Science.gov

Sample records for 3d ordered macroporous

  1. Study of the structure of 3D-ordered macroporous GaN-ZnS:Mn nanocomposite films

    SciTech Connect

    Kurdyukov, D. A. Shishkin, I. I.; Grudinkin, S. A.; Sitnikova, A. A.; Zamoryanskaya, M. V.; Golubev, V. G.

    2015-05-15

    A film-type 3D-ordered macroporous GaN-ZnS:Mn nanocomposite with the structure of an inverted opal is fabricated. Structural studies of the nanocomposite are performed, and it is shown that GaN and ZnS:Mn introduced into the pores of the silica opal are nanocrystallites misoriented with respect to each other. It is shown that the nanocomposite is a structurally perfect 3D photonic crystal. The efficiency of using a buffer of GaN crystallites to preclude interaction between the surface of the spherical a-SiO{sub 2} particles forming the opal matrix and chemically active substances introduced into the pores is demonstrated.

  2. Template-assisted synthesis of 3D ordered macroporous structured CuO as catalyst for ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Ke, Xiang; Zhou, Xiang; Hao, Gazi; Xiao, Lei; Gao, Han; Chen, Teng; Jiang, Wei

    Three-dimensionally ordered macroporous (3DOM) CuO is prepared by colloidal crystal templated method. The obtained 3DOM structure with about 230nm pore diameter is composed of small CuO windows. The special structured CuO is used as a catalyst for thermal decomposition of ammonium perchlorate (AP) and its catalytic activity is measured by simultaneous thermogravimetry-differential scanning calorimetry (TG-DSC) techniques. Test results show that thermal decomposition performance is significantly improved after adding 2wt.% 3DOM CuO.

  3. Novel morphology changes from 3D ordered macroporous structure to V2O5 nanofiber grassland and its application in electrochromism

    PubMed Central

    Tong, Zhongqiu; Lv, Haiming; Zhang, Xiang; Yang, Haowei; Tian, Yanlong; Li, Na; Zhao, Jiupeng; Li, Yao

    2015-01-01

    Because vanadium pentoxide (V2O5) is the only oxide that shows both anodic and cathodic coloration electrochromism, the reversible lithium ion insertion/extraction processes in V2O5 lead to not only reversible optical parameter changes but also multicolor changes for esthetics. Because of the outstanding electrochemical properties of V2O5 nanofibers, they show great potential to enhance V2O5 electrochromism. However, the development and practical application of V2O5 nanofibers are still lacking, because traditional preparation approaches have several drawbacks, such as multiple processing steps, unsatisfactory electrical contact with the substrate, expensive equipment, and rigorous experimental conditions. Herein, we first report a novel and convenient strategy to prepare grass-like nanofiber-stacked V2O5 films by a simple annealing treatment of an amorphous, three-dimensionally ordered macroporous vanadia film. The V2O5 nanofiber grassland exhibits promising transmittance modulation, fast switching responses, and high color contrast because of the outstanding electrochemical properties of V2O5 nanofibers as well as the high Li-ion diffusion coefficients and good electrical contact with the substrate. Moreover, the morphology transformation mechanism is investigated in detail. PMID:26578383

  4. Novel morphology changes from 3D ordered macroporous structure to V2O5 nanofiber grassland and its application in electrochromism

    NASA Astrophysics Data System (ADS)

    Tong, Zhongqiu; Lv, Haiming; Zhang, Xiang; Yang, Haowei; Tian, Yanlong; Li, Na; Zhao, Jiupeng; Li, Yao

    2015-11-01

    Because vanadium pentoxide (V2O5) is the only oxide that shows both anodic and cathodic coloration electrochromism, the reversible lithium ion insertion/extraction processes in V2O5 lead to not only reversible optical parameter changes but also multicolor changes for esthetics. Because of the outstanding electrochemical properties of V2O5 nanofibers, they show great potential to enhance V2O5 electrochromism. However, the development and practical application of V2O5 nanofibers are still lacking, because traditional preparation approaches have several drawbacks, such as multiple processing steps, unsatisfactory electrical contact with the substrate, expensive equipment, and rigorous experimental conditions. Herein, we first report a novel and convenient strategy to prepare grass-like nanofiber-stacked V2O5 films by a simple annealing treatment of an amorphous, three-dimensionally ordered macroporous vanadia film. The V2O5 nanofiber grassland exhibits promising transmittance modulation, fast switching responses, and high color contrast because of the outstanding electrochemical properties of V2O5 nanofibers as well as the high Li-ion diffusion coefficients and good electrical contact with the substrate. Moreover, the morphology transformation mechanism is investigated in detail.

  5. New 3-D microarray platform based on macroporous polymer monoliths.

    PubMed

    Rober, M; Walter, J; Vlakh, E; Stahl, F; Kasper, C; Tennikova, T

    2009-06-30

    Polymer macroporous monoliths are widely used as efficient sorbents in different, mostly dynamic, interphase processes. In this paper, monolithic materials strongly bound to the inert glass surface are suggested as operative matrices at the development of three-dimensional (3-D) microarrays. For this purpose, several rigid macroporous copolymers differed by reactivity and hydrophobic-hydrophilic properties were synthesized and tested: (1) glycidyl methacrylate-co-ethylene dimethacrylate (poly(GMA-co-EDMA)), (2) glycidyl methacrylate-co-glycerol dimethacrylate (poly(GMA-co-GDMA)), (3) N-hydroxyphthalimide ester of acrylic acid-co-glycidyl methacrylate-co-ethylene dimethacrylate (poly(HPIEAA-co-GMA-co-EDMA)), (4) 2-cyanoethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-EDMA)), and (5) 2-cyanoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-HEMA-co-EDMA)). The constructed devices were used as platforms for protein microarrays construction and model mouse IgG-goat anti-mouse IgG affinity pair was used to demonstrate the potential of developed test-systems, as well as to optimize microanalytical conditions. The offered microarray platforms were applied to detect the bone tissue marker osteopontin directly in cell culture medium.

  6. Template synthesis of ordered macroporous hydroxyapatite bioceramics.

    PubMed

    Ji, Lijun; Jell, Gavin; Dong, Yixiang; Jones, Julian R; Stevens, Molly M

    2011-08-28

    Hydroxyapatite has found wide application in bone tissue engineering. Here we use a macroporous carbon template to generate highly ordered macroporous hydroxyapatite bioceramics composed of close-packed hollow spherical pores with interconnected channels. The template has advantages for the preparation of ordered materials.

  7. Ordered macroporous materials by emulsion templating

    NASA Astrophysics Data System (ADS)

    Imhof, A.; Pine, D. J.

    1997-10-01

    Ordered macroporous materials with pore diameters comparable to optical wavelengths are predicted to have unique and highly useful optical properties such as photonic bandgaps and optical stop-bands. Tight control over the pore size distribution might also lead to improved macroporous materials (those with pores greater than approximately 50nm) for application as catalytic surfaces and supports, adsorbents, chromatographic materials, filters, light-weight structural materials, and thermal, acoustic and electrical insulators. Although methods exist for producing ordered porous materials with pore diameters less than 10nm (refs 10, 11), there is no general method for producing such materials with uniform pore sizes at larger length scales. Here we report a new method for producing highly monodisperse macroporous materials with pore sizes ranging from 50nm to several micrometres. Starting with an emulsion of equally sized droplets (produced through a repeated fractionation procedure), we form macroporous materials of titania, silica and zirconia by using the emulsion droplets as templates around which material is deposited through a sol-gel process. Subsequent drying and heat treatment yields solid materials with spherical pores left behind by the emulsion droplets. These pores are highly ordered, reflecting the self-assembly of the original monodisperse emulsion droplets into a nearly crystalline array. We show that the pore size can be accurately controlled, and that the technique should be applicable to a wide variety of metal oxides and even organic polymer gels.

  8. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage.

    PubMed

    Zhao, Meng-Qiang; Xie, Xiuqiang; Ren, Chang E; Makaryan, Taron; Anasori, Babak; Wang, Guoxiu; Gogotsi, Yury

    2017-07-25

    2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium- and sodium-ion batteries, and lithium-sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free-standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium-ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high-performance MXene-based materials for energy storage, catalysis, environmental, and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Catalysts of self-assembled Pt@CeO2-δ-rich core-shell nanoparticles on 3D ordered macroporous Ce1-xZrxO2 for soot oxidation: nanostructure-dependent catalytic activity.

    PubMed

    Wei, Yuechang; Jiao, Jinqing; Zhang, Xindong; Jin, Baofang; Zhao, Zhen; Xiong, Jing; Li, Yazhao; Liu, Jian; Li, Jianmei

    2017-03-30

    The catalytic performance in heterogeneous catalytic reactions consisting of solid reactants is strongly dependent on the nanostructure of the catalysts. Metal-oxides core-shell (MOCS) nanostructures have potential to enhance the catalytic activity for soot oxidation reactions as a result of optimizing the density of active sites located at the metal-oxide interface. Here, we report a facile strategy for fabricating nanocatalysts with self-assembled Pt@CeO2-δ-rich core-shell nanoparticles (NPs) supported on three-dimensionally ordered macroporous (3DOM) Ce1-xZrxO2via the in situ colloidal crystal template (CCT) method. The nanostructure-dependent activity of the catalysts for soot oxidation were investigated by means of SEM, TEM, H2-TPR, XPS, O2-isothermal chemisorption, soot-TPO and so on. A CeO2-δ-rich shell on a Pt core is preferentially separated from Ce1-xZrxO2 precursors and could self-assemble to form MOCS nanostructures. 3DOM structures can enhance the contact efficiency between catalysts and solid reactants (soot). Pt@CeO2-δ-rich core-shell nanostructures can optimize the density of oxygen vacancies (Ov) as active sites located at the interface of Pt-Ce1-xZrxO2. Remarkably, 3DOM Pt@CeO2-δ-rich/Ce1-xZrxO2 catalysts show super catalytic performance and strongly nanostructure-dependent activity for soot oxidation in the absence of NO and NO2. For example, the T50 of the 3DOM Pt@CeO2-δ-rich/Ce0.8Zr0.2O2 catalyst is lowered down to 408 °C, and the reaction rate of the 3DOM Pt@CeO2-δ-rich/Ce0.2Zr0.8O2 catalyst (0.12 μmol g(-1) s(-1)) at 300 °C is 4 times that of the 3DOM Pt/Ce0.2Zr0.8O2 catalyst (0.03 μmol g(-1) s(-1)). The structures of 3DOM Ce1-xZrxO2-supported Pt@CeO2-δ-rich core-shell NPs are decent systems for deep oxidation of solid reactants or macromolecules, and this facile technique for synthesizing catalysts has potential to be applied to other element compositions.

  10. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.

    PubMed

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-14

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  11. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    PubMed Central

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-01-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390

  12. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  13. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  14. GPR Detection and 3D Mapping of Lateral Macropores II. Riparian Application

    USDA-ARS?s Scientific Manuscript database

    The morphology and prevalence of 1-10 cm diameter macropores in forested riparian wetland buffers is largely unknown despite their importance as a source of preferential nutrient delivery to stream channels. Here, we validated in situ procedures for detecting and mapping the three-dimensional struct...

  15. Enhanced Electrocatalytic Activity of Pt/3D Hierarchical Bimodal Macroporous Carbon Nanospheres.

    PubMed

    Balgis, Ratna; Widiyastuti, W; Ogi, Takashi; Okuyama, Kikuo

    2017-07-19

    Proton exchange membrane fuel cells require electrocatalysts with a high platinum (Pt) loading, large active surface area, and favorable hydrodynamic profile for practical applications. Here, we report the design of three-dimensional hierarchical bimodal macroporous carbon nanospheres with an interconnected pore system, which are applied as an electrocatalyst support. Carbon-supported Pt (Pt/C) catalysts were prepared by aerosol spray pyrolysis followed by microwave chemical deposition. The hierarchical porous structures not only increased the dispersion of Pt nanoparticles but also improved catalytic performance. A hierarchical bimodal macroporous Pt/C catalyst with a mixture of 30 and 120 nm size pores showed the best performance. The electrochemical surface area and mass activity values of this support were 96 m(2) g(-1)-Pt and 378 mA mg(-1)-Pt, respectively at a Pt loading of 15 wt %.

  16. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowu; Cheng, Jianxiu; Li, Weihan; Zhong, Xiongwu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2014-06-01

    A three-dimensional (3D) interconnected graphene framework (GF)-based SnO2 nanocomposite (3D SnO2/GFs) was prepared using self-assembly of polystyrene (PS)@SnO2 nanospheres and graphene oxide (GO) nanosheets under suitable pH conditions, followed by a thermal treatment. The electroactive material (SnO2) is anchored to the wall of electrochemically and ionically conductive 3D interconnected GFs. When used as anodes for LIBs, the 3D SnO2/GFs deliver an excellent reversible capacity (1244 mA h g-1 in 50 cycles at 100 mA g-1) and outstanding rate capability (754 mA h g-1 in 200 cycles at 1000 mA g-1). The ultra-small size of SnO2 (sub 10 nm) and dimensional confinement of SnO2 nanoparticles by the wall of GFs limit the volume expansion upon lithium insertion, and the 3D interconnected porous structures serve as buffered spaces during charge-discharge and result in superior electrochemical performance by facilitating the electrolyte to contact the entire nanocomposite materials and reduce lithium diffusion length in the nanocomposite.A three-dimensional (3D) interconnected graphene framework (GF)-based SnO2 nanocomposite (3D SnO2/GFs) was prepared using self-assembly of polystyrene (PS)@SnO2 nanospheres and graphene oxide (GO) nanosheets under suitable pH conditions, followed by a thermal treatment. The electroactive material (SnO2) is anchored to the wall of electrochemically and ionically conductive 3D interconnected GFs. When used as anodes for LIBs, the 3D SnO2/GFs deliver an excellent reversible capacity (1244 mA h g-1 in 50 cycles at 100 mA g-1) and outstanding rate capability (754 mA h g-1 in 200 cycles at 1000 mA g-1). The ultra-small size of SnO2 (sub 10 nm) and dimensional confinement of SnO2 nanoparticles by the wall of GFs limit the volume expansion upon lithium insertion, and the 3D interconnected porous structures serve as buffered spaces during charge-discharge and result in superior electrochemical performance by facilitating the electrolyte to contact

  17. Superior lithium storage in a 3D macroporous graphene framework/SnO₂ nanocomposite.

    PubMed

    Liu, Xiaowu; Cheng, Jianxiu; Li, Weihan; Zhong, Xiongwu; Yang, Zhenzhong; Gu, Lin; Yu, Yan

    2014-07-21

    A three-dimensional (3D) interconnected graphene framework (GF)-based SnO₂ nanocomposite (3D SnO₂/GFs) was prepared using self-assembly of polystyrene (PS)@SnO₂ nanospheres and graphene oxide (GO) nanosheets under suitable pH conditions, followed by a thermal treatment. The electroactive material (SnO₂) is anchored to the wall of electrochemically and ionically conductive 3D interconnected GFs. When used as anodes for LIBs, the 3D SnO₂/GFs deliver an excellent reversible capacity (1244 mA h g(-1) in 50 cycles at 100 mA g(-1)) and outstanding rate capability (754 mA h g(-1) in 200 cycles at 1000 mA g(-1)). The ultra-small size of SnO₂ (sub 10 nm) and dimensional confinement of SnO₂ nanoparticles by the wall of GFs limit the volume expansion upon lithium insertion, and the 3D interconnected porous structures serve as buffered spaces during charge-discharge and result in superior electrochemical performance by facilitating the electrolyte to contact the entire nanocomposite materials and reduce lithium diffusion length in the nanocomposite.

  18. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.

    PubMed

    Wang, Xu-Dong; Xu, Yang-Fan; Chen, Bai-Xue; Zhou, Ning; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2016-10-20

    Cupric oxide (CuO), a narrow-bandgap semiconductor, has a band alignment that makes it an ideal photocathode for the renewable production of solar fuels. However, the photoelectrochemical performance of CuO is limited by its poor conductivity and short electron diffusion lengths. Herein, a three-dimensional (3D) architecture consisting of CuO nanosheets supported onto transparent conducting macroporous antimony-doped tin oxide (mpATO@CuONSs) is designed as an excellent photocathode for promoting the hydrogen evolution reaction (HER). Owing to the 3D structure affording superior light-harvesting characteristics, large contact areas with the electrolyte, and highly conductive pathways for separation and transport of charge carriers, the mpATO@CuONSs photocathode produces an impressively high photocurrent density of -4.6 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE), which is much higher than that of the CuONSs array onto planar FTO glass (-1.9 mA cm(-2) ).

  19. 3D Differentiation of Neural Stem Cells in Macroporous Photopolymerizable Hydrogel Scaffolds

    PubMed Central

    Li, Hang; Wijekoon, Asanka; Leipzig, Nic D.

    2012-01-01

    Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm2, 10 wt%, 6330±1160 µm2, 20 wt%, 7600±1550 µm2) compared with controls (0 wt%, 3150±220 µm2). Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation. PMID:23144988

  20. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds.

    PubMed

    Li, Hang; Wijekoon, Asanka; Leipzig, Nic D

    2012-01-01

    Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm(2), 10 wt%, 6330±1160 µm(2), 20 wt%, 7600±1550 µm(2)) compared with controls (0 wt%, 3150±220 µm(2)). Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation.

  1. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  2. Ordered macroporous quercetin molecularly imprinted polymers: Preparation, characterization, and separation performance.

