform and put the transformed coefficient into Fresnel transformation. Use math model to embed watermark information into it and finally generate 3D digital model with watermarking. This paper adopts VC++.NET and DIRECTX 9.0 SDK for combined developing and testing, and the results show that in fixed affine space, achieve the robustness in translation, revolving and proportion transforms of 3D model and better watermark-invisibility. The security and authorization of 3D model have been protected effectively.

  11. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  12. Nondestructive optical testing of 3D disperse systems with micro- and nano-particles

    NASA Astrophysics Data System (ADS)

    Bezrukova, Alexandra G.

    2005-04-01

    Nondestructive testing and analysis of three-dimensional (3D) disperse systems (DS) with micro- and nano-particles of different nature by complex of optical compatible methods can provide further progress in on-line control of water and air. The simultaneous analysis of 3D-DS by refractometry, absorbency, fluorescence and by different types of light scattering can help to elaborate the sensing elements for specific impurity control. In our research we have investigated by complex of optical methods different 3D-DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, etc., and mixtures -- proteins with nucleic acids, liposomes and viruses, liquid crystals with surfactants, mixtures of clay with bacterial cells, samples of natural and water-supply waters, etc. This experience suggests that the set of optical parameters of so called second class is unique for each 3D-DS. In another words each DS can be characterized by n-dimensional vector in n-dimensional space of optical parameters. Mixtures can be considered as polycomponent and polymodal 3D-DS (such as natural water and air). Due to the fusion of various optical data it is possible to indicate by information statistical theory the inverse physical problem on the presence of impurities in mixtures (viruses, bacteria, oil, metallic particles, etc.), and in this case polymodality of particle size distribution is not an obstacle. Bank of optical data for 3D-DS is the base for analysis by information-statistical method.

  13. Mathematical Nonlinear Optics

    DTIC Science & Technology

    1998-09-11

    34Evolution of Bloch electrons with Applied Electromagnetic Fields: the Semiclassical Equations ", European Jour- nal of Applied Mathematics (1996...establishment (with Jalal Shatah) of the existence of homoclinic orbits with complex spa- tial structure for perturbed NLS equations . This existence...a very small amount of diffraction. (v) McLaughlin (with T. Ueda) have in progress a study of precursors for model nonlinear wave equations . This

  14. Surface nonlinear optics

    SciTech Connect

    Shen, Y.R.; Chen, C.K.; de Castro, A.R.B.

    1980-01-01

    Surface electromagnetic waves are waves propagating along the interface of two media. Their existence was predicted by Sommerfield in 1909. In recent years, interesting applications have been found in the study of overlayers and molecular adsorption on surfaces, in probing of phase transitions, and in measurements of refractive indices. In the laboratory, the nonlinear interaction of surface electromagnetic waves were studied. The preliminary results of this recent venture in this area are presented.

  15. Nonlinear Response of Cylindrical Shells to Underwater Explosion: Testings and Numerical Prediction Using USA/DYNA3D

    DTIC Science & Technology

    1992-03-01

    COSATI CODES 18 SuBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROlP Underwater Explosion 19. ABSTRACT...Continue on reverse if necessary and dentify by block number) Nonlinear 3-D Dynamic Analysis Code (VEC/DYNA3D) has been interfaced with Underwater...whipping mode. Large plastic strains occurred at the center of the cylinder on the reverse side to the explosive and near the ends of the cylinder on

  16. Design, Simulation and Optimisation of a Fibre-optic 3D Accelerometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Fang, Xiao-Yong; Zhou, Yan; Li, Ya-lin; Yuan, Jie; Cao, Mao-Sheng

    2013-07-01

    Using an inertia pendulum comprised of two prisms, flexible beams and an elastic flake, we present a novel fibre-optic 3D accelerometer design. The total reverse reflection of the cube-corner prism and the spectroscopic property of an orthogonal holographic grating enable the measurement of the two transverse components of the 3D acceleration simultaneously, while the longitudinal component can be determined from the elastic deformation of the flake. Due to optical interferometry, this sensor may provide a wider range, higher sensitivity and better resolving power than other accelerometers. Moreover, we use finite element analysis to study the performance and to optimise the structural design of the sensor.

  17. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  18. Quantifying axis orientation in 3D using polarization-sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Black, Adam J.; Wang, Hui; Akkin, Taner

    2016-03-01

    The optic axis of birefringent tissues indicates the direction of structural anisotropy. Polarization-sensitive Optical Coherence Tomography (PS-OCT) can provide reflectivity contrast as well as retardance and optic axis orientation contrasts that originate from tissue birefringence. We introduce imaging 3D tissue anisotropy by using a single-camera and polarization-maintaining fiber (PMF) based PS-OCT, which utilizes normal and angled illuminations. Because environmental factors such as the movement of PMF and temperature fluctuations induce arbitrary phase changes, the optic axis orientation measurement has a time-varying offset. In order to measure the absolute axis orientation, we add a calibration path which dynamically provides the arbitrary offset to be subtracted from the relative axis orientation values. The axis orientation on the normal plane is the 2D projection of the fiber direction in 3D space. We propose to characterize the axis orientation in different planes (xy, xy' and x'y planes) by using normal and angled illuminations. This allows calculation of the polar angle that completes the orientation information in 3D. Polarization-based optical systems relying on one illumination angle measure the "apparent birefringence" that light encounters rather than the "true birefringence". Birefringence as a measure of anisotropy is quantified with the orientation information in 3D. The method and validation with a biological tissue are presented. The study can facilitate imaging and mapping the structural connections in anisotropic tissues including the brain.

  19. Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.

    2014-06-01

    This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L 1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.

  20. 3D mapping of elastic modulus using shear wave optical micro-elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping

    2016-10-01

    Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map.

  1. 3D mapping of elastic modulus using shear wave optical micro-elastography

    PubMed Central

    Zhu, Jiang; Qi, Li; Miao, Yusi; Ma, Teng; Dai, Cuixia; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Zhou, Qifa; Chen, Zhongping

    2016-01-01

    Elastography provides a powerful tool for histopathological identification and clinical diagnosis based on information from tissue stiffness. Benefiting from high resolution, three-dimensional (3D), and noninvasive optical coherence tomography (OCT), optical micro-elastography has the ability to determine elastic properties with a resolution of ~10 μm in a 3D specimen. The shear wave velocity measurement can be used to quantify the elastic modulus. However, in current methods, shear waves are measured near the surface with an interference of surface waves. In this study, we developed acoustic radiation force (ARF) orthogonal excitation optical coherence elastography (ARFOE-OCE) to visualize shear waves in 3D. This method uses acoustic force perpendicular to the OCT beam to excite shear waves in internal specimens and uses Doppler variance method to visualize shear wave propagation in 3D. The measured propagation of shear waves agrees well with the simulation results obtained from finite element analysis (FEA). Orthogonal acoustic excitation allows this method to measure the shear modulus in a deeper specimen which extends the elasticity measurement range beyond the OCT imaging depth. The results show that the ARFOE-OCE system has the ability to noninvasively determine the 3D elastic map. PMID:27762276

  2. Monocular accommodation condition in 3D display types through geometrical optics

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Dong-Wook; Park, Min-Chul; Son, Jung-Young

    2007-09-01

    Eye fatigue or strain phenomenon in 3D display environment is a significant problem for 3D display commercialization. The 3D display systems like eyeglasses type stereoscopic or auto-stereoscopic multiview, Super Multi-View (SMV), and Multi-Focus (MF) displays are considered for detail calculation about satisfaction level of monocular accommodation by geometrical optics calculation means. A lens with fixed focal length is used for experimental verification about numerical calculation of monocular defocus effect caused by accommodation at three different depths. And the simulation and experiment results consistently show relatively high level satisfaction about monocular accommodation at MF display condition. Additionally, possibility of monocular depth perception, 3D effect, at monocular MF display is discussed.

  3. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the Kidney.

    PubMed

    Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin

    2016-08-01

    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and soundspeed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0.1 dB. Focal point shifting due to refraction effects resulted in -1.3, 2.6 and 1.3 mm displacements in x-, y- and z-directions respectively. Furthermore, focal point splitting into several smaller subvolumes was observed. The total volume of the secondary focal points was approximately 46% of the largest primary focal point. This could potentially lead to undesired heating outside the target location and longer therapy times.

  4. Nonlinear evolution of 3D-inertial Alfvén wave and turbulent spectra in Auroral region

    NASA Astrophysics Data System (ADS)

    Rinawa, M. L.; Modi, K. V.; Sharma, R. P.

    2014-10-01

    In the present paper, we have investigated nonlinear interaction of three dimensional (3D) inertial Alfvén wave and perpendicularly propagating magnetosonic wave for low β-plasma ( β≪ m e / m i ). We have developed the set of dimensionless equations in the presence of ponderomotive nonlinearity due to 3D-inertial Alfvén wave in the dynamics of perpendicularly propagating magnetosonic wave. Stability analysis and numerical simulation has been carried out to study the effect of nonlinear coupling on the formation of localized structures and turbulent spectra, applicable to auroral region. The results reveal that the localized structures become more and more complex as the nonlinear interaction progresses. Further, we have studied the turbulent spectrum which follows spectral index (˜ k -3.57) at smaller scales. Relevance of the obtained results has been shown with the observations received by various spacecrafts like FAST, Hawkeye and Heos 2.

  5. Basic considerations on surface optical nonlinearities

    SciTech Connect

    Guyot-Sionnest, P.; Chen, W.; Shen, Y.R.

    1986-01-01

    The origins of the surface nonlinearity in surface second harmonic generation are discussed. It is shown that this second-order nonlinear optical process is characterized by a surface nonlinear susceptibility tensor containing both local and nonlocal contributions.

  6. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    NASA Astrophysics Data System (ADS)

    McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

    2015-01-01

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

  7. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  8. A physical model eye with 3D resolution test targets for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao

    2014-09-01

    Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  9. Alignment of 3-D optical coherence tomography scans to correct eye movement using a particle filtering.

    PubMed

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Kagemann, Larry; Schuman, Joel S

    2012-07-01

    Eye movement artifacts occurring during 3-D optical coherence tomography (OCT) scanning is a well-recognized problem that may adversely affect image analysis and interpretation. A particle filtering algorithm is presented in this paper to correct motion in a 3-D dataset by considering eye movement as a target tracking problem in a dynamic system. The proposed particle filtering algorithm is an independent 3-D alignment approach, which does not rely on any reference image. 3-D OCT data is considered as a dynamic system, while the location of each A-scan is represented by the state space. A particle set is used to approximate the probability density of the state in the dynamic system. The state of the system is updated frame by frame to detect A-scan movement. The proposed method was applied on both simulated data for objective evaluation and experimental data for subjective evaluation. The sensitivity and specificity of the x-movement detection were 98.85% and 99.43%, respectively, in the simulated data. For the experimental data (74 3-D OCT images), all the images were improved after z-alignment, while 81.1% images were improved after x-alignment. The proposed algorithm is an efficient way to align 3-D OCT volume data and correct the eye movement without using references.

  10. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  11. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  12. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.

    PubMed

    Liu, Yuxiang; Yu, Miao

    2009-08-03

    Optical tweezers provide a versatile tool in biological and physical researches. Optical tweezers based on optical fibers are more flexible and ready to be integrated when compared with those based on microscope objectives. In this paper, the three-dimensional (3D) trapping ability of an inclined dual-fiber optical tweezers is demonstrated. The trapping efficiency with respect to displacement is experimentally calibrated along two dimensions. The system is studied numerically using a modified ray-optics model. The spring constants obtained in the experiment are predicted by simulations. It is found both experimentally and numerically that there is a critical value for the fiber inclination angle to retain the 3D trapping ability. The inclined dual-fiber optical tweezers are demonstrated to be more robust to z-axis misalignment than the counter-propagating fiber optical tweezers, which is a special case of th former when the fiber inclination angle is 90 masculine. This inclined dual-fiber optical tweezers can serve as both a manipulator and a force sensor in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  13. A 3D integral imaging optical see-through head-mounted display.

    PubMed

    Hua, Hong; Javidi, Bahram

    2014-06-02

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  14. Optically coupled 3D common memory with GaAs on Si structure

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Takata, H.; Koyanagi, M.

    1991-02-01

    An ultra fast data transfer speed is demonstrated for a novel three-dimensional (3D) Static Random Access Memory (SRAM) consisting of multilayer silicon LSI chips on which GaAs LEDs and photodetectors are monolithically integrated for vertical optical interconnections. A unique feature of this system is the capability of parallel data transfer from one memory layer to the upper and lower memory layers by the optical interconnections. The results of static and dynamic simulations of the optically coupled 3D common memory have indicated that a block of 512 bits data can be transferred through four memory layers within 16 nsec. This is an equivalent data transfer speed of 128 Gbits/sec/layer.

  15. Performance of an improved first generation optical CT scanner for 3D dosimetry.

    PubMed

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-21

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  16. Performance of an improved first generation optical CT scanner for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  17. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  18. Films Containing Optically Nonlinear Diacetylene Monomer

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Mcmanus, Samuel P.; Frazier, Donald O.

    1993-01-01

    Solid films exhibiting nonlinear optical properties prepared as mixtures of poly(methyl methacrylate) with various amounts of diacetylene monomer called "compound 1" in article, "Synthesizing Diacetylenes With Nonlinear Optical Properties" (MFS-26186). Useful as phase-conjugate mirrors in laser-beam communications and as optical switches in optical computers. This particular diacetylene monomer exhibits strong third-order nonlinear optical properties, both in pure form and in solution.

  19. Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception.

    PubMed

    Thammawongsa, Nopparat; Yupapin, Preecha P

    2016-01-01

    A small-scale optical device incorporated with an optical nano-antenna is designed to operate as the remote artificial eye using a tiny conjugate mirror. A basic device known as a conjugate mirror can be formed using the artificial eye device, the partially reflected light intensities from input source are interfered and the 3D whispering gallery modes formed within the ring centers, which can be modulated and propagated to the object. The image pixel is obtained at the center ring and linked with the optic nerve in the remote area via the nano-antenna, which is useful for blind people.

  20. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ijiro, T.; Yamada, N.; Kawaguchi, T.; Maemura, T.; Ohashi, H.

    2012-10-01

    Optical design of a concentrating photovoltaic/thermal (CPVT) system is carried out. Using wavelength-selective optics, the system demonstrates 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. Characteristics of the two types of concentrator systems are examined with ray-tracing analysis. The first system is a glazed mirror-based concentrator system mounted on a 2-axis pedestal tracker. The size of the secondary optical element is minimized to decrease the cost of the system, and it has a wavelength-selective function for performing 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. The second system is a non-glazed beamdown concentrator system containing parabolic mirrors in the lower part. The beam-down selective mirror performs 3-D concentration onto a solar cell placed above the beam-down selective mirror, and 2-D concentration down to a thermal receiver placed at the bottom level. The system is mounted on a two-axis carousel tracker. A parametric study is performed for those systems with different geometrical 2-D/3-D concentration ratios. Wavelength-selective optics such as hot/cold mirrors and spectrum-splitting technologies are taken into account in the analysis. Results show reduced heat load on the solar cell and increased total system efficiency compared to a non-selective CPV system. Requirements for the wavelength-selective properties are elucidated. It is also shown that the hybrid concept with 2-D concentration onto a thermal receiver and 3-D concentration onto a solar cell has an advantageous geometry because of the high total system efficiency and compatibility with the piping arrangement of the thermal receiver.

  1. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.

    PubMed

    Mochalov, Konstantin E; Efimov, Anton E; Bobrovsky, Alexey; Agapov, Igor I; Chistyakov, Anton A; Oleinikov, Vladimir; Sukhanova, Alyona; Nabiev, Igor

    2013-10-22

    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products.

  2. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  3. Single-cycle nonlinear optics

    SciTech Connect

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  4. Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography

    PubMed Central

    Wang, Y.; Ravanfar, M.; Zhang, K.; Duan, D.; Yao, G.

    2016-01-01

    Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D “arcade” fiber structure in the bovine articular cartilage. PMID:27867698

  5. Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography.

    PubMed

    Wang, Y; Ravanfar, M; Zhang, K; Duan, D; Yao, G

    2016-10-01

    Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D "arcade" fiber structure in the bovine articular cartilage.

  6. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  7. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography.

    PubMed

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James

    2015-04-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.

  8. Nonlinear Optics and Organic Materials

    DTIC Science & Technology

    1989-10-01

    unmatched brilliance both probes a nd inelh~" ...) / these novel effects . A detailed understanding of the nature ,S .i of light, and how it interacts with...matter, is essential to evince these effects . Although everyday optical tools- windowpanes and eyeglasses-may remain unaffected, " such delicate...use the same pair of binoculars to focus on a faint star at night and a bird in daylight (1, 2). Intensity-dependent nonlinear effects However, when

  9. Nonlinear Optical Interactions in Semiconductors.

    DTIC Science & Technology

    1985-12-10

    completing bnother article for publication. In addition, we have made four invention disclosures o the U.S. Air Force.We received the delivery of two large...of completing another article for publication. In addition, we have made four invention disclosures to the U. S. Air Force. We received the delivery...gives rise to four -photon mixing. Our attempts were focused on observing a number of new optical effects including nonlinear absorption and transmission

  10. Townes' contribution to nonlinear optics

    NASA Astrophysics Data System (ADS)

    Garmire, Elsa

    2015-03-01

    In honour of the Fiftieth Anniversary of the Nobel Prize in Physics, this talk introduced the contributions of Nicholas Basov and Alexei Prokhorov, who shared the prize with Charles Townes. The talk then detailed the quantum electronics research of Townes, particularly at MIT, which was related to nonlinear optics. The years from 1961 to 1968 were particularly exciting, as the ruby laser enabled a wide variety of new physics to be discovered and explored.

  11. Wave optics theory and 3-D deconvolution for the light field microscope.

    PubMed

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-10-21

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method.

  12. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  13. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  14. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    PubMed

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2016-12-26

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale.

  15. 3-D simulation of high-intensity ultra-short laser pulse propagation through atmospheric optical systems

    NASA Astrophysics Data System (ADS)

    Dodd, Evan S.; Schmitt, Mark J.

    2001-10-01

    The manipulation of ultra-short pulses (USPs) in the laboratory is affected by three main factors; (a) the layout of optical elements in the optical train, (b) the non-linear interaction of the pulse with the transmissive optical elements (including the intervening atmosphere) and (c) ionization effects near beam focal regions. These effects have been included in our simulation code in order to examine 3-D aspects of USP propagation through "real" optical systems. Our models for optical elements include the ability to examine the effects of element misalignments and asymmetric finite apertures. In the atmosphere, we have included the effect of the USP electric field intensity on the local index of refraction. A model to include the effects of ionization in the atmosphere has also been added. The collective behavior from these sources results in complex interactions within the laser pulse as it propagates. This is important since it reduces the distance the pulse may travel and the spatial and temporal energy distribution of the pulse after propagation. Simulation examples are presented.

  16. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    NASA Astrophysics Data System (ADS)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-12-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  17. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  18. Parametric estimation of 3D tubular structures for diffuse optical tomography.

    PubMed

    Larusson, Fridrik; Anderson, Pamela G; Rosenberg, Elizabeth; Kilmer, Misha E; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L

    2013-02-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction.

  19. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    Severe Clutter .... ........ 1I-i III . Optical Implementation of the HopfieldModel .I -? .- . ." Model........................ . . BY...can be employed in future broad-band imaging radar networks capable of providing 3-D projective or . - tomographic images of remote aerospace targets...We expect the results of this effort to tell us how to achieve centimeter resolution on remote aerospace objects cost-effectively using microwave

  20. Nonlinear optical interactions in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  1. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification.

    PubMed

    Xu, Y; Wuu, Cheng-Shie; Maryanski, Marek J

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG 3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG 3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cm x 6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the "3%-or-2 mm" criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  2. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  3. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  4. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  5. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  6. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    PubMed Central

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-01-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection. PMID:25606299

  7. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  8. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  9. Nonlinear optical studies of surfaces

    SciTech Connect

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980`s that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect.

  10. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    SciTech Connect

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  11. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system.

    PubMed

    Sakhalkar, H S; Adamovics, J; Ibbott, G; Oldham, M

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1 x 3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to approximately 2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  12. Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.

    PubMed

    Xi, Chuanwu; Marks, Daniel L; Parikh, Devang S; Raskin, Lutgarde; Boppart, Stephen A

    2004-05-18

    To achieve high mixing efficiency in microfluidic devices, complex designs are often required. Microfluidic devices have been evaluated with light and confocal microscopy, but fluid-flow characteristics at different depths are difficult to separate from the en face images produced. By using optical coherence tomography (OCT), an imaging modality capable of imaging 3D microstructures at micrometer-scale resolutions over millimeter-size scales, we obtained 3D dynamic functional and structural data for three representative microfluidic mixers: a Y channel mixer, a 3D serpentine mixer, and a vortex mixer. In the serpentine mixer, OCT image analysis revealed that the mixing efficiency was linearly dependent on the Reynolds number, whereas it appeared to have exponential dependence when imaged with light microscopy. The visual overlap of fluid flows in light-microscopy images leads to an overestimation of the mixing efficiency, an effect that was eliminated with OCT imaging. Doppler OCT measurements determined velocity profiles at various points in the serpentine mixer. Mixing patterns in the vortex mixer were compared with light-microscopy and OCT image analysis. These results demonstrate that OCT can significantly improve the characterization of 3D microfluidic device structure and function.

  13. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views.

  14. Linear and nonlinear instability and ligament dynamics in 3D laminar two-layer liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Ó Náraigh, Lennon; Valluri, Prashant; Scott, David; Bethune, Iain; Spelt, Peter

    2013-11-01

    We consider the linear and nonlinear stability of two-phase density-matched but viscosity contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. The Orr-Sommerfeld-Squire analysis is used along with DNS of the 3D two-phase Navier-Stokes equations using our newly launched TPLS Solver (http://edin.ac/10cRKzS). For the parameter regimes considered, we demonstrate the existence of two distinct mechanisms whereby 3D waves enter the system, and dominate at late time. There exists a direct route, whereby 3D waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of most-dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave couples to a streamwise mode and grows exponentially. We demonstrate these mechanisms in isolation and in concert. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ``sheets,'' or ``interfacial turbulence.'' HECToR RAP/dCSE Project e174, HPC-Europa 2.

  15. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    SciTech Connect

    Xie, G.; Li, J.; Majer, E.; Zuo, D.

    1998-07-01

    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  16. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  17. A new way to characterize autostereoscopic 3D displays using Fourier optics instrument

    NASA Astrophysics Data System (ADS)

    Boher, P.; Leroux, T.; Bignon, T.; Collomb-Patton, V.

    2009-02-01

    Auto-stereoscopic 3D displays offer presently the most attractive solution for entertainment and media consumption. Despite many studies devoted to this type of technology, efficient characterization methods are still missing. We present here an innovative optical method based on high angular resolution viewing angle measurements with Fourier optics instrument. This type of instrument allows measuring the full viewing angle aperture of the display very rapidly and accurately. The system used in the study presents a very high angular resolution below 0.04 degree which is mandatory for this type of characterization. We can predict from the luminance or color viewing angle measurements of the different views of the 3D display what will be seen by an observer at any position in front of the display. Quality criteria are derived both for 3D and standard properties at any observer position and Qualified Stereo Viewing Space (QSVS) is determined. The use of viewing angle measurements at different locations on the display surface during the observer computation gives more realistic estimation of QSVS and ensures its validity for the entire display surface. Optimum viewing position, viewing freedom, color shifts and standard parameters are also quantified. Simulation of the moire issues can be made leading to a better understanding of their origin.

  18. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  19. Nonlinear Behavior in Optical and Other Systems

    DTIC Science & Technology

    1987-09-01

    numerical analysis). Others will be devoted to ’state of the art ’ discussions of specific problems (e.g. nonlinear waveguides, Anderson localization). It is...Nonlinearity and Statistical Physics. Approximate Cost of Workshop: $5,312. STATE OF THE ART DEVELOPMfENTS IN NONLINEAR OPTICS Organizers: J. Moloney, A... Art Developments in Nonlinear Optics V. List of Preprints and Reprints with Abstracts ANTICIPATED WORKSHOPS 1987 - 1988 I. Workshop on Singularities

  20. Optical absorption enhancement in 3D nanofibers coated on polymer substrate for photovoltaic devices.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2015-06-01

    Recent research in the field of photovoltaics has shown that polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy. In this paper, we propose a new method for the generation of three-dimensional nanofibers coated on polymer substrate induced by femtosecond laser pulses. In this new method, a thin layer of polymer is irradiated by megahertz femtosecond laser pulses under ambient conditions, and a thin fibrous layer is generated on top of the polymer substrate. This method is single step; no additional materials are added, and the layers of the three-dimensional (3D) polymer nanofibrous structures are grown on top of the substrate after laser irradiation. Light spectroscopy results show significant enhancement of light absorption in the generated 3D nanofibrous layers of polymer. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofiber cells by optimizing the laser parameters.

  1. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  2. Further Studies on Nonlinear Adaptive Optics,

    DTIC Science & Technology

    1981-04-01

    AD-A9 167 SCIENCE APPLICATIONS INC LA JOLLA CA F/9 20/6 A-A*9 16 FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS , 1W _ ASFE APR SI A ELCI. J1 NAGEL. D...FURTHER STUDIES ON NONLINEAR ADAPTIVE OPTICS Apr 8l 7 Submitted to: Director of Physics Air Force Office of Scientific Research ATTN: NP Bldg. 410...1 I STATEMENT OF WORK ...... .. .................... I-I II NONLINEAR ADAPTIVE OPTICS SUMMARY

  3. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    SciTech Connect

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  4. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  5. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-11-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed.

  6. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  7. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  8. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  9. Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2006-01-01

    Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.

  10. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  11. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  12. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  13. Hydrothermal synthesis, characterization and optical properties of 3D flower like indium sulfide nanostructures

    NASA Astrophysics Data System (ADS)

    Ghaderi Sheikhi abadi, Parvaneh; Salavati-Niasari, Masoud; Davar, Fatemeh

    2013-01-01

    High-quality and high-yield 3D flower like indium sulfide (In2S3) nanostructures with cubic structure were synthesized by a wet chemical route, without using any surfactant and organic solvents at 160 °C for 12 h, by using InCl3 and 2-aminothiophenol (2-ATP) as starting reagents. The obtained In2S3 with different morphologies and size was characterized by X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-vis) spectroscopy. The effects of reaction parameters, such as temperature, precursor concentration and reaction time on the morphology, and particle size of products were investigated. Our experimental results showed that temperature and time reaction played key roles in the final morphology of In2S3. The morphology of In2S3 structures could be changed from one-dimensional (1D) structures to three-dimensional (3D) structures by increasing reaction time to 24 h. In the present study the optical properties 3D In2S3 structures were investigated.

  14. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  15. User's manuals for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimensions

    SciTech Connect

    Hallquist, J.O.

    1981-07-01

    This report provides a user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. Post-processors for DYNA3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories. A user's manual for DYNAP is also provided in this report.

  16. DLP/DSP-based optical 3D sensors for the mass market in industrial metrology and life sciences

    NASA Astrophysics Data System (ADS)

    Frankowski, G.; Hainich, R.

    2011-03-01

    GFM has developed and constructed DLP-based optical 3D measuring devices based on structured light illumination. Over the years the devices have been used in industrial metrology and life sciences for different 3D measuring tasks. This lecture will discuss integration of DLP Pico technology and DSP technology from Texas Instruments for mass market optical 3D sensors. In comparison to existing mass market laser triangulation sensors, the new 3D sensors provide a full-field measurement of up to a million points in less than a second. The lecture will further discuss different fields of application and advantages of the new generation of 3D sensors for: OEM application in industrial measuring and inspection; 3D metrology in industry, life sciences and biometrics, and industrial image processing.

  17. Visualization of high-density 3D graphs using nonlinear visual space transformations

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Garg, Pankaj; Machiraju, Vijay

    2002-03-01

    The real world data distribution is seldom uniform. Clutter and sparsity commonly occur in visualization. Often, clutter results in overplotting, in which certain data items are not visible because other data items occlude them. Sparsity results in the inefficient use of the available display space. Common mechanisms to overcome this include reducing the amount of information displayed or using multiple representations with a varying amount of detail. This paper describes out experiments on Non-Linear Visual Space Transformations (NLVST). NLVST encompasses several innovative techniques: (1) employing a histogram for calculating the density of data distribution; (2) mapping the raw data values to a non-linear scale for stretching a high-density area; (3) tightening the sparse area to save the display space; (4) employing different color ranges of values on a non-linear scale according to the local density. We have applied NLVST to several web applications: market basket analysis, transactions observation, and IT search behavior analysis.

  18. Measuring nonlinear stresses generated by defects in 3D colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Neil Y. C.; Bierbaum, Matthew; Schall, Peter; Sethna, James P.; Cohen, Itai

    2016-11-01

    The mechanical, structural and functional properties of crystals are determined by their defects, and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements have important implications for strain hardening, yield and fatigue.

  19. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  20. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    NASA Astrophysics Data System (ADS)

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-12-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.

  1. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    PubMed Central

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-01-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine. PMID:27996028

  2. 3D shape measurement of optical free-form surface based on fringe projection

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Liu, Shugui; Zhang, Hongwei

    2011-05-01

    Present a novel method of 3D shape measurement of optical free-from surface based on fringe projection. A virtual reference surface is proposed which can be used to improve the detection efficiency and realize the automation of measuring process. Sinusoidal fringe patterns are projected to the high reflected surface of the measured object. The deflection fringe patterns that modulated by the object surface are captured by the CCD camera. The slope information can be obtained by analyzing the relationship between the phase deflectometry and the slope of the object surface. The wave-front reconstruction method is used to reconstruct the surface. With the application of fringe projection technology the accuracy of optical free-form surfaces measurement could reach the level of tens of micrometer or even micrometer.

  3. Planned development of a 3D computer based on free-space optical interconnects

    NASA Astrophysics Data System (ADS)

    Neff, John A.; Guarino, David R.

    1994-05-01

    Free-space optical interconnection has the potential to provide upwards of a million data channels between planes of electronic circuits. This may result in the planar board and backplane structures of today giving away to 3-D stacks of wafers or multi-chip modules interconnected via channels running perpendicular to the processor planes, thereby eliminating much of the packaging overhead. Three-dimensional packaging is very appealing for tightly coupled fine-grained parallel computing where the need for massive numbers of interconnections is severely taxing the capabilities of the planar structures. This paper describes a coordinated effort by four research organizations to demonstrate an operational fine-grained parallel computer that achieves global connectivity through the use of free space optical interconnects.

  4. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms.

    PubMed

    Dawood, Mohammad; Buther, Florian; Jiang, Xiaoyi; Schafers, Klaus P

    2008-08-01

    The problem of motion is well known in positron emission tomography (PET) studies. The PET images are formed over an elongated period of time. As the patients cannot hold breath during the PET acquisition, spatial blurring and motion artifacts are the natural result. These may lead to wrong quantification of the radioactive uptake. We present a solution to this problem by respiratory-gating the PET data and correcting the PET images for motion with optical flow algorithms. The algorithm is based on the combined local and global optical flow algorithm with modifications to allow for discontinuity preservation across organ boundaries and for application to 3-D volume sets. The superiority of the algorithm over previous work is demonstrated on software phantom and real patient data.

  5. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  6. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  7. Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues

    NASA Astrophysics Data System (ADS)

    Hillman, Elizabeth M. C.; Devor, Anna; Dunn, Andrew K.; Boas, David A.

    2006-03-01

    Laminar Optical Tomography (LOT) is a new medical imaging modality for high-resolution, depth-resolved, functional imaging of superficial tissue such as rodent cortex, skin and the retina. LOT uses visible laser light to image to depths of >2mm (far deeper than microscopy) and is highly sensitive to absorption and fluorescence contrast, enabling spectroscopic functional information such as hemoglobin oxygenation to be imaged with 100-200 micron resolution. LOT has been used to image the hemodynamic response to stimulus in the somatosensory cortex of rats. The resulting three-dimensional (3D) images through the depth of the cortex can be used to delineate the arterial, capillary and venous responses, revealing new information about the intricacies of the oxygenation and blood flow dynamics related to neuronal activation. Additional applications of LOT are being explored, including the integration of 3D Voltage Sensitive Dye fluorescence imaging. LOT imaging uses a system similar to a confocal microscope, quickly scanning a focused beam of light over the surface of the tissue (~8Hz frame rate). Light is detected from both the focus of the scanning beam, and also at increasing distances from the beam's focus. This scattered light has penetrated more deeply into the tissue, and allows features at different depths to be distinguished. An algorithm that includes photon migration modeling of light scattering converts the raw data into 3D images. The motivation for functional optical imaging will be outlined, the basic principles of LOT imaging will be described, and the latest in-vivo results will be presented.

  8. Implementation of 3D prostrate ring-scanning mechanism for NIR diffuse optical imaging phantom validation

    NASA Astrophysics Data System (ADS)

    Yu, Jhao-Ming; Chen, Liang-Yu; Pan, Min-Cheng; Hsu, Ya-Fen; Pan, Min-Chun

    2015-03-01

    Diffuse optical imaging (DOI) providing functional information of tissues has drawn great attention for the last two decades. Near infrared (NIR) DOI systems composed of scanning bench, opt-electrical measurement module, system control, and data processing and image reconstruction schemes are developed for the screening and diagnosis of breast tumors. Mostly, the scanning bench belonging to fixed source-and-detector configuration limits computed image resolution to an extent. To cope with the issue, we propose, design and implement a 3D prostrate ring-scanning equipment for NIR DOI with flexible combinations of illumination and detection, and with the function of radial, circular and vertical movement without hard compression of breast tissue like the imaging system using or incorporating with X-ray mammographic bench. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel movement. Following the previous justification for synthesized image reconstruction, in the paper the validation using varied phantoms is further conducted and 3D image reconstruction for their absorption and scattering coefficients is illustrated through the computation of our in-house coded schemes. The source and detection NIR data are acquired to reconstruct the 3D images through the operation of scanning bench in the movement of vertical, radial and circular directions. Rather than the fixed configuration, the addressed screening/diagnosing equipment has the flexibility for optical-channel expansion with a compromise among construction cost, operation time, and spatial resolution of reconstructed μa and μs' images.

  9. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  10. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.

    PubMed

    Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike

    2016-01-01

    Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.

  11. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    NASA Astrophysics Data System (ADS)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  12. Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsu, Yu John; Yeh, Chia-Hua; Chen, S.-Wei; Chung, Chien-Han

    2015-03-01

    A pico-projector-based optical sectioning microscope (POSM) was constructed using a pico-projector to generate structured illumination patterns. A net rate of 5.8 × 106 pixel/s and sub-micron spatial resolution in three-dimensions (3D) were achieved. Based on the pico-projector’s flexibility in pattern generation, the characteristics of POSM with different modulation periods and at different imaging depths were measured and discussed. With the application of different modulation periods, 3D chlorophyll fluorescence imaging of mesophyll cells was carried out in freshly plucked leaves of four species without sectioning or staining. For each leaf, an average penetration depth of 120 μm was achieved. Increasing the modulation period along with the increment of imaging depth, optical sectioning images can be obtained with a compromise between the axial resolution and signal-to-noise ratio. After ∼30 min imaging on the same area, photodamage was hardly observed. Taking the advantages of high speed and low damages of POSM, the investigation of the dynamic fluorescence responses to temperature changes was performed under three different treatment temperatures. The three embedded blue, green and red light-emitting diode light sources were applied to observe the responses of the leaves with different wavelength excitation.

  13. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  14. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  15. Ultrathin nonlinear metasurface for optical image encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-04-14

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption, in which encoding and decoding involve nonlinear frequency conversions, represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with three-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain grey-scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multi-level image encryption, anti-counterfeiting and background free image reconstruction.

  16. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  17. Nonlinear optical photovoltaics (presentation video)

    NASA Astrophysics Data System (ADS)

    Nunzi, Jean-Michel; Mirzaee, Somayeh M.

    2014-10-01

    Nonlinear absorption was investigated in a poly (3-hexylthiophene) (P3HT) PCBM fullerene blend, one of the most popular organic solar cell's materials. We observed three-photon absorption in the bulk hetero junction photodiode configuration. The output photocurrent of the photodiode was interpreted in terms of the three-photon absorption properties of the P3HT:PCBM blend at 1550 nm. Can the concept be extrapolated to high efficiency solar cells? We propose an optical antenna technology revisited with plasmonics and organic rectifiers that should permit the development of an ultra-high efficiency PV technology that is compatible with large-area fabrication (self assembling) and low-cost (plastic) technologies.

  18. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography

    PubMed Central

    Hillman, Elizabeth M. C.; Burgess, Sean A.

    2009-01-01

    In-vivo imaging of optical contrast in living tissues can allow measurement of functional parameters such as blood oxygenation and detection of targeted and active fluorescent contrast agents. However, optical imaging must overcome the effects of light scattering, which limit the penetration depth and can affect quantitation and sensitivity. This article focuses on a technique for high-resolution, high-speed depth-resolved optical imaging of superficial living tissues called laminar optical tomography (LOT), which is capable of imaging absorbing and fluorescent contrast in living tissues to depths of 2–3 mm with 100–200 micron resolution. An overview of the advantages and challenges of in-vivo optical imaging is followed by a review of currently available techniques for high-resolution optical imaging of tissues. LOT is then described, including a description of the imaging system design and discussion of data analysis and image reconstruction approaches. Examples of recent applications of LOT are then provided and compared to other existing technologies. By measuring multiply-scattered light, Laminar Optical Tomography can probe beneath the surface of living tissues such as the skin and brain. PMID:19844595

  19. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.

    PubMed

    Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M

    2014-07-01

    The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.

  20. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  1. Development of portable 3D optical measuring system using structured light projection method

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroshi

    2014-05-01

    Three-dimensional (3D) scanners are becoming increasingly common in many industries. However most of these scanning technologies have drawbacks for practical use due to size, weight, accessibility, and ease-of-use. Depending on the application, speed, flexibility and portability can often be deemed more important than accuracy. We have developed a solution to address this market requirement and overcome the aforementioned limitations. To counteract shortcomings such as heavy weight and large size, an optical sensor is used that consists of a laser projector, a camera system, and a multi-touch screen. Structured laser light is projected onto the measured object with a newly designed laser projector employing a single Micro Electro Mechanical Systems (MEMS) mirror. The optical system is optimized for the combination of a Laser Diode (LD), the MEMS mirror and the size of measurement area to secure the ideal contrast of structured light. Also, we developed a new calibration algorithm for this sensor with MEMS laser projector that uses an optical camera model for point cloud calculation. These technical advancements make the sensor compact, save power consumption, and reduce heat generation yet still allows for rapid calculation. Due to the principle of the measurement, structured light triangulation utilizing phase-shifting technology, resolution is improved. To meet requirements for practical applications, the optics, electronics, image processing, display and data management capabilities have been integrated into a single compact unit.

  2. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  3. Identifiability of 3D attributed scattering features from sparse nonlinear apertures

    NASA Astrophysics Data System (ADS)

    Jackson, Julie Ann; Moses, Randolph L.

    2007-04-01

    Attributed scattering feature models have shown potential in aiding automatic target recognition and scene visualization from radar scattering measurements. Attributed scattering features capture physical scattering geometry, including the non-isotropic response of target scattering over wide angles, that is not discerned from traditional point scatter models. In this paper, we study the identifiability of canonical scattering primitives from complex phase history data collected over sparse nonlinear apertures that have both azimuth and elevation diversity. We study six canonical shapes: a flat plate, dihedral, trihedral, cylinder, top-hat, and sphere, and three flight path scenarios: a monostatic linear path, a monostatic nonlinear path, and a bistatic case with a fixed transmitter and a nonlinear receiver flight path. We modify existing scattering models to account for nonzero object radius and to scale peak scattering intensities to equate to radar cross section. Similarities in some canonical scattering responses lead to confusion among multiple shapes when considering only model fit errors. We present additional model discriminators including polarization consistency between the model and the observed feature and consistency of estimated object size with radar cross section. We demonstrate that flight path diversity and combinations of model discriminators increases identifiability of canonical shapes.

  4. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  5. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    NASA Astrophysics Data System (ADS)

    Mozerov, M.; Rius, I.; Roca, X.; González, J.

    2009-12-01

    A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  6. Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy.

    PubMed

    Chen, Xueqin; Grégoire, Sébastien; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-02-28

    Understanding the penetration mechanisms of drugs into human skin is a key issue in pharmaceutical and cosmetics research. To date, the techniques available for percutaneous penetration of compounds fail to provide a quantitative 3D map of molecular concentration distribution in complex tissues as the detected microscopy images are an intricate combination of concentration distribution and laser beam attenuation upon deep penetration. Here we introduce and validate a novel framework for imaging and reconstructing molecular concentration within the depth of artificial and human skin samples. Our approach combines the use of deuterated molecular compounds together with coherent anti-Stokes Raman scattering spectroscopy and microscopy that permits targeted molecules to be unambiguously discriminated within skin layers. We demonstrate both intercellular and transcellular pathways for different active compounds, together with in-depth concentration profiles reflecting the detailed skin barrier architecture. This method provides an enabling platform for establishing functional activity of topically applied products.

  7. Patterns in a Nonlinear Optical System

    NASA Astrophysics Data System (ADS)

    Arecchi, F. T.; Ramazza, P. L.

    We discuss the general features of patten formation in nonlinear optics, regarding the system sizes along the coordinates longitudinal and transverse to the wavefront propagation as the crucial parameters in determining the possible dynamical behaviours. As a specific example of optical pattern forming system, we review the phenomena observed in a prototypical nonlinear interferometer formed by a Kerr-like medium with optical feedback. Particular attention is devoted to the role of nonlocal interactions in determining the pattern forming scenarios observed.

  8. A novel lithography process for 3D (three-dimensional) interconnect using an optical direct-writing exposure system

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Sekiguchi, M.; Matsuo, M.; Kawasaki, A.; Hagiwara, K.; Matsui, H.; Kawamura, N.; Kishimoto, K.; Nakamura, A.; Washio, Y.

    2010-03-01

    A novel lithography process for 3D (Three-dimensional) interconnect was developed using an optical direct-writing exposure tool. A reflective IR (Infra-red) alignment system allows a direct detection of alignment marks both on front-side and back-side of wafer, and consequently allows feasible micro-fabrication for 3D interconnect using the reversed wafer. A combination of the optical direct-writing exposure tool of Dainippon Screen MFG. Co., Ltd. with the reflective IR alignment system and a high aspect chemically amplified resist of Tokyo Ohka Kogyo Co., Ltd. provides the lithography process exclusively for 12-inch wafer level 3D interconnect.

  9. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope.

    PubMed

    Gong, Yuanzheng; Johnston, Richard S; Melville, C David; Seibel, Eric J

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  10. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    PubMed Central

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-01-01

    As the rapid progress in the development of optoelectronic components and computational power, 3D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This paper proposed a new approach to measure tiny internal 3D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm. PMID:26640425

  11. Simulation of 3D tumor cell growth using nonlinear finite element method.

    PubMed

    Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi

    2016-01-01

    We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.

  12. Nonlinear optical spectroscopy of chiral molecules.

    PubMed

    Fischer, Peer; Hache, François

    2005-10-01

    We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality. They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest.

  13. 3D optical coherence tomography image registration for guiding cochlear implant insertion

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong-Woo; Jeong, Hyun-Woo; Chalasani, Preetham; Chien, Wade W.; Iordachita, Iulian; Taylor, Russell; Niparko, John; Kang, Jin U.

    2014-03-01

    In cochlear implant surgery, an electrode array is inserted into the cochlear canal to restore hearing to a person who is profoundly deaf or significantly hearing impaired. One critical part of the procedure is the insertion of the electrode array, which looks like a thin wire, into the cochlear canal. Although X-ray or computed tomography (CT) could be used as a reference to evaluate the pathway of the whole electrode array, there is no way to depict the intra-cochlear canal and basal turn intra-operatively to help guide insertion of the electrode array. Optical coherent tomography (OCT) is a highly effective way of visualizing internal structures of cochlea. Swept source OCT (SSOCT) having center wavelength of 1.3 micron and 2D Galvonometer mirrors was used to achieve 7-mm depth 3-D imaging. Graphics processing unit (GPU), OpenGL, C++ and C# were integrated for real-time volumetric rendering simultaneously. The 3D volume images taken by the OCT system were assembled and registered which could be used to guide a cochlear implant. We performed a feasibility study using both dry and wet temporal bones and the result is presented.