    PubMed

    Feng, Yonggang; Liu, Qin; Ye, Lifang; Wu, Quanzhou; He, Jianfeng

    2017-02-01

    Ordered macroporous molecularly imprinted polymers were prepared by a combination of the colloidal crystal templating method and the molecular imprinting technique by using SiO2 colloidal crystal as the macroporogen, quercetin as the imprinting template, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and tetrahydrofuran as the solvent. Scanning electron microscopy and Brunauer-Emmett-Teller measurements show that the ordered macroporous molecularly imprinted polymers have a more regular macroporous structure, a narrower pore distribution and a greater porosity compared with the traditional bulk molecularly imprinted polymers. The kinetic and isothermal adsorption behaviors of the polymers were investigated. The results indicate that the ordered macroporous molecularly imprinted polymers have a faster intraparticle mass transfer process and a higher adsorption capacity than the traditional bulk molecularly imprinted polymers. The ordered macroporous molecularly imprinted polymers were further employed as a sorbent for a solid-phase extraction. The results show that the ordered macroporous molecularly imprinted polymers can effectively separate quercetin from the Gingko hydrolysate.

  3. A Highly-Ordered 3D Covalent Fullerene Framework**

    PubMed Central

    Minar, Norma K; Hou, Kun; Westermeier, Christian; Döblinger, Markus; Schuster, Jörg; Hanusch, Fabian C; Nickel, Bert; Ozin, Geoffrey A; Bein, Thomas

    2015-01-01

    A highly-ordered 3D covalent fullerene framework is presented with a structure based on octahedrally functionalized fullerene building blocks in which every fullerene is separated from the next by six functional groups and whose mesoporosity is controlled by cooperative self-assembly with a liquid-crystalline block copolymer. The new fullerene-framework material was obtained in the form of supported films by spin coating the synthesis solution directly on glass or silicon substrates, followed by a heat treatment. The fullerene building blocks coassemble with a liquid-crystalline block copolymer to produce a highly ordered covalent fullerene framework with orthorhombic Fmmm symmetry, accessible 7.5 nm pores, and high surface area, as revealed by gas adsorption, NMR spectroscopy, small-angle X-ray scattering (SAXS), and TEM. We also note that the 3D covalent fullerene framework exhibits a dielectric constant significantly lower than that of the nonporous precursor material. PMID:25958846

  4. Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells.

    PubMed

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Feng, Hao-Lin; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-05-05

    Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron-hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material-nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2 -TiO2 , SnO2 -TiO2 , and Zn2 SnO4 -TiO2 ; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2 . Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2 -macroporous material-TiO2 -nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.

  5. Growth and adipogenic differentiation of mesenchymal stromal bone marrow cells during culturing in 3D macroporous agarose cryogel sponges.

    PubMed

    Petrenko, Yu A; Petrenko, A Yu; Damshkaln, L G; Volkova, N A; Lozinsky, V I

    2008-07-01

    We studied the possibility of population of macroporous agarose cryogel sponges by mesenchymal stromal bone marrow cells with their subsequent adipogenic differentiation. After 7-day culturing of mesenchymal stromal cells in agarose cryogel, the level of cell proliferation was 35%. After 3-week culturing in a medium inducing adipogenesis we observed accumulation of intracellular neutral lipids positively stained with Oil Red O. These findings can be used for the development of bioengineering constructions of the adipose tissue on the basis of spongy carriers.

  6. Topological order in an exactly solvable 3D spin model

    SciTech Connect

    Bravyi, Sergey; Leemhuis, Bernhard; Terhal, Barbara M.

    2011-04-15

    Research highlights: RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice. RHtriangle The ground space of the model exhibits topological quantum order. RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes. RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes. - Abstract: We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on {Omega}(R{sup 2}) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

  7. Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Liu, Yong; Li, Ming; Huang, Hong; Zhong, Minyi; Shen, Hui

    2009-10-01

    Large-scale macroporous TiO2 nanowires (MTN) were directly grown on spiral-shaped titanium wires as photoanodes of dye-sensitized solar cells (DSSCs) via a facile hydrothermal reaction without any seeds, templates, and TiO2 powder. The MTN thin film was characterized by SEM, XRD and TEM. The studies revealed that the MTN thin film had better mechanical properties and provided an efficient pathway for the diffusion of liquid electrolyte. The efficiency of 0.86% for the 3D DSSC was obtained with a J sc of 2.30 mA/cm2, V oc of 616 mV, and FF of 0.61. This MNT-based mini 3D DSSC is a promising photovoltaic device for applications in the fields of high-integrated micro-electronic equipment.

  8. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  9. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony-Doped SnO2 Macropore/Branched α-Fe2O3 Nanorod Heterojunction Photoanode.

    PubMed

    Xu, Yang-Fan; Rao, Hua-Shang; Chen, Bai-Xue; Lin, Ying; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-07-01

    Utilizing photoelectrochemical (PEC) cells to directly collecting solar energy into chemical fuels (e.g., H2 via water splitting) is a promising way to tackle the energy challenge. α-Fe2O3 has emerged as a desirable photoanode material in a PEC cell due to its wide spectrum absorption range, chemical stability, and earth abundant component. However, the short excited state lifetime, poor minority charge carrier mobility, and long light penetration depth hamper its application. Recently, the elegantly designed hierarchical macroporous composite nanomaterial has emerged as a strong candidate for photoelectrical applications. Here, a novel 3D antimony-doped SnO2 (ATO) macroporous structure is demonstrated as a transparent conducting scaffold to load 1D hematite nanorod to form a composite material for efficient PEC water splitting. An enormous enhancement in PEC performance is found in the 3D electrode compared to the controlled planar one, due to the outstanding light harvesting and charge transport. A facile and simple TiCl4 treatment further introduces the Ti doping into the hematite while simultaneously forming a passivation layer to eliminate adverse reactions. The results indicate that the structural design and nanoengineering are an effective strategy to boost the PEC performance in order to bring more potential devices into practical use.

  10. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode

    PubMed Central

    Xu, Yang‐Fan; Rao, Hua‐Shang; Chen, Bai‐Xue; Lin, Ying; Chen, Hong‐Yan; Su, Cheng‐Yong

    2015-01-01

    Utilizing photoelectrochemical (PEC) cells to directly collecting solar energy into chemical fuels (e.g., H2 via water splitting) is a promising way to tackle the energy challenge. α‐Fe2O3 has emerged as a desirable photoanode material in a PEC cell due to its wide spectrum absorption range, chemical stability, and earth abundant component. However, the short excited state lifetime, poor minority charge carrier mobility, and long light penetration depth hamper its application. Recently, the elegantly designed hierarchical macroporous composite nanomaterial has emerged as a strong candidate for photoelectrical applications. Here, a novel 3D antimony‐doped SnO2 (ATO) macroporous structure is demonstrated as a transparent conducting scaffold to load 1D hematite nanorod to form a composite material for efficient PEC water splitting. An enormous enhancement in PEC performance is found in the 3D electrode compared to the controlled planar one, due to the outstanding light harvesting and charge transport. A facile and simple TiCl4 treatment further introduces the Ti doping into the hematite while simultaneously forming a passivation layer to eliminate adverse reactions. The results indicate that the structural design and nanoengineering are an effective strategy to boost the PEC performance in order to bring more potential devices into practical use. PMID:27980959

  11. 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions.

    PubMed

    Ouyang, Liliang; Yao, Rui; Chen, Xi; Na, Jie; Sun, Wei

    2015-02-18

    3D printing has evolved into a versatile technology for fabricating tissue-engineered constructs with spatially controlled cells and biomaterial distribution to allow biomimicking of in vivo tissues. In this paper, we reported a novel study of 3D printing of cell lines derived from human embryonic kidney tissue into a macroporous tissue-like construct. Nozzle temperature, chamber temperature and the composition of the matrix material were studied to achieve high cell viability (>90%) after 3D printing and construct formation. Long-term construct stability with a clear grid structure up to 30 days was observed. Cells continued to grow as cellular spheroids with strong cell-cell interactions. Two transfected cell lines of HEK 293FT were also 3D printed and showed normal biological functions, i.e. protein synthesis and gene activation in responding to small molecule stimulus. With further refinement, this 3D cell printing technology may lead to a practical fabrication of functional embryonic tissues in vitro.

  12. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    SciTech Connect

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  13. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowu; Wu, Ying; Yang, Zhenzhong; Pan, Fusen; Zhong, Xiongwu; Wang, Jiaqing; Gu, Lin; Yu, Yan

    2015-10-01

    Nitrogen-doped 3D graphene frameworks (N-3D GFs) were synthesized by a facile two-step method: Polystyrene (PS) encapsulated in graphene oxide (GO) composites (denoted as PS@GO) are first synthesized, followed by a post-thermal annealing in ammonia step to get N-doped 3D GFs. The resulting N-3D GFs inherit the advantages of graphene, which possesses high electrical conductivity and high specific surface area. Furthermore, the well-defined 3D interconnected structure can facilitate the access of the electrolyte to the electrode surface, thus shortening the diffusion length of both Li+/e-, keeping the overall electrode highly conductive and active in lithium storage. Simultaneously, the in-situ formation of pyridinic N and pyrrolic N in 3D GFs provide high electronic conductivity and structure stability for lithium storage. The designed N-3D GFs electrode delivers a high specific capacity of 1094 mAhg-1 after 100 cycles at 200 mAg-1 and superior rate capability (691 mAhg-1 after 500 cycles at 1000 mAg-1) when used as anode for LIBs. We believe that such an inherently inexpensive, scalable, facile method can significantly increase the feasibility of building high performance energy storage system.

  14. Optical and electrochemical properties of ordered macroporous gold array on the ITO surface

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Liu, Yongping; Han, Guo-Cheng

    2011-06-01

    The electrochemical and optical properties of transparent, two-dimensional macroporous gold film were investigated. Colloidal crystal templates were assembled onto indium-doped tin oxide (ITO) glass surface through vertical depositing method. Following gold electrodeposition, they were removed by dissolution with tetrahydrofuran (THF). The highly ordered macroporous gold array was achieved. It was characterized by scanning electron microscope (SEM) and ultraviolet visible (UV-vis) spectrophotometry. The optical transparency of the gold film was near 25% and fairly constant between 300 and 900 nm. The macroporous gold film electrode was mounted into a thin-layer transmission cell. The electrochemical response was evaluated by thin-layer cyclic voltammograms (CV) of the Fe (CN) 63-/Fe (CN) 64- couple. Thin-layer cell exhibits good shape of waves and nearly symmetric cathodic and anodic waves. E0' value and n of TMPD + rad /TMPD (TMPD is acronyms for N,N,N',N'-tetramethyl-p-phenylenediamine, and TMPD + rad is its mono-cation radical) couple were determined. Furthermore, results demonstrated electrolytic equilibrium was faster reached in macroporous gold film than ITO electrode.

  15. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  16. Degradation of methylene blue by three-dimensionally ordered macroporous titania.

    PubMed

    Srinivasan, Madhavi; White, Tim

    2007-06-15

    Accelerated photodegradation of methylene blue (MB) over three-dimensionally ordered macroporous (3DOM) titania (pore sizes: 0.5 and 1 microm) is demonstrated. The catalysts were synthesized by colloidal crystal templating against polystyrene spheres using a metal alkoxide precursor. The 3DOM titania walls which are predominantly anatase (> 98%) were decorated homogeneously with gold nanoparticles (5-7 nm) by pH-controlled precipitation of Au from HAuCl4 using sodium hydroxide. A combination of powder X-ray diffraction (XRD), analytical transmission electron microscopy (ATEM) and X-ray photoelectron spectroscopy (XPS) confirmed the deposition of Au(0) on the 3DOM titania macroporous walls. Photocatalytic activity was monitored by following the degradation of MB with activity benchmarked against commercial P25 (Degussa) and powdertitania prepared by hydrolysis of titanium ethoxide. Macroporous 3DOM titania with pore diameter 0.5 microm had the highest first-order rate constant of 0.042 min(-1) for decomposition of MB, compared to 0.025 min(-1) for P25 titania. Deposition of gold on the 3DOM titania surfaces decreased the reaction rate by covering the surface active sites.

  17. 3D structure of macropore networks within natural and de-embarked estuary saltmarsh sediments: towards an improved understanding of network structural control over hydrologic function

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Spencer, Kate; James, Tempest; Lucy, Diggens

    2015-04-01

    Saltmarshes are globally important environments which, though occupying < 4% of the Earth's surface, provide a range of ecosystem services. Yet, they are threatened by sea level rise, human population growth, urbanization and pollution resulting in degradation. To compensate for this habitat loss many coastal restoration projects have been implemented over the last few decades, largely driven by legislative requirements for improved biodiversity e.g. the EU Habitats Directive and Birds Directive. However, there is growing evidence that restored saltmarshes, recreated through the return to tidal inundation of previously drained and defended low-lying coastal land, do not have the same species composition even after 100 years and while environmental enhancement has been achieved, there may be consequences for ecosystem functioning This study presents the findings of a comparative analysis of detailed sediment structure and hydrological functioning of equivalent natural and de-embanked saltmarsh sediments at Orplands Farm, Essex, UK. 3D x-ray CT scanning of triplicate undisturbed sediment cores recovered in 2013 have been used to derive detailed volumetric reconstructions of macropore structure and networks, and to infer differences in bulk microporosity between natural and de-embanked saltmarshes. These volumes have been further visualised for qualitative analysis of the main sediment components, and extraction of key macropore space parameters for quantified analysis including total porosity and connectivity, as well as structure, organisation and efficiency (tortuosity) of macropore networks. Although total porosity was significantly greater within the de-embanked saltmarsh sediments, pore networks in these samples were less organised and more tortuous, and were also inferred to have significantly lower micro-porosity than those of the natural saltmarsh. These datasets are applied to explain significant differences in the hydraulic behaviour and functioning

  18. Electrodeposition of Three Dimensionally Ordered Macroporous Germanium from Two Different Ionic Liquids.

    PubMed

    Hao, Jian; Zhao, Jiupeng; Zhang, Yiwen; An, Xiaokun; Liu, Xin; Li, Yao; Endres, Frank

    2016-01-01

    Three dimensionally ordered macroporous (3DOM) Ge films have been made via ordered polystyrene (PS) templates by electrodeposition from ionic liquids 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide and 1-Ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate at room temperature. We discuss the possibility of obtaining high quality 3DOM Ge films from two different ionic liquids by the simple and inexpensive template-assisted electrochemical pathway. Scanning electron microscopy confirms the quality of the samples, and the optical measurements demonstrate that 3DOM Ge made electrochemically shows photonic crystal behavior. Such a material has the potential to make 3DOM Ge feasible for electrical, optical applications and for photonic crystal solar cells.

  19. 78 FR 76377 - Makism3D Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... COMMISSION Makism3D Corp.; Order of Suspension of Trading December 13, 2013. It appears to the Securities and... trading in the securities of Makism3D Corp. (``Makism3D'') because of concerns regarding the accuracy and... protection of investors require a suspension of trading in the securities of the above-listed...

  20. Realtime infiltration process monitoring in macroporous soil - a plot-scale experiment accompanied by high-resolution time-lapse 3D GPR

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Allroggen, Niklas

    2016-04-01

    Infiltration and quick vertical redistribution of event water through rapid subsurface flow in soil structures is one of the key issues in hydrology. Although the importance of preferential flow is broadly recognised, our theories, observation techniques and modelling approaches lose grounds when the assumption of well-mixed states in REVs collapses. To characterise the combination of advective and diffusive flow is especially challenging. We have shown in earlier studies that a combination of TDR monitoring, dye- and salt-tracer recovery and time-lapse 3D GPR in irrigation experiments provides means to characterise infiltration dynamics at the plot- and hillslope-scale also in highly structured soils. We pinpointed that the spatial and temporal resolution requires special attention and improvement - particularly owing to the facts of high velocity (10-3 ms-1) of advective flow and small scale (10-2 m) of the respective flow structures. We present insights from a novel technique of continuous high-resolution time-lapse 3D GPR measurements during and after a plot-scale (1 m x 1 m) irrigation experiment. Continuous TDR soil moisture measurements, dye tracer excavation and salt-tracer samples are used as qualitative and quantitative references. While classical infiltration experiments either look at spatial patterns or temporal dynamics at singular gauges, we highlight the advantage of combining both to achieve a more complete image of the infiltration process. Although operating at the limits of the techniques this setup enables non-invasive observation of preferential flow processes in the field and allows to explore and characterise macropore matrix exchange.

  1. Cadmium and lead ion capture with Three dimensionally ordered macroporous hydroxyapatite.

    PubMed

    Srinivasan, Madhavi; Ferraris, Cristiano; White, Tim

    2006-11-15

    The capability of three dimensionally ordered macroporous (3DOM) hydroxyapatite, Ca10(PO4)6(OH)2 (HAp), to capture cadmium and lead ions from their respective salt solutions was studied as a function of temperature. Synthesis of 3DOM material was achieved by colloidal crystal templating of polystyrene spheres (1 microm diameter) using calcium nitrate (Ca(NO3)2) and orthophosphoric acid (H3PO4) as precursors. The macroporous product consisted primarily of HAp (>80% depending on the sintering temperature) together with amorphous calcium phosphate. The sorption ability of 3DOM material to Cd/Pb ion was benchmarked against HAp powder prepared via the same route without the template. On the basis of quantitative X-ray diffraction (XRD) and analytical transmission electron microscopy(ATEM) 3DOM HAp demonstrated a higher uptake of cadmium, viz. x = 0.71 in Ca10-xCdx(PO4)6(OH)2 than nonporous HAp (x = 0.42). The incorporation of Cd was homogeneous in the 3DOM HAp crystals (as compared to the powder) leading to a decrease in lattice parameters as Cd2+ has a smaller ionic radius compared to Ca2+. A preference for Cd to enter the Ca" tunnel site of HAp was consistent with this being the readily exchangeable site. The lead-bearing solution acted to collapse the macropores through the rapid crystallization of pyromorphite (Pb10(P04)6(OH)2) via a dissolution-precipitation mechanism, possibly promoted by the amorphous component, that overwhelmed HAp ion exchange. The rapid crystallochemical incorporation of Cd and fixation of Pb by 3DOM HAp demonstrates the potential of thin-walled porous structures for the treatment of contaminated waters.