  14. Automated Sensor for 3-D Reconstruction of Optical Emission from RF Plasmas

    NASA Astrophysics Data System (ADS)

    Collard, Corey; Shannon, S.; Brake, M. L.; Holloway, James Paul

    1999-10-01

    Three dimensional images are obtained by using an automated scanning sensor which collects optical emission from a RF (13.56 MHz) discharge in a capacitively coupled GEC cell. The sensor scans a plane parallel to the electrode surface and transmits the plasma spectral emission through a fiber optic cable to a monochromator. The fiber optic is attached to a motorized rotational stage attached to a manual vertical translational stage. Wedges of light (argon at 750.4 nm) are collected as the fiber scans across the plasma. The data is digitized and stored so that it can be input into an algorithm, which uses a Tikhonov regularization method to reconstruct the emissivity as a function of radial position. By varying the height of the sensor, a 3-D plot of the plasma emission can be obtained. Three dimensional plots of plasmas run at 75, 100, 150 and 200 peak to peak voltage at pressures of 100, 250, 500 and 1000 mTorr were obtained. The non-uniformity of the light emission as a function of pressure and power will be discussed.

  15. Optical security and anti-counterfeiting using 3D screen printing

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Yang, W. K.; Cheng, S. H.; Kuo, M. K.; Lee, H. W.; Chang, C. C.; Jeng, G. R.; Liu, C. P.

    2007-04-01

    This work presents a novel method for optical decrypted key production by screen printing technology. The key is mainly used to decrypt encoded information hidden inside documents containing Moire patterns and integral photographic 3D auto-stereoscopic images as a second-line security file. The proposed method can also be applied as an anti-counterfeiting measure in artistic screening. Decryption is performed by matching the correct angle between the decoding key and the document with a text or a simple geometric pattern. This study presents the theoretical analysis and experimental results of the decoded key production by the best parameter combination of Moire pattern size and screen printing elements. Experimental results reveal that the proposed method can be applied in anti-counterfeit document design for the fast and low-cost production of decryption key.

  16. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  17. 3D optical phase reconstruction within PMMA samples using a spectral OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel d. J.; De La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2015-08-01

    The optical coherence tomography (OCT) technique has proved to be a useful method in biomedical areas such as ophthalmology, dentistry, dermatology, among many others. In all these applications the main target is to reconstruct the internal structure of the samples from which the physician's expertise may recognize and diagnose the existence of a disease. Nowadays OCT has been applied one step further and is used to study the mechanics of some particular type of materials, where the resulting information involves more than just their internal structure and the measurement of parameters such as displacements, stress and strain. Here we report on a spectral OCT system used to image the internal 3D microstructure and displacement maps from a PMMA (Poly-methyl-methacrylate) sample, subjected to a deformation by a controlled three point bending and tilting. The internal mechanical response of the polymer is shown as consecutive 2D images.

  18. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  19. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  20. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  1. 3D image reconstruction using optical sectioning in confocal scanning microscopy

    NASA Astrophysics Data System (ADS)

    Seo, Jungwoo; Kang, Dong Kyun; Park, Sunglim; Gweon, Dae gab

    2001-10-01

    Confocal scanning microscopy (CSM) has been used in biological application, materials science, semiconductor quality measurement and other non-destructive microscopic application. Small spot of light illuminates a sample, and a small detector that is ideally a point detector collects the reflected or transmitted light having the information of specimen. An image distribution can be reconstructed by a correlation analysis of spots with the high bandwidth. The mechanism for two-dimensional beam scanning and optical sectioning has an important role in CSM as the three-dimensional profiler. The parasitic motion of focus on the detector gives rise to the fatal distortion of an image profile named the extinction effect while using acousto-optical (AO) deflector. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. We propose the progressive methods for the high quality image as the following. At first, for having the corrected image, small spot and long scan range, this paper shows that the optimal design having the multi-objects can be used by choosing the unitary lens device in CSM. At second, in order to compensate for the intensity cancellation at the end profile that may be the cause of waviness for the optical image, this paper shows that it is efficient to schedule the frequency of scan. According to characteristics of the extinction curve and axial/lateral response having the error property, we can define the frequency and sensitivity of as their robustness. Finally, the axial response gives an important motive for the optical section, and the limit of

  2. Building 3D aerial image in photoresist with reconstructed mask image acquired with optical microscope

    NASA Astrophysics Data System (ADS)

    Chou, C. S.; Tang, Y. P.; Chu, F. S.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2012-03-01

    Calibration of mask images on wafer becomes more important as features shrink. Two major types of metrology have been commonly adopted. One is to measure the mask image with scanning electron microscope (SEM) to obtain the contours on mask and then simulate the wafer image with optical simulator. The other is to use an optical imaging tool Aerial Image Measurement System (AIMSTM) to emulate the image on wafer. However, the SEM method is indirect. It just gathers planar contours on a mask with no consideration of optical characteristics such as 3D topography structures. Hence, the image on wafer is not predicted precisely. Though the AIMSTM method can be used to directly measure the intensity at the near field of a mask but the image measured this way is not quite the same as that on the wafer due to reflections and refractions in the films on wafer. Here, a new approach is proposed to emulate the image on wafer more precisely. The behavior of plane waves with different oblique angles is well known inside and between planar film stacks. In an optical microscope imaging system, plane waves can be extracted from the pupil plane with a coherent point source of illumination. Once plane waves with a specific coherent illumination are analyzed, the partially coherent component of waves could be reconstructed with a proper transfer function, which includes lens aberration, polarization, reflection and refraction in films. It is a new method that we can transfer near light field of a mask into an image on wafer without the disadvantages of indirect SEM measurement such as neglecting effects of mask topography, reflections and refractions in the wafer film stacks. Furthermore, with this precise latent image, a separated resist model also becomes more achievable.

  3. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  4. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  5. Beam position controlling method for 3D optical system and its application in non-planar ring resonators.

    PubMed

    Yuan, Jie; Chen, Meixiong; Long, Xingwu; Tan, Yanyang; Kang, Zhenglong; Li, Yingying

    2012-08-13

    A novel theoretical beam position controlling method for 3D optical system has been proposed in this paper. Non-planar ring resonator, which is a typical 3D optical system, has been chosen as an example to show its application. To the best of our knowledge, the generalized ray matrices, augmented 5 × 5 ray matrices for paraxial dielectric interface transmission and paraxial optical-wedge transmission, and their detailed deducing process have been proposed in this paper for the first time. By utilizing the novel coordinate system for Gaussian beam reflection and the generalized ray matrix of paraxial optical-wedge transmission, the rules and some novel results of the optical-axis perturbations of non-planar ring resonators have been obtained. Wedge angle-induced mismatching errors of non-planar ring resonators have been found out and two experimental beam position controlling methods to effectively eliminate the wedge angle-induced mismatching errors have been proposed. All those results have been confirmed by related alignment experiments and the experimental results have been described with diagrammatic representation. These findings are important to the beam control, cavity design, and cavity alignment of high precision non-planar ring laser gyroscopes. Those generalized ray matrices and their deducing methods are valuable for ray analysis of various kinds of paraxial optical-elements and resonators. This novel theoretical beam position controlling method for 3D optical system is valuable for the controlling of various kinds of 3D optical systems.

  6. 3-D imaging mass spectrometry of protein distributions in mouse Neurofibromatosis 1 (NF1)-associated optic glioma.

    PubMed

    Anderson, David M G; Van de Plas, Raf; Rose, Kristie L; Hill, Salisha; Schey, Kevin L; Solga, Anne C; Gutmann, David H; Caprioli, Richard M

    2016-10-21

    Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder, in which affected individuals develop tumors of the nervous system. Children with NF1 are particularly prone to brain tumors (gliomas) involving the optic pathway that can result in impaired vision. Since tumor formation and expansion requires a cooperative tumor microenvironment, it is important to identify the cellular and acellular components associated with glioma development and growth. In this study, we used 3-D matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to measure the distributions of multiple molecular species throughout optic nerve tissue in mice with and without glioma, and to explore their spatial relationships within the 3-D volume of the optic nerve and chiasm. 3-D IMS studies often involve extensive workflows due to the high volume of sections required to generate high quality 3-D images. Herein, we present a workflow for 3-D data acquisition and volume reconstruction using mouse optic nerve tissue. The resulting 3-D IMS data yield both molecular similarities and differences between glioma-bearing and wild-type (WT) tissues, including protein distributions localizing to different anatomical subregions.

  7. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    PubMed

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.

  8. The NCOREL computer program for 3D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1983-01-01

    An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.

  9. A natural flow wing design employing 3-D nonlinear analysis applied at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S.; Wood, Richard M.; Brown, S. Melissa

    1989-01-01

    A wing-design study has been conducted on a 65-deg-swept leading-edge delta wing in which a near-conical geometry was employed to take advantage of the naturally occurring conical flow which arises over such a wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study. In preliminary design, wing planform, design conditions, and near-conical concept were derived and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and the near-conical delta wing. Modifications due to airfoil thickness, leading-edge radius, and camber were then applied to the baseline near-conical wing. The final design employed a Euler solver to analyze the best wing configurations found in the initial design, and to extend this study to develop a more refined wing. Benefits due to each modification are discussed, and a final natural flow wing geometry is chosen and its aerodynamic characteristics are compared with the baseline wings.

  10. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    NASA Astrophysics Data System (ADS)

    Casal, A.; Cerrato, R.; Mateo, M. P.; Nicolas, G.

    2016-06-01

    A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  11. Label-free optical detection of cells grown in 3D silicon microstructures.

    PubMed

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  12. 3D imaging of tomato seeds using frequency domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fan, Chuanmao; Yao, Gang

    2012-05-01

    A fast imaging system that can reveal internal sample structures is important for research and quality controls of seeds. Optical coherence tomography (OCT) is a non-invasive optical imaging technique that can acquire high speed, high resolution depth-resolved images in scattering samples. It has found numerous applications in studying various biological tissues and other materials in vivo. A few studies have reported the use of OCT in studying seed morphology. However, 3D imaging of internal seed structure has not been reported before. In this study, we used a frequency domain OCT system to image tomato seeds. The system has a central wavelength of 844nm with a 46.8 nm FWHM bandwidth. The requirement for depth scan was eliminated by using a Fourier domain implementation. The B-scan imaging speed was limited by the spectroscopic imaging CCD at 52 kHz. The calibrated system has a 6.7μm depth resolution and a 15.4μm lateral resolution. Our results show that major seed structures can be clearly visualized in OCT images.

  13. 3D-optical measurement system using a new vignetting aperture procedure

    NASA Astrophysics Data System (ADS)

    Hofbauer, Engelbert; Rascher, Rolf; Wühr, Konrad; Friedke, Felix; Stubenrauch, Thomas; Pastötter, Benjamin; Schleich, Sebastian; Zöcke, Christine

    2014-05-01

    A newly developed measuring procedure uses vignetting to evaluate angles and angle changes, independently from the measurement distance. Further on, the same procedure enables the transmission of a digital readout and therefore a better automation of the electronic signal evaluation, for use as an alignment telescope. The fully extended readout by a simple 3-D reflector will provide the user with a measurement result with six degrees of freedom. The vignetting field stop procedure will be described. Firstly, considering artificial vignetting, the theoretical basics from geometric-optical view are represented. Secondly, the natural vignetting with photometric effects will be considered. The distribution of intensity in the image plane light spot, the so-called V-SPOT, is analytically deduced as a function of differently measured variables. Intensity shifts within the V-Spot are examined independently from different effects by numeric simulation. On these basics, the theoretical research regarding accuracy, linearity as well as results in 2 dimensional surface reconstruction on precision optical mirrors and also three dimensional measurements in mechanical engineering are examined. Effects and deviations will be discussed. The project WiPoVi is sponsored by "Ingenieur Nachwuchs - Qualifizierung von Ingenieurnachwuchs an Fachhochschulen" by Bavarian State Ministry of Education, Science and the Arts.

  14. 3D optical simulation formalism OPTOS for textured silicon solar cells.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2015-11-30

    In this paper we introduce the three-dimensional formulation of the OPTOS formalism, a matrix-based method that allows for the efficient simulation of non-coherent light propagation and absorption in thick textured sheets. As application examples, we calculate the absorptance of solar cells featuring textures on front and rear side with different feature sizes operating in different optical regimes. A discretization of polar and azimuth angle enables a three-dimensional description of systems with arbitrary surface textures. We present redistribution matrices for 3D surface textures, including pyramidal textures, binary crossed gratings and a Lambertian scatterer. The results of the OPTOS simulations for silicon sheets with different combinations of these surfaces are in accordance with both optical measurements and results based on established simulation methods like ray tracing. Using OPTOS, we show that the integration of a diffractive grating at the rear side of a silicon solar cell featuring a pyramidal front side results in absorption close to the Yablonovitch Limit enhancing the photocurrent density by 0.6 mA/cm2 for a 200 µm thick cell.

  15. 3D imaging of dental hard tissues with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yueli L.; Yang, Yi; Ma, Jing; Yan, Jun; Shou, Yuanxin; Wang, Tianheng; Ramesh, Aruna; Zhao, Jing; Zhu, Quing

    2011-03-01

    A fiber optical coherence tomography (OCT) probe is used for three dimensional dental imaging. The probe has a lightweight miniaturized design with a size of a pen to facilitate clinic in vivo diagnostics. The probe is interfaced with a swept-source / Fourier domain optical coherence tomography at 20K axial scanning rate. The tooth samples were scanned from occlusal, buccal, lingual, mesial, and distal orientations. Three dimensional imaging covers tooth surface area up to 10 mm x 10 mm with a depth about 5 mm, where a majority of caries affection occurs. OCT image provides better resolution and contrast compared to gold standard dental radiography (X-ray). In particular, the technology is well suited for occlusal caries detection. This is complementary to X-ray as occlusal caries affection is difficult to be detected due to the X-ray projectile scan geometry. The 3D topology of occlusal surface as well as the dentin-enamel junction (DEJ) surface inside the tooth can be visualized. The lesion area appears with much stronger back scattering signal intensity.

  16. Metamaterials with tailored nonlinear optical response.

    PubMed

    Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti

    2012-02-08

    We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.

  17. Nonlinear Optical Properties of Semiconducting Polymers

    DTIC Science & Technology

    1990-10-26

    Materials Science and Engineering. Ed. Michael B. Bever (Pergamon Press, Oxford, 1986), p . 1399. 2 -Nonlinear Excitations and Nonlinear Phenomena in...M. Sinclair, A.J. Heeger, A. 0. Patil, S. Shi, S. Askad and F. Wudl, Linear and Nonlinear Optical Studies of Poly( p -phenylene- vinylene) Derivatives... P . Smith, ICSM 󈨜, Santa Fe, NM (June 1988) P . Smith, Organized ACS Symposium on Processing of Conducting Polymers, ACS Meeting, Dallas (April, 1989

  18. Nonlinear rheology in ASPECT: benchmarking and an application to 3D subduction

    NASA Astrophysics Data System (ADS)

    Glerum, Anne; Thieulot, Cedric; Fraters, Menno; Spakman, Wim

    2014-05-01

    ASPECT (Advanced Solver for Problems in Earth's ConvecTion) is a promising new code designed for modelling thermal convection in the mantle (Kronbichler et al. 2012). The massively parallel code uses state-of-the-art numerical methods, such as high performance solvers and adaptive mesh refinement. It builds on tried-and-well-tested libraries and works with plug-ins allowing easy extension to fine-tune it to the user's specific needs. We extended the code by implementing a frictional plasticity criterion that can be combined with a viscous creep rheology, allowing for thermo-mechanically coupled visco-plastic flow. This way we can accommodate for the nonlinear behavior of the Earth's materials and incorporate for instance the localization of deformation through plastic yielding. This has been shown to be of great importance for modelling lithosphere deformation. Three well-known benchmarks are used to test and validate our implementation of plasticity: the punch benchmark (e.g. Thieulot et al. 2008), which considers the indentation of a perfectly plastic material and allows for comparison with an analytical solution; the brick benchmark (Kaus 2010), performed in both a compressional and tensional regime with shear band angles bounded by results of other codes and theory; and the sandbox experiment by Buiter et al. (2006) modelling the time evolution of the extension of viscous and plastic layers in the presence of a free surface. We further showcase ASPECT's capabilities with a more geodynamical application: the subduction of an oceanic plate in a three-dimensional thermo-mechanically coupled system. We compare the use of nonlinear rheologies versus that of constant mantle and plate viscosities with an adaptation of the subducting/overriding plate setup of Schellart and Moresi (2013). These models also demonstrate how the adaptive mesh refinement allows for high resolutions locally while the code remains computationally efficient even in the presence of large

  19. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  20. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    SciTech Connect

    SNYDER,P.B; WILSON,H.R; XU,X.Q; WEBSTER,A.J

    2004-06-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.

  1. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    SciTech Connect

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-05-15

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm{sup 2}, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

  2. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    PubMed Central

    Hafeman, Dean G.; Harkins, James B.; Witkowski, Charles E.; Lewis, Nathan S.; Warmack, Robert J.; Brown, Gilbert M.; Thundat, Thomas

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium. PMID:16618926

  3. Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ibrahim, Zuhaib; Lee, W. P. A.; Brandacher, Gerald; Kang, Jin U.

    2013-03-01

    Vascular and microvascular anastomosis is considered to be the foundation of plastic and reconstructive surgery, hand surgery, transplant surgery, vascular surgery and cardiac surgery. In the last two decades innovative techniques, such as vascular coupling devices, thermo-reversible poloxamers and suture-less cuff have been introduced. Intra-operative surgical guidance using a surgical imaging modality that provides in-depth view and 3D imaging can improve outcome following both conventional and innovative anastomosis techniques. Optical coherence tomography (OCT) is a noninvasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. In this work we performed a proof-of-concept evaluation study of OCT as an assisted intraoperative and post-operative imaging modality for microvascular anastomosis of rodent femoral vessels. The OCT imaging modality provided lateral resolution of 12 μm and 3.0 μm axial resolution in air and 0.27 volume/s imaging speed, which could provide the surgeon with clearly visualized vessel lumen wall and suture needle position relative to the vessel during intraoperative imaging. Graphics processing unit (GPU) accelerated phase-resolved Doppler OCT (PRDOCT) imaging of the surgical site was performed as a post-operative evaluation of the anastomosed vessels and to visualize the blood flow and thrombus formation. This information could help surgeons improve surgical precision in this highly challenging anastomosis of rodent vessels with diameter less than 0.5 mm. Our imaging modality could not only detect accidental suture through the back wall of lumen but also promptly diagnose and predict thrombosis immediately after reperfusion. Hence, real-time OCT can assist in decision-making process intra-operatively and avoid post-operative complications.

  4. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  5. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging.

    PubMed

    Zhang, Edward Z; Povazay, Boris; Laufer, Jan; Alex, Aneesh; Hofer, Bernd; Pedley, Barbara; Glittenberg, Carl; Treeby, Bradley; Cox, Ben; Beard, Paul; Drexler, Wolfgang

    2011-08-01

    A noninvasive, multimodal photoacoustic and optical coherence tomography (PAT/OCT) scanner for three-dimensional in vivo (3D) skin imaging is described. The system employs an integrated, all optical detection scheme for both modalities in backward mode utilizing a shared 2D optical scanner with a field-of-view of ~13 × 13 mm(2). The photoacoustic waves were detected using a Fabry Perot polymer film ultrasound sensor placed on the surface of the skin. The sensor is transparent in the spectral range 590-1200 nm. This permits the photoacoustic excitation beam (670-680 nm) and the OCT probe beam (1050 nm) to be transmitted through the sensor head and into the underlying tissue thus providing a backward mode imaging configuration. The respective OCT and PAT axial resolutions were 8 and 20 µm and the lateral resolutions were 18 and 50-100 µm. The system provides greater penetration depth than previous combined PA/OCT devices due to the longer wavelength of the OCT beam (1050 nm rather than 829-870 nm) and by operating in the tomographic rather than the optical resolution mode of photoacoustic imaging. Three-dimensional in vivo images of the vasculature and the surrounding tissue micro-morphology in murine and human skin were acquired. These studies demonstrated the complementary contrast and tissue information provided by each modality for high-resolution 3D imaging of vascular structures to depths of up to 5 mm. Potential applications include characterizing skin conditions such as tumors, vascular lesions, soft tissue damage such as burns and wounds, inflammatory conditions such as dermatitis and other superficial tissue abnormalities.

  6. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  7. X-Ray and Optical Videography for 3D Measurement of Capillary and Melt Pool Geometry in Laser Welding

    NASA Astrophysics Data System (ADS)

    Boley, M.; Abt, F.; Weber, R.; Graf, T.

    This paper describes a method to reconstruct the 3D shape of the melt pool and the capillary of a laser keyhole welding process. Three different diagnostic methods, including X-Ray and optical videography as well as metallographic cross sections are combined to gain the three dimensional data of the solidus-liquidus-surface. A detailed description of the experimental setup and a discussion of different methods to combine the 2D data sets of the three different diagnostic methods to a 3D-model will be given. The result will be a static 3D description of the welding process.

  8. Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy

    PubMed Central

    Li, Hebin; Bristow, Alan D.; Siemens, Mark E.; Moody, Galan; Cundiff, Steven T.

    2013-01-01

    Predicting and controlling quantum mechanical phenomena require knowledge of the system Hamiltonian. A detailed understanding of the quantum pathways used to construct the Hamiltonian is essential for deterministic control and improved performance of coherent control schemes. In complex systems, parameters characterizing the pathways, especially those associated with inter-particle interactions and coupling to the environment, can only be identified experimentally. Quantitative insight can be obtained provided the quantum pathways are isolated and independently analysed. Here we demonstrate this possibility in an atomic vapour using optical three-dimensional Fourier-transform spectroscopy. By unfolding the system’s nonlinear response onto three frequency dimensions, three-dimensional spectra unambiguously reveal transition energies, relaxation rates and dipole moments of each pathway. The results demonstrate the unique capacity of this technique as a powerful tool for resolving the complex nature of quantum systems. This experiment is a critical step in the pursuit of complete experimental characterization of a system’s Hamiltonian. PMID:23340430

  9. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  10. A prototype fan-beam optical CT scanner for 3D dosimetry

    SciTech Connect

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew; Wells, Derek M.