  2. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    PubMed Central

    Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling

    2013-01-01

    The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize

  3. Preparation of oxide particles with ordered macropores by colloidal templating and spray pyrolysis

    SciTech Connect

    Abdullah, Mikrajuddin; Iskandar, Ferry; Shibamoto, Shinji; Ogi, Takashi; Okuyama, Kikuo . E-mail: okuyama@hiroshima-u.ac.jp

    2004-10-04

    Silicon dioxide, titanium dioxide, aluminium dioxide, zirconium dioxide, and yttrium dioxide particles containing macropores with ordered, hexagonal closed packing structures were produced by spray pyrolysis. A mixture of a solution of the oxide source (nitrous metal) and a colloid comprised of polystyrene latex (PSL) particles was used. The process involved initial drying at low temperature to evaporate the solvent, followed by drying at high temperature to permit the pyrolysis reaction to occur and to decompose the PSL beads. This takes place in a vertical reactor and requires around 1-2 s. This method can, in principle, be used to produce various types of oxide particles containing ordered pores. It allows easy control of the particle size, pore size and space, and the porosity of particles. Bragg reflection of the powdered material was observed under ultraviolet irradiation.

  4. Cytotoxicity of three-dimensionally ordered macroporous sol-gel bioactive glass (3DOM-BG).

    PubMed

    Zhang, Kai; Washburn, Newell R; Simon, Carl G

    2005-08-01

    In this study, 80% SiO(2)-20% CaO (mole fraction) three-dimensionally ordered macroporous sol-gel bioactive glass (3DOM-BG, average pore size: 345 nm) particles were prepared and characterized. Since the 3DOM-BGs have a novel microstructure and ion-releasing profile, the cytotoxicity of 3DOM-BG particles was tested. The cytotoxicity tests were performed using MC3T3-E1 osteoblast-like cells: (1) Wst-1 assay for cell viability after culture in extracts from 3DOM-BG particles; (2) phase contrast microscopy for cell morphology after culture with 3DOM-BG particles; and (3) fluorescence microscopy for imaging cells cultured directly on 3DOM-BG particles. The results showed that 3DOM-BG particles were not cytotoxic, and that cells attached, spread and proliferated on and around 3DOM-BG particles.

  5. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides.

    PubMed

    Wang, Yonglan; Jin, Jun; Yuan, Caixia; Zhang, Fan; Ma, Linlin; Qin, Dongdong; Shan, Duoliang; Lu, Xiaoquan

    2015-01-21

    A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs). Due to the strong affinity of phosphate groups with ZrO2 and the advantages of OMP such as high catalytic activity and good conductivity, the developed sensor showed a limit of detection as low as 2.28 × 10(-10) mol L(-1) (S/N = 3) by square-wave voltammograms, and good selectivity, acceptable reproducibility and stability. Most importantly, this novel sensor was successfully applied to detect MP in real samples of apple and cabbage. It is expected that this method has potential applications in electrochemical sensing platforms with simple, sensitive, selective and fast analysis.

  6. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    PubMed

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co4O4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  7. Enhanced cycle stability of LiCoPO4 by using three-dimensionally ordered macroporous polyimide separator

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-05-01

    To enhance the low cycle stability of LiCoPO4, the development of stable separators in batteries is required, since they are oxidized in the high-voltage system at around 5 V, affecting the cycle performance of high-voltage lithium-ion batteries. The performance of the batteries also depends on the porous structure of separators. Here we report improved coulombic efficiency and capacity retention of LiCoPO4 by using a three-dimensionally ordered macroporous polyimide (3DOM PI) separator, compared with a conventional polypropylene separator with heterogeneous pore structure. The enhanced cycle stability of the cell using 3DOM PI separator is attributed to its ordered macroporous structure and high anodic stability. The uniform current distribution created by the ordered macroporous structure results in the low overpotential during charge process, preventing the oxidation of electrolyte and the growth of the resistive film on the cathode surface during cycling. Furthermore, the high anodic stability of 3DOM PI separator maintains its chemical and macroporous structures after cycling at high potentials, leading to the superior stability of the cell.

  8. A specific state variable for a class of 3D continuous fractional-order chaotic systems

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Cheng, Yuan-Ming; Kuang, Fei

    2010-07-01

    A specific state variable in a class of 3D continuous fractional-order chaotic systems is presented. All state variables of fractional-order chaotic systems of this class can be obtained via a specific state variable and its (q-order and 2q-order) time derivatives. This idea is demonstrated by using several well-known fractional-order chaotic systems. Finally, a synchronization scheme is investigated for this fractional-order chaotic system via a specific state variable and its (q-order and 2q-order) time derivatives. Some examples are used to illustrate the effectiveness of the proposed synchronization method.

  9. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    NASA Astrophysics Data System (ADS)

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-03-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ•g‑1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

  10. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film.

    PubMed

    Chen, Xiaojun; Wang, Yuanyuan; Zhou, Jinjun; Yan, Wei; Li, Xinghua; Zhu, Jun-Jie

    2008-03-15

    A novel label-free immunosensor for the detection of C-reactive protein (CRP) was developed based on a three-dimensional ordered macroporous (3DOM) gold film modified electrode by using the electrochemical impedance spectroscopy (EIS) technique. The electrode was electrochemically fabricated with an inverted opal template, making the surface area of the 3DOM gold film up to 14.4 times higher than that of a classical bare flat one, characterized by the cyclic voltammetric (CV) technique. The 3DOM gold film which was composed of interconnected gold nanoparticles not only has a good biocompatible microenvironment but also promotes the increase of conductivity and stability. The CRP immunosensor was developed by covalently conjugating CRP antibodies with 3-mercaptopropionic acid (MPA) on the 3DOM gold film electrode. The CRP concentration was measured through the increase of impedance values in the corresponding specific binding of CRP antigen and CRP antibody. The increased electron-transfer resistance (R(et)) values were proportional to the logarithmic value of CRP concentrations in the range of 0.1 to 20 ng mL(-1). The detection of CRP levels in three sera obtained from hospital showed acceptable accuracy.

  11. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  12. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O(2) batteries.

    PubMed

    Guo, Ziyang; Zhou, Dandan; Dong, Xiaoli; Qiu, Zijie; Wang, Yonggang; Xia, Yongyao

    2013-10-18

    Three-dimensional ordered mesoporous/macroporous carbon sphere arrays (MMCSAs) are synthesized and then used as a catalyst for Li-O2 batteries. The hierarchical porous structure of the MMCSAs not only facilitates electrolyte immersion and Li(+) diffusion but also provides an effective space for O2 diffusion and O2 /Li2 O2 conversion, and thus efficiently improves the performance of Li-O2 batteries.

  13. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range.

    PubMed

    Wei, Xuli; Liu, Changming; Niu, Liting; Zhang, Zhongqi; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2015-12-20

    We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams.

  14. Proof-of-Concept: Assembling Carbon Nanocrystals for Ordered 3D Network

    DTIC Science & Technology

    2011-12-13

    for 3D ordering carbon nanotube networks. In this project, a ultra-thin poly( methyl methacrylate ) (PMMA) was coated to ~50nm graphene film. At the...mechanical performance. Subsequently, the filtered graphene film was immersed into acetone to etch the filter membrane, and the resultant freestanding

  15. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    SciTech Connect

    Sathyaseelan, B.; Manigandan, A.; Anbarasu, V.; Sivakumar, K.

    2015-06-24

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  16. Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2009-01-01

    Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.

  17. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, B.; Manigandan, A.; Anbarasu, V.; Sivakumar, K.

    2015-06-01

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption-desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  18. 3D spiral cardiac/respiratory ordered fMRI data acquisition at 3 Tesla.

    PubMed

    Stenger, V A; Peltier, S; Boada, F E; Noll, D C

    1999-05-01

    Three-dimensional (3D), multi-shot functional magnetic resonance imaging (fMRI) data acquisitions are desirable because of higher resolution and reduced susceptibility artifacts, due to shorter readouts and thinner slices. However, 3D multi-shot techniques are more susceptible to physiological noise, which can increase inter-image variance and lead to inaccurate assessment of activation. This work presents a 3D spiral fMRI data acquisition method at 3 T in which the acquisition of views was ordered to match the phase of either the respiratory or the cardiac cycle. For the acquisition timing parameters used in this work, cardiac ordering was found to reduce inter-image variance by 19%. Cardiac ordered data acquisitions showed the same reduction in variance as sequentially ordered data with cardiac contributions estimated and removed using an externally acquired reference prior to reconstruction. Respiratory ordering showed no reduction in fluctuation noise due to poor alignment of views to the respiratory phase.

  19. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  20. Determining the chronological order of crossing lines using 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Heikkinen, V.; Barbeau, C.; Kassamakov, I.; Lehto, S.; Reinikainen, T.; Aaltonen, J.; Hæggström, E.

    2010-10-01

    The chronological order of creation of crossing lines scratched into a copper surface was determined using 3D profiles measured with SWLI and CM. As the methods used are based only on the deformations of the surface and since the imaging techniques can be used for different materials, the proposed methods are potentially effective also on other materials. Determining the chronological order of orthogonally crossing lines is studied in forensic science. The order of creation of such lines allows in some cases determination of the history of an object without comparing it to other objects.. Methods based on two dimensional (2D) imaging have been used for this task, but such methods are ineffective if the lines are made with a similar tool. We apply Scanning White Light Interferometry (SWLI) and Confocal Microscopy (CM) to study crossing lines on a copper surface scratched with a scratching device. Both SWLI and CM quantitatively measure the 3D surface profiles with sufficient accuracy for forensic applications. 3D image processing allows removing unimportant features, such as surface form and roughness, as well as measurement noise from the measured profiles. Separating inherent features in the crossing area, from other surface characteristics allows one to determine the sequence of creation of the lines even on a rough and wavy surface.

  1. Vascular stents: Coupling full 3-D with reduced-order structural models

    NASA Astrophysics Data System (ADS)

    Avdeev, I.; Shams, M.

    2010-06-01

    Self-expanding nitinol stents are used to treat peripheral arterial disease. The peripheral arteries are subjected to a combination of mechanical forces such as compression, torsion, bending, and contraction. Most commercially available peripheral self-expanding stents are composed of a series of sub-millimeter V-shaped struts, which are laser-cut from a nitinol tube and surface-treated for better fatigue performance. The numerical stent models must accurately predict location and distribution of local stresses and strains caused by large arterial deformations. Full 3-D finite element non-linear analysis of an entire stent is computationally expensive to the point of being prohibitive, especially for longer stents. Reduced-order models based on beam or shell elements are fairly accurate in capturing global deformations, but are not very helpful in predicting stent failure. We propose a mixed approach that combines the full 3-D model and reduced-order models. Several global-local, full 3-D/reduced-order finite element models of a peripheral self-expanding stent were validated and compared with experimental data. The kinematic constraint method used to couple various elements together was found to be very efficient and easily applicable to commercial FEA codes. The proposed mixed models can be used to accurately predict stent failure based on realistic (patient-specific), non-linear kinematic behavior of peripheral arteries.

  2. Extension of Efficient Low Dissipative High Order Schemes for 3-D Curvilinear Moving Grids

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yee H. C.; Koga, Dennis (Technical Monitor)

    2000-01-01

    The efficient low dissipative high order schemes proposed by Yee et al. is formulated for 3-D curvilinear moving grids. These schemes consists of a high order base schemes combined with nonlinear characteristic filters. The amount of numerical dissipation is minimized by applying the schemes to the entropy splitting form of the inviscid flux derivatives. The analysis is given for a thermally perfect gas. The main difficulty in the extension of higher order schemes that were formulated in Cartesian coordinates to curvilinear moving grids is the higher order transformed metric evaluations. The higher order numerical evaluation of the transformed metric terms to insure freestream preservation is done in a coordinate invariant manner. The formulation is an improvement over existing formulation of high order scheme in curvilinear moving grids.

  3. Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation

    PubMed Central

    Wang, Yin; Zhang, Jun

    2010-01-01

    We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737

  4. GISAXS analysis of 3D nanoparticle assemblies--effect of vertical nanoparticle ordering.

    PubMed

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-02-03

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions-layer-by-layer Langmuir-Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished-no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir-Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found.

  5. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Staeckel transform and 3D classification theory

    SciTech Connect

    Kalnins, E.G.; Kress, J.M.; Miller, W. Jr.

    2006-04-15

    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Staeckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Staeckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems.

  6. Higher Order Finite Element Methods for Compositional Simulation in 3D Multiphase Multicomponent Flow

    NASA Astrophysics Data System (ADS)

    Shahraeeni, E.; Firoozabadi, A.

    2012-12-01

    We present a 3D model for fully compositional multi-phase multi-component flow in porous media with species transfer between the phases. Phase properties are modeled with the Peng-Robinson equation of state. Because phase properties may exhibit strong discontinuities, we approximate the mass transport update by the means of discontinuous Galerkin method. Pressure and velocity fields are continuous across the whole domain of solution, which is guaranteed by using the mixed hybrid finite element method. Complexity of the flow necessitates the use of either very fine mesh or higher-order schemes. The use of higher-order finite element methods significantly reduces numerical dispersion and grid orientation effects that plague traditional finite difference methods. We have shown that in 3D the convergence rate of our scheme is twice as first order method and the CPU time may improve up to three orders of magnitude for the same level of accuracy. Our numerical model facilitates accurate simulation of delicate feature of compositional flow like fingering and CO2 injection in complex reservoirs for a broad range of applications, including CO2 sequestration in finite aquifer and water flooded reservoirs with transfer of all species between the phases.

  7. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  8. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    PubMed Central

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  9. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam.

    PubMed

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C; Choe, Heeman; Sung, Yung-Eun

    2016-01-04

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g(-1) at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g(-1) at 2 C, which is close to the best performance of Sn-based nanoscale material so far.

  10. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number

  11. Denoising of 3D magnetic resonance images by using higher-order singular value decomposition.

    PubMed

    Zhang, Xinyuan; Xu, Zhongbiao; Jia, Nan; Yang, Wei; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-01-01

    The denoising of magnetic resonance (MR) images is important to improve the inspection quality and reliability of quantitative image analysis. Nonlocal filters by exploiting similarity and/or sparseness among patches or cubes achieve excellent performance in denoising MR images. Recently, higher-order singular value decomposition (HOSVD) has been demonstrated to be a simple and effective method for exploiting redundancy in the 3D stack of similar patches during denoising 2D natural image. This work aims to investigate the application and improvement of HOSVD to denoising MR volume data. The wiener-augmented HOSVD method achieves comparable performance to that of BM4D. For further improvement, we propose to augment the standard HOSVD stage by a second recursive stage, which is a repeated HOSVD filtering of the weighted summation of the residual and denoised image in the first stage. The appropriate weights have been investigated by experiments with different image types and noise levels. Experimental results over synthetic and real 3D MR data demonstrate that the proposed method outperforms current state-of-the-art denoising methods.

  12. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation.

    PubMed

    Liu, Yuxi; Dai, Hongxing; Deng, Jiguang; Zhang, Lei; Au, Chak Tong

    2012-04-07

    Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m(2) g(-1)) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO(3) as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO(4) samples was evaluated for the degradation of phenol in the presence of a small amount of H(2)O(2) under visible light illumination. The effects of the initial phenol concentration and the H(2)O(2) amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a "(Bi + V):chelating agent" molar ratio of 2:1 being the most appropriate. Among the as-prepared BiVO(4) samples, the one with a surface area of ca. 24 m(2) g(-1) showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L(-1) and in the presence of 0.6 mL H(2)O(2)). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H(2)O(2) was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO(4) is due to the high quality 3D-OM structured BiVO(4) that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination. This journal is © The Royal Society of Chemistry 2012

  13. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration

    PubMed Central

    Yin, Bo; Ma, Pei; Chen, Jun; Wang, Hai; Wu, Gui; Li, Bo; Li, Qiang; Huang, Zhifeng; Qiu, Guixing; Wu, Zhihong

    2016-01-01

    Porous titanium is a kind of promising material for bone substitution, while its bio-inert property results in demand of modifications to improve the osteointegration capacity. In this study, gelatin (Gel) and nano-hydroxyapatite (nHA) were used to construct 3D micro-scaffolds in the pores of porous titanium in the ratios of Gel:nHA = 1:0, Gel:nHA = 1:1, and Gel:nHA = 1:3, respectively. Cell attachment and proliferation, and gene and protein expression levels of osteogenic markers were evaluated in MC3T3-E1 cells, followed by bone regeneration assessment in a rabbit radius defect model. All hybrid scaffolds with different composition ratio were found to have significant promotional effects in cell adhesion, proliferation and differentiation, in which the group with Gel:nHA = 1:1 showed the best performance in vitro, as well as the most bone regeneration volume in vivo. This 3D micro-scaffolds modification may be an innovative method for porous titanium ornamentation and shows potential application values in clinic. PMID:27092492

  14. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  15. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  16. Second order Method for Solving 3D Elasticity Equations with Complex Interfaces

    PubMed Central

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422

  17. Second order Method for Solving 3D Elasticity Equations with Complex Interfaces.

    PubMed

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-08-01

    Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson's ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins..