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The

  11. Spatial optical solitons in nonlinear photonic crystals.

    PubMed

    Sukhorukov, Andrey A; Kivshar, Yuri S

    2002-03-01

    We study spatial optical solitons in a one-dimensional nonlinear photonic crystal created by an array of thin-film nonlinear waveguides, the so-called Dirac-comb nonlinear lattice. We analyze modulational instability of the extended Bloch-wave modes and also investigate the existence and stability of bright, dark, and "twisted" spatially localized modes in such periodic structures. Additionally, we discuss both similarities and differences of our general results with the simplified models of nonlinear periodic media described by the discrete nonlinear Schrödinger equation, derived in the tight-binding approximation, and the coupled-mode theory, valid for shallow periodic modulations of the optical refractive index.

  12. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  13. Globular and Optically Transparent Photonic Crystals Based on 3D-opal Matrix and REE

    NASA Astrophysics Data System (ADS)

    Ivicheva, S. N.; Kargin, Yu. F.; Gorelik, V. S.

    By repeatedly filling the octahedral and tetrahedral pores of 3D-silica opal matrices with silica sol doped with rare-earth elements with subsequent heat treatment globular photonic crystals filled with mesoporous glass and optically transparent photonic crystals (quantytes) containing 10-30 ppm REE were produced, depending on the annealing temperature. Voids of fcc lattice formed by amorphous spherical globules of SiO2 in globular photonic crystals are filled (up to 70%) by mesoporous glass doped with rare earth elements. Pores in the transparent photonic crystals disappear during sintering of globules of silica and mesoporous glass, but the periodic arrangement of REE-enriched silica areas (quantum dots) is retained. The reflection and luminescence spectra of photonic crystals filled with sols doped with europium Eu3+ and terbium Tb3+ were experimentally studied. A significant increase in the photoluminescence intensity of Eu3+ ions at the approach of the spectral position of the transition 5D0 → 7F2 to the edge of the bandgaps of the photonic crystal was determined. The authors come to the conclusion that a lowering of the threshold for lasing transitions in ions of rare elements is possible.

  14. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  15. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  16. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.

    PubMed

    Rolland, Jannick P; Canavesi, Cristina; Tankam, Patrice; Cogliati, Andrea; Lanis, Mara; Santhanam, Anand P

    2016-01-01

    Fast, robust, nondestructive 3D imaging is needed for the characterization of microscopic tissue structures across various clinical applications. A custom microelectromechanical system (MEMS)-based 2D scanner was developed to achieve, together with a multi-level GPU architecture, 55 kHz fast-axis A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) custom instrument. GD-OCM yields high-definition micrometer-class volumetric images. A dynamic depth of focusing capability through a bio-inspired liquid lens-based microscope design, as in whales' eyes, was developed to enable the high definition instrument throughout a large field of view of 1 mm3 volume of imaging. Developing this technology is prime to enable integration within the workflow of clinical environments. Imaging at an invariant resolution of 2 μm has been achieved throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. Volumetric scans of human skin in vivo and an excised human cornea are presented.

  17. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets.

    PubMed

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-24

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet - a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  18. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-01

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  19. Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction.

    PubMed

    Maier-Hein, L; Groch, A; Bartoli, A; Bodenstedt, S; Boissonnat, G; Chang, P-L; Clancy, N T; Elson, D S; Haase, S; Heim, E; Hornegger, J; Jannin, P; Kenngott, H; Kilgus, T; Müller-Stich, B; Oladokun, D; Röhl, S; Dos Santos, T R; Schlemmer, H-P; Seitel, A; Speidel, S; Wagner, M; Stoyanov, D

    2014-10-01

    Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper.

  20. Optical nonlinearities of small polarons in lithium niobate

    NASA Astrophysics Data System (ADS)

    Imlau, Mirco; Badorreck, Holger; Merschjann, Christoph

    2015-12-01

    An overview of optical nonlinearities of small bound polarons is given, which can occur in the congruently melting composition of LiNbO3. Such polarons decisively influence the linear and nonlinear optical performance of this material that is important for the field of optics and photonics. On the basis of an elementary phenomenological approach, the localization of carriers in a periodic lattice with intrinsic defects is introduced. It is applied to describe the binding energies of four electron and hole small polarons in LiNbO3: small free NbNb4 + polarons, small bound NbLi4 + polarons, small bound NbLi4 +:NbNb4 + bipolarons, and small bound O- hole polarons. For the understanding of their linear interaction with light, an optically induced transfer between nearest-neighboring polaronic sites is assumed. It reveals spectrally well separated optical absorption features in the visible and near-infrared spectral range, their small polaron peak energies and lineshapes. Nonlinear interaction of light is assigned to the optical formation of short-lived small polarons as a result of carrier excitation by means of band-to-band transitions. It is accompanied by the appearance of a transient absorption being spectrally constituted by the individual fingerprints of the small polarons involved. The relaxation dynamics of the transients is thermally activated and characterized phenomenologically by a stretched exponential behavior, according to incoherent 3D small polaron hopping between regular and defect sites of the crystal lattice. It is shown that the analysis of the dynamics is a useful tool for revealing the recombination processes between small polarons of different charge. Nonlinear interaction of small polarons with light furthermore results in changes of the index of refraction. Besides its causal relation to the transients via Kramers-Kronig relation, pronounced index changes may occur due to optically generated electric fields modulating the index of refraction

  1. Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

    SciTech Connect

    Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.

    1999-11-01

    Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

  2. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  3. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.

    PubMed

    Rodenas, Airan; Kar, Ajoy K

    2011-08-29

    We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

  4. Nonlinear optical properties of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  5. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    SciTech Connect

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian; Kochanke, Andre; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy.

  6. Optical oscillator strengths for valence-shell and Br-3d inner-shell excitations of HCl and HBr.

    PubMed

    Li, Wen-Bin; Zhu, Lin-Fan; Yuan, Zhen-Sheng; Liu, Xiao-Jing; Xu, Ke-Zun

    2006-10-21

    Absolute optical oscillator strength density spectra for valence-shell excitations of HCl and HBr, as well as for Br-3d inner-shell excitations of HBr, have been determined by high-resolution electron-energy-loss-spectroscopy method in the dipole limit. Absolute optical oscillator strengths for the discrete transitions of HCl and HBr are reported and compared with the previous results determined by the photoabsorption method.

  7. Assessment of Iterative Closest Point Registration Accuracy for Different Phantom Surfaces Captured by an Optical 3D Sensor in Radiotherapy

    PubMed Central

    Walke, Mathias; Gademann, Günther

    2017-01-01

    An optical 3D sensor provides an additional tool for verification of correct patient settlement on a Tomotherapy treatment machine. The patient's position in the actual treatment is compared with the intended position defined in treatment planning. A commercially available optical 3D sensor measures parts of the body surface and estimates the deviation from the desired position without markers. The registration precision of the in-built algorithm and of selected ICP (iterative closest point) algorithms is investigated on surface data of specially designed phantoms captured by the optical 3D sensor for predefined shifts of the treatment table. A rigid body transform is compared with the actual displacement to check registration reliability for predefined limits. The curvature type of investigated phantom bodies has a strong influence on registration result which is more critical for surfaces of low curvature. We investigated the registration accuracy of the optical 3D sensor for the chosen phantoms and compared the results with selected unconstrained ICP algorithms. Safe registration within the clinical limits is only possible for uniquely shaped surface regions, but error metrics based on surface normals improve translational registration. Large registration errors clearly hint at setup deviations, whereas small values do not guarantee correct positioning. PMID:28163773

  8. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  9. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters

    NASA Astrophysics Data System (ADS)

    Doran, Simon; Gorjiara, Tina; Kacperek, Andrzej; Adamovics, John; Kuncic, Zdenka; Baldock, Clive

    2015-01-01

    Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called ‘quenching effect’). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined. Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE®, using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE® used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an

  10. Nonlinear Optics in Negative Index Metamaterials

    DTIC Science & Technology

    2012-06-05

    analytical model and solutions for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, non-zero phase... couplers based on either double-negative or strongly anisotropic metamaterials that are likely to enable ultra-compact optical strorage and memory...Venugopal, Zhaxylyk Kudyshev, Natalia Litchinitser. Asymmetric Positive-Negative IndexNonlinear Waveguide Couplers , IEEE Journal of Selected Topics in

  11. Giant optical nonlinearity of plasmonic nanostructures

    SciTech Connect

    Melentiev, P N; Afanasev, A E; Balykin, V I

    2014-06-30

    The experimental studies of giant optical nonlinearity of single metal nanostructures are briefly reviewed. A new hybrid nanostructure – split-hole resonator (SHR) – is investigated. This structure is characterised by a record-high efficiency of third-harmonic generation and multiphoton luminescence (its nonlinearity exceeds that of a single nanohole by five orders of magnitude) and an unprecedently high sensitivity to light polarisation (extinction coefficient 4 × 10{sup 4}). (extreme light fields and their applications)

  12. Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics

    NASA Astrophysics Data System (ADS)

    Headland, Daniel; Withayachumnankul, Withawat; Webb, Michael; Ebendorff-Heidepriem, Heike; Luiten, Andre; Abbott, Derek

    2016-07-01

    We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.

  13. Characterization of 3D printing output using an optical sensing system

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    This paper presents the experimental design and initial testing of a system to characterize the progress and performance of a 3D printer. The system is based on five Raspberry Pi single-board computers. It collects images of the 3D printed object, which are compared to an ideal model. The system, while suitable for printers of all sizes, can potentially be produced at a sufficiently low cost to allow its incorporation into consumer-grade printers. The efficacy and accuracy of this system is presented and discussed. The paper concludes with a discussion of the benefits of being able to characterize 3D printer performance.

  14. 3D imaging of cone photoreceptors over extended time periods using optical coherence tomography with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kocaoglu, Omer P.; Lee, Sangyeol; Jonnal, Ravi S.; Wang, Qiang; Herde, Ashley E.; Besecker, Jason; Gao, Weihua; Miller, Donald T.

    2011-03-01

    Optical coherence tomography with adaptive optics (AO-OCT) is a highly sensitive, noninvasive method for 3D imaging of the microscopic retina. The purpose of this study is to advance AO-OCT technology by enabling repeated imaging of cone photoreceptors over extended periods of time (days). This sort of longitudinal imaging permits monitoring of 3D cone dynamics in both normal and diseased eyes, in particular the physiological processes of disc renewal and phagocytosis, which are disrupted by retinal diseases such as age related macular degeneration and retinitis pigmentosa. For this study, the existing AO-OCT system at Indiana underwent several major hardware and software improvements to optimize system performance for 4D cone imaging. First, ultrahigh speed imaging was realized using a Basler Sprint camera. Second, a light source with adjustable spectrum was realized by integration of an Integral laser (Femto Lasers, λc=800nm, ▵λ=160nm) and spectral filters in the source arm. For cone imaging, we used a bandpass filter with λc=809nm and ▵λ=81nm (2.6 μm nominal axial resolution in tissue, and 167 KHz A-line rate using 1,408 px), which reduced the impact of eye motion compared to previous AO-OCT implementations. Third, eye motion artifacts were further reduced by custom ImageJ plugins that registered (axially and laterally) the volume videos. In two subjects, cone photoreceptors were imaged and tracked over a ten day period and their reflectance and outer segment (OS) lengths measured. High-speed imaging and image registration/dewarping were found to reduce eye motion to a fraction of a cone width (1 μm root mean square). The pattern of reflections in the cones was found to change dramatically and occurred on a spatial scale well below the resolution of clinical instruments. Normalized reflectance of connecting cilia (CC) and OS posterior tip (PT) of an exemplary cone was 54+/-4, 47+/-4, 48+/-6, 50+/-5, 56+/-1% and 46+/-4, 53+/-4, 52+/-6, 50+/-5, 44

  15. Optical low-cost and portable arrangement for full field 3D displacement measurement using a single camera

    NASA Astrophysics Data System (ADS)

    López-Alba, E.; Felipe-Sesé, L.; Schmeer, S.; Díaz, F. A.

    2016-11-01

    In the current paper, an optical low-cost system for 3D displacement measurement based on a single camera and 3D digital image correlation is presented. The conventional 3D-DIC set-up based on a two-synchronized-cameras system is compared with a proposed pseudo-stereo portable system that employs a mirror system integrated in a device for a straightforward application achieving a novel handle and flexible device for its use in many scenarios. The proposed optical system splits the image by the camera into two stereo images of the object. In order to validate this new approach and quantify its uncertainty compared to traditional 3D-DIC systems, solid rigid in and out-of-plane displacements experiments have been performed and analyzed. The differences between both systems have been studied employing an image decomposition technique which performs a full image comparison. Therefore, results of all field of view are compared with those using a stereoscopy system and 3D-DIC, discussing the accurate results obtained with the proposed device not having influence any distortion or aberration produced by the mirrors. Finally, the adaptability of the proposed system and its accuracy has been tested performing quasi-static and dynamic experiments using a silicon specimen under high deformation. Results have been compared and validated with those obtained from a conventional stereoscopy system showing an excellent level of agreement.

  16. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  17. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  18. Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK

    NASA Astrophysics Data System (ADS)

    Nardon, E.; Fil, A.; Hoelzl, M.; Huijsmans, G.; contributors, JET

    2017-01-01

    3D non-linear MHD simulations of a D 2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n  =  2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q  =  3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q  =  3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.

  19. Optical characters of prostate using nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Wang, Yunxia; Peng, Dongqing

    2012-12-01

    The incidence rate of the prostatic hyperplasia is increasing in near decade, early detection is important for preventing the prostatic cancer (PCa). In this study, the images of prostate and cavernous nerves were carried out using intrinsic fluorescence and scattering properties of the tissues without any exogenous dye or contrast agent based on nonlinear optical microscope. The texture feature and optical property of the interfibrillar substance in prostate tissue were extracted and analyzed for charactering the prostate structure. It will be the feature parameter to differentiate the normal, the inflammation or cancer of prostate tissue in clinical with the application of miniature endoscope nonlinear optical microscope in vivo.

  20. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  1. Tunable nanowire nonlinear optical probe

    SciTech Connect

    Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

    2008-02-18

    One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

  2. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    PubMed Central

    Joo, Kyung-Il; Kim, Mugeon; Park, Min-Kyu; Park, Heewon; Kim, Byeonggon; Hahn, JoonKu; Kim, Hak-Rin

    2016-01-01

    We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters. PMID:27801812

  3. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    PubMed Central

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens. PMID:25185543

  4. A new optimization approach for the calibration of an ultrasound probe using a 3D optical localizer.

    PubMed

    Dardenne, G; Cano, J D Gil; Hamitouche, C; Stindel, E; Roux, C

    2007-01-01

    This paper describes a fast procedure for the calibration of an ultrasound (US) probe using a 3D optical localizer. This calibration step allows us to obtain the 3D position of any point located on the 2D ultrasonic (US) image. To carry out correctly this procedure, a phantom of known geometric properties is probed and these geometries are found in the US images. A segmentation step is applied in order to obtain automatically the needed information in the US images and then, an optimization approach is performed to find the optimal calibration parameters. A new optimization method to estimate the calibration parameters for an ultrasound (US) probe is developed.

  5. Nonlinear magneto-optic quantum microcavity

    NASA Astrophysics Data System (ADS)

    Frey, Robert; Andre, Regis; Flytzanis, Christos

    2002-05-01

    The study of the linear, nonlinear, and photo-induced behavior in a magneto-optic micro-cavity in the strong coupling regime is investigated using the reflectivity and magneto-optic Kerr rotation techniques. The photo-induced modifications of the strong coupling regime are traced to the light induced changes of the exciton transition by many body interactions and band filling effects. At a fluence of 1 (mu) J/cm-2 the saturation and blue shift of the quantum well exciton transition produce strong modifications of the lower polariton frequency which induce nonlinear magneto-optic Kerr rotations of 30 degrees at a magnetic field amplitude of 0.2 Tesla. With no applied magnetic field polarization rotations of more than 10 degrees are photo- induced by 1 (mu) J/cm-2 fluence circularly polarized pump pulses. Such a physical effect could be interesting for high contrast fast optical signal processing when room temperature operation becomes available.

  6. Ultraintense lasers: relativistic nonlinear optics and applications

    NASA Astrophysics Data System (ADS)

    Mourou, Gérard A.

    Traditional optics and nonlinear optics are related to laser-matter interaction with eV characteristic energy. Recent progresses in ultrahigh intensity makes it possible to drive electrons with relativistic energy opening up the field of relativistic nonlinear optics. In the last decade, lasers have undergone orders-of-magnitude jumps in peak power, with the invention of the technique of chirped pulse amplification (CPA) and the refinements of femtosecond techniques. Modern CPA lasers can produce intensities greater than 10 21 W/cm 2, one million times greater than previously possible. These ultraintense lasers give researchers a tool to produce unprecedented pressures (terabars), magnetic fields (gigagauss), temperatures (10 10 K), and accelerations (10 25 g) with applications in fusion energy, nuclear physics (fast ignition), high-energy physics, astrophysics, and cosmology. They promote the optics field from the eV to the GeV.

  7. FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model

    NASA Astrophysics Data System (ADS)

    Gayer, D.; O'Sullivan, C.; Scully, S.; Burke, D.; Brossard, J.; Chapron, C.

    2016-07-01

    The facility to realise the shape and extent of optical beams within a telescope or beamcombiner can aid greatly in the design and layout of optical elements within the system. It can also greatly facilitate communication between the optical design team and other teams working on the mechanical design of an instrument. Beyond the realm where raytracing is applicable however, it becomes much more difficult to realise accurate 3D beams which incorporate diffraction effects. It then is another issue to incorporate this into a CAD model of the system. A novel method is proposed which has been used to aid with the design of an optical beam combiner for the QUBIC (Q and U Bolometric Interferometer for Cosmology) 1 experiment operating at 150 GHz and 220 GHz. The method combines calculation work in GRASP 2, a commercial physical optics modelling tool from TICRA, geometrical work in Mathematica, and post processing in MATLAB. Finally, the Python console of the open source package FreeCAD3 is exploited to realise the 3D beams in a complete CAD system-model of the QUBIC optical beam combiner. This paper details and explains the work carried out to reach the goal and presents some graphics of the outcome. 3D representations of beams from some back-to-back input horns of the QUBIC instrument are shown within the CAD model. Beams of the -3dB and -13dB contour envelope are shown as well as envelopes enclosing 80% and 95% of the power of the beam. The ability to see these beams in situ with all the other elements of the combiner such as mirrors, cold stop, beam splitter and cryostat widows etc. greatly simplified the design for these elements and facilitated communication of element dimension and location between different subgroups within the QUBIC group.

  8. Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.

    2016-02-01

    This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.

  9. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-10-01

    STATEMENT Zb. O TRIUMI’ION COO 13. ABSTRACT (Max"imm 200 worm) They are in the process of completing two prapers and four patents involving optical...involvins four -photon mixing to probe electron dynamics in the Gunn effect regime in GaAeAs and HgCdTe superlattice, utilizing our two recently constructed...CA 92008 K _._.. .. ABSTRACT We are in the process of completing two papers and four patents involving optical absorptions in GaAs which has led to

  10. Nonlinear dynamics of the 3D FMS and Alfven wave beams propagating in plasma of ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily

    We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega>{k_{yz}}(2,) v_{x}$<3D Belashov-Karpman (BK) equation [1] for magnetic field h=B_{wave}/B with due account of the high order dispersive correction defined by values of plasma parameters and the angle Theta=(B,k) [2]. In another case the dynamics of the finite-amplitude Alfvén waves propagating in the ionosphere and magnetosphere near-to-parallel to the field B is described by the 3D derivative nonlinear Schrödinger (3-DNLS) equation for the magnetic field of the wave h=(B_{y}+iB_{z})/2B/1-beta/ [3]. To study the stability of multidimensional solitons in both cases we use the method developed in [2] and investigated the Hamiltonian bounding with its deformation conserving momentum by solving the corresponding variation problem. To study evolution of solitons and their collision dynamics the proper equations were being integrated numerically using the codes specially developed and described in detail in [3]. As a result, we have obtained that in both cases for a single solitons on a level with wave spreading and collapse the formation of multidimensional solitons can be observed. These results may be interpreted in terms of self-focusing phenomenon for the FMS and Alfvén waves’ beam as stationary beam formation, scattering and self-focusing of wave beam. The soliton collisions on a level with known elastic interaction can lead to formation of complex structures including the multisoliton bound states. For all cases the problem of multidimensional soliton dynamics in the ionospheric and

  11. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  12. Flying triangulation--an optical 3D sensor for the motion-robust acquisition of complex objects.

    PubMed

    Ettl, Svenja; Arold, Oliver; Yang, Zheng; Häusler, Gerd

    2012-01-10

    Three-dimensional (3D) shape acquisition is difficult if an all-around measurement of an object is desired or if a relative motion between object and sensor is unavoidable. An optical sensor principle is presented-we call it "flying triangulation"-that enables a motion-robust acquisition of 3D surface topography. It combines a simple handheld sensor with sophisticated registration algorithms. An easy acquisition of complex objects is possible-just by freely hand-guiding the sensor around the object. Real-time feedback of the sequential measurement results enables a comfortable handling for the user. No tracking is necessary. In contrast to most other eligible sensors, the presented sensor generates 3D data from each single camera image.

  13. Nonlinear Black Phosphorus for Ultrafast Optical Switching

    NASA Astrophysics Data System (ADS)

    Uddin, Siam; Debnath, Pulak C.; Park, Kichul; Song, Yong-Won

    2017-02-01

    The outstanding electronic and optical properties of black phosphorus (BP) in a two-dimensional (2D) but unique single-layer puckered structure have opened intense research interest ranging from fundamental physics to nanoscale applications covering the electronic and optical domains. The direct and controllable electronic bandgap facilitating wide range of tunable optical response coupled with high anisotropic in-plane properties made BP a promising nonlinear optical material for broadband optical applications. Here, we investigate ultrafast optical switching relying on the optical nonlinearity of BP. Wavelength conversion for modulated signals whose frequency reaches up to 20 GHz is realized by four-wave-mixing (FWM) with BP-deposited D-shaped fiber. In the successful demonstration of the FWM based wavelength conversion, performance parameter has been increased up to ~33% after employing BP in the device. It verifies that BP is able to perform efficient optical switching in the evanescent field interaction regime at very high speed. Our results might suggest that BP-based ultra-fast photonics devices could be potentially developed for broadband applications.

  14. Nonlinear Black Phosphorus for Ultrafast Optical Switching

    PubMed Central

    Uddin, Siam; Debnath, Pulak C.; Park, Kichul; Song, Yong-Won

    2017-01-01

    The outstanding electronic and optical properties of black phosphorus (BP) in a two-dimensional (2D) but unique single-layer puckered structure have opened intense research interest ranging from fundamental physics to nanoscale applications covering the electronic and optical domains. The direct and controllable electronic bandgap facilitating wide range of tunable optical response coupled with high anisotropic in-plane properties made BP a promising nonlinear optical material for broadband optical applications. Here, we investigate ultrafast optical switching relying on the optical nonlinearity of BP. Wavelength conversion for modulated signals whose frequency reaches up to 20 GHz is realized by four-wave-mixing (FWM) with BP-deposited D-shaped fiber. In the successful demonstration of the FWM based wavelength conversion, performance parameter has been increased up to ~33% after employing BP in the device. It verifies that BP is able to perform efficient optical switching in the evanescent field interaction regime at very high speed. Our results might suggest that BP-based ultra-fast photonics devices could be potentially developed for broadband applications. PMID:28240276

  15. Real-Time Nonlinear Optical Information Processing.

    DTIC Science & Technology

    1979-06-01

    operations aree presented. One approach realizes the halftone method of nonlinear optical processing in real time by replacing the conventional...photographic recording medium with a real-time image transducer. In the second approach halftoning is eliminated and the real-time device is used directly

  16. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-03-16

    aU internal audits for TACAN Corporation. 7 V. Coupling A, C. N. R. S., Physique du Solide et Energie Solaire We have an ongoing interaction with Dr...underway at TACAN Corporation. We regularly discuss optical pumping and four - wave parametric mixing in multiple quantum well material and plan to

  17. Localized Turing patterns in nonlinear optical cavities

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  18. 3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2016-04-01

    LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG

  19. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    PubMed Central

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-01-01

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is

  20. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Popov, A.

    2015-12-01

    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results

  1. 3D papillary image capturing by the stereo fundus camera system for clinical diagnosis on retina and optic nerve

    NASA Astrophysics Data System (ADS)

    Motta, Danilo A.; Serillo, André; de Matos, Luciana; Yasuoka, Fatima M. M.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2014-03-01

    Glaucoma is the second main cause of the blindness in the world and there is a tendency to increase this number due to the lifetime expectation raise of the population. Glaucoma is related to the eye conditions, which leads the damage to the optic nerve. This nerve carries visual information from eye to brain, then, if it has damage, it compromises the visual quality of the patient. In the majority cases the damage of the optic nerve is irreversible and it happens due to increase of intraocular pressure. One of main challenge for the diagnosis is to find out this disease, because any symptoms are not present in the initial stage. When is detected, it is already in the advanced stage. Currently the evaluation of the optic disc is made by sophisticated fundus camera, which is inaccessible for the majority of Brazilian population. The purpose of this project is to develop a specific fundus camera without fluorescein angiography and red-free system to accomplish 3D image of optic disc region. The innovation is the new simplified design of a stereo-optical system, in order to make capable the 3D image capture and in the same time quantitative measurements of excavation and topography of optic nerve; something the traditional fundus cameras do not do. The dedicated hardware and software is developed for this ophthalmic instrument, in order to permit quick capture and print of high resolution 3D image and videos of optic disc region (20° field-of-view) in the mydriatic and nonmydriatic mode.

  2. Optically nonlinear Bragg diffracting nanosecond optical switches

    NASA Astrophysics Data System (ADS)

    Pan, Guisheng

    We prepared low refractive index crystalline colloidal arrays (CCA) from highly charged fluorinated monodisperse spherical particles synthesized by emulsion polymerization of 1H,1H-heptafluorobutyl methacrylate. We have also covalently attached dyes to the fluorinated particles to prepare absorbing CCA. We photopolymerized these dyed CCA within a polyacrylamide matrix to form a polymerized crystalline colloidal array (PCCA). These semi-solid PCCA can withstand vibrations, ionic impurity addition and thermal shocks while maintaining the CCA ordering. The medium within the PCCA can easily be exchanged to exactly refractive index match the CCA. Thus, we were able to prepare a material where the real part of the refractive index was matched, while preserving a periodic modulation of the imaginary part of the refractive index. Under low light intensities the CCA is refractive index matched to the medium and does not diffract. However, high incident intensity illumination within the dye absorption band heats the particles within nsec to decrease their refractive index. This results in a mesoscopically periodic refractive index modulation with the periodicity of the CCA lattice. The array 'pops up' to diffract light within 2.5 nsec. These intelligent CCA hydrogels may have applications in optical limiting, optical computing and nsec fast optical switching devices, etc. We have also measured the polarization dependence of the Bragg diffraction efficiency of a CCA and compared the experimental results to that predicted by theory. The diffraction efficiency is maximized for σ polarization light at Bragg angle (θB) of 90o and minimized to zero for π polarized light at θB=45o. Our experimental diffraction and transmission results quantitatively agree with the predictions of Dynamical Diffraction Theory.

  3. Efficient 3D nonlinear warping of computed tomography: two high-performance implementations using OpenGL

    NASA Astrophysics Data System (ADS)

    Levin, David; Dey, Damini; Slomka, Piotr

    2005-04-01

    We have implemented two hardware accelerated Thin Plate Spline (TPS) warping algorithms. The first algorithm is a hardware-software approach (HW-TPS) that uses OpenGL Vertex Shaders to perform a grid warp. The second is a Graphics Processor based approach (GPU-TPS) that uses the OpenGL Shading Language to perform all warping calculations on the GPU. Comparison with a software TPS algorithm was used to gauge the speed and quality of both hardware algorithms. Quality was analyzed visually and using the Sum of Absolute Difference (SAD) similarity metric. Warping was performed using 92 user-defined displacement vectors for 512x512x173 serial lung CT studies, matching normal-breathing and deep-inspiration scans. On a Xeon 2.2 Ghz machine with an ATI Radeon 9800XT GPU the GPU-TPS required 26.1 seconds to perform a per-voxel warp compared to 148.2 seconds for the software algorithm. The HW-TPS needed 1.63 seconds to warp the same study while the GPU-TPS required 1.94 seconds and the software grid transform required 22.8 seconds. The SAD values calculated between the outputs of each algorithm and the target CT volume were 15.2%, 15.4% and 15.5% for the HW-TPS, GPU-TPS and both software algorithms respectively. The computing power of ubiquitous 3D graphics cards can be exploited in medical image processing to provide order of magnitude acceleration of nonlinear warping algorithms without sacrificing output quality.

  4. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels, as determined by AMOTIV microscopy.

    PubMed

    Blehm, Benjamin H; Devine, Alexus; Staunton, Jack R; Tanner, Kandice

    2016-03-01

    Variation in matrix elasticity has been shown to determine cell fate in both differentiation and development of malignant phenotype. The tissue microenvironment provides complex biochemical and biophysical signals in part due to the architectural heterogeneities found in extracellular matrices (ECMs). Three dimensional cell cultures can partially mimic in vivo tissue architecture, but to truly understand the role of viscoelasticity on cell fate, we must first determine in vivo tissue mechanical properties to improve in vitro models. We employed Active Microrheology by Optical Trapping InVivo (AMOTIV), using in situ calibration to measure in vivo zebrafish tissue mechanics. Previously used trap calibration methods overestimate complex moduli by ∼ 2-20 fold compared to AMOTIV. Applying differential microscale stresses and strains showed that hyaluronic acid (HA) gels display semi-flexible polymer behavior, while laminin-rich ECM hydrogels display flexible polymer behavior. In contrast, zebrafish tissues displayed different moduli at different stresses, with higher power law exponents at lower stresses, indicating that living tissue has greater stress dependence than the 3D hydrogels examined. To our knowledge, this work is the first vertebrate tissue rheological characterization performed in vivo. Our fundamental observations are important for the development and refinement of in vitro platforms.

  5. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1985-02-09

    proposed in Part F of our research proposal. Finally,* an experiment involving four -photon mixing to probe electron dynamics in the Gunn effect regime...Finally, an experiment involving four -photon mixing to probe electron dynamics in the Gunn effect regime in GaAIAs and HgCdTe superlattice, utilizing...a dielectric constant modulation which then gives rise to four -photon mixing. Our attempts are focused on observing a number of new optical effects

  6. Absorption Transparencies for Efficient Nonlinear Optical Generation

    NASA Astrophysics Data System (ADS)

    Hahn, Kenneth Kang-Hee

    The work presented in this thesis describes methods by which nonlinear optical generation of radiation can be enhanced with the use of absorption transparencies. Two experiments are discussed: (i) the use of a naturally occurring absorption transparency in zinc vapor for efficient generation of 104.8 nm radiation, and (ii) the creation of an induced transparency on a collisionally broadened resonance transition of lead, with which large enhancements in nonlinear optical processes may be possible. In both cases, the linear susceptibility is cancelled by a quantum interference. Since the nonlinear susceptibility does not cancel, large enhancements in nonlinear generation efficiency are possible. There is a naturally existing transparency in zinc, where two broad autoionizing levels are separated within a decay width. Because they decay predominantly to the same final continuum state, there is a sharp cancellation in both the absorption and the refractive index from the ground state. A correct choice of intermediate levels for the sum-frequency mixing process prevents a similar cancellation in the nonlinear susceptibility. We were able to generate 0.25 muJ per pulse of 104.8 nm radiation at 10 Hz using UV pump lasers with energies of about a mJ and pulse lengths of 5 ns. Unfortunately, such naturally existing transparencies are rare. However, electromagnetically induced transparencies can be created in a general manner and present the possibility of doing enhanced nonlinear optics in many systems. Especially of interest is the creation of induced transparencies on a resonance line at high densities, as such a transparency would be most useful for nonlinear optical applications. The effects of collisions need to be carefully considered, since collisional broadening is larger than lifetime broadening in such transitions. We create an induced transparency in the presence of collisions by using a strong field to couple the resonantly broadened state of lead to another

  7. NONLINEAR OPTICS: Nonlinear optical processes in planar waveguides and excitation of surface polaritons

    NASA Astrophysics Data System (ADS)

    Yashkir, O. V.; Yashkir, Yu N.

    1987-11-01

    An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.

  8. Monitoring adipose-derived stem cells within 3D carrier by combined dielectric spectroscopy and spectral domain optical coherence topography

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.

    2010-02-01

    Monitoring non-invasively the cellular events in three dimensional carriers is a major challenge for tissue engineering and regenerative medicine that prevents time-lapsed studies over large population of sample. The potential of optical coherence tomography has been demonstrated to assess tissue formation within porous matrices. In this study we explore the combination of dielectric spectroscopy (DS) and spectral domain optical coherence tomography (SDOCT) to quality assess ADSCs loaded in three dimensional carriers. A SDOCT (930nm, FWHM 90nm) was combined to an open ended coaxial probe connected to material analyser, and broadband measurements between 20MHz and 1GHz were synchronized with Labview. Both ADSCs maintained in undifferentiated state within 3D carrier and induced towards osteoblasts were monitored with this multimodality technique and their DS spectra were acquired at high cell concentration simultaneously to 3D imaging. This multimodality technique will be instrumental to assess non-invasively cell loaded carriers for cell therapy.

  9. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  10. Innovative simultaneous confocal full-field 3D surface profilometry for in situ automatic optical inspection (AOI)

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chang, Yi-Wei

    2010-06-01

    Rapid acquisition of surface 3D contour information using optical detection has attracted tremendous interest in the field of automatic optical inspection (AOI) and how to avoid or minimize environmental vibration or disturbance has become a critical issue in in situ inspection. Owing to its high longitudinal measurability and excellent vertical resolution, optical confocal microscopy has become extremely important for surface profilometry. This study presents a novel simultaneous confocal full-field 3D surface profilometer using structured fringe projection. The developed confocal optical system is capable of acquiring multiple images at various object depths to perform surface 3D reconstruction by a single image shot without the need for time-consuming vertical scanning. In this method, four conjugate image-sensing modules are configured at four different designated focusing positions, which are controlled by a specially designed beam-splitting optical module. A focal-depth response (FDR) curve can be established by fitting the four focus measurements obtained from these designated positions to achieve simultaneous confocal vertical scanning. In addition, using the principle of optical grating projection, a structured fringe pattern is generated for lateral scanning to enhance the spatial measurement resolution. To examine the performance of the developed system, an accurate step-height target and some industrial micro semiconductor components were measured. The results show that the depth measurement resolution can reach up to 0.1 µm and the maximum measurement error is within 1.5% of the overall range, indicating both accuracy and repeatability of the proposed confocal measurement approach.

  11. Nonlinear Optical Microscopy of Single Nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Libai; Cheng, Ji-Xin

    2013-07-01

    We review recent advances in nonlinear optical (NLO) microscopy studies of single nanostructures. NLO signals are intrinsically sensitive to the electronic, vibrational, and structural properties of such nanostructures. Ultrafast excitation allows for mapping of energy relaxation pathways at the single-particle level. The strong nonlinear response of nanostructures makes them highly attractive for applications as novel NLO imaging agents in biological and biomedical research. NLO modalities based on harmonic generation, multiphoton photoluminescence, four-wave mixing, and pump-probe processes are discussed in detail.

  12. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    SciTech Connect

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-03-21

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ{sub eff}{sup (2)} ∼ 0.6 pm V{sup −1}) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired.

  13. Towards a Noninvasive Intracranial Tumor Irradiation Using 3D Optical Imaging and Multimodal Data Registration

    PubMed Central

    Posada, R.; Daul, Ch.; Wolf, D.; Aletti, P.

    2007-01-01

    Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method representing a first step towards the combination of CRT and FRT. The 3D data used for the positioning is point clouds spread over the patient's head (CT-data usually acquired during treatment) and points distributed over the patient's face which are acquired with a structured light sensor fixed in the therapy room. The geometrical transformation linking the coordinate systems of the diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes. PMID:18364992

  14. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  15. Rigorous theory of molecular orientational nonlinear optics

    SciTech Connect

    Kwak, Chong Hoon Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  16. Rigorous theory of molecular orientational nonlinear optics

    NASA Astrophysics Data System (ADS)

    Kwak, Chong Hoon; Kim, Gun Yeup

    2015-01-01

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  17. Extreme nonlinear optics and laser damage

    NASA Astrophysics Data System (ADS)

    Maldutis, Evaldas

    2010-11-01

    The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.

  18. Deep Learning Segmentation of Optical Microscopy Images Improves 3D Neuron Reconstruction.

    PubMed

    Li, Rongjian; Zeng, Tao; Peng, Hanchuan; Ji, Shuiwang

    2017-03-08

    Digital reconstruction, or tracing, of 3-dimensional (3D) neuron structure from microscopy images is a critical step toward reversing engineering the wiring and anatomy of a brain. Despite a number of prior attempts, this task remains very challenging, especially when images are contaminated by noises or have discontinued segments of neurite patterns. An approach for addressing such problems is to identify the locations of neuronal voxels using image segmentation methods prior to applying tracing or reconstruction techniques. This preprocessing step is expected to remove noises in the data, thereby leading to improved reconstruction results. In this work, we proposed to use 3D Convolutional neural networks (CNNs) for segmenting the neuronal microscopy images. Specifically, we designed a novel CNN architecture that takes volumetric images as the inputs and their voxel-wise segmentation maps as the outputs. The developed architecture allows us to train and predict using large microscopy images in an end-to-end manner. We evaluated the performance of our model on a variety of challenging 3D microscopy images from different organisms. Results showed that the proposed methods improved the tracing performance significantly when combined with different reconstruction algorithms.

  19. Writing of 3D optical integrated circuits with ultrashort laser pulses in the presence of strong spherical aberration

    NASA Astrophysics Data System (ADS)

    Bukharin, M. A.; Skryabin, N. N.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    A novel technique was proposed for 3D femtosecond writing of waveguides and optical integrated circuits in the presence of strong spherical aberration, caused by inscription at significantly different depth under the surface of optical glasses and crystals. Strong negative effect of spherical aberration and related asymmetry of created structures was reduced due to transition to the cumulative thermal regime of femtosecond interaction with the material. The differences in the influence of spherical aberration effect in a broad depth range (larger than 200 µm) was compensated by dynamic adjustment of laser pulse energy during the process of waveguides recording. The presented approach has been experimentally implemented in fused silica. Obtained results can be used in production of a broad class of femtosecond written three-dimensional integrated optical systems, inscripted at non-optimal (for focusing lens) optical depth or in significantly extended range of depths.

  20. Fabrication 3D buried channel optical waveguide modulators on field-driven ion exchange process

    NASA Astrophysics Data System (ADS)

    Zhou, Zigang; Chen, Wenqiang; Zhu, Li; Li, Jing; Luo, Xiaoying

    2010-10-01

    A high electric field technique was developed to fabricate buried optical waveguide modulator on K9 optical glass. The 80V voltage was applied on the glass to accelerate the field-driven ion exchange process by expeditiously replacing host sodium ions in the glass with silver ions. As a result, the optical loss for optical waveguide modulator was measured using the edge coupling technique with a 0.6328μm He-Ne laser. Loss of 0.20 dB/cm was obtained for channel waveguides of 25μm in depth, relatively low for waveguides of such depth at red wavelength.

  1. Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-gao; Lu, Danyu; Chen, Tianyuan; Wang, Chengming; Tian, Ning; Zhao, Fengying; Huo, Tiancheng; Zhang, Ning; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2012-07-01

    Early patterning and polarity is of fundamental interest in preimplantation embryonic development. Label-free subcellular 3D live imaging is very helpful to its related studies. We have developed a novel system of full-field optical coherence tomography (FF-OCT) for noninvasive 3D subcellular live imaging of preimplantation mouse embryos with no need of dye labeling. 3D digitized embryos can be obtained by image processing. Label-free 3D live imaging is demonstrated for the mouse embryos at various typical preimplantation stages with a spatial resolution of 0.7 μm and imaging rate of 24 fps. Factors that relate to early patterning and polarity, such as pronuclei in zygote, shapes of zona pellucida, location of second polar body, cleavage planes, and the blastocyst axis, can be quantitatively measured. The angle between the two second cleavage planes is accurately measured to be 87 deg. It is shown that FF-OCT provides a potential breakthrough for early patterning, polarity formation, and many other preimplantation-related studies in mammalian developmental biology.

  2. Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy

    PubMed Central

    Mulligan, Jeffrey A.; Bordeleau, François; Reinhart-King, Cynthia A.; Adie, Steven G.

    2017-01-01

    Traction force microscopy (TFM) is a method used to study the forces exerted by cells as they sense and interact with their environment. Cell forces play a role in processes that take place over a wide range of spatiotemporal scales, and so it is desirable that TFM makes use of imaging modalities that can effectively capture the dynamics associated with these processes. To date, confocal microscopy has been the imaging modality of choice to perform TFM in 3D settings, although multiple factors limit its spatiotemporal coverage. We propose traction force optical coherence microscopy (TF-OCM) as a novel technique that may offer enhanced spatial coverage and temporal sampling compared to current methods used for volumetric TFM studies. Reconstructed volumetric OCM data sets were used to compute time-lapse extracellular matrix deformations resulting from cell forces in 3D culture. These matrix deformations revealed clear differences that can be attributed to the dynamic forces exerted by normal versus contractility-inhibited NIH-3T3 fibroblasts embedded within 3D Matrigel matrices. Our results are the first step toward the realization of 3D TF-OCM, and they highlight the potential use of OCM as a platform for advancing cell mechanics research. PMID:28271010

  3. Time-reversed wave mixing in nonlinear optics.

    PubMed

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-11-19

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.

  4. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  5. Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy

    PubMed Central

    Min, Wei; Freudiger, Christian W.; Lu, Sijia; Xie, X. Sunney

    2012-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy, including stimulated Raman scattering and two photon absorption, and pump-probe microscopy, including stimulated emission, excited state absorption and ground state depletion, provide distinct and powerful image contrasts for non-fluorescent species. Thanks to high-frequency modulation transfer scheme, they exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles, excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques. PMID:21453061

  6. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  7. Numerical Simulation of Two-grid Ion Optics Using a 3D Code

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Katz, Ira; Goebel, Dan

    2004-01-01

    A three-dimensional ion optics code has been developed under NASA's Project Prometheus to model two grid ion optics systems. The code computes the flow of positive ions from the discharge chamber through the ion optics and into the beam downstream of the thruster. The rate at which beam ions interact with background neutral gas to form charge exchange ions is also computed. Charge exchange ion trajectories are computed to determine where they strike the ion optics grid surfaces and to determine the extent of sputter erosion they cause. The code has been used to compute predictions of the erosion pattern and wear rate on the NSTAR ion optics system; the code predicts the shape of the eroded pattern but overestimates the initial wear rate by about 50%. An example of use of the code to estimate the NEXIS thruster accelerator grid life is also presented.

  8. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  9. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  10. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  11. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  12. Nonlinear Real-Time Optical Signal Processing.

    DTIC Science & Technology

    1984-10-01

    DTIC ELECTE I B IIMAGE PROCESSING INSTITUTE 84 11 26 107 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered), REPORT DOCUMENTATION...30, 1984 N NONLINEAR REAL-TIME OPTICAL SIGNAL PROCESSING i E~ A.A. Sawchuk, Principal Investigator T.C. Strand and A.R. Tanguay. Jr. October 1, 1984...RDepartment of Electrical Engineering Image Processing institute University of Southern California University Park-MC 0272 Los Angeles, California

  13. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  14. Evaluating cell matrix mechanics using an integrated nonlinear optical tweezer-confocal imaging system

    NASA Astrophysics Data System (ADS)

    Peng, Berney; Alonzo, Carlo A. C.; Xia, Lawrence; Speroni, Lucia; Georgakoudi, Irene; Soto, Ana M.; Sonnenschein, Carlos; Cronin-Golomb, Mark

    2013-09-01

    Biomechanics plays a central role in breast epithelial morphogenesis. In this study we have used 3D cultures in which normal breast epithelial cells are able to organize into rounded acini and tubular ducts, the main structures found in the breast tissue. We have identified fiber organization as a main determinant of ductal organization. While bulk rheological properties of the matrix seem to play a negligible role in determining the proportion of acini versus ducts, local changes may be pivotal in shape determination. As such, the ability to make microscale rheology measurements coupled with simultaneous optical imaging in 3D cultures can be critical to assess the biomechanical factors underlying epithelial morphogenesis. This paper describes the inclusion of optical tweezers based microrheology in a microscope that had been designed for nonlinear optical imaging of collagen networks in ECM. We propose two microrheology methods and show preliminary results using a gelatin hydrogel and collagen/Matrigel 3D cultures containing mammary gland epithelial cells.