  18. Second order method for solving 3D elasticity equations with complex interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Xia, Kelin; Wei, Guo-Wei

    2015-08-01

    Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three-dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equations. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques have been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuities of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson's ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.

  19. Subnanomolar Detection Limit Application of Ion-Selective Electrodes with Three-Dimensionally Ordered Macroporous (3DOM) Carbon Solid Contacts

    PubMed Central

    Lai, Chun-Ze; Joyer, Marti M.; Fierke, Melissa A.; Petkovich, Nicholas D.; Stein, Andreas; Bühlmann, Philippe

    2009-01-01

    Solid-contact ion-selective electrodes (SC-ISEs) can exhibit very low detection limits and, in contrast to conventional ISEs, do not require an optimization of the inner filling solution. This work shows that subnanomolar detection limits can also be achieved with SC-ISEs with three-dimensionally ordered macroporous (3DOM) carbon contacts, which have been shown recently to exhibit excellent long-term stabilities and good resistance to the interferences from oxygen and light. The detection limit of 3DOM carbon-contacted electrodes with plasticized poly(vinyl chloride) as membrane matrix can be improved with a high polymer content of the sensing membrane, a large ratio of ionophore and ionic sites, and conditioning with a low concentration of analyte ions. This permits detection limits as low as 1.6×10−7 M for K+ and 4.0×10−11 M for Ag+. PMID:20046876

  20. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance.

    PubMed

    Brezesinski, Torsten; Rohlfing, Dina Fattakhova; Sallard, Sébastien; Antonietti, Markus; Smarsly, Bernd M

    2006-10-01

    WO3 thin layers with nanometer-scale periodicity were prepared by evaporation-induced self-assembly (EISA) using a novel amphiphilic block-copolymer template (poly(ethylene-co-butylene)-block-poly(ethylene oxide)). The evolution of the mesoporous ordered network and the crystallinity of the framework were monitored by 2D-SAXS, WAXS, SEM, XPS, and porosimetry. By annealing the films, the pore-wall crystallinity is adjusted between fully amorphous and highly crystalline without mesostructural degradation. Thus, the crystalline-film framework is composed of phase-pure monoclinic WO3 nanoparticles (12-14 nm in size). Furthermore, heat treatment transforms the originally spherical mesopores into ellipsoids, resulting in a unidirectionally shrunken, but still well-defined and fully accessible bcc mesopore architecture. The influence of mesoporosity and crystallinity on electrochemical/electrochromic characteristics was addressed by monitoring electrochemical features and the absorption changes during Li insertion/extraction (repetitive potentiostatic cycling). Both the amorphous and crystalline mesoporous films possess electrochromic response times on the order of only seconds, which are attributable to the facilitated insertion of guest ions due to shortening of the diffusion path lengths. Also, the insertion/extraction reversibility of crystalline WO3 layers with 3D mesoporosity is improved compared to amorphous ones and reaches values close to 100%.

  1. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation

    NASA Astrophysics Data System (ADS)

    Liu, Yuxi; Dai, Hongxing; Deng, Jiguang; Zhang, Lei; Au, Chak Tong

    2012-03-01

    Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m2 g-1) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO3 as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO4 samples was evaluated for the degradation of phenol in the presence of a small amount of H2O2 under visible light illumination. The effects of the initial phenol concentration and the H2O2 amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a ``(Bi + V) : chelating agent'' molar ratio of 2 : 1 being the most appropriate. Among the as-prepared BiVO4 samples, the one with a surface area of ca. 24 m2 g-1 showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L-1 and in the presence of 0.6 mL H2O2). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H2O2 was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO4 is due to the high quality 3D-OM structured BiVO4 that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination.Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18

  2. A fast hybrid (3-D/1-D) model for thermal radiative transfer in cirrus via successive orders of scattering

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Céline; Szczap, Fredéric; Platnick, Steven; Dubuisson, Philippe; Thieuleux, François

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 μm and 12.05 μm) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  3. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  4. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  5. Templated Non-Oxide Sol-Gel Preparation of Well-Ordered Macroporous (inverse opal) Ta3N5 Films

    PubMed Central

    2013-01-01

    Reactions of Ta(NMe2)5 and n-propylamine are shown to be an effective system for sol-gel processing of Ta3N5. Ordered macroporous films of Ta3N5 on silica substrates have been prepared by infiltration of such a sol into close-packed sacrificial templates of cross-linked 500 nm polystyrene spheres followed by pyrolysis under ammonia to remove the template and crystallize the Ta3N5. Templates with long-range order were produced by controlled humidity evaporation. Pyrolysis of a sol-infiltrated template at 600 °C removes the polystyrene but does not crystallize Ta3N5, and X-ray diffraction shows nanocrystalline TaN plus amorphous material. Heating at 700 °C crystallizes Ta3N5 while retaining a high degree of pore ordering, whereas at 800 °C porous films with a complete loss of order are obtained. PMID:23947333

  6. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  7. Receptor-based detection of 2,4-dinitrotoluene using modified three-dimensionally ordered macroporous carbon electrodes.

    PubMed

    Fierke, Melissa A; Olson, Eric J; Bühlmann, Philippe; Stein, Andreas

    2012-09-26

    Detection of explosives, such as 2,4,6-trinitrotoluene (TNT), is becoming increasingly important. Here, 2,4-dinitrotoluene (DNT, a common analogue of TNT) is detected electrochemically. A receptor based electrode for the detection of DNT was prepared by modifying the surface of the walls of three-dimensionally ordered macroporous (3DOM) carbon. Nitrophenyl groups were first attached by the electrochemical reduction of 4-nitrobenzenediazonium ions, followed by potentiostatic reduction to aminophenyl groups. Chemical functionalization reactions were then performed to synthesize the receptor, which contains two urea groups, and a terminal primary amine. Detection of DNT using cyclic voltammetry was impeded by a large background current that resulted from the capacitance of 3DOM carbon. Detection by square wave voltammetry eliminated the background current and improved the detection limit. Unfunctionalized 3DOM carbon electrodes showed no response to DNT, whereas the receptor-modified electrodes responded to DNT with a detection limit of 10 μM. Detection of DNT was possible even in the presence of interferents such as nitrobenzene.

  8. The "Pure Marriage" between 3D Printing and Well-Ordered Nanoarrays by Using PEALD Assisted Hydrothermal Surface Engineering.

    PubMed

    Xue, Chaowen; Shi, Xiaotong; Fang, Xuan; Tao, Haiyan; Zhu, Hui; Yu, Fen; Ding, Xingwei; Liu, Miaoxing; Fang, Fang; Yang, Fan; Wei, Zhipeng; Chen, Tingtao; Wang, Zongliang; Wang, Guoping; Cheng, Xigao; Wei, Junchao; Lin, Yingjie; Deng, Keyu; Wang, Xiaolei; Xin, Hongbo

    2016-04-06

    For the first time, homogeneous and well-ordered functional nanoarrays were grown densely on the complex structured three-dimensional (3D) printing frameworks through a general plasma enhanced atomic layer deposition (PEALD) assisted hydrothermal surface engineering process. The entire process was free from toxic additives or harmful residues and, therefore, can meet the critical requirements of high-purity products. As a practical example, 3D customized earplugs were precisely manufactured according to the model of ear canals at the 0.1 mm level. Meanwhile, well-ordered ZnO nanoarrays, formed on the surfaces of these 3D printed earplugs, could effectively prevent the growth of five main pathogens derived from the patients with otitis media and exhibited excellent wear resistance as well. On the basis of both animal experiments and volunteers' investigations, the 3D customized earplugs showed sound insulation capabilities superior to those of traditional earplugs. Further animal experiments demonstrated the potential of as-modified implant scaffolds in practical clinical applications. This work, exemplified with earplugs and implant scaffolds, oriented the development direction of 3D printing in biomedical devices, which precisely integrated customized architecture and tailored surface performance.

  9. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals.

    PubMed

    Rao, Yanying; Tao, Qin; An, Ming; Rong, Chunhui; Dong, Jian; Dai, Yurong; Qian, Weiping

    2011-11-01

    In this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution. The surface-enhanced Raman scattering (SERS) enhancement factor (EF) of this 2D ordered gold nanobowl array could reach 1.27 × 10(7), which shows high SERS enhancing activity and can be used as a universal SERS substrate.

  10. Layout consistent segmentation of 3-D meshes via conditional random fields and spatial ordering constraints.

    PubMed

    Zouhar, Alexander; Baloch, Sajjad; Tsin, Yanghai; Fang, Tong; Fuchs, Siegfried

    2010-01-01

    We address the problem of 3-D Mesh segmentation for categories of objects with known part structure. Part labels are derived from a semantic interpretation of non-overlapping subsurfaces. Our approach models the label distribution using a Conditional Random Field (CRF) that imposes constraints on the relative spatial arrangement of neighboring labels, thereby ensuring semantic consistency. To this end, each label variable is associated with a rich shape descriptor that is intrinsic to the surface. Randomized decision trees and cross validation are employed for learning the model, which is eventually applied using graph cuts. The method is flexible enough for segmenting even geometrically less structured regions and is robust to local and global shape variations.

  11. Design of novel 3D gene activated PEG scaffolds with ordered pore structure.

    PubMed

    Orsi, Silvia; Guarnieri, Daniela; Netti, Paolo A

    2010-03-01

    The ability to genetically modify cells seeded inside synthetic hydrogel scaffolds offers a suitable approach to induce and control tissue repair and regeneration guiding cell fate. In fact the transfected cells can act as local in vivo bioreactor, secreting plasmid encoded proteins that augment tissue regeneration processes. We have realized a DNA bioactivated high porous poly(ethylene glycol) (PEG) matrix by polyethyleneimine (PEI)/DNA complexes adsorption. As the design of the microarchitectural features of a scaffold also contributes to promote and influence cell fate, we appropriately designed the inner structure of gene activated PEG hydrogels by gelatine microparticles templating. Microarchitectural properties of the scaffold were analysed by scanning electron microscopy. 3D cell migration and transfection were monitored through time-lapse videomicroscopy and confocal laser scanning microscopy.

  12. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoqing; Xue, Chao; Yang, Bolun; Yang, Guidong

    2017-02-01

    Novel three-dimensionally ordered macroporous (3DOM) Fe3+-doped TiO2 photocatalysts were prepared using a colloidal crystal template method with low-cost raw material including ferric trichloride, isopropanol, tetrabutyl titanate and polymethyl methacrylate. The as-prepared 3DOM Fe3+-doped TiO2 photocatalysts were characterized by various analytical techniques. TEM and SEM results showed that the obtained photocatalysts possess well-ordered macroporous structure in three dimensional orientations. As proved by XPS and EDX analysis that Fe3+ ions have been introduced TiO2 lattice and the doped Fe3+ ions can act as the electron acceptor/donor centers to significantly enhance the electron transfer from the bulk to surface of TiO2, resulting in more electrons could take part in the oxygen reduction process thereby decreasing the recombination rate of photogenerated charges. Meanwhile, the 3DOM architecture with the feature of interfacial chemical reaction active sites and optical absorption active sites is remarkably favorable for the reactant transfer and light trapping in the photoreaction process. As a result, the 3DOM Fe3+-doped TiO2 photocatalysts show the considerably higher photocatalytic activity for decomposition of the Rhodamine B (RhB) and the generation of hydrogen under visible light irradiation due to the synergistic effects of open, interconnected macroporous network and metal ion doping.

  13. Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties.

    PubMed

    Tong, Wenxu; Wei, Ying; Murga, Leonel F; Ondrechen, Mary Jo; Williams, Ronald J

    2009-01-01

    A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination

  14. Characterization of Ordered 3D Arrays of Ag2S Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Motte, L.; Billoudet, F.; Thiaudière, D.; Naudon, A.; Pileni, M.-P.

    1997-03-01

    Reverse micelles have been used to synthetize 5.6 nm silver sulfide particles. These nanoparticles are coated with dodecanethiol, extracted from reverse micelles and then dissolved in heptane. The extracting process induces a size selection with a decrease in the polydispersity from 30% to 14%. By leaving a drop of a solution on any support, or immerse the support in the solution, mono and multilayers made of nanosized particles are formed. The monolayer is arranged in a hexagonal network whereas the 3D multilayers are arranged in a face centered cubic structure. From T.E.M. (Transmission Electron Microscopy) and G.I.S.A.X.S (Grazing Incidence Small Angle X-ray Scattering) techniques morphological information is provided. Dans cet article, la préparation et la caractérisation de réseaux ordonnés à deux et trois dimensions de nanocristallites de sulfure d'argent sont présentées. La morphologie des réseaux est étudiée à l'aide de deux techniques : la microscopie électronique à transmission et la diffusion des rayons X aux petits angles sous incidence rasante. La microscopie électronique met en évidence un empilement de nanoparticules selon une structure cubique à faces centrées. La distance moyenne entre particules et le nombre de couches formant la structure tridimensionnelle sont déterminés.

  15. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.

    PubMed

    Ling, Xing Yi; Acikgoz, Canet; Phang, In Yee; Hempenius, Mark A; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan

    2010-08-01

    A new approach for fabricating porous structures on silicon substrates and on polymer surfaces, using colloidal particle arrays with a polymer mask of a highly etch-resistant organometallic polymer, is demonstrated. Monolayers of silica particles, with diameters of 60 nm, 150 nm, 300 nm, or 500 nm, were deposited either on a silicon substrate or on a surface coated with polyethersulfone (PES), and the voids of the arrays were filled with poly(ferrocenylmethylphenylsilane) (PFMPS). Argon ion sputtering removed the excess PFMPS on the particles which enabled removal of the particles with HF. Further pattern transfer steps with reactive ion etching for different time intervals provided structures in silicon or in a PES layer. Free-standing PES membranes exhibiting regular arrays of circular holes with high porosity were fabricated by using cellulose acetate as a sacrificial layer. The pores obtained on silicon substrates after etching were used as molds for nanoimprint lithography (NIL). A combination of the techniques of nanosphere lithography (NSL) and NIL has resulted in 3D nanostructures with a hemispherical shape (inherited from the nanoparticles) which was obtained both in silicon and in PMMA.

  16. Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries.

    PubMed

    Petkovich, Nicholas D; Rudisill, Stephen G; Wilson, Benjamin E; Mukherjee, Anwesha; Stein, Andreas

    2014-01-21

    After several high-profile incidents that raised concerns about the hazards posed by lithium ion batteries, research has accelerated in the development of safer electrodes and electrolytes. One anode material, titanium dioxide (TiO2), offers a distinct safety advantage in comparison to commercialized graphite anodes, since TiO2 has a higher potential for lithium intercalation. In this article, we present two routes for the facile, robust synthesis of nanostructured TiO2/carbon composites for use as lithium ion battery anodes. These materials are made using a combination of colloidal crystal templating and surfactant templating, leading to the first report of a three-dimensionally ordered macroporous TiO2/C composite with mesoporous walls. Control over the size and location of the TiO2 crystallites in the composite (an often difficult task) has been achieved by changing the chelating agent in the precursor. Adjustment of the pyrolysis temperature has also allowed us to strike a balance between the size of the TiO2 crystallites and the degree of carbonization. Using these pathways to optimize electrochemical performance, the primarily macroporous TiO2/C composites can attain a capacity of 171 mAh/g at a rate of 1 C. Additionally, the carbon in these composites can function as a secondary template for high-surface-area, macroporous TiO2 with disordered mesoporous voids. Combining the advantages of a nanocrystalline framework and significant open porosity, the macroporous TiO2 delivers a stable capacity (>170 mAh/g at a rate of C/2) over 100 cycles.

  17. Multi-domain, Higher Order Level Set Scheme for 3D Image Segmentation on the GPU.

    PubMed

    Sharma, Ojaswa; Zhang, Qin; Anton, François; Bajaj, Chandrajit

    2010-06-13

    Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C(0) continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to evaluate level set surfaces that are C(2) continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming solver is efficient in memory usage.

  18. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide.

    PubMed

    Ganga, B G; Santhosh, P N; Nanda, B R K

    2017-04-20

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along [Formula: see text] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along [Formula: see text] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the [Formula: see text] orbital is spin-polarized, then the original long-range ordering is maintained. However, if [Formula: see text] orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  19. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide

    NASA Astrophysics Data System (ADS)

    Ganga, B. G.; Santhosh, P. N.; Nanda, B. R. K.

    2017-04-01

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along ≤ft[1 0 \\bar{1}\\right] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along ≤ft[1 0 1\\right] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the {{d}{{x2}-{{y}2}}} orbital is spin-polarized, then the original long-range ordering is maintained. However, if {{d}{{x2}-{{y}2}}} orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  20. An overset mesh approach for 3D mixed element high-order discretizations

    NASA Astrophysics Data System (ADS)

    Brazell, Michael J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.

    2016-10-01

    A parallel high-order Discontinuous Galerkin (DG) method is used to solve the compressible Navier-Stokes equations in an overset mesh framework. The DG solver has many capabilities including: hp-adaption, curved cells, support for hybrid, mixed-element meshes, and moving meshes. Combining these capabilities with overset grids allows the DG solver to be used in problems with bodies in relative motion and in a near-body off-body solver strategy. The overset implementation is constructed to preserve the design accuracy of the baseline DG discretization. Multiple simulations are carried out to validate the accuracy and performance of the overset DG solver. These simulations demonstrate the capability of the high-order DG solver to handle complex geometry and large scale parallel simulations in an overset framework.

  1. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    conservation in space and time without using a one-dimensional Riemann solver, (ii) genuinely multi-dimensional treatment without dimensional splitting (iii...of the original second-order CESE method, including: (i) flux conservation in space and time without using a one-dimensional Riemann solver, (ii...treated in a unified manner. The geometry for a three-dimensional CESE method is more difficult to visualize than the one- and two-dimensional methods

  2. Increasing 3D Supramolecular Order by Decreasing Molecular Order. A Comparative Study of Helical Assemblies of Dendronized Nonchlorinated and Tetrachlorinated Perylene Bisimides.

    PubMed

    Partridge, Benjamin E; Leowanawat, Pawaret; Aqad, Emad; Imam, Mohammad R; Sun, Hao-Jan; Peterca, Mihai; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2015-04-22

    A nonplanar, twisted, and flexible tetrachlorinated perylene bisimide (Cl4PBI) was functionalized with two AB3 minidendrons containing hydrogenated or semifluorinated dodecyl groups. The hydrogenated dendron was attached to the imide groups of Cl4PBI via m = 0, 1, and 2 methylenic units, whereas the dendron containing semifluorinated groups was attached via m = 3 or a di(ethylene oxide) linker (m = 2EO). The supramolecular structures of these compounds, determined by a combination of differential scanning calorimetry, X-ray diffraction, and solid-state NMR, were compared with those of nonchlorinated planar and rigid PBI reported previously, which demonstrated the thermodynamically controlled formation of 2D periodic arrays at high temperatures and 3D arrays at low temperatures. The molecularly less ordered Cl4PBI containing hydrogenated dendrons self-organize into exclusively 3D crystalline periodic arrays under thermodynamic control for m = 0 and 2, while the more highly molecularly ordered PBI produced less stable and ordered 3D crystals and also 2D assemblies. This induction of a higher degree of 3D order in supramolecular assemblies of the less well-ordered molecular building blocks was unanticipated. The semifluorinated dendronized Cl4PBI with m = 3 formed a 2D columnar hexagonal array under kinetic control, whereas the compound with m = 2EO formed an unusual 2D honeycomb-like hexagonal phase under thermodynamic control. These Cl4PBI compounds provide a new route to stable crystalline assemblies via thermodynamic control at lower temperatures than previously obtained with PBI, thus generating 3D order in an accessible range of temperature of interest for structural analysis and for technological applications.

  3. Postreconstruction filtering of 3D PET images by using weighted higher-order singular value decomposition.

    PubMed

    Liu, Hongbo; Wang, Kun; Tian, Jie

    2016-08-27

    Positron emission tomography (PET) always suffers from high levels of noise due to the constraints of the injected dose and acquisition time, especially in the studies of dynamic PET imaging. To improve the quality of PET image, several approaches have been introduced to suppress noise. However, traditional filters often blur the image edges, or erase small detail, or rely on multiple parameters. In order to solve such problems, nonlocal denoising methods have been adapted to denoise PET images. In this paper, we propose to use the weighted higher-order singular value decomposition for PET image denoising. We first modeled the noise in the PET image as Poisson distribution. Then, we transformed the noise to an additive Gaussian noise by use of the anscombe root transformation. Finally, we denoised the transformed image using the proposed higher-order singular value decomposition (HOSVD)-based algorithms. The denoised results were compared with results from some general filters by performing physical phantom and mice studies. Compared to other commonly used filters, HOSVD-based denoising algorithms can preserve boundaries and quantitative accuracy better. The spatial resolution and the low activity features in PET image also can be preserved by use of HOSVD-based methods. Comparing with the standard HOSVD-based algorithm, the proposed weighted HOSVD algorithm can suppress the stair-step artifact, and the time-consumption is about half of that needed by the Wiener-augmented HOSVD algorithm. The proposed weighted HOSVD denoising algorithm can suppress noise while better preserving of boundary and quantity in PET images.

  4. 3D profile measurements of objects by using zero order Generalized Morse Wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Durmuş, ćaǧla; Elmas, Merve Naz; Coşkun, Emre; Tiryaki, Erhan; Özder, Serhat

    2017-02-01

    Generalized Morse wavelets are proposed to evaluate the phase information from projected fringe pattern with the spatial carrier frequency in the x direction. The height profile of the object is determined through the phase change distribution by using the phase of the continuous wavelet transform. The phase distribution is extracted from the optical fringe pattern choosing zero order Generalized Morse Wavelet (GMW) as a mother wavelet. In this study, standard fringe projection technique is used for obtaining images. Experimental results for the GMW phase method are compared with the results of Morlet and Paul wavelet transform.

  5. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls.

    PubMed

    Li, Huining; Zhang, Lei; Dai, Hongxing; He, Hong

    2009-05-18

    Three-dimensionally (3D) ordered macroporous (3DOM) MgO, gamma-Al(2)O(3), Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) with polycrystalline mesoporous walls have been successfully fabricated with the triblock copolymer EO(106)PO(70)EO(106) (Pluronic F127) and regularly packed monodispersive polymethyl methacrylate (PMMA) microspheres as the template and magnesium, aluminum, cerium and zirconium nitrate(s), or aluminum isopropoxide as the metal source. The as-synthesized metal oxides were characterized by means of techniques such as X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), Fourier transform infrared (FT-IR), high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy/selected area electron diffraction (HRTEM/SAED), BET, carbon dioxide temperature-programmed desorption (CO(2)-TPD), and hydrogen temperature-programmed reduction (H(2)-TPR). It is shown that the as-fabricated MgO, gamma-Al(2)O(3), Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) samples possessed single-phase polycrystalline structures and displayed a 3DOM architecture; the MgO, Ce(0.6)Zr(0.4)O(2), and Ce(0.7)Zr(0.3)O(2) samples exhibited worm-hole-like mesoporous walls, whereas the gamma-Al(2)O(3) samples exhibited 3D ordered mesoporous walls. The solvent (ethanol or water) nature and concentration, metal precursor, surfactant, and drying condition have an important impact on the pore structure and surface area of the final product. The introduction of surfactant F127 to the synthesis system could significantly enhance the surface areas of the 3DOM metal oxides. With PMMA and F127 in a 40% ethanol solution, one can generate well-arrayed 3DOM MgO with a surface area of 243 m(2)/g and 3DOM Ce(0.6)Zr(0.4)O(2) with a surface area of 100 m(2)/g; with PMMA and F127 in an ethanol-HNO(3) solution, one can obtain 3DOM gamma-Al(2)O(3)with a surface area of 145 m(2)/g. The 3DOM MgO and 3DOM gamma-Al(2)O(3) samples showed

  6. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  7. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    PubMed Central

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-01-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems. PMID:26228055

  8. A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie

    2016-07-01

    We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu).

  9. High order spatial expansion for the method of characteristics applied to 3-D geometries

    SciTech Connect

    Naymeh, L.; Masiello, E.; Sanchez, R.

    2013-07-01

    The method of characteristics is an efficient and flexible technique to solve the neutron transport equation and has been extensively used in two-dimensional calculations because it permits to deal with complex geometries. However, because of a very fast increase in storage requirements and number of floating operations, its direct application to three-dimensional routine transport calculations it is not still possible. In this work we introduce and analyze several modifications aimed to reduce memory requirements and to diminish the computing burden. We explore high-order spatial approximation, the use of intermediary trajectory-dependent flux expansions and the possibility of dynamic trajectory reconstruction from local tracking for typed subdomains. (authors)

  10. A 3D High-Order Unstructured Finite-Volume Algorithm for Solving Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A three-dimensional finite-volume algorithm based on arbitrary basis functions for time-dependent problems on general unstructured grids is developed. The method is applied to the time-domain Maxwell equations. Discrete unknowns are volume integrals or cell averages of the electric and magnetic field variables. Spatial terms are converted to surface integrals using the Gauss curl theorem. Polynomial basis functions are introduced in constructing local representations of the fields and evaluating the volume and surface integrals. Electric and magnetic fields are approximated by linear combinations of these basis functions. Unlike other unstructured formulations used in Computational Fluid Dynamics, the new formulation actually does not reconstruct the field variables at each time step. Instead, the spatial terms are calculated in terms of unknowns by precomputing weights at the beginning of the computation as functions of cell geometry and basis functions to retain efficiency. Since no assumption is made for cell geometry, this new formulation is suitable for arbitrarily defined grids, either smooth or unsmooth. However, to facilitate the volume and surface integrations, arbitrary polyhedral cells with polygonal faces are used in constructing grids. Both centered and upwind schemes are formulated. It is shown that conventional schemes (second order in Cartesian grids) are equivalent to the new schemes using first degree polynomials as the basis functions and the midpoint quadrature for the integrations. In the new formulation, higher orders of accuracy are achieved by using higher degree polynomial basis functions. Furthermore, all the surface and volume integrations are carried out exactly. Several model electromagnetic scattering problems are calculated and compared with analytical solutions. Examples are given for cases based on 0th to 3rd degree polynomial basis functions. In all calculations, a centered scheme is applied in the interior, while an upwind

  11. Propagation of 3D nonlinear waves over complex bathymetry using a High-Order Spectral method

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2016-04-01

    Scattering of regular and irregular surface gravity waves propagating over a region of arbitrary three-dimensional varying bathymetry is considered here. The three-dimensional High-Order Spectral method (HOS) with an extension to account for a variable bathymetry is used. The efficiency of the model has been proved to be conserved even with this extension. The method is first applied to a bathymetry consisting of an elliptical lens, as used in the Vincent and Briggs (1989) experiment. Incident waves passing across the lens are transformed and a strong convergence region is observed after the elliptical mound. The wave amplification depends on the incident wave. Numerical results for regular and irregular waves are analysed and compared with other methods and experimental data demonstrating the efficiency and practical applicability of the present approach. Then the method is used to model waves propagating over a real bathymetry: the canyons of Scripps/La Jolla in California. The implementation of this complex bathymetry in the model is presented, as well as the first results achieved. They will be compared to the ones obtained with another numerical model.

  12. Three-dimensionally ordered macroporous nitroxide polymer brush electrodes prepared by surface-initiated atom transfer polymerization for organic radical batteries.

    PubMed

    Lin, Chun-Hao; Chou, Wei-Jen; Lee, Jyh-Tsung

    2012-01-01

    The synthesis and electrochemical performance of three-dimensionally ordered macroporous (3DOM) nitroxide polymer brush electrodes for organic radical batteries are reported. The 3DOM electrodes are synthesized via polystyrene colloidal crystal templating with electropolymerization of polypyrrole, modification of surface initiator, and surface-initiated atom transfer radical polymerization. The discharge capacity of the 3DOM electrodes is proportional to the thickness of the inverse opal. The discharge capacity of the 3DOM electrode at a discharge rate of 5 C is 40 times higher than that of the planar electrode; its cycle-life performance exhibits 96.1% retention after 250 cycles.

  13. A new high-order finite volume method for 3D elastic wave simulation on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan; Zhang, Lina

    2017-07-01

    In this paper, we proposed a new efficient high-order finite volume method for 3D elastic wave simulation on unstructured tetrahedral meshes. With the relative coarse tetrahedral meshes, we make subdivision in each tetrahedron to generate a stencil for the high-order polynomial reconstruction. The subdivision algorithm guarantees the number of subelements is greater than the degrees of freedom of a complete polynomial. We perform the reconstruction on this stencil by using cell-averaged quantities based on the hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume method, our new method has a very local property like DG and can be written as an inner-split computational scheme which is beneficial to reducing computational amount. Moreover, the stencil in our method is easy to generate for all tetrahedrons especially in the three-dimensional case. The resulting reconstruction matrix is invertible and remains unchanged for all tetrahedrons and thus it can be pre-computed and stored before time evolution. These special advantages facilitate the parallelization and high-order computations. We show convergence results obtained with the proposed method up to fifth order accuracy in space. The high-order accuracy in time is obtained by the Runge-Kutta method. Comparisons between numerical and analytic solutions show the proposed method can provide accurate wavefield information. Numerical simulation for a realistic model with complex topography demonstrates the effectiveness and potential applications of our method. Though the method is proposed based on the 3D elastic wave equation, it can be extended to other linear hyperbolic system.

  14. Crystal, magnetic and electronic structures of 3d-5d ordered double perovskite Ba2CoReO6

    NASA Astrophysics Data System (ADS)

    Musa Saad H.-E., M.; Rammeh, N.

    2016-12-01

    A comprehensive study on crystal, magnetic and electronic structures of ordered double perovskite Ba2CoReO6 was carried out using X-ray powder diffraction (XRD) and superconducting quantum interference device (SQUID). Also, the density functional theory (DFT) calculations were performed by full potential linear muffin-tin orbital (FP-LMTO) method within the localized spin density approximation (LSDA+U) and generalized gradient approximation (GGA+U). At room temperature, the crystal structure of Ba2CoReO6 is face-centered cubic, space group Fm 3 bar m , containing an almost completely ordered arrangement of CoO6-ReO6 octahedra. Magnetic structure showed an antiferromagnetic (AF) behavior below TN=41 K. The magnetic and electronic structures are consistent with the electronic configurations Co2+(3d7)-Re6+(5d1) having a total spin magnetic moment of about 2.0 μB/f.u. DFT electronic structures predicted half-metallic yields from 3d-t2g↓ and 5d-t2g↓ through O2-.

  15. Formulation and implementation of a high-order 3-D domain integral method for the extraction of energy release rates

    NASA Astrophysics Data System (ADS)

    Ozer, H.; Duarte, C. A.; Al-Qadi, I. L.

    2012-04-01

    This article presents a three dimensional (3-D) formulation and implementation of a high-order domain integral method for the computation of energy release rate. The method is derived using surface and domain formulations of the J-integral and the weighted residual method. The J-integral along 3-D crack fronts is approximated by high-order Legendre polynomials. The proposed implementation is tailored for the Generalized/eXtended Finite Element Method and can handle discontinuities arbitrarily located within a finite element mesh. The domain integral calculations are based on the same integration elements used for the computation of the stiffness matrix. Discontinuities of the integrands across crack surfaces and across computational element boundaries are fully accounted for. The proposed method is able to deliver smooth approximations and to capture the boundary layer behavior of the J-integral using tetrahedral meshes. Numerical simulations of mode-I and mixed mode benchmark fracture mechanics examples verify expected convergence rates for the computed energy release rates. The results are also in good agreement with other numerical solutions available in the literature.

  16. Fabrication of three-dimensional ordered macroporous spinel CoFe2O4 as efficient bifunctional catalysts for the positive electrode of lithium-oxygen batteries.

    PubMed

    Kim, Jong Guk; Noh, Yuseong; Kim, Youngmin; Lee, Seonhwa; Kim, Won Bae

    2017-04-20

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4 (CFO) catalysts were prepared by using the colloidal crystal templating method to be used as bifunctional catalysts of Li-O2 battery positive electrodes. In order to study the relationship between the macropore diameter and charge/discharge behavior, 3DOM CFO catalysts with two different pore diameters of 140 and 60 nm were prepared. The physicochemical properties of the 3DOM CFO catalysts were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. When the 3DOM CFO catalyst with a pore diameter of 140 nm (CFO@140) was used in the O2-electrode of Li-O2 batteries, it exhibited a substantially enhanced discharge capacity (ca. 11 658.5 mA h g(-1)) in the first cycle. Moreover, the Li-O2 cells with the CFO@140 catalyst showed cycling stability over 47 cycles at a limited capacity of 500 mA h g(-1) with a reduced potential polarization of 1.13 V, as compared with that with Ketjen Black carbon and the 3DOM CFO of 60 nm pore diameter (CFO@60). Their high cycling stability, low overpotential, high round-trip efficiency, and high rate performance suggest that these 3DOM CFO catalysts could be promising O2-electrode catalysts for next-generation lithium-oxygen batteries.

  17. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  18. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates.

    PubMed

    Gierszal, Kamil P; Kim, Tae-Wan; Ryoo, Ryong; Jaroniec, Mietek

    2005-12-15

    Adsorption and structural properties of inverse carbon replicas of two ordered siliceous P6mm and Ia3d mesostructures have been studied by nitrogen adsorption, powder X-ray diffraction, and transmission electron microscopy. These carbon replicas were prepared by filling the pores of SBA-15 and KIT-6 siliceous templates with various carbon precursors followed by carbonization and silica dissolution. Sucrose, furfuryl alcohol, acenaphthene, mesophase pitch, and petroleum pitch were used to obtain inverse carbon replicas of SBA-15 and KIT-6. While structural properties of the resulting ordered mesoporous carbons are mainly determined by the hard template used, their adsorption properties depend on the type of the carbon precursor.

  19. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    PubMed

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  20. Optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B.; Métivier, L.; Brossier, R.

    2016-09-01

    We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.

  1. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect

    Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope

    2012-07-15

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  2. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  3. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  4. Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO{sub 4}, CaCO{sub 3}, and SrCO{sub 3}, and photonic stop band properties of 3DOM CaCO{sub 3}

    SciTech Connect

    Sadakane, Masahiro; Kato, Rika; Murayama, Toru; Ueda, Wataru

    2011-08-15

    Three-dimensionally ordered macroporous (3DOM) magnesium (Mg) oxide (MgO), MgSO{sub 4}, calcium (Ca) carbonate (CaCO{sub 3}), and strontium (Sr) carbonate (SrCO{sub 3}) were prepared using a colloidal crystal of polymer spheres as a template. Ethanol or ethanol-water solution of metal salts (acetate or nitrate) and citric acid was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-citric acid composite produced the desired well-ordered 3DOM materials with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) diffuse reflectance spectra. The presence of citric acid is crucial for production of the 3DOM structures. Reaction of citric acid with metal salt produces metal citrate solid in the void of PMMA spheres, which is necessary to maintain the 3DOM structure during the calcination process. 3DOM CaCO{sub 3} shows opalescent colors because of it's photonic stop band properties. - Graphical abstract: Well-ordered 3-dimensionally ordered macroporous MgO, MgSO{sub 4}, CaCO{sub 3}, and SrCO{sub 3} materials were obtained in a high pore fraction. Highlights: > An easy preparation method of 3D ordered macroporous (3DOM) MgO, MgSO{sub 4}, CaCO{sub 3}, and SrCO{sub 3} materials. > Their structural characterization. > Their formation mechanism. > Photonic properties of 3DOM CaCO{sub 3}.