  15. Nonlinear optical polymers for electro-optic signal processing

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.

    1991-01-01

    Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.

  16. Nonlinear inversion schemes for fluorescence optical tomography.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann

    2010-11-01

    Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.

  17. 3D optical two-mirror scanner with focus-tunable lens.

    PubMed

    Pokorny, Petr; Miks, Antonin

    2015-08-01

    The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in the desired point in a detection plane are derived. The uncertainty description of such focal length follows as well. The chosen vector approach is general; therefore, the application of formulas in various configurations of the optical systems is possible. In the example situation, the authors derived formulas for mirrors' rotations and the focal length depending on the position of the point in the detection plane.

  18. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  19. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  20. Innovative 3D Visualization of Electro-optic Data for MCM

    DTIC Science & Technology

    2001-09-30

    The long-term goal is to develop innovative methods for transforming data taken by electro - optic and acoustic MCM sensors into graphical representations better suited to human interpretation, specifically to aid mine classification.

  1. Treating benign optic nerve tumors with a 3-D conformal plan

    SciTech Connect

    Millunchick, Cheryl Hope

    2013-07-01

    A 68 year old male patient presented for radiation therapy for treatment of a benign tumor, a glioma of his left optic nerve. The radiation oncologist intended to prescribe 52.2 Gy to the planning target volume, while maintaining a maximum of 54 Gy to the optic nerves and the optic chiasm and a maximum of 40–45 Gy to the globes in order to minimize the possibility of damaging the optic system, which is especially important as this is a benign tumor. The dosimetrist devised a conformal non-coplanar three-dimensional plan with a slightly weighted forward planning component. This plan was created in approximately 15 minutes after the critical organs and the targets were delineated and resulted in an extremely conformal and homogenous plan, treating the target while sparing the nearby critical structures. This approach can also be extended to other tumors in the brain - benign or malignant.

  2. Full-color holographic 3D imaging system using color optical scanning holography

    NASA Astrophysics Data System (ADS)

    Kim, Hayan; Kim, You Seok; Kim, Taegeun

    2016-06-01

    We propose a full-color holographic three-dimensional imaging system that composes a recording stage, a transmission and processing stage and reconstruction stage. In recording stage, color optical scanning holography (OSH) records the complex RGB holograms of an object. In transmission and processing stage, the recorded complex RGB holograms are transmitted to the reconstruction stage after conversion to off-axis RGB holograms. In reconstruction stage, the off-axis RGB holograms are reconstructed optically.

  3. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  4. Operational Retrieval of aerosol optical depth over Indian subcontinent and Indian Ocean using INSAT-3D/Imager product validation

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Rastogi, G.; Chauhan, P.

    2014-11-01

    Aerosol optical depth (AOD) over Indian subcontinent and Indian Ocean region is derived operationally for the first time from the geostationary earth orbit (GEO) satellite INSAT-3D Imager data at 0.65 μm wavelength. Single visible channel algorithm based on clear sky composites gives larger retrieval error in AOD than other multiple channel algorithms due to errors in estimating surface reflectance and atmospheric property. However, since MIR channel signal is insensitive to the presence of most aerosols, therefore in present study, AOD retrieval algorithm employs both visible (centred at 0.65 μm) and mid-infrared (MIR) band (centred at 3.9 μm) measurements, and allows us to monitor transport of aerosols at higher temporal resolution. Comparisons made between INSAT-3D derived AOD (τI) and MODIS derived AOD (τM) co-located in space (at 1° resolution) and time during January, February and March (JFM) 2014 encompasses 1165, 1052 and 900 pixels, respectively. Good agreement found between τI and τM during JFM 2014 with linear correlation coefficients (R) of 0.87, 0.81 and 0.76, respectively. The extensive validation made during JFM 2014 encompasses 215 co-located AOD in space and time derived by INSAT 3D (τI) and 10 sun-photometers (τA) that includes 9 AERONET (Aerosol Robotic Network) and 1 handheld sun-photometer site. INSAT-3D derived AOD i.e. τI, is found within the retrieval errors of τI = ±0.07 ±0.15τA with linear correlation coefficient (R) of 0.90 and root mean square error equal (RMSE) to 0.06. Present work shows that INSAT-3D aerosol products can be used quantitatively in many applications with caution for possible residual clouds, snow/ice, and water contamination.

  5. New optical four-quadrant phase detector integrated into a photogate array for small and precise 3D cameras

    NASA Astrophysics Data System (ADS)

    Schwarte, Rudolf; Xu, Zhanping; Heinol, Horst-Guenther; Olk, Joachim; Buxbaum, Bernd

    1997-03-01

    The photonic mixer device (PMD) is a new electro-optical mixing semiconductor device. Integrated into a line or an array it may contribute a significant improvement in developing an extremely fast, flexible, robust and low cost 3D-solid-state camera. Three dimensional (3D)-cameras are of dramatically increasing interest in industrial automation, especially for production integrated quality control, in- house navigation, etc. The type of 3D-camera here under consideration is based on the principle of time-of-flight respectively phase delay of surface reflected echoes of rf- modulated light. In contrast to 3D-laser radars there is no scanner required since the whole 3D-scene is illuminated simultaneously using intensity-modulated incoherent light, e.g. in the 10 to 1000 MHz range. The rf-modulated light reflected from the 3D-scene represents the total depth information within the local delay of the back scattered phase front. If this incoming wave front is again rf- modulated by a 2D-mixer within the whole receiving aperture we get a quasi-stationary rf-inference pattern respectively rf-interferogram which may be captured by means of a conventional CCD-camera. This procedure is called rf- modulation interferometry (RFMI). Corresponding to first simulative results the new PMD-array will be appropriate to the RFMI-procedure. Though looking like a modified CCD-array or CMOS-photodetector array it will be able to perform both, the pixelwise mixing process for phase delay respectively depth evaluation and the pixelwise light intensity acquisition for gray level or color evaluation. Further advantageous properties are achieved by means of a four- quadrant (4Q)-PMD array which operates as a balanced inphase/quadrature phase (I/Q)-mixer and will be able to capture the total 3D-scene information of several 100,000 voxels within the microsecond(s) - to ms-range.

  6. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    PubMed Central

    Sakhalkar, H. S.; Oldham, M.

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ~5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 μm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS™-scanner for the same PRESAGE™ dosimeters. The OCTOPUS™ scanner was considered the “gold standard” technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS™-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  7. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    SciTech Connect

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of

  8. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  9. QUASI-OPTICAL 3-dB HYBRID FOR FUTURE HIGH-ENERGY ACCELERATORS

    SciTech Connect

    Jay L. Hirshfield

    2005-12-15

    Phase-controlled wave combiners-commutators and isolators for protecting rf sources against reflection from the accelerating structure can be built using a 3-dB hybrid built around a metallic grating used in a ''magic-Y'' configuration. Models of the magic-Y were designed and tested, both at 34.272 GHz using the Omega-P Ka-band magnicon, and at 11.424 GHz using the Omega-P/NRL X-band magnicon. All elements of the magic-Y were optimized analytically and numerically. A non-vacuum 34 GHz model of the magic Y was built and tested experimentally at a low power. An engineering design for the high power (vacuum) compressor was configured. Similar steps were taken for the 11-GHz version.

  10. Optical 3D Nano-fabrication: Drawing or Growing? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kawata, Satoshi

    2016-05-01

    Conventional nanotechnology based on the lithography and scanning probe microscopy is limited to 2D fabrication and modification. Here, I will talk about the method for 3D laser fabrication with two-photon polymerization [1], two-photon isomerization [2], and two-photon photo-reduction [3]. Self-growth technology, such as self-grown fiber structures of polymer [4] and self-grown metallic fractal metamaterials structures [5] will be also discussed. [1] S. Kawata, et. al, Nature 412, 697-698, 2001. [2] S. Kawata and Y. Kawata, Chem Rev. 88, 083110, 2006. [3] Y. -Y. Cao, et. al., Small 5, 1144-1148, 2009 [4] S. Shoji and S. Kawata, Appl. Phys. Lett. 75, 737-739, 1999. [5] N. Takeyasu, N. Nishimura, S. Kawata, submitted.

  11. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

    PubMed Central

    Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.

    2014-01-01

    In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999

  12. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  13. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  14. Application of optical 3D measurement on thin film buckling to estimate interfacial toughness

    NASA Astrophysics Data System (ADS)

    Jia, H. K.; Wang, S. B.; Li, L. A.; Wang, Z. Y.; Goudeau, P.

    2014-03-01

    The shape-from-focus (SFF) method has been widely studied as a passive depth recovery and 3D reconstruction method for digital images. An important step in SFF is the calculation of the focus level for different points in an image by using a focus measure. In this work, an image entropy-based focus measure is introduced into the SFF method to measure the 3D buckling morphology of an aluminum film on a polymethylmethacrylate (PMMA) substrate at a micro scale. Spontaneous film wrinkles and telephone-cord wrinkles are investigated after the deposition of a 300 nm thick aluminum film onto the PMMA substrate. Spontaneous buckling is driven by the highly compressive stress generated in the Al film during the deposition process. The interfacial toughness between metal films and substrates is an important parameter for the reliability of the film/substrate system. The height profiles of different sections across the telephone-cord wrinkle can be considered a straight-sided model with uniform width and height or a pinned circular model that has a delamination region characterized by a sequence of connected sectors. Furthermore, the telephone-cord geometry of the thin film can be used to calculate interfacial toughness. The instability of the finite element model is introduced to fit the buckling morphology obtained by SFF. The interfacial toughness is determined to be 0.203 J/m2 at a 70.4° phase angle from the straight-sided model and 0.105 J/m2 at 76.9° from the pinned circular model.

  15. Scanning laser optical computed tomography system for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  16. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  17. Linear and nonlinear optical properties of a rotaxane molecule

    NASA Astrophysics Data System (ADS)

    Rau, Ilena; Czaplicki, Robert; Humeau, Adeline; Luc, Jerome; Sahraoui, Bouchta; Boudebs, Georges; Kajzar, François; Leigh, David A.; Berna-Canovas, Jose

    2006-09-01

    In this paper the recent results of our studies of linear and nonlinear optical properties of a selected rotaxane are presented and discussed. The studied rotaxane can be processed into good optical quality thin films by vacuum evaporation. The linear optical properties of rotaxane solutions were studied by the UV-VIS spectroscopy and the nonlinear optical properties by the picosecond degenerate four wave mixing and Z-scan methods. The results show important rotational contribution to the nonlinear index of refraction.

  18. Characterization of 3D MEMS structural dynamics with a conformal multi-channel fiber optic heterodyne vibrometer

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James; Apostol, Adela; Markov, Vladimir

    Insight into transient structural interactions, including coupled vibrations and modal non-degeneracy (mode splitting) is important to the development of current and next generation vibratory gyroscopes and MEMS resonators. Device optimization based on characterization of these effects is currently time consuming and limited by the requirement to perform spatially distributed measurements with existing single point sensors. In addition, the effects of interest and the diagnosis of their underlying causes and dependences are not readily revealed by traditional modal and finite element analyses. This paper, accordingly, discusses the design of a novel multi-channel fiber-optic heterodyne vibrometer which addresses this requirement directly. We describe a fiber-optic interferometer design which incorporates many standard fiber-optic telecommunications components, configured to support dynamic imaging of the real-time structural behavior of macro and micro vibratory resonators, including planar and 3D micro electromechanical systems (MEMS). The capabilities of the new sensor are illustrated by representative data obtained from a variety of 3D vibratory MEMS structures currently under development.

  19. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    PubMed

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  20. 3D-integrated optics component for astronomical spectro-interferometry.

    PubMed

    Saviauk, Allar; Minardi, Stefano; Dreisow, Felix; Nolte, Stefan; Pertsch, Thomas

    2013-07-01

    We present the experimental characterization of a spectro-interferometry setup based on a laser-written three-dimensional integrated optics component. By exploiting the interferometric capability of a two-dimensional array of evanescently coupled waveguides, we measure the mutual coherence properties of three different polychromatic optical fields. Direct application of our discrete beam combiner (DBC) component is astronomical interferometry. The DBC can be scaled up to combine arbitrary large number of telescopes for the determination of coherence properties of astronomical targets. Besides applications to astronomy, the DBC can be also applied to optical integrated metrology system requiring nanometric position monitoring. The working principle, the experimental setup used, and the broadband performance of the DBC are presented.

  1. Optically clearing tissue as an initial step for 3D imaging of core biopsies to diagnose pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Das, Ronnie; Agrawal, Aishwarya; Upton, Melissa P.; Seibel, Eric J.

    2014-02-01

    The pancreas is a deeply seated organ requiring endoscopically, or radiologically guided biopsies for tissue diagnosis. Current approaches include either fine needle aspiration biopsy (FNA) for cytologic evaluation, or core needle biopsies (CBs), which comprise of tissue cores (L = 1-2 cm, D = 0.4-2.0 mm) for examination by brightfield microscopy. Between procurement and visualization, biospecimens must be processed, sectioned and mounted on glass slides for 2D visualization. Optical information about the native tissue state can be lost with each procedural step and a pathologist cannot appreciate 3D organization from 2D observations of tissue sections 1-8 μm in thickness. Therefore, how might histological disease assessment improve if entire, intact CBs could be imaged in both brightfield and 3D? CBs are mechanically delicate; therefore, a simple device was made to cut intact, simulated CBs (L = 1-2 cm, D = 0.2-0.8 mm) from porcine pancreas. After CBs were laid flat in a chamber, z-stack images at 20x and 40x were acquired through the sample with and without the application of an optical clearing agent (FocusClear®). Intensity of transmitted light increased by 5-15x and islet structures unique to pancreas were clearly visualized 250-300 μm beneath the tissue surface. CBs were then placed in index matching square capillary tubes filled with FocusClear® and a standard optical clearing agent. Brightfield z-stack images were then acquired to present 3D visualization of the CB to the pathologist.

  2. Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.

    PubMed

    Pattanayak, D; Yodh, A

    1999-04-12

    A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based the on angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.

  3. Editorial: 3DIM-DS 2015: Optical image processing in the context of 3D imaging, metrology, and data security

    NASA Astrophysics Data System (ADS)

    Alfalou, Ayman

    2017-02-01

    Following the first International Symposium on 3D Imaging, Metrology, and Data Security (3DIM-DS) held in Shenzhen during september 2015, this special issue gathers a series of articles dealing with the main topics discussed during this symposium. These topics highlighted the importance of studying complex data treatment systems and intensive calculations designed for high dimensional imaging and metrology for which high image quality and high transmission speed become critical issues in a number of technological applications. A second purpose was to celebrate the International Year of Light by emphasizing the important role of optics in actual information processing systems.

  4. Nonlinear and quantum optics near nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhayal, Suman

    We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study

  5. Optical nonlinearities in carbon black particles

    NASA Astrophysics Data System (ADS)

    Mansour, Kamjou; Van Stryland, Eric W.; Soileau, M. J.

    1990-10-01

    We have characterized the nonlinear optical properties of carbon black particles in liquids and layers deposited on glass. We find that the limiting is dependent on the energy density (fluence) and that the material changes from a linear absorber to a nonlinear scatterer for fluence levels 0.2 J/cm2 and 0.38 J/cm2 for 0.532 jim, 14 ns and 1.064 pm, 20 ns laser pulses respectively. In this paper, we will discuss the possible mechanisms that have been proposed to explain the nonlinear scattering. These mechanisms are plasma formation, micro-bubble formation and change in index of refraction of the liquid surrounding the particles. We will show through a series of experiments that plasma formation is consistent with all of the experimental results while bubble formation may influence the limiting behavior at fluence levels substantially above the limiting threshold. In this model, the microscopic carbon particles are heated by linear absorption to a temperature at which a plasma can be created by the optical field. These microplasmas rapidly expand, thus scattering the incident light and limiting the transmittance.

  6. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells.

    PubMed

    Hands, Philip J W; Tatarkova, Svetlana A; Kirby, Andrew K; Love, Gordon D

    2006-05-15

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 mum and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 mum. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  7. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells

    NASA Astrophysics Data System (ADS)

    Hands, Philip J. W.; Tatarkova, Svetlana A.; Kirby, Andrew K.; Love, Gordon D.

    2006-05-01

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  8. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  9. Optical measurement of the dynamic strain field of a fan blade using a 3D scanning vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, C.; Vanlanduit, S.; Presezniak, F.; Steenackers, G.; Guillaume, P.

    2011-07-01

    Understanding the origin of the stress and strain distribution is crucial to increase the durability of components under dynamic loading. Numerical simulations based on finite element (FE) models help with this understanding but must be validated by real measured data. Updating the FE model using the measured data is often the next step in the design process. In this paper the recently developed 3D-scanning laser doppler vibrometer (3D-SLDV) is used to measure the 3D-displacement of a fan blade, which is then used to calculate the dynamic strain distributions. The measurement principle and experimental setup are discussed thoroughly. The experimental results are validated by using a FE model on the one hand and strain gage measurements on the other. It is shown that this technique is capable of measuring normal strain far below 1 microstrain. This technique has the potential to fill in the gap of accurately measuring small (full-field) normal and shear strains at both low and high frequencies, where other optical techniques (and strain gages) would certainly fail.

  10. Modular optical topometric sensor for 3D acquisition of human body surfaces and long-term monitoring of variations.

    PubMed

    Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter

    2007-08-01

    Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.

  11. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hsieh, Mei-Li; Bur, James A.; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-01

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on (\\hslash ω /{k}bT) than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation.

  12. Non-linear dynamic analyses of 3D masonry structures by means of a homogenized rigid body and spring model (HRBSM)

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Casolo, Siro

    2016-12-01

    A simple homogenized rigid body and spring model (HRBSM) is presented and applied for the non-linear dynamic analysis of 3D masonry structures. The approach, previously developed by the authors for the modeling of in-plane loaded walls is herein extended to real 3D buildings subjected to in- and out-of-plane deformation modes. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. All the simulations here presented are performed using the commercial software Abaqus. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  13. Depth-resolved 3D visualization of coronary microvasculature with optical microangiography

    NASA Astrophysics Data System (ADS)

    Qin, Wan; Roberts, Meredith A.; Qi, Xiaoli; Murry, Charles E.; Zheng, Ying; Wang, Ruikang K.

    2016-11-01

    In this study, we propose a novel implementation of optical coherence tomography-based angiography combined with ex vivo perfusion of fixed hearts to visualize coronary microvascular structure and function. The extracorporeal perfusion of Intralipid solution allows depth-resolved angiographic imaging, control of perfusion pressure, and high-resolution optical microangiography. The imaging technique offers new opportunities for microcirculation research in the heart, which has been challenging due to motion artifacts and the lack of independent control of pressure and flow. With the ability to precisely quantify structural and functional features, this imaging platform has broad potential for the study of the pathophysiology of microvasculature in the heart as well as other organs.

  14. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    PubMed

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  15. High speed 3D endoscopic optical frequency domain imaging probe for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-06-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm. We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  16. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.

    PubMed

    Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung

    2015-12-14

    We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues.

  17. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  18. Omnidirectional 3D nanoplasmonic optical antenna array via soft-matter transformation.

    PubMed

    Ross, Benjamin M; Wu, Liz Y; Lee, Luke P

    2011-07-13

    Inspired by the natural processes during morphogenesis, we demonstrate the transformation capability of active soft-matter to define nanoscale metal-on-polymer architectures below the resolution limit of conventional lithography. Specifically, using active polymers, we fabricate and characterize ultradense nanoplasmonic antenna arrays with sub-10 nm tip-to-tip nanogaps. In addition, the macroscale morphology can be independently manipulated into arbitrary three-dimensional geometries, demonstrated with the fabrication of an omnidirectional nanoplasmonic optical antenna array.

  19. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  20. Nonlinear dynamics of 3D beams of fast magnetosonic waves propagating in the ionospheric and magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Belashov, V. Yu.; Belashova, E. S.

    2016-11-01

    On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B / B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4 πnT/ B 2 ≪ 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = ( B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.

  1. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  2. Compact 3D lidar based on optically coupled horizontal and vertical scanning mechanism for the autonomous navigation of robots

    NASA Astrophysics Data System (ADS)

    Lee, Min-Gu; Baeg, Seung-Ho; Lee, Ki-Min; Lee, Hae-Seok; Baeg, Moon-Hong; Park, Jong-Ok; Kim, Hong-Ki

    2011-06-01

    The purpose of this research is to develop a new 3D LIDAR sensor, named KIDAR-B25, for measuring 3D image information with high range accuracy, high speed and compact size. To measure a distance to the target object, we developed a range measurement unit, which is implemented by the direct Time-Of-Flight (TOF) method using TDC chip, a pulsed laser transmitter as an illumination source (pulse width: 10 ns, wavelength: 905 nm, repetition rate: 30kHz, peak power: 20W), and an Si APD receiver, which has high sensitivity and wide bandwidth. Also, we devised a horizontal and vertical scanning mechanism, climbing in a spiral and coupled with the laser optical path. Besides, control electronics such as the motor controller, the signal processing unit, the power distributor and so on, are developed and integrated in a compact assembly. The key point of the 3D LIDAR design proposed in this paper is to use the compact scanning mechanism, which is coupled with optical module horizontally and vertically. This KIDAR-B25 has the same beam propagation axis for emitting pulse laser and receiving reflected one with no optical interference each other. The scanning performance of the KIDAR-B25 has proven with the stable operation up to 20Hz (vertical), 40Hz (horizontal) and the time is about 1.7s to reach the maximum speed. The range of vertical plane can be available up to +/-10 degree FOV (Field Of View) with a 0.25 degree angular resolution. The whole horizontal plane (360 degree) can be also available with 0.125 degree angular resolution. Since the KIDAR-B25 sensor has been planned and developed to be used in mobile robots for navigation, we conducted an outdoor test for evaluating its performance. The experimental results show that the captured 3D imaging data can be usefully applicable to the navigation of the robot for detecting and avoiding the moving objects with real time.

  3. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.

    PubMed

    Podoleanu, Adrian Gh; Bradu, Adrian

    2013-08-12

    Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

  4. Nonlinear harmonic generation in distributed optical klystrons

    SciTech Connect

    H.P. Freund; George R. Neil

    2001-12-01

    A distributed optical klystron has the potential for dramatically shortening the total interaction length in high-gain free-electron lasers (INP 77-59, Novosibirsk, 1977; Nucl. Instr. and Meth A 304 (1991) 463) in comparison to a single-wiggler-segment configuration. This shortening can be even more dramatic if a nonlinear harmonic generation mechanism is used to reach the desired wavelength. An example operating at a 4.5{angstrom} fundamental and a 1.5{angstrom} harmonic is discussed.

  5. Some aspects of the comparison between optics and nonlinear acoustics

    NASA Technical Reports Server (NTRS)

    Perrin, B.

    1980-01-01

    Some results concerning nonlinear acoustics deduced from a comparison of nonlinear processes in optics and acoustics are discussed. An aspect of nonlinearity in acoustics connected with the dimensionality of the medium of propagation is emphasized and illustrated by the proof of static instability of an ideal linear solid. In addition a phenomenon, which can be called acoustical rectification by analogy with nonlinear optics, is propounded to measure the third order elastic constants. Its experimental consequences are predicted in a particular case.

  6. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    PubMed

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  7. Intensity distribution angular shaping - Practical approach for 3D optical beamforming

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Traczyk, Maciej; Zygmunt, Marek; Mierczyk, Zygmunt; Knysak, Piotr; Drozd, Tadeusz

    2014-12-01

    We present approach of optical design which enables to obtain aspheric lens shape optimized for providing the specific light power density distribution in space. Proposed method is based on the evaluation of corresponding angular intensity distribution which can be obtained by the decomposition of the desired spatial distribution into virtual light cones set and collapsing it to the equivalent angular fingerprint. Rigorous formulas have been derived to relate refractive aspheric shape and the corresponding intensity distribution which is used for lens optimization. Algorithms of modeling and optimization were implemented in Matlab© and the calculated designs were successfully tested in Zemax environment.

  8. Label-free 3D optical imaging of microcirculation within sentinel lymph node in vivo

    NASA Astrophysics Data System (ADS)

    Jung, Yeongri; Zhi, Zhongwei; Wang, Ruikang K.

    2011-03-01

    Sentinel lymph node (SLN) is the first lymph node to drain wastes originated from cancerous tissue. There is a need for an in vivo imaging method that can image the intact SLN in order to further our understanding of its normal as well as abnormal functions. We report the use of ultrahigh sensitive optical microangiography (UHS-OMAG) to image functional microvascular and lymphatic vessel networks that innervate the intact lymph node in mice in vivo. The promising results show a potential role of UHS-OMAG in the future understanding and diagnosis of the SLN involvement in cancer development.

  9. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography.

    PubMed

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-03-04

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.

  10. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography

    PubMed Central

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-01-01

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up. PMID:26940661

  11. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  12. Phase-retrieved optical projection tomography for 3D imaging through scattering layers

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Di Battista, Diego; Giasafaki, Georgia; Psycharakis, Stylianos; Liapis, Evangelos; Zacharopoulos, Athanasios; Zacharakis, Giannis

    2016-03-01

    Recently great progress has been made in biological and biomedical imaging by combining non-invasive optical methods, novel adaptive light manipulation and computational techniques for intensity-based phase recovery and three dimensional image reconstruction. In particular and in relation to the work presented here, Optical Projection Tomography (OPT) is a well-established technique for imaging mostly transparent absorbing biological models such as C. Elegans and Danio Rerio. On the contrary, scattering layers like the cocoon surrounding the Drosophila during the pupae stage constitutes a challenge for three dimensional imaging through such a complex structure. However, recent studies enabled image reconstruction through scattering curtains up to few transport mean free paths via phase retrieval iterative algorithms allowing to uncover objects hidden behind complex layers. By combining these two techniques we explore the possibility to perform a three dimensional image reconstruction of fluorescent objects embedded between scattering layers without compromising its structural integrity. Dynamical cross correlation registration was implemented for the registration process due to translational and flipping ambiguity of the phase retrieval problem, in order to provide the correct aligned set of data to perform the back-projection reconstruction. We have thus managed to reconstruct a hidden complex object between static scattering curtains and compared with the effective reconstruction to fully understand the process before the in-vivo biological implementation.

  13. 3D Monte Carlo model of optical transport in laser-irradiated cutaneous vascular malformations

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Milanič, Matija; Jia, Wangcun; Nelson, J. S.

    2010-11-01

    We have developed a three-dimensional Monte Carlo (MC) model of optical transport in skin and applied it to analysis of port wine stain treatment with sequential laser irradiation and intermittent cryogen spray cooling. Our MC model extends the approaches of the popular multi-layer model by Wang et al.1 to three dimensions, thus allowing treatment of skin inclusions with more complex geometries and arbitrary irradiation patterns. To overcome the obvious drawbacks of either "escape" or "mirror" boundary conditions at the lateral boundaries of the finely discretized volume of interest (VOI), photons exiting the VOI are propagated in laterally infinite tissue layers with appropriate optical properties, until they loose all their energy, escape into the air, or return to the VOI, but the energy deposition outside of the VOI is not computed and recorded. After discussing the selection of tissue parameters, we apply the model to analysis of blood photocoagulation and collateral thermal damage in treatment of port wine stain (PWS) lesions with sequential laser irradiation and intermittent cryogen spray cooling.

  14. High speed miniature motorized endoscopic probe for 3D optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Feroldi, Fabio; Mo, Jianhua; Helderman, Frank; de Groot, Mattijs; de Boer, Johannes F.

    2013-03-01

    We present a miniature motorized endoscopic probe for Optical Frequency Domain Imaging with an outer diameter of 1.65 mm and a rotation speed of 3,000 - 12,500 rpm. This is the smallest motorized high speed OCT probe to our knowledge. The probe has a motorized distal end which provides a significant advantage over proximally driven probes since it does not require a drive shaft to transfer the rotational torque to the distal end of the probe and functions without a fiber rotary junction. The probe has a focal Full Width at Half Maximum of 9.6 μm and a working distance of 0.47 mm. We analyzed the non-uniform rotation distortion and found a location fluctuation of only 1.87° in repeated measurements of the same object. The probe was integrated in a high-speed Optical Frequency Domain Imaging setup at 1310 nm We demonstrated its performance with imaging ex vivo pig bronchial and in vivo goat lung.

  15. Nonlinear optics of fibre event horizons.

    PubMed

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  16. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    NASA Astrophysics Data System (ADS)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  17. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration

    PubMed Central

    Soto, Marcelo A.; Ramírez, Jaime A.; Thévenaz, Luc

    2016-01-01

    Distributed optical fibre sensors possess the unique capability of measuring the spatial and temporal map of environmental quantities that can be of great interest for several field applications. Although existing methods for performance enhancement have enabled important progresses in the field, they do not take full advantage of all information present in the measured data, still giving room for substantial improvement over the state-of-the-art. Here we propose and experimentally demonstrate an approach for performance enhancement that exploits the high level of similitude and redundancy contained on the multidimensional information measured by distributed fibre sensors. Exploiting conventional image and video processing, an unprecedented boost in signal-to-noise ratio and measurement contrast is experimentally demonstrated. The method can be applied to any white-noise-limited distributed fibre sensor and can remarkably provide a 100-fold improvement in the sensor performance with no hardware modification. PMID:26927698

  18. Recent advances in dental optics - Part I: 3D intraoral scanners for restorative dentistry

    NASA Astrophysics Data System (ADS)

    Logozzo, Silvia; Zanetti, Elisabetta M.; Franceschini, Giordano; Kilpelä, Ari; Mäkynen, Anssi

    2014-03-01

    Intra-oral scanning technology is a very fast-growing field in dentistry since it responds to the need of an accurate three-dimensional mapping of the mouth, as required in a large number of procedures such as restorative dentistry and orthodontics. Nowadays, more than 10 intra-oral scanning devices for restorative dentistry have been developed all over the world even if only some of those devices are currently available on the market. All the existing intraoral scanners try to face with problems and disadvantages of traditional impression fabrication process and are based on different non-contact optical technologies and principles. The aim of this publication is to provide an extensive review of existing intraoral scanners for restorative dentistry evaluating their working principles, features and performances.

  19. Study of 3D remote sensing system based on optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zhao, Shihu; Yan, Lei

    2009-06-01

    High-precision and real-time remote sensing imaging system is an important part of remote sensing development. Holography is a method of wave front record and recovery which was presented by Dennis Gabor. As a new kind of holography techniques, Optical scanning holography (OSH) and remote sensing imaging are intended to be combined together and applied in acquisition and interference measurement of remote sensing. The key principles and applicability of OSH are studied and the mathematic relation between Fresnel Zone Plate number, numerical aperture and object distance was deduced, which are proved to be feasible for OSH to apply in large scale remote sensing. At last, a new three-dimensional reflected OSH remote sensing imaging system is designed with the combination of scanning technique to record hologram patterns of large scale remote sensing scenes. This scheme is helpful for expanding OSH technique to remote sensing in future.

  20. 3D Manipulation of Protein Microcrystals with Optical Tweezers for X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Hikima, T.; Hashimoto, K.; Murakami, H.; Ueno, G.; Kawano, Y.; Hirata, K.; Hasegawa, K.; Kumasaka, T.; Yamamoto, M.

    2013-03-01

    In some synchrotron facilities such as SPring-8, X-ray microbeams have been utilized for protein crystallography, allowing users to collect diffraction data from a protein microcrystal. Usually, a protein crystal is picked up manually from a crystallization droplet. However it is very difficult to manipulate the protein microcrystals which are very small and fragile against a shock and changes of temperature and solvent condition. We have been developing an automatic system applying the optical tweezers with two lensed fiber probes to manipulate the fragile protein microcrystal. The system succeeded in trapping a crystal and levitating it onto the cryoloop in the solvent. X-ray diffraction measurement for the manipulated protein microcrystals indicated that laser irradiation and trap with 1064nm wavelength hardly affected the result of X-ray structural analysis.

  1. Automated in vivo 3D high-definition optical coherence tomography skin analysis system.

    PubMed

    Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey

    2016-08-01

    The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.

  2. Optical non-invasive 3D characterization of pottery of pre-colonial Paranaiba valley tribes

    NASA Astrophysics Data System (ADS)

    Magalhães, Wagner; Alves, Márcia Angelina; Costa, Manuel F.

    2014-08-01

    Optical non-invasive inspection tools and methods had expensively proven, for several decades now, their invaluable importance in the preservation of cultural heritage and artwork. In this paper we will report on an optical non-invasive microtopographic characterization work on pre-historical and pre-colonial ceramics and pottery of tribes in the Paranaiba valley in Minas Gerais, Brazil. The samples object of this work were collected at the Inhazinha archeological site (19º 10'00" S / 47° 11'00" W) in the vicinity of Perdizes municipality in transition between the West mining area and the "triangle" area in the center of Brazil. It is a hilly region (850m high) traversed by a number of rivers and streams tributary of Araguari river like Quebra Anzol river and Macaúba and Olegário streams. The Inhazinha site' excavations are part of the Project Jigsaw Hook which since 1980 aimed the establishment of a chrono-cultural framework associated with the study of the socio-cultural dynamics corresponding to successive occupations of hunter-recollector-farmer' tribes in prehistoric and pre-colonial times in the Paranaíba valley in Minas Gerais, Brazil. Two groups of indigenous Indian occupations were found. Both of the pre-colonial period dated at 1,095 ± 186 years ago (TL-FATEC/SP for Zone 1) and of the early nineteenth century dated at 212 ± 19 years ago (EMS-CENA-USP/SP) and 190 ± 30 years ago (C14- BETA/USA) in Zone 2 seemingly occupied by southern Kayapós tribes. The pottery found is decorated with incisions with different geometric distributions and levels of complexity.

  3. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  4. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    NASA Astrophysics Data System (ADS)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  5. A self-sustaining mechanism that prevents tokamak plasmas from sawtoothing in non-linear 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Ferraro, N.

    2016-10-01

    We use the finite element 3D MHD code M3D-C1 to study large-scale instabilities in the center of tokamak plasmas. It has been shown that in 3D MHD simulations of plasmas with a flat central q 1 , an ideal interchange instability can develop that keeps the current density from peaking despite central heating. The instability yields a (m = 1 , n = 1) perturbation of the core plasma, i.a. a helical flow that flattens the central current density by (1) flattening the temperature profile and (2) combining with the perturbed magnetic field to generate a negative loop voltage through a dynamo effect. This might explain the ``flux-pumping'' effect observed in hybrid discharges. We study in which parameter range the two effects are strong enough to prevent sawtoothing. We describe a new regime of quasi-stationary oscillating states and analyze cases in between the stationary and the cycling regime in which the sawtooth behaviour is modified by the current flattening mechanisms. To connect to experimental observations, we have set up simulations starting with a scenario comparable to the current ramp-up phase.

  6. TODS BioCast User Manual, Forecasting 3D Satellite Derived Optical Properties Using Eulerian Advection Procedure, Version 1.0

    DTIC Science & Technology

    2015-06-17

    BioCast User Manual Forecasting 3D Satellite Derived Optical Properties Using Eulerian Advection Procedure Version 1.0 Sean Mccarthy Sherwin Ladner JaSon...18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT TODS BioCast User Manual Forecasting 3D Satellite Derived Optical Properties Using Eulerian Advection...defined by the AOPS input file. BioCast is designed to apply a simple advection approach to satellite derived products in order to forecast the

  7. Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror

    NASA Astrophysics Data System (ADS)

    Kumar, Karthik; Condit, Jonathan C.; McElroy, Austin; Kemp, Nate J.; Hoshino, Kazunori; Milner, Thomas E.; Zhang, Xiaojing

    2008-04-01

    We report on a fibre-based forward-imaging swept-source optical coherence tomography system using a high-reflectivity two-axis microelectromechanical scanning mirror for high-speed 3D in vivo visualization of cellular-scale architecture of biological specimens. The scanning micromirrors, based on electrostatic staggered vertical comb drive actuators, can provide ± 9° of optical deflection on both rotation axes and uniform reflectivity of greater than 90% over the range of imaging wavelengths (1260-1360 nm), allowing for imaging turbid samples with good signal-to-noise ratio. The wavelength-swept laser, scanning over 100 nm spectrum at 20 kHz rate, enables fast image acquisition at 10.2 million voxels s-1 (for 3D imaging) or 40 frames s-1 (for 2D imaging with 500 transverse pixels per image) with 8.6 µm axial resolution. Lateral resolution of 12.5 µm over 3 mm field of view in each lateral direction is obtained using ZEMAX optical simulations for the lateral beam scanning system across the scanning angle range of the 500 µm × 700 µm micromirror. We successfully acquired en face and tomographic images of rigid structures (scanning micromirror), in vitro biological samples (onion peels and pickle slices) and in vivo images of human epidermis over 2 × 1 × 4 mm3 imaging volume in real time at faster-than-video 2D frame rates. The results indicate that our system framework may be suitable for image-guided minimally invasive examination of various diseased tissues.

  8. Nonlinear real-time optical signal processing

    NASA Astrophysics Data System (ADS)

    Sawchuk, A. A.; Jenkins, B. J.

    1986-07-01

    During the period 1 July 1984 - 30 June 1985, the research under Grant AFOSR-84-0181 has concentrated on four major areas. First, work has continued on an experimental sequential optical binary parallel architecture that is constructed from an array of binary optical switching elements (NOR gates) with interconnections done by a computer-generated hologram. We are examining new binary array SLM's, high efficiency, high space-bandwidth product (SBWP) interconnection holograms, and compact reflection versions of the general architecture with the intent of building a larger demonstration system with great capabilities. Next, we have studied improved methods of providing the interconnections in these systems by the use of hybrid digital/analog (facet) holograms. We have examined analytical techniques for mapping circuit diagrams into gate locations and hologram arrays, and optimization procedures to determine the minimum set of necessary space-invariant basis functions and minimum set of space-variant indexing holograms. Another area of study has been the evaluation of devices and materials for high speed optical switching and bistability. Switching energies of 1 to 10 pJ and response times of 10 ns have been experimentally demonstrated at the University of Arizona for devices consisting of an array of Fabry-Perot cavities filled with a nonlinear material. We have begun to use the specifications of these devices and other high speed switching technologies in order to determine better designs and fundamental limits of the binary optical computing architectures under consideration.

  9. Spin multiplicity dependence of nonlinear optical properties.

    PubMed

    Jha, Prakash Chandra; Rinkevicius, Zilvinas; Agren, Hans

    2009-03-23

    Open-shell spin-restricted time-dependent density functional theory is applied to explore the spin multiplicity dependence of linear and nonlinear optical properties. An open-shell neutral conjugated system, the C(4)H(4)N radical in the doublet X(2)A(2), quartet X(4)A(2), and sextet X(6)A(1) states, is chosen as a model system to illustrate various aspects of the theory. It is found that irrespective of the exchange-correlation functional employed, the components of the polarizability alpha(-omega,omega) and first hyperpolarizability beta(-2 omega,omega,omega) show very different dependency with respect to the multiplicity, with an increasing trend for higher spin states. This is rationalized by the decrease in conjugation and stability of the system with increasing multiplicity, and by the way the interaction between unpaired electrons and the external field is shielded by remaining electrons of the molecule. The study suggests the applicability of open-shell systems for frequency-dependent nonlinear optical properties and for the possibility of spin control for such properties.

  10. Quality assessment of reverse engineering process based on full-field true-3D optical measurements

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Sitnik, Robert

    2000-08-01

    In the paper the sequential steps of reverse engineering based on the data gathered by full-field optical system are discussed. Each step is concerned from the point of view of its influence on the final quality of the shape of manufactured object. At first the modern shape measurement system based on the combination of fringe projection, Grey code and experimental calibration is presented. The system enables the determination of absolute coordinates of the object measured from many directions. The dependence of the quality of the cloud of points on the type of object and the measurement procedure is discussed. Then the methods of transferring the experimental data into CAD/CAM/CAE system are presented. The quality of the virtual object in the form of closed triangular mesh is analyzed. Basing on this virtual object the copy of initial body is produced and measured. The accuracy of the object manufactured is determined and the main sources of errors are discussed. The modifications of the system and algorithms that minimize the errors are proposed. The reverse engineering sequence is presented is illustrated by several examples.

  11. 3D printed broadband transformation optics based all-dielectric microwave lenses

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  12. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy.

    PubMed

    King, Sharon V; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2015-10-10

    Spatial light modulator (SLM) implementation of wavefront encoding enables various types of engineered point-spread functions (PSFs), including the generalized-cubic and squared-cubic phase mask wavefront encoded (WFE) PSFs, shown to reduce the impact of sample-induced spherical aberration in fluorescence microscopy. This investigation validates dynamic experimental parameter variation of these WFE-PSFs. We find that particular design parameter bounds exist, within which the divergence of computed and experimental WFE-PSFs is of the same order of magnitude as that of computed and experimental conventional PSFs, such that model-based approaches for solving the inverse imaging problem can be applied to a wide range of SLM-WFE systems. Interferometric measurements were obtained to evaluate the SLM implementation of the numeric mask. Agreement between experiment and theory in terms of a wrapped phase, 0-2π, validates the phase mask implementation and allows characterization of the SLM response. These measurements substantiate experimental practice of computational-optical microscope imaging with an SLM-engineered PSF.

  13. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  14. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  15. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    PubMed Central

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-01-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryo-image volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pull-back images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34±2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland-Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01±0.43 mm2. DICE coefficients were 0.91±0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (±200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities. PMID:27162417

  16. 3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2011-12-01

    Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation

  17. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Fan, Kuang-Chao; Miao, Jin-Wei; Huang, Qiang-Xian; Tao, Sheng; Gong, Er-min

    2014-09-01

    This paper presents a new analogue contact probe based on a compact 3D optical sensor with high precision. The sensor comprises an autocollimator and a polarizing Michelson interferometer, which can detect two angles and one displacement of the plane mirror at the same time. In this probe system, a tungsten stylus with a ruby tip-ball is attached to a floating plate, which is supported by four V-shape leaf springs fixed to the outer case. When a contact force is applied to the tip, the leaf springs will experience elastic deformation and the plane mirror mounted on the floating plate will be displaced. The force-motion characteristics of this probe were investigated and optimum parameters were obtained with the constraint of allowable physical size of the probe. Simulation results show that the probe is uniform in 3D and its contacting force gradient is within 1 mN µm - 1. Experimental results indicate that the probe has 1 nm resolution,  ± 10 µm measuring range in X - Y plane, 10 µm measuring range in Z direction and within 30 nm measuring standard deviation. The feasibility of the probe has been preliminarily verified by testing the flatness and step height of high precision gauge blocks.

  18. State of the art of compact optical 3D profile measurement apparatuses: from outer surface to inner surface measurement

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka

    2013-06-01

    This paper is not an original paper, but a review paper passed on our previous papers. We have been developing a few apparatuses for 2D and/or 3D profile measurement because these systems, especially 3D profiling systems, have become indispensable tools in manufacturing industry. However, in surface profile measurement, conventional systems have several short comings including being very large in size and heavy in weight. Therefore we propose to realize a compact portable apparatus on the basis of pattern projection method using a single MEMS mirror scanning. On the other hand, in the case of inner profile measurement for pipes or tubes, we propose to use optical section method by means of disk beam produced by a conical mirror. In these systems development of elements and devices such as a MEMS mirror and/or cone mirror play important role to apply our fundamental principles to practical apparatuses. We introduce the state of the art of these systems including commercialized products for practical purpose.

  19. 3D optical see-through head-mounted display based augmented reality system and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  20. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    PubMed

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  1. Visualization of the 3-D topography of the optic nerve head through a passive stereo vision model

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan M.; Mitra, Sunanda; Morales, Jose

    1999-01-01

    This paper describes a system for surface recovery and visualization of the 3D topography of the optic nerve head, as support of early diagnosis and follow up to glaucoma. In stereo vision, depth information is obtained from triangulation of corresponding points in a pair of stereo images. In this paper, the use of the cepstrum transformation as a disparity measurement technique between corresponding windows of different block sizes is described. This measurement process is embedded within a coarse-to-fine depth-from-stereo algorithm, providing an initial range map with the depth information encoded as gray levels. These sparse depth data are processed through a cubic B-spline interpolation technique in order to obtain a smoother representation. This methodology is being especially refined to be used with medical images for clinical evaluation of some eye diseases such as open angle glaucoma, and is currently under testing for clinical evaluation and analysis of reproducibility and accuracy.