  5. A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems.

    PubMed

    Chen, Shuiliang; He, Guanghua; Hu, Xiaowu; Xie, Mingyun; Wang, Suqin; Zeng, Daojie; Hou, Haoqing; Schröder, Uwe

    2012-06-01

    Top of the crops: The direct use of a natural three-dimensional (3D) architecture in microbial fuel cells (MFCs) is reported for the first time. Stems from the crop plant kenaf (Hibiscus cannabinus) are carbonized and used as anode material in MFCs. The current density generated by the carbon is comparable to that of other 3D anodes prepared by other methods. The renewable and low-cost characteristics of this material provide an excellent basis for large-scale application in microbial bioelectrochemcial systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    DOE PAGES

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; ...

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less

  7. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    NASA Astrophysics Data System (ADS)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  8. [Determination of carmine in carbonated beverages using 3-D fluorescence spectra coupled with second-order calibration algorithm].

    PubMed

    Li, Run; Chen, Guo-qing; Zhu, Chun; Kong, Fan-biao; Hu, Yang-jun

    2014-12-01

    Three-dimensional fluorescence spectra combined with second-order calibration algorithm based on alternate a weighted residual (ANWE) was applied to the direct concentration determination of carmine in carbonated beverages. Firstly, 3-D fluorescence spectra of carmine and sunset yellow mixed solutions with different concentrations were obtained by employing spectrometer, and analyzed by using ANWE, the correlation coefficient between calibration concentration and the actual concentration was 0.9917, and the average recovery was 100.92%±2.71%. The results show that the ANWE algorithm is reliable. Then, the commercial carbonated soft drinks in 8, 9, 12 and 13 times diluted concentration were detected by using ANWE algorithm, the correlation coefficient between relative concentration and the actual concentration were 0.9930, 0.9930, 0.9932 and 0.7932, respectively, and the contents of carmine in beverage were 38.88, 37.71, 37.68 and 39.65 μg · mL(-1), respectively. The average concentration was (38.48±0.96) μg · mL(-1). Finally, the standard addition method was applied to estimate the prediction accuracy between calibration concentration and the actual concentration was 0.9935, and the average recovery was 102.99%±2.15%. The results can provide a new idea for the rapid content determination of food pigments in commercial beverages.

  9. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    PubMed Central

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-01-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669

  10. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties.

    PubMed

    Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  11. A novel preparation of three-dimensionally ordered macroporous M/Ti (M=Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity.

    PubMed

    Wang, Changhua; Geng, Aifang; Guo, Yihang; Jiang, Shujuan; Qu, Xuesong; Li, Li

    2006-09-01

    Three-dimensionally ordered macroporous (3 DOM) M/Ti (M=Zr or Ta) mixed oxides were prepared by cohydrolysis of a mixture of Zr(n-OC(4)H(9))(4)/TTIP or TaCl(5)/TTIP (TTIP=titanium isopropoxide) combined with a polystyrene (PS) latex sphere templating technique. The resulting products exhibited homogeneous wall compositions, namely, Zr or Ta was uniformly dispersed into the TiO(2) framework with the loading levels of 5, 10, and 20 mol% for Zr and 2.5, 5.0, and 7.5 mol% for Ta, respectively. The estimated macropore diameter, wall thickness, and particle size of the products ranged from 280 to 290 nm, from 30 to 50 nm, and from 10 to 12 nm, respectively. The products showed only anatase phase structure although their starting solitary metal oxides exhibited suitable crystalline structures under the same preparation conditions. Raman scattering spectroscopy showed that the crystal structure of titania had a slight interference due to the incorporation of Zr or Ta, and UV-vis diffuse reflectance spectroscopy (DRS) showed the narrower band gap of the products compared with that of pure anatase TiO(2). The products exhibited mesoporous wall structures, and their BET surface areas were higher than those of the corresponding pure 3 DOM metal oxides. The UV-light photocatalytic activity of the products was assessed by monitoring the photodegradation of two organic molecules including 4-nitrophenol (4-NP) and rhodamine B (RB). Both the photocatalytic reactions confirmed that the presence of the second metal oxide in the titania framework resulted in enhanced photocatalytic activity compared with the pure titania framework.

  12. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  13. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  14. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    NASA Astrophysics Data System (ADS)

    Bellomo, Enrico Giuseppe

    2005-07-01

    chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.

  15. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: the glass-transition temperature.

    PubMed

    Sadakane, Masahiro; Sasaki, Keisuke; Nakamura, Hiroki; Yamamoto, Takashi; Ninomiya, Wataru; Ueda, Wataru

    2012-12-21

    We demonstrate that the glass-transition temperature (T(g)) of a polymer sphere template is a crucial factor in the production of three-dimensionally ordered macroporous (3DOM) materials. Metal nitrate dissolved in ethylene glycol-methanol was infiltrated into the void of a face-centered, close-packed colloidal crystal of poly(methyl methacrylate) (PMMA)-based spheres. The metal nitrate reacts with EG to form a metal oxalate (or metal glycoxylate) solid (nitrate oxidation) in the void of the template when the metal nitrate-EG-PMMA composite is heated. Further heating converts metal oxalate to metal oxide and removes PMMA to form 3DOM materials. We investigated the effect of T(g) of PMMA templates and obtained clear evidence that the solidification temperature of the metal precursor solution (i.e., nitration oxidation temperature) should be lower than the T(g) of the polymer spheres to obtain a well-ordered 3DOM structure.

  16. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S.; Lieber, Charles M.

    2012-11-01

    The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.

  17. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.

    PubMed

    Liu, Jia; Xie, Chong; Dai, Xiaochuan; Jin, Lihua; Zhou, Wei; Lieber, Charles M

    2013-04-23

    Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precursors, which are fabricated by conventional lithography. The 3D networks have porosities larger than 99%, contain approximately hundreds of addressable nanowire devices, and have feature sizes from the 10-μm scale (for electrical and structural interconnections) to the 10-nm scale (for device elements). The macroporous nanoelectronic networks were merged with organic gels and polymers to form hybrid materials in which the basic physical and chemical properties of the host were not substantially altered, and electrical measurements further showed a >90% yield of active devices in the hybrid materials. The positions of the nanowire devices were located within 3D hybrid materials with ∼14-nm resolution through simultaneous nanowire device photocurrent/confocal microscopy imaging measurements. In addition, we explored functional properties of these hybrid materials, including (i) mapping time-dependent pH changes throughout a nanowire network/agarose gel sample during external solution pH changes, and (ii) characterizing the strain field in a hybrid nanoelectronic elastomer structures subject to uniaxial and bending forces. The seamless incorporation of active nanoelectronic networks within 3D materials reveals a powerful approach to smart materials in which the capabilities of multifunctional nanoelectronics allow for active monitoring and control of host systems.

  18. Universal Bounds for the Littlewood-Paley First-Order Moments of the 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Otto, Felix; Ramos, Fabio

    2010-12-01

    We derive upper bounds for the infinite-time and space average of the L 1-norm of the Littlewood-Paley decomposition of weak solutions of the 3 D periodic Navier-Stokes equations. The result suggests that the Kolmogorov characteristic velocity scaling, {mathbf{U}_kappa˜ɛ^{1/3} kappa^{-1/3}} , holds as an upper bound for a region of wavenumbers near the dissipative cutoff.

  19. Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for improving the dissolution rate and oral bioavailability of water-insoluble drugs.

    PubMed

    Liu, Ying; Wu, Chao; Hao, Yanna; Xu, Jie; Zhao, Ying; Qiu, Yang; Jiang, Jie; Yu, Tong; Ji, Peng

    2016-01-25

    In our study, soluble starch was applied as a novel carbon source for preparing three-dimensional ordered macroporous carbon (3DOMC) using monodisperse silica nanospheres as the hard template. The 3DOMC was used as an insoluble drug carrier when it was found that it could markedly improve the water solubility of felodipine (FDP). The structural features of 3DOMC were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The 3DOMC structure was found to have a higher drug loading than microporous and mesoporous structures, and the interconnected nanostructure effectively inhibited the formation of drug crystals. FDP, belonging to the Biopharmaceutics Classification System II (BCSII), was chosen as the model drug and was loaded into the 3DOMC structure by solvent evaporation. The state of FDP in the 3DOMC structure was characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The results obtained showed that FDP was present in the pores in an amorphous or microcrystalline state. In vivo and in vitro experiments indicated that 3DOMC could significantly improve the drug dissolution rate, but the FDP-3DOMC self-made common tablets had the disadvantage of a burst effect. For this reason, osmotic pump technology was used to control the drug release rate. We developed a potentially useful insoluble drug carrier for pharmaceutical applications.

  20. Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes

    PubMed Central

    Fierke, Melissa A.; Lai, Chun-Ze; Bühlmann, Philippe; Stein, Andreas

    2009-01-01

    The effects of the architecture and surface chemistry of three-dimensionally ordered macroporous (3DOM) carbon solid contacts on the properties of ion-selective electrodes (ISEs) were examined. Infiltration of the plasticized PVC membrane into the pores of the carbon created a large interfacial area between the sensing membrane and the solid contact, as shown by cryo-SEM and elemental analysis. This large interfacial area, along with the high capacitance of the 3DOM carbon solid contacts (as determined by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy) results in an excellent long-term stability of the potentiometric response, with drifts as low as 11.7 µV/h. The comparison of 3DOM carbon solid contacts with an untemplated carbon solid contact shows that the pore structure is an essential feature for the excellent electrode performance. However, the surface chemistry of the 3DOM carbon cannot be ignored. While there is no evidence for an aqueous layer forming between the sensing membrane and unoxidized 3DOM carbon, electrodes based on oxidized 3DOM carbon exhibit potentiometric responses with the typical hysteresis indicative of a water layer. A comparison of the different techniques to characterize the solid contacts confirms that constant-current charge-discharge experiments offer an intriguing approach to assess the long-term stability of solid-contact ISEs but shows that their results need to be interpreted with care. PMID:20000696

  1. Three-Dimensional Ordered Macroporous FePO4 as High-Efficiency Catalyst for Rechargeable Li-O2 Batteries.

    PubMed

    Li, Chao; Guo, Ziyang; Pang, Ying; Sun, Yunhe; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-11-23

    The Li-O2 battery is receiving much recent attention because of its superhigh theoretical energy density. However, its performance is limited by the irreversible formation/decomposition of Li2O2 on the cathode and the undesired electrolyte decomposition. In this work, low-cost three-dimensional ordered macroporous (3DOM) FePO4 is synthesized by using polystyrene (PS) spheres template in a facile experimental condition and applied as a high-efficiency catalyst for rechargeable Li-O2 batteries, including good rate performance, high specific capacity, and perfect cycling stability. The superior performances can be attributed to the unique structure of 3DOM FePO4 cathodes, which can provide an efficient buffer space for O2/Li2O2 conversion. In addition, it is demonstrated that the Li(+) intercalation/deintercalation behavior of 3DOM FePO4 in ether-based electrolyte can contribute to capacity for Li-O2 batteries over cycling. As a result, when there is no O2 in the environment, the Li-O2 cell can also be operated as a rechargeable Li-FePO4 cell with a perfect cycle capability.

  2. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D

    PubMed Central

    Fabris, Daniele; Yu, Eizadora T.

    2010-01-01

    Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers, but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown substrates or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns, and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures, while highlighting common elements, salient distinctions, and complementary capabilities exhibited by methods employed in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological substrates. PMID:20648672

  3. A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems

    NASA Astrophysics Data System (ADS)

    Soudah, Eduardo; Rossi, Riccardo; Idelsohn, Sergio; Oñate, Eugenio

    2014-10-01

    A reduced-order model for an efficient analysis of cardiovascular hemodynamics problems using multiscale approach is presented in this work. Starting from a patient-specific computational mesh obtained by medical imaging techniques, an analysis methodology based on a two-step automatic procedure is proposed. First a coupled 1D-3D Finite Element Simulation is performed and the results are used to adjust a reduced-order model of the 3D patient-specific area of interest. Then, this reduced-order model is coupled with the 1D model. In this way, three-dimensional effects are accounted for in the 1D model in a cost effective manner, allowing fast computation under different scenarios. The methodology proposed is validated using a patient-specific aortic coarctation model under rest and non-rest conditions.

  4. Analytical expressions for the gravitational vector field of a 3-D rectangular prism with density varying as an arbitrary-order polynomial function

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Jiang, Li

    2017-08-01

    The computation of gravitational vector field of variable-density bodies has been attracting much attention in high precision gravity investigation. In forward and inverse gravity modeling, a 3-D rectangular prism, as a simple building block, is commonly used to approximate 3-D variable-density bodies with irregular shape. In this paper, we first model the density of a rectangular prism using an arbitrary-order polynomial function of depth, and derive the closed-form expressions for computing the vertical and horizontal components of the gravitational vector field of a 3-D rectangular prism with the polynomial density variation. Then, we extend the polynomial density function of depth to a linear combination of three arbitrary-order polynomial functions in x-, y- and z-directions, and derive the analytical expressions of the gravitational vector field of a 3-D rectangular prism with such more general density function. The analytic expressions are numerically validated and compared with other existing methods. It is shown that the new expressions are far superior to the common method based on the stack of a collection of uniform subprisms in computational efficiency. In addition, the numerical error of the expressions is analysed and the results show that the expressions are available for practical applications.

  5. Modelling macropore flow on the basis of macropore geometry with SWAP

    NASA Astrophysics Data System (ADS)

    Hendriks, R. F. A.; Boesten, J. J. T. I.; van Dam, J. C.; Groenendijk, P.; Tiktak, A.; Walvoort, D. J. J.

    2009-04-01

    Transport at the field scale of agricultural chemicals through structured soils to groundwater and surface waters is often strongly governed by flow through macropores. In the Netherlands, the ANIMO nutrient and PEARL pesticide leaching models are used for policy evaluations and policy support at field, regional and national scales. Both models apply the SWAP model to provide necessary data on water balance and flow. In order to improve simulation of water transport through, and nutrient and pesticide leaching from macroporous soils, SWAP was extended with a physically based description of macropore flow at the field scale. The predominant feature of macropore flow is that precipitation and irrigation water with solutes are routed into macropores at the soil surface, bypassing the reactive unsaturated soil. This water is transported rapidly downwards and distributed over different depths in the soil, down to larger depths or groundwater. The concept adopted in SWAP for macropore flow, is based on a description of the geometry of macropore structure. In this concept, the macropore volume is described on the basis of continuity and persistency and lateral distribution. Regarding continuity, the macropore volume is partitioned into two domains, i.e. a main bypass domain and an internal catchment domain. The bypass domain consists of a system of continuous, interconnected macropores that penetrate relatively deep into the soil. Rapid drainage to drains can occur from this domain. The internal catchment domain consists of discontinuous macropores ending at different depths. Inflow is captured at the bottom of these macropores and forced to infiltrate at that depth. The distribution of macropore volume with depth and over both domains is obtained by analytical equations with five basic input parameters. Dynamic macropore volume is determined from moisture content and the shrinkage characteristics of the soil. Lateral distribution is described with an effective diameter

  6. General principles of describing second- and higher-order null points of a potential magnetic field in 3D

    NASA Astrophysics Data System (ADS)

    Lukashenko, A. T.; Veselovsky, I. S.

    2015-12-01

    General principles of describing secondand higher-order null points of a potential magnetic field are formulated. The potential near a second-order null of the general form can be specified by a linear combination of four basic functions, the list of which is presented. Near secondand higher-order null points, field line equations often cannot be integrated analytically; however, in some cases, it is possible to present a qualitative description of the geometry of null vicinities with consideration of the behavior of field lines near rays outgoing from null, at which the field is radial or equals zero.

  7. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  8. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    SciTech Connect

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; Gaston, Derek R.

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.

  9. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGES

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; ...

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  10. Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering in β-manganese phthalocyanine (C₃₂H₁₆MnN₈).

    PubMed

    Wang, Zhengjun; Seehra, Mohindar S

    2016-04-06

    Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T(C)  ≈  8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T(C) has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ' and χ″, near the quoted T(C). Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k(B)  =  2.6 K and the single ion anisotropy energy parameter |D|/k(B)  =  8.3 K. The absence of 3D long range order is consistent with the measured |D|/  >  J.

  11. Ising-like chain magnetism, Arrhenius magnetic relaxation, and case against 3D magnetic ordering in β-manganese phthalocyanine (C32H16MnN8)

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Seehra, Mohindar S.

    2016-04-01

    Previous magnetic studies in the organic semiconductor β-manganese phthalocyanine (β-MnPc) have reported it to be a canted ferromagnet below T C  ≈  8.6 K. However, the recent result of the lack of a λ-type anomaly in the specific heat versus temperature data near the quoted T C has questioned the presence of long-range 3-dimensional (3D) magnetic ordering in this system. In this paper, detailed measurements and analysis of the temperature (2 K-300 K) and magnetic field (up to 90 kOe) dependence of the dc and ac magnetic susceptibilities in a powder sample of β-MnPc leads us to conclude that 3D long-range magnetic ordering is absent in this material. This is supported by the Arrott plots and the lack of a peak in the ac susceptibilities, χ‧ and χ″, near the quoted T C. Instead, the system can be best described as an Ising-like chain magnet with Arrhenius relaxation of the magnetization governed by an intra-layer ferromagnetic exchange constant J/k B  =  2.6 K and the single ion anisotropy energy parameter |D|/k B  =  8.3 K. The absence of 3D long range order is consistent with the measured \\mid D\\mid   >  J.