  2. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping.

    PubMed

    Fortunato, Luca; Leiknes, TorOve

    2017-04-01

    Membrane systems for water purification can be seriously hampered by biofouling. The use of optical coherence tomography (OCT) to investigate biofilms in membrane systems has recently increased due to the ability to do the characterization in-situ and non-destructively. The OCT biofilm thickness map is presented for the first time as a tool to assess biofilm spatial distribution on a surface. The map allows the visualization and evaluation of the biofilm formation and growth in membrane filtration systems through the use of a false color scale. The biofilm development was monitored with OCT to evaluate the suitability of the proposed approach. A 3D time series analysis of biofilm development in a spacer filled channel representative of a spiral-wound membrane element was performed. The biofilm thickness map enables the time-resolved and spatial-resolved evaluation and visualization of the biofilm deposition pattern in-situ non-destructively.

  3. Nonlinear optical magnetometry with accessible in situ optical squeezing

    DOE PAGES

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  4. Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation

    DTIC Science & Technology

    1994-02-28

    replaced with neat DMSO. Also potassium carbonate (K2CO3) was used as the base, instead of sodium hydroxide (NaOH). Synthesis of ASD-D03 The NLO dye used in...by sublimation. The optically clear films exhibited some microscopic cracks , which could probably be prevented by further process optimization, or...the use of a more crack resistant Accuglass host such as the T-14 series of materials [3]. We now describe the work on the temporally stable nonlinear

  5. Large nonlocal nonlinear optical response of castor oil

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  6. Nonlinear Optical Image Processing with Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Deiss, Ron (Technical Monitor)

    1994-01-01

    The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.

  7. Pulse Shepherding in Nonlinear Fiber Optics

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Bergman, L.

    1996-01-01

    In a wavelength division multiplexed fiber system, where pulses on different wavelength beams may co-propagate in a single mode fiber, the cross-phase-modulation (CPM) effects caused by the nonlinearity of the optical fiber are unavoidable. In other words, pulses on different wavelength beams can interact with and affect each other through the intensity dependence of the refractive index of the fiber. Although CPM will not cause energy to be exchanged among the beams, the pulse shapes and locations on these beams can be altered significantly. This phenomenon makes possible the manipulation and control of pulses co-propagating on different wavelength beams through the introduction of a shepherd pulse at a separate wavelength. How this can be accomplished is demonstrated in this paper.

  8. High nonlinear optical anisotropy of urea nanofibers

    NASA Astrophysics Data System (ADS)

    Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.

    2010-07-01

    Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.

  9. A Photonic Basis for Deriving Nonlinear Optical Response

    ERIC Educational Resources Information Center

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  10. Design, synthesis and characterization of novel nonlinear optical chromophores for electro-optical applications

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    This dissertation involves the design, synthesis and characterization of second order nonlinear optical chromophores for electro-optic applications. The design concept, that poling efficiency and macroscopic nonlinearities can be improved by modifying a chromophore's shape, has been explored. Chapter 1 gives an introduction into theoretical background of nonlinear optics and electro-optic phenomenon in organic molecules and poled polymers. Chapter 2 involves the design and synthesis of GLD-2 and GLD-3 chromophores, both with bulky substituents on the ring-fused bridge. The optical studies and HRS measurement show that the two alkyl groups on the bridge blueshift the lambdamax in chloroform by 20 nm and decrease the beta values. DSC and TGA thermal analysis show Td of GLD-2 and GLD-3 over 240°C. The maximum achievable r33 of GLD-2/PMMA is 61 pm/V, compared to the 92.4 pm/V of GLD-1/PMMA. But GLD-2/APC shows r33 of 45.2pm/V, higher than GLD-1/APC due to the improved compatibility with APC. The optical loss of 13 wt% GLD-2/PMMA at 1.55mum is 1.4 dB compared to the 2.3 dB of 17 wt% GLD-1/PMMA. Optical loss studies prove that adding two bulky substituents on bridge help attenuate electrostatic interactions. GLD-3 show deteriorated solubility in common used organic solvents, probably due to the combination of two TBDMS and two lengthy alkyl groups. Chapter 3 presents synthesis of thiophene-based chromophores with variously positioned TBDMS groups. The optical studies of these chromophores show one TBDMSO substitution on the thiophene bridge yields little influence on the lambda max in chloroform. FTCDS chromophore with two TBDMS groups, one on donor and one on thiophene bridge, shows to be the best structure with regards the thermal stability and achievable maximum EO coefficient value, 65.9 pm/V, at only 24 wt% loading density at 1.3 mum. Chapter 4 deals with three novel bridges for NLO chromophores. Synthetic methodologies of the diketone precursor of rigidified

  11. Fabrication and characterization of a 3-D non-homogeneous tissue-like mouse phantom for optical imaging

    NASA Astrophysics Data System (ADS)

    Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis

    2013-11-01

    In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.

  12. Impurities in nonlinear optical oxide crystals

    NASA Astrophysics Data System (ADS)

    Morris, Patricia A.

    1990-11-01

    Impurities in nonlinear optical oxide crystals can affect many of the properties for device applications. The structures of typical crystals are tolerant with respect to occupancy and are nonstoichiometric on the cation sublattices (e.g. the A sublattice in crystals with the general formula AMO 3). This may, at least in part, be due to the presence of the relatively strong covalent nature of the acentric oxide groups determining the nonlinear optical properties. These circumstances make the incorporation of impurities into the lattice relatively easy and result in large distribution coefficients for many impurities. Generally, little purification during growth will occur with respect to these impurities and therefore, it is usually necessary to purify the starting materials of any unwanted ions. Chemical or powder processing and firing procedures can be used to prevent any contamination of the crystal growth precursors by common impurities (e.g. Si, Al, Fe, Ca, Na, K, Mg, Cl, and S) at a level of <10 parts per million total concentration. A combination of analytical techniques, including those which require little or no sample preparation (e.g. secondary ion mass spectrometry, neutron activation analysis, or laser microprobe mass spectrometry), should be used to determine the impurities present in a material. For example, the effects of protons incorporated (OH -) in the lattice of these crystals can be very detrimental and can be detected using infrared spectroscopy. The growth of many of these crystals requires flux techniques, but the temperature dependence of any nonstoichiometry present and of the distribution coefficients make the use of slow cooling techniques generally not recommended when uniformity of properties is required.

  13. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  14. First International Conference on Organic Nonlinear Optics. Section B: Nonlinear Optics, Principles, Materials, Phenomena, and Devices.

    DTIC Science & Technology

    1994-01-01

    1461, 1466.4 and 1489 cm for the C=C- wavelength [nto] 1000 800 600 500 400 1.0- "-0.8 06- o, 064 C 0 0.4 o 0.2- PPVS Lutt 0- Z-N 10000 15000 20000...well as in biological systems (e.g., light harvesting antenna). In addition the nonlinear optical response (NLO) of coherent extended states has in

  15. NIKE3D a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics user's manual update summary

    SciTech Connect

    Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O

    2000-03-24

    This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.

  16. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape1

    PubMed Central

    Landis, Jacob B.; Ventura, Kayla L.; Soltis, Douglas E.; Soltis, Pamela S.; Oppenheimer, David G.

    2015-01-01

    Premise of the study: Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Methods: Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. Results: This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. Conclusions: This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM. PMID:25909040

  17. Optical limiter based on two-dimensional nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  18. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  19. Hamiltonian chaos in nonlinear optical polarization dynamics

    NASA Astrophysics Data System (ADS)

    David, D.; Holm, D. D.; Tratnik, M. V.

    1990-03-01

    This paper applies Hamiltonian methods to the Stokes representation of the one-beam and two-beam problems of polarized optical pulses propagating as travelling waves in nonlinear media. We treat these two dynamical systems as follows. First, we use the reduction method of Marsden and Weinstein to map each of the systems to the two-dimensional sphere, S 2. The resulting reduced systems are then analyzed from the viewpoints of their stability properties and of bifurcations with symmetry; in particular, several degenerate bifurcations are found and described. We also establish the presence of chaotic dynamics in these systems by demonstrating the existence of Smale horseshoe maps in the three- and four-dimensional cases, as well as Arnold diffusion in the higher-dimensional cases. The method we use to establish such complex dynamics is the Mel'nikov technique, as extended by Holmes and Marsden, and Wiggins for the higher-dimensional cases. These results apply to perturbations of homoclinic and heteroclinic orbits of the reduced integrable problems for static, as well as travelling-wave, solutions describing either a single opt ical beam, or two such beams counterpropagating. Thus, we show that these optics problems exhibit complex dynamics and predict the experimental consequences of this dynamics.

  20. Bond models in linear and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Aspnes, D. E.

    2015-08-01

    Bond models, also known as polarizable-point or mechanical models, have a long history in optics, starting with the Clausius-Mossotti relation but more accurately originating with Ewald's largely forgotten work in 1912. These models describe macroscopic phenomena such as dielectric functions and nonlinear-optical (NLO) susceptibilities in terms of the physics that takes place in real space, in real time, on the atomic scale. Their strengths lie in the insights that they provide and the questions that they raise, aspects that are often obscured by quantum-mechanical treatments. Statics versions were used extensively in the late 1960's and early 1970's to correlate NLO susceptibilities among bulk materials. Interest in NLO applications revived with the 2002 work of Powell et al., who showed that a fully anisotropic version reduced by more than a factor of 2 the relatively large number of parameters necessary to describe secondharmonic- generation (SHG) data for Si(111)/SiO2 interfaces. Attention now is focused on the exact physical meaning of these parameters, and to the extent that they represent actual physical quantities.

  1. 3D Cloud Tomography, Followed by Mean Optical and Microphysical Properties, with Multi-Angle/Multi-Pixel Data

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; von Allmen, P. A.; Marshak, A.; Bal, G.

    2010-12-01

    -type model is used where the cloud surface "emits" either reflected (sunny-side) or transmitted (shady-side) light at different levels. As it turns out, the reflected/transmitted light ratio yields an approximate cloud optical thickness. Another approach is to invoke tomography techniques to define the volume occupied by the cloud using, as it were, cloud masks for each direction of observation. In the shape and opacity refinement phase, initial guesses along with solar and viewing geometry information are used to predict radiance in each pixel using a fast diffusion model for the 3D RT in MISR's non-absorbing red channel (275 m resolution). Refinement is constrained and stopped when optimal resolution is reached. Finally, multi-pixel/mono-angle MODIS data for the same cloud (at comparable 250 m resolution) reveals the desired droplet size information, hence the volume-averaged LWC. This is an ambitious remote sensing science project drawing on cross-disciplinary expertise gained in medical imaging using both X-ray and near-IR sources and detectors. It is high risk but with potentially high returns not only for the cloud modeling community but also aerosol and surface characterization in the presence of broken 3D clouds.

  2. A pattern- and optics-independent compact model of Mask3D under off-axis illumination with significant efficiency and accuracy improvements

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Yan, Qiliang; Wei, David; Croffie, Ebo

    2015-03-01

    As the critical dimension keeps shrinking, mask topography effect (Mask3D) becomes considerable to impact the lithography modeling accuracy and the quality of full-chip OPC. Among many challenges in Mask3D modeling, it is critical and particularly demanding to treat off-axis illumination (OAI) properly. In this paper, we present a novel Mask3D model that is completely test pattern- and optics- independent. Such model property enables greatly improved performance in terms of accuracy and consistency on various pattern types (1D/2D) and through a wide range of focus conditions, while no runtime overhead is incurred. The novel model and formulation will be able to save significant modeling time and greatly improve the model reliability, predictability and ease of use. Experimental results validate the claims and demonstrate the superiority to the current state-of-the-art Mask3D modeling method. This is a new generation Mask3D modeling process.

  3. Exploring single-molecule interactions through 3D optical trapping and tracking: From thermal noise to protein refolding

    NASA Astrophysics Data System (ADS)

    Wong, Wesley Philip

    The focus of this thesis is the development and application of a novel technique for investigating the structure and dynamics of weak interactions between and within single-molecules. This approach is designed to explore unusual features in bi-directional transitions near equilibrium. The basic idea is to infer molecular events by observing changes in the three-dimensional Brownian fluctuations of a functionalized microsphere held weakly near a reactive substrate. Experimentally, I have developed a unique optical tweezers system that combines an interference technique for accurate 3D tracking (˜1 nm vertically, and ˜2-3 nm laterally) with a continuous autofocus system which stabilizes the trap height to within 1-2 mn over hours. A number of different physical and biological systems were investigated with this instrument. Data interpretation was assisted by a multi-scale Brownian Dynamics simulation that I have developed. I have explored the 3D signatures of different molecular tethers, distinguishing between single and multiple attachments, as well as between stiff and soft linkages. As well, I have developed a technique for measuring the force-dependent compliance of molecular tethers from thermal noise fluctuations and demonstrated this with a short ssDNA oligomer. Another practical approach that I have developed for extracting information from fluctuation measurements is Inverse Brownian Dynamics, which yields the underlying potential of mean force and position dependent diffusion coefficient from the Brownian motion of a particle. I have also developed a new force calibration method that takes into account video motion blur, and that uses this information to measure bead dynamics. Perhaps most significantly, I have trade the first direct observations of the refolding of spectrin repeats under mechanical force, and investigated the force-dependent kinetics of this transition.

  4. A robust automated method to detect stent struts in 3D intravascular optical coherence tomographic image sequences

    NASA Astrophysics Data System (ADS)

    Wang, A.; Eggermont, J.; Dekker, N.; Garcia-Garcia, H. M.; Pawar, R.; Reiber, J. H. C.; Dijkstra, J.

    2012-03-01

    Intravascular optical coherence tomography (IVOCT) provides very high resolution cross-sectional image sequences of vessels. It has been rapidly accepted for stent implantation and its follow up evaluation. Given the large amount of stent struts in a single image sequence, only automated detection methods are feasible. In this paper, we present an automated stent strut detection technique which requires neither lumen nor vessel wall segmentation. To detect strut-pixel candidates, both global intensity histograms and local intensity profiles of the raw polar images are used. Gaussian smoothing is applied followed by specified Prewitt compass filters to detect the trailing shadow of each strut. The shadow edge positions assist the strut-pixel candidates clustering. In the end, a 3D guide wire filter is applied to remove the guide wire from the detection results. For validation, two experts marked 6738 struts in 1021 frames in 10 IVOCT image sequences from a one-year follow up study. The struts were labeled as malapposed, apposed or covered together with the image quality (high, medium, low). The inter-observer agreement was 96%. The algorithm was validated for different combinations of strut status and image quality. Compared to the manual results, 93% of the struts were correctly detected by the new method. For each combination, the lowest accuracy was 88%, which shows the robustness towards different situations. The presented method can detect struts automatically regardless of the strut status or the image quality, which can be used for quantitative measurement, 3D reconstruction and visualization of the implanted stents.

  5. Initial Validation and Clinical Experience with 3D Optical-Surface-Guided Whole Breast Irradiation of Breast Cancer

    PubMed Central

    Li, S.; DeWeese, T.; Movsas, B.; Frassica, Deborah; Liu, Dezhi; Kim, Jinkoo; Chen, Qing; Walker, Eleanor

    2015-01-01

    We had introduced 3D optical surface-guided radiotherapy (SGRT) of the breast cancer (BC). We then initiated the feasibility, accuracy, and precision studies of stereovision in detection of any breast displacement through the course of treatment for total thirty breasts undertaken whole breast irradiation (WBI). In the SGRT, CT-based plan data were parsed into an in-house computer program through which the reference surfaces were generated in 3D video format. When patients were positioned on treatment Tables, real-time stereovisions were rapidly acquired while the live surface tracking shown steady thorax motion. The real-time surface images were automatically aligned with the reference surface and detected shape and location changes of the breast were online corrected through the Table and beam adjustments. Accumulated dose to each patient was computed according to the frequency distribution of the measured breast locations during beam on time. Application of SGRT had diminished large skin-marking errors of >5-mm and daily breast-setup errors of >10-mm that occurred on half of cases. Accuracy (mean) and precision (two standard deviations) of the breast displacements across the tangential field edges in the (U, V) directions were improved from (−0.5 ± 8.8, 2.2 ± 10.8) mm in conventional setup to (0.4 ± 4.6, 0.7 ± 4.4) mm in the final position while intra-fractional motion contributed only (0.1 ± 2.8, 0.0 ± 2.2) mm in free breathing. Dose uniformity and coverage to targets had both been increased by up to 10% and the lung or heart intersections have been decreased by half of those volumes if they were irradiated at the initial positions. SGRT of BC appears to be feasible regardless of skin tones, as fast as a snapshot for 3D imaging, and very accurate and precise for daily setup of flexible breast targets. Importantly, the technique allows us to verify the breast shape and position during beam-on time. PMID:22181332

  6. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  7. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli

    PubMed Central

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent

    2015-01-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force–displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications. PMID:25714129

  8. Short Term Reproducibility of a High Contrast 3-D Isotropic Optic Nerve Imaging Sequence in Healthy Controls

    PubMed Central

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-01-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON. PMID:27175048

  9. Short Term Reproducibility of a High Contrast 3-D Isotropic Optic Nerve Imaging Sequence in Healthy Controls.

    PubMed

    Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A

    2016-02-27

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  10. On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap

    NASA Astrophysics Data System (ADS)

    Chen, Xuwen

    2013-11-01

    We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.

  11. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    NASA Astrophysics Data System (ADS)

    Hervas, Jaime Rubio; Reyhanoglu, Mahmut; Tang, Hui

    2014-12-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  12. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  13. Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links

    NASA Astrophysics Data System (ADS)

    Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi

    2017-02-01

    Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.

  14. 1-D, 2-D and 3-D Negative-Refraction Metamaterials at Optical Frequencies: Optical Nano-Transmission-Line and Circuit Theory

    NASA Astrophysics Data System (ADS)

    Engheta, Nader; Alu, Andrea

    2006-03-01

    In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.

  15. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  16. Parity breaking with a nonlinear optical double-slit configuration

    NASA Astrophysics Data System (ADS)

    Paltoglou, Vassilis; Efremidis, Nikolaos K.

    2017-02-01

    We consider an optical nonlinear interferometric setup based on Young's double-slit configuration where a nonlinear material is placed exactly after one of the two slits. We examine the effects of Kerr nonlinearity and multi-photon absorption in the resulting interference pattern. The presence of nonlinearity breaks the transverse spatial symmetry of the system, resulting to a modified intensity pattern at the observation plane as a function of the incident intensity. Our theoretical model, based on the modification of the optical path due to the presence of nonlinearity, is surprisingly accurate in predicting the intensity profile of the main lobes for a wide range of parameters. We discuss about potential applications of our model in nonlinear interferometry. Specifically, we show that it is possible to measure both the multi-photon and the Kerr coefficients of a nonlinear material based on the spatial translation of the interference pattern as a function of the incident intensity.

  17. Dynamic optical nonlinearities in di-furfuryl ether solution

    NASA Astrophysics Data System (ADS)

    Mendonça, C. R.; Barbosa Neto, N. M.; Batista, P. S.; de Souza, M. F.; Zilio, S. C.

    2002-08-01

    Dynamic nonlinear refraction and absorption of di-furfuryl ether dissolved in dichloro-methane are investigated with a frequency-doubled Q-switched and mode-locked Nd:YAG laser. The nonlinear absorption presents a strong reverse saturation that seems promising for use in optical limiting devices. Three contributions are observed for the nonlinear refraction: one fast process related to the singlet population, and two slow accumulative contributions arising from the triplet population and thermal lensing. The time evolution of the optical nonlinearities, modeled by means of a five-energy-level diagram, allows the determination of excited state cross-sections as well as the intersystem crossing lifetime.

  18. Methods of formation and nonlinear conversion of Bessel optical vortices

    NASA Astrophysics Data System (ADS)

    Belyi, V. N.; King, Terence A.; Kazak, Nikolai S.; Khilo, Nikolay A.; Katranji, Evgeni G.; Ryzhevich, Anatol A.

    2001-05-01

    Linear and nonlinear processes of generation and transformation of optical vortices in crystals were investigated. New universal methods for production of Bessel light beams with optical vortices of the first, second and higher order by means of uniaxial and biaxial crystals were proposed. Light beams with optical vortices of topological charge +/- 1 and +/- 2 are experimentally obtained using KTP and HIO3 (iodic acid) biaxial crystals. We studied type II second harmonic generation by Bessel beams with optical vortices in nonlinear crystals. Results of investigation of the processes of Bessel light vortex order doubling, transfer of vortex to the second harmonic radiation, and annihilation of optical vortices with the opposite signa are presented.

  19. Fabrication of polymer inverse opals with linear and nonlinear optical functionalities using a sandwiching approach

    NASA Astrophysics Data System (ADS)

    Demeyer, Pieter-Jan; Vandendriessche, Stefaan; Van Cleuvenbergen, Stijn; Carron, Sophie; Parac-Vogt, Tatjana N.; Verbiest, Thierry; Clays, Koen

    2013-05-01

    Three-dimensionally (3D) ordered macroporous materials combine interesting structural and optical properties. Accessible and economic fabrication is essential to fully explore the unique possibilities these materials present. A common method to fabricate 3D ordered macroporous materials is by self-assembling colloids, resulting in so-called opals. A templating strategy is then often used to introduce additional functionality inside the porous structure, giving rise to inverse opals. In this work, we developed an easy and versatile method to fabricate highly uniform polymer inverse opals without overlayers. Briefly, our approach consists of sandwiching a resin melt between two opal templates, forcing all material inside or between the macroporous structures. The opal voids are fully filled and the superfluous melt material is extruded before curing the resin. Finally, the opal templates are removed by chemical etching. The resulting structures are freestanding 3D macroporous films with large-area uniformity, displaying strong photonic properties due to their structural order. Additionally, many applications require specific optical functionalities. The versatility of our templating method is uniquely suited for this purpose as it allows doping of the melt before infiltration. Therefore, we can incorporate a large variety of optical functions in the inverse opals using a single approach We believe this method will help the systematic investigation and improvement of existing effects in these structures, while providing a platform for the discovery and demonstration of novel effects. As this method combines 3D ordered macroporous materials with linear and nonlinear optical materials, it is even possible to tune optical interactions, which could be technologically relevant for OLEDs, solar cells, lasers, electro-optical modulators and optical switches.

  20. Nonlinear fiber applications for ultrafast all-optical signal processing

    NASA Astrophysics Data System (ADS)

    Kravtsov, Konstantin

    In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.