  12. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators.

    PubMed

    Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2014-09-22

    Aerogels of high porosity and with a large internal surface area exhibit outstanding performances as thermal, acoustic, or electrical insulators. However, most aerogels are mechanically brittle and optically opaque, and the structural and physical properties of aerogels strongly depend on their densities. The unfavorable characteristics of aerogels are intrinsic to their skeletal structures consisting of randomly interconnected spherical nanoparticles. A structurally new type of aerogel with a three-dimensionally ordered nanofiber skeleton of liquid-crystalline nanocellulose (LC-NCell) is now reported. This LC-NCell material is composed of mechanically strong, surface-carboxylated cellulose nanofibers dispersed in a nematic LC order. The LC-NCell aerogels are transparent and combine mechanical toughness and good insulation properties. These properties of the LC-NCell aerogels could also be readily controlled. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Second-Order Inelastic Dynamic Analysis of 3D Semi-Rigid Steel Frames Under Earthquake Loads with Three Components

    SciTech Connect

    Ozakgul, Kadir

    2008-07-08

    In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain.

  14. Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

    PubMed

    Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong

    2016-09-07

    Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.

  15. 3D late gadolinium enhanced cardiovascular MR with CENTRA-PLUS profile/view ordering: Feasibility of right ventricular myocardial damage assessment using a swine animal model.

    PubMed

    Kawaji, Keigo; Tanaka, Akiko; Patel, Mita B; Wang, Hui; Maffessanti, Francesco; Ota, Takeyoshi; Patel, Amit R

    2017-06-01

    To develop a high-resolution, 3D late gadolinium enhancement (LGE) cardiovascular magnetic resonance imaging (MRI) technique for improved assessment of myocardial scars, and evaluate its performance against 2D breath-held (BH) LGE MRI using a surgically implanted animal scar model in the right ventricle (RV). A k-space segmented 3D LGE acquisition using CENTRA-PLUS (Contrast ENhanced Timing Robust Acquisition with Preparation of LongitUdinal Signal; or CP) ordering is proposed. 8 pigs were surgically prepared with cardiac patch implantation in the RV, followed in 60days by 1.5T MRI. LGE with Phase-Sensitive Inversion Recovery (PSIR) were performed as follows: 1) 2DBH using pneumatic control, and 2) navigator-gated, 3D free-breathing (3DFB)-CP-LGE with slice-tracking. The animal heart was excised immediately after cardiac MR for scar volume quantification. RV scar volumes were also delineated from the 2DBH and 3DFB-CP-LGE images for comparison against the surgical standard. Apparent scar/normal tissue signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR) were also calculated. 3DFB-CP-LGE technique was successfully performed in all animals. No difference in aCNR was noted, but aSNR was significantly higher using the 3D technique (p<0.05). Against the surgical reference volume, the 3DFB-CP-LGE-derived delineation yielded significantly less volume quantification error compared to 2DBH-derived volumes (15±10% vs 55±33%; p<0.05). Compared to conventional 2DBH-LGE, 3DFB-LGE acquisition using CENTRA-PLUS provided superior scar volume quantification and improved aSNR. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum-iron-oxide LaFeO{sub 3} with tunable pore diameters: High porosity and photonic property

    SciTech Connect

    Sadakane, Masahiro; Horiuchi, Toshitaka; Kato, Nobuyasu; Sasaki, Keisuke; Ueda, Wataru

    2010-06-15

    Three-dimensionally ordered macroporous (3DOM) lanthanum-iron-oxide (LaFeO{sub 3}) with different pore diameters was prepared using a colloidal crystal of polymer spheres with different diameters as templates. Ethylene glycol-methanol mixed solution of metal nitrates was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-ethylene glycol composite produced the desired well-ordered 3DOM LaFeO{sub 3} with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury (Hg) porosimetry, and ultraviolet-visible (UV-vis) diffuse reflectance spectra. 3DOM LaFeO{sub 3} with pore diameters of 281 and 321 nm shows opalescent colors because of photonic stop band properties. Catalytic activity of the 3DOM LaFeO{sub 3} for combustion of carbon particles was enhanced by a potassium cation, which was involved from K{sub 2}S{sub 2}O{sub 8} used as a polymerization initiator. - Graphical abstract: Well-ordered three-dimensionally ordered macroporous LaFeO{sub 3} materials with pore sizes ranging from 127 to 321 nm were obtained in a high pore fraction.

  17. Using a time-domain higher-order boundary element method to simulate wave and current diffraction from a 3-D body

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Teng, Bin; Ning, De-Zhi; Sun, Liang

    2010-06-01

    To study wave-current actions on 3-D bodies a time-domain numerical model was established using a higher-order boundary element method (HOBEM). By assuming small flow velocities, the velocity potential could be expressed for linear and higher order components by perturbation expansion. A 4th-order Runge-Kutta method was applied for time marching. An artificial damping layer was adopted at the outer zone of the free surface mesh to dissipate scattering waves. Validation of the numerical method was carried out on run-up, wave exciting forces, and mean drift forces for wave-currents acting on a bottom-mounted vertical cylinder. The results were in close agreement with the results of a frequency-domain method and a published time-domain method. The model was then applied to compute wave-current forces and run-up on a Seastar mini tension-leg platform.

  18. Resonant X-ray scattering measurements of a spatial modulation of the Cu 3d and O 2p energies in stripe-ordered cuprate superconductors.

    PubMed

    Achkar, A J; He, F; Sutarto, R; Geck, J; Zhang, H; Kim, Y-J; Hawthorn, D G

    2013-01-04

    A prevailing description of the stripe phase in underdoped cuprate superconductors is that the charge carriers (holes) phase segregate on a microscopic scale into hole-rich and hole-poor regions. We report resonant elastic x-ray scattering measurements of stripe-ordered La(1.475)Nd(0.4)Sr(0.125)CuO(4) at the Cu L and O K absorption edges that identify an additional feature of stripe order. Analysis of the energy dependence of the scattering intensity reveals that the dominant signature of the stripe order is a spatial modulation in the energies of Cu 3d and O 2p states rather than the large modulation of the charge density (valence) envisioned in the common stripe paradigm. These energy shifts are interpreted as a spatial modulation of the electronic structure and may point to a valence-bond-solid interpretation of the stripe phase.

  19. Macropore Effects on Stream Hydrology at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Menichino, G. T.; Ward, A. S.; Scott, D.; Hester, E. T.

    2011-12-01

    Macropores are connected void spaces commonly found in streambeds that serve as an unobstructed connection between surface water and the shallow groundwater. While macropores have been extensively studied in the vadose zone and as fractures in deep groundwater, there have been a limited number of studies in the shallow subsurface of streams. Macropores that are connected to the surface stream uniquely provide both (1) surface water storage zones and (2) pathways to preferentially transport surface water to the shallow subsurface of streams, enhancing hyporheic exchange. These two mechanisms are commonly lumped together as transient storage and have been shown to impact the biochemical conditions, gradients, and reactions within a stream and its hyporheic zone. We studied surface connected macropores at the patch and reach scales in order to characterize their effects on stream hydrology. At the patch scale, we constructed a 3cm diameter macropore on the upstream side of a meander bend and combined a conservative tracer experiment with electrical resistivity to track solute transport through the bend over time. Tracer tests showed a 28% decrease in the time required to reach downstream monitoring wells and a 25% increase in peak electrical conductivity with the macropore relative to no macropore. Electrical Resistivity Imaging (ERI) tracked the tracer flowpaths through the meander bend, indicating the tracer was preferentially transported when the macropore was present. Falling-head tests across multiple depths and locations verified these results with higher hydraulic conductivities near the constructed macropore. Calculated hydraulic head gradients exhibit an 8% and 27% increase parallel and perpendicular to the macropore, respectively, as compared to no macropore. These results provide strong evidence that macropores act as preferential flowpaths at the patch scale and may therefore have a profound impact on hyporheic zone function. At the reach scale, we

  20. The Relative Abundances of Resolved 12CH2D2 and 13CH3D and Mechanisms Controlling Isotopic Bond Ordering in Abiotic and Biotic Methane Gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Sherwood Lollar, B.; Etiope, G.; Rumble, D.; Li, S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K.; Foustoukos, D.; Sutcliffe, C. N.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Perez-Rodriguez, I. M.; Rowe, A. R.; LaRowe, D.; Magnabosco, C.; Bryndzia, T.

    2016-12-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide important information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis versus biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature of abiotic CH4 formation may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of

  1. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Lollar, B. Sherwood; Etiope, G.; Rumble, D.; Li (李姝宁), S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K. A.; Foustoukos, D. I.; Sutclife, C.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Pérez-Rodríguez, I.; Rowe, A. R.; LaRowe, D. E.; Magnabosco, C.; Yeung, L. Y.; Ash, J. L.; Bryndzia, L. T.

    2017-04-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  2. Synthesis of macroporous structures

    DOEpatents

    Stein, Andreas; Holland, Brian T.; Blanford, Christopher F.; Yan, Hongwei

    2004-01-20

    The present application discloses a method of forming an inorganic macroporous material. In some embodiments, the method includes: providing a sample of organic polymer particles having a particle size distribution of no greater than about 10%; forming a colloidal crystal template of the sample of organic polymer particles, the colloidal crystal template including a plurality of organic polymer particles and interstitial spaces therebetween; adding an inorganic precursor composition including a noncolloidal inorganic precursor to the colloidal crystal template such that the precursor composition permeates the interstitial spaces between the organic polymer particles; converting the noncolloidal inorganic precursor to a hardened inorganic framework; and removing the colloidal crystal template from the hardened inorganic framework to form a macroporous material. Inorganic macroporous materials are also disclosed.

  3. K-Mn supported on three-dimensionally ordered macroporous La0.8Ce0.2FeO3 catalysts for the catalytic combustion of soot

    NASA Astrophysics Data System (ADS)

    Feng, Nengjie; Chen, Chong; Meng, Jie; Liu, Geng; Fang, Fan; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-03-01

    Three-dimensionally ordered macroporous (3DOM) La0.8Ce0.2FeO3 perovskite was successfully constructed through a colloidal crystal template way. And the K-Mn/3DOM La0.8Ce0.2FeO3 catalyst was obtained by an incipient-wetness impregnation method. The physicochemical characterizations of the material were conducted by means of XRD, FESEM, TEM, N2 adsorption-desorption, H2-TPR, XPS and O2-TPD techniques, and the catalytic performance was evaluated for soot removal. The intact well-ordered macroporous skeleton was remained after K and Mn were loaded, which offered an ideal environment for soot combustion. The generated K2Mn4O8 was well decorated on the skeleton of the 3DOM perovskite, which could increase the concentration of surface oxygen species and enhance the reducibility of catalyst. The as-prepared catalyst exhibited good catalytic performance for soot removal, and could lower the T50 of soot to 377 °C.

  4. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  5. Enhanced photovoltaic properties of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells.

    PubMed

    Kim, Hye-Na; Moon, Jun Hyuk

    2012-11-01

    This paper describes the use of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. We employed bilayer inverse opal structures as a backbone of 3D porous structures, and the number of Nb₂O₅ coatings was controlled, determining the concentration of Nb₂O₅ coating. XPS measurements confirmed the formation of Nb₂O₅. The uniformity of the Nb₂O₅ coating was characterized by elemental mapping using SEM and TEM measurements. Photovoltaic measurement on dye-sensitized solar cells (DSSCs) that incorporated Nb₂O₅/TiO₂ inverse opal electrodes yielded a maximum efficiency of 7.23% for a 3.3 wt % Nb₂O₅ coating on a TiO₂ IO structure. The Nb₂O₅ significantly increased the short-circuit current density (J(SC)). Electrochemical impedance spectroscopy was used to measure the J(SC), revealing an enhanced electron injection upon deposition of the Nb₂O₅ coating.

  6. Linking earthworm activity and hydrologically effective macropores in space and time

    NASA Astrophysics Data System (ADS)

    Schneider, Anne-Kathrin; van Schaik, Loes; Zangerlé, Anne; Hohenbrink, Tobias Ludwig; Schröder, Boris

    2017-04-01

    Earthworms create macropore systems through their burrowing activity. Preferential flow through macropores leads to increased infiltration and solute leaching. The hydrological effectiveness of these macropore systems varies in space and time depending on earthworm activity and their ability to refill their burrows to sustain seasonal or occasional drought periods. Thus, linking earthworm activity and spatiotemporal variability in hydrologically effective macropores in an ecohydrological framework yields crucial information for parameterization of macropore flow models. We investigated earthworm abundances and macropore densities by rainfall infiltration experiments with six campaigns during one year at six field sites in Luxembourg in order to link earthworm activity and macropore effectiveness. We used correlative models to predict (i) spatiotemporal variability in earthworm abundances based on weather and topology-derived variables, and (ii) spatiotemporal variability in effective macropore densities based on the same set of predictors as well as earthworm abundances. In this presentation we will show one example for predicting a one-year, daily resolved time series of the earthworm species Aporrectodea longa showing the highest predictive value and the effective macropores of 2-6 mm diameter in 10 cm soil depth. From this time series we picked out four characteristic dates for which we predicted the spatial distribution of A. longa and the related effective macropores for a small-scale catchment at 5 m resolution. We discuss how the outputs of this study (macropore numbers and their uncertainties) can be used to parameterize macropore flow in hydrological models.

  7. A 3D iron(II)-based MOF with squashed cuboctahedral nanoscopic cages showing spin-canted long-range antiferromagnetic ordering.

    PubMed

    Goswami, Soumyabrata; Adhikary, Amit; Jena, Himanshu Sekhar; Biswas, Soumava; Konar, Sanjit

    2013-10-21

    The reaction of dilithium squarate with Fe(II) perchlorate led to the formation of a new Fe(II)-based 3D MOF, [Fe3(OH)3(C4O4)(C4O4)0.5]n (1), with homoleptic squashed cuboctahedral cages. Complex 1 crystallizes in the monoclinic C2/c space group. Fe(II) centers in the complex are octahedrally coordinated by four squarate dianions in axial and equatorial positions and two hydroxyl groups in the remaining equatorial positions. The interesting structural feature of 1 is that the three-dimensional framework is an infinite extension of nanoscopic cuboctahedral cages. The framework also contains two types of voids; the larger hydrophobic ones are surrounded by aromatic squarate ligands, while the smaller ones are hydrophilic with hydroxyl groups on the surface connected by bifurcated hydrogen bonding interaction. A variable temperature magnetic study shows spin-canted long-range antiferromagnetic ordering in the low temperature regime.

  8. First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8.

    PubMed

    Camjayi, A; Acha, C; Weht, R; Rodríguez, M G; Corraze, B; Janod, E; Cario, L; Rozenberg, M J

    2014-08-22

    The nature of the Mott transition in the absence of any symmetry breaking remains a matter of debate. We study the correlation-driven insulator-to-metal transition in the prototypical 3D Mott system GaTa(4)Se(8), as a function of temperature and applied pressure. We report novel experiments on single crystals, which demonstrate that the transition is of first order and follows from the coexistence of two states, one insulating and one metallic, that we toggle with a small bias current. We provide support for our findings by contrasting the experimental data with calculations that combine local density approximation with dynamical mean-field theory, which are in very good agreement.

  9. MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form.

    PubMed

    Ma, Changzheng; Yeo, Tat Soon; Zhao, Yongbo; Feng, Junjie

    2014-05-01

    In inverse synthetic aperture radar (ISAR) imaging, a target is usually regarded as consist of a few strong (specular) scatterers and the distribution of these strong scatterers is sparse in the imaging volume. In this paper, we propose to incorporate the sparse signal recovery method in 3D multiple-input multiple-output radar imaging algorithm. Sequential order one negative exponential (SOONE) function, which forms homotopy between 1 and 0 norms, is proposed to measure the sparsity. Gradient projection is used to solve a constrained nonconvex SOONE function minimization problem and recover the sparse signal. However, while the gradient projection method is computationally simple, it is not robust when a matrix in the algorithm is ill conditioned. We thus further propose using diagonal loading and singular value decomposition methods to improve the robustness of the algorithm. In order to handle targets with large flat surfaces, a combined amplitude and total-variation objective function is also proposed to regularize the shapes of the flat surfaces. Simulation results show that the proposed gradient projection of SOONE function method is better than orthogonal matching pursuit, CoSaMp, l1-magic, Bayesian method with Laplace prior, smoothed l0 method, and l1-ls in high SNR cases for recovery of ± 1 random spikes sparse signal. The quality of the simulated 3D images and real data ISAR images obtained using the new method is better than that of the conventional correlation method and minimum l2 norm method, and competitive to the aforementioned sparse signal recovery algorithms.

  10. Macroporous microcarriers for introducing cells into a microfluidic chip.

    PubMed

    Bergström, G; Nilsson, K; Mandenius, C-F; Robinson, N D

    2014-09-21

    Macroporous gelatin beads (CultiSpher™ microcarriers) provide a convenient method for rapidly and reliably introducing cells cultured ex situ into a microfluidic device, where the spheres create a 3D environment for continued cell proliferation. We demonstrate the usefulness of this technique with a proof-of-concept viability analysis of cardiac cells after treatment with doxorubicin.

  11. A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data—Application to the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean

    2017-04-01

    We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.

  12. A high-order 3D spectral-element method for the forward modelling and inversion of gravimetric data - Application to the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean

    2017-01-01

    We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.

  13. Open-Source Assisted Laboratory Automation through Graphical User Interfaces and 3D Printers: Application to Equipment Hyphenation for Higher-Order Data Generation.

    PubMed

    Siano, Gabriel G; Montemurro, Milagros; Alcaráz, Mirta R; Goicoechea, Héctor C

    2017-09-25

    Higher-order data generation implies some automation challenges, which are mainly related to the hidden programming languages and electronic details of the equipment. When techniques and/or equipment hyphenation are the key to obtaining higher-order data, the required simultaneous control of them demands funds for new hardware, software, and licenses, in addition to very skilled operators. In this work, we present Design of Inputs-Outputs with Sikuli (DIOS), a free and open-source code program that provides a general framework for the design of automated experimental procedures without prior knowledge of programming or electronics. Basically, instruments and devices are considered as nodes in a network, and every node is associated both with physical and virtual inputs and outputs. Virtual components, such as graphical user interfaces (GUIs) of equipment, are handled by means of image recognition tools provided by Sikuli scripting language, while handling of their physical counterparts is achieved using an adapted open-source three-dimensional (3D) printer. Two previously reported experiments of our research group, related to fluorescence matrices derived from kinetics and high-performance liquid chromatography, were adapted to be carried out in a more automated fashion. Satisfactory results, in terms of analytical performance, were obtained. Similarly, advantages derived from open-source tools assistance could be appreciated, mainly in terms of lesser intervention of operators and cost savings.

  14. The "universal" behavior of the Breakthrough Curve in 3D aquifer transport and the validity of the First-Order solution

    NASA Astrophysics Data System (ADS)

    Jankovic, Igor; Maghrebi, Mahdi; Fiori, Aldo; Zarlenga, Antonio; Dagan, Gedeon

    2017-04-01

    We examine the impact of permeability structures on the Breakthrough Curve (BTC) of solute, at a distance x from the injection plane, under mean uniform flow of mean velocity U. The study is carried out through accurate 3D numerical simulations, rather than the 2D models adopted in most of previous works. All structures share the same univariate distribution of the logconductivity Y = lnK and autocorrelation function ρY , but differ in higher order statistics. The main finding is that the BTC of ergodic plumes for the different examined structures is quite robust, displaying a seemingly "universal" behavior. The result is in variance with similar analyses carried out in the past for 2D permeability structures. The basic parameters (i.e. the geometric mean, the logconductivity variance σY 2 and the horizontal integral scale I) have to be identified from field data (e.g. core analysis, pumping test or other methods). However, prediction requires the knowledge of U, and the results suggest that improvement of the BTC prediction in applications can be achieved by independent estimates of the mean velocity U, e.g. by pumping tests, rather than attempting to characterize the permeability structure beyond its second-order characterization. The BTC prediction made by the Inverse Gaussian (IG) distribution, adopting the macrodispersion coefficient estimated by the First Order approximation αL = σY 2I, is also quite robust, providing a simple and effective solution to be employed in applications. The consequences of the latter result are further explored by modeling the mass distribution that occurred at the MADE-1 natural gradient experiment, for which we show that most of the plume features are adequately captured by the simple First Order approach.

  15. Melt-rock reaction in the asthenospheric mantle: Perspectives from high-order accurate numerical simulations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.

    2013-12-01

    The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales

  16. Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael; Sartoris, Rosana P.; Calvo, Hernán L.; Chagas, Edson F.; Rapp, Raul E.

    2016-05-01

    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2•H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(-2.12±0.08) cm-1 (defined as ℋex(i,i+1) = -2J0SiṡSi+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(-2.27±0.02) cm-1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm-1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain

  17. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  18. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  19. Predicting macropores in space and time by earthworms and abiotic controls

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias Ludwig; Schneider, Anne-Kathrin; Zangerlé, Anne; Reck, Arne; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Macropore flow increases infiltration and solute leaching. The macropore density and connectivity, and thereby the hydrological effectiveness, vary in space and time due to earthworms' burrowing activity and their ability to refill their burrows in order to survive drought periods. The aim of our study was to predict the spatiotemporal variability of macropore distributions by a set of potentially controlling abiotic variables and abundances of different earthworm species. We measured earthworm abundances and effective macropore distributions using tracer rainfall infiltration experiments in six measurement campaigns during one year at six field sites in Luxembourg. Hydrologically effective macropores were counted in three soil depths (3, 10, 30 cm) and distinguished into three diameter classes (<2, 2-6, >6 mm). Earthworms were sampled and determined to species-level. In a generalized linear modelling framework, we related macropores to potential spatial and temporal controlling factors. Earthworm species such as Lumbricus terrestris and Aporrectodea longa, local abiotic site conditions (land use, TWI, slope), temporally varying weather conditions (temperature, humidity, precipitation) and soil moisture affected the number of effective macropores. Main controlling factors and explanatory power of the models (uncertainty and model performance) varied depending on the depth and diameter class of macropores. We present spatiotemporal predictions of macropore density by daily-resolved, one year time series of macropore numbers and maps of macropore distributions at specific dates in a small-scale catchment with 5 m resolution.

  20. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  1. Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds

    PubMed Central

    Wei, Guobao; Ma, Peter X

    2009-01-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue engineering applications. PMID:19699518

  2. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    NASA Astrophysics Data System (ADS)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized

  3. Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity.

    PubMed

    Sanamzadeh, Mohammadreza; Tsang, Leung; Johnson, Joel T; Burkholder, Robert J; Tan, Shurun

    2017-03-01

    A theoretical investigation of energy conservation, reflectivity, and emissivity in the scattering of electromagnetic waves from 3D multilayer media with random rough interfaces using the second-order small perturbation method (SPM2) is presented. The approach is based on the extinction theorem and develops integral equations for surface fields in the spectral domain. Using the SPM2, we calculate the scattered and transmitted coherent fields and incoherent fields. Reflected and transmitted powers are then found in the form of 2D integrations over wavenumber in the spectral domain. In the integrand, there is a summation over the spectral densities of each of the rough interfaces with each weighted by a corresponding kernel function. We show in this paper that there exists a "strong" condition of energy conservation in that the kernel functions multiplying the spectral density of each interface obey energy conservation exactly. This means that energy is conserved independent of the roughness spectral densities of the rough surfaces. Results of this strong condition are illustrated numerically for up to 50 rough interfaces without requiring specification of surface roughness properties. Two examples are illustrated. One is a multilayer configuration having weak contrasts between adjacent layers, random layer thicknesses, and randomly generated permittivity profiles. The second example is a photonic crystal of periodically alternating permittivities of larger dielectric contrast. The methodology is applied to study the effect of roughness on the brightness temperatures of the Antarctic ice sheet, which is characterized by layers of ice with permittivity fluctuations in addition to random rough interfaces. The results show that the influence of roughness can significantly increase horizontally polarized thermal emission while leaving vertically polarized emissions relatively unaffected.

  4. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  5. 3D Models of Immunotherapy

    Cancer.gov

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  6. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  7. Imaging and quantification of preferential solute transport in soil macropores

    NASA Astrophysics Data System (ADS)

    Koestel, John; Larsbo, Mats

    2014-05-01

    Despite significant advances during the last decades, there are still many processes related to nonequilibrium flow and transport in macroporous soil that are far from completely understood. The use of X-rays for imaging time-lapse 3-D solute transport has a large potential to help advance the knowledge in this field. We visualized the transport of potassium iodide (20 g iodide l-1 H2O) through a small undisturbed soil column (height 3.8 cm, diameter 6.8 cm) under steady state hydraulic conditions using an industrial X-ray scanner. In addition, the electrical conductivity was measured in the effluent solution during the experiment. We attained a series of seventeen 3-D difference images which we related to iodide concentrations using a linear calibration relationship. The solute transport through the soil mainly took place in two cylindrical macropores, by-passing more than 90% of the bulk soil volume during the entire experiment. From these macropores the solute diffused into the surrounding soil matrix. We illustrated the properties of the investigated solute transport by comparing it to a 1-D convective-dispersive transport and by calculating the temporal evolution of the dilution index. We furthermore showed that the tracer diffusion from one of the macropores into the surrounding soil matrix could not be exactly fitted with the cylindrical diffusion equation. We believe that similar studies will help establish links between soil structure and solute transport processes and lead to improvements in models for solute transport through undisturbed soil.

  8. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  9. Synthesis and crystallization of macroporous hydroxyapatite

    SciTech Connect

    Madhavi, S. . E-mail: madhavi@ntu.edu.sg; Ferraris, C.; White, T.J.

    2005-09-15

    Macroporous hydroxyapatite Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} was synthesized using ordered polystyrene sphere templates that were impregnated with a calcium phosphate precursor solution which was allowed to solidify followed by sintering from 500 to 1000 deg. C in flowing oxygen to remove the polymer and crystallize the phosphates. Using a combination of diffraction and imaging the face-centered cubic macroporous framework was shown to have pore diameters of 0.8-0.9 {mu}m and to be composed of hydroxyapatite (80-98 wt%) and X-ray diffraction amorphous material (14-55%), the proportions dependent on the duration and temperature of heat treatment. At lower sintering temperatures the HAp is calcium deficient. Ion exchange of calcium by cadmium demonstrated the potential of this material for hazardous waste remediation.

  10. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  11. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  12. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm

    PubMed Central

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-01-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach. PMID:23724371

  13. Controlled release of ibuprofen by meso–macroporous silica

    SciTech Connect

    Santamaría, E. Maestro, A.; Porras, M.; Gutiérrez, J.M.; González, C.

    2014-02-15

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84{sub 5

  14. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  18. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  19. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  20. [3D emulation of epicardium dynamic mapping].

    PubMed

    Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang

    2005-03-01

    In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.

  1. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating.

    PubMed

    Jiang, Peng; McFarland, Michael J

    2004-10-27

    This paper reports a simple spin-coating technique for rapidly fabricating three types of technologically important materials--colloidal crystal, macroporous polymer, and polymeric nanocomposite, each with high crystalline qualities and wafer-scale sizes. Dispersion of monodisperse silica colloids in triacrylate monomers is spin-coated onto a variety of substrates. Shear-induced ordering and subsequent polymerization lead to the formation of three-dimensionally (3D) ordered colloidal crystals trapped inside a polymer matrix. The thickness of as-synthesized colloidal crystal-polymer nanocomposite is highly uniform and can be controlled simply by changing the spin speed and time. Selective removal of the polymer matrix and silica spheres lead to the formation of large-area colloidal crystals and macroporous polymers, respectively. The wafer-scale process is compatible with standard semiconductor microfabrication, as multiple micrometer-sized patterns can be created simultaneously for potential device applications. Normal-incidence transmission spectra in the visible and near-infrared regions show distinct peaks due to Bragg diffraction from 3D ordered structures. The spin-coating process opens a new route to the fundamental studies of shear-induced crystallization, melting and relaxation.

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  4. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  5. Relations between macropore network characteristics and the degree of preferential solute transport

    NASA Astrophysics Data System (ADS)

    Larsbo, M.; Koestel, J.; Jarvis, N.

    2014-12-01

    The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport

  6. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  7. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  8. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  9. Macroporous silicon for high-capacitance devices using metal electrodes.

    PubMed

    Vega, Didac; Reina, Jordi; Martí, Ferran; Pavón, Ramón; Rodríguez, Angel

    2014-01-01

    In this paper, high-capacity energy storage devices based on macroporous silicon are demonstrated. Small footprint devices with large specific capacitances up to 100 nF/mm(2), and an absolute capacitance above 15 μF, have been successfully fabricated using standard microelectronics and MEMS techniques. The fabricated devices are suitable for high-density system integration. The use of 3-D silicon structures allows achieving a large surface to volume ratio. The macroporous silicon structures are fabricated by electrochemical etching of silicon. This technique allows creating large structures of tubes with either straight or modulated radial profiles in depth. Furthermore, a very large aspect ratio is possible with this fabrication method. Macroporous silicon grown this way permits well-controlled structure definition with excellent repeatability and surface quality. Additionally, structure geometry can be accurately controlled to meet designer specifications. Macroporous silicon is used as one of the electrodes over which a silicon dioxide insulating layer is grown. Several insulator thicknesses have been tested. The second capacitor electrode is a solid nickel filling of the pores prepared by electroplating in a low-temperature industry standard process. The use of high-conductivity materials allows reaching small equivalent series resistance near 1 Ω. Thanks to these improvements, the presented devices are capable of operating up to 10 kHz. 84.32.Tt; 81.15.Pq; 81.05.Rm.

  10. Macroporous silicon for high-capacitance devices using metal electrodes

    PubMed Central

    2014-01-01

    In this paper, high-capacity energy storage devices based on macroporous silicon are demonstrated. Small footprint devices with large specific capacitances up to 100 nF/mm2, and an absolute capacitance above 15 μF, have been successfully fabricated using standard microelectronics and MEMS techniques. The fabricated devices are suitable for high-density system integration. The use of 3-D silicon structures allows achieving a large surface to volume ratio. The macroporous silicon structures are fabricated by electrochemical etching of silicon. This technique allows creating large structures of tubes with either straight or modulated radial profiles in depth. Furthermore, a very large aspect ratio is possible with this fabrication method. Macroporous silicon grown this way permits well-controlled structure definition with excellent repeatability and surface quality. Additionally, structure geometry can be accurately controlled to meet designer specifications. Macroporous silicon is used as one of the electrodes over which a silicon dioxide insulating layer is grown. Several insulator thicknesses have been tested. The second capacitor electrode is a solid nickel filling of the pores prepared by electroplating in a low-temperature industry standard process. The use of high-conductivity materials allows reaching small equivalent series resistance near 1 Ω. Thanks to these improvements, the presented devices are capable of operating up to 10 kHz. PACS 84.32.Tt; 81.15.Pq; 81.05.Rm PMID:25242906

  11. Characterization, visualization and quantification of soil macropores and preferential flow using SPECT and X-ray CAT scanning

    NASA Astrophysics Data System (ADS)

    Perret, Johan Sebastien

    The presence of soil macropores provides an opportunity for water and associated chemicals to move preferentially through the vadose zone. Most studies on the characterization of macropore flow consider the soil system to be a "black-box". Thus, efforts to describe macropores in quantitative terms have not yet resulted in a comprehensive theoretical framework that allows for a complete representation of their geometry and their effect on preferential flow. Macropore networks in four large undisturbed soil columns (850 mm x 77 mm diameter), were quantified and visualized, both in 2-D and 3-D, using X-ray Computer Assisted Tomography (CAT). Macropore quantification included two-dimensional parameters (i.e., number of macropores, macropore size, hydraulic radius, rectangularity and circularity), and three-dimensional and topological parameters (i.e., macropore length, volume, 3-D hydraulic radius, tortuosity, numerical density, coordination number, and connectivity). Pores larger or equal to 1.0 mm in equivalent diameter were readily detected, visualized and quantified. It was found that the average macroporosity of four soil columns varied between 2.1 and 3.8%. From the hydraulic radius distribution, it was inferred that about 20% of macropore throats have a diameter of 1.6 mm. It was found that the majority of macropore networks had a length of 40 mm, a volume of 60 mm 3 and a wall area of 175 mm2. Breakthrough of potassium iodide was monitored with X-ray CAT scanning. This approach allowed for real-time examination of flow mechanisms through the macropore and matrix flow domains at various depths along the soil column. Flow in the matrix domain suggested that part of the matrix contains small pores (mesopores) that were connected to macropore networks. It is suggested that the matrix domain should be subdivided into two regions: mesopores and micropores. In addition, the macropore domain should be defined both in terms of macropore geometry and its ability to

  12. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  13. Exploration of Macroporous Polymeric Sponges As Drug Carriers.

    PubMed

    Duan, Gaigai; Bagheri, Amir Reza; Jiang, Shaohua; Golenser, Jacob; Agarwal, Seema; Greiner, Andreas

    2017-08-31

    Achieving high drug loading capacity and controlling drug delivery are two main challenges related to drug carriers. In this study, polymeric macroporous sponges with very high pore volume and large porosity are introduced as a new-type of drug carrier. Due to the high pore volume (285 and 166 cm(3)/g for the sponges with densities of 3.5 and 6.0 mg/cm(3), respectively), the sponges exhibit very high drug loading capacities with average values of 1870 ± 114 and 2697 ± 73 mg/g in the present study, which is much higher than the meso and microporous drug carriers (<1500 mg/g). In order to control the release profiles, an additional poly(p-xylylene) (PPX) coating was deposited by chemical vapor deposition on the drug loaded sponge. Consequently, Artemisone (ART) release in the aqueous medium could be retarded, depending on the density of the sponge and the thickness of the coating. In future, the new 3D polymeric sponges would be highly beneficial as drug carriers for the programmed release of drugs for treatment of chronic diseases.

  14. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  15. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  16. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  17. 3-D threat image projection

    NASA Astrophysics Data System (ADS)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat

  18. X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys

    NASA Astrophysics Data System (ADS)

    Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2009-01-01

    We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.

  19. Influence of disorder on ageing and memory effects in non-equilibrium critical dynamics of 3D Ising model relaxing from an ordered state

    NASA Astrophysics Data System (ADS)

    Prudnikov, Vladimir V.; Prudnikov, Pavel V.; Pospelov, Evgeny A.

    2016-04-01

    We have performed a numerical investigation of the influence of disorder on the dynamical non-equilibrium evolution of a 3D site-diluted Ising model from a low-temperature initial state with magnetization m 0  =  1. It is shown that two-time dependences of the autocorrelation and integrated response functions for systems with spin concentrations p  =  1.0, 0.95, 0.8, 0.6 and 0.5 demonstrate ageing properties with anomalous slowing-down relaxation and violation of the fluctuation-dissipation ratio. It was revealed that during non-equilibrium critical dynamics in the long-time regime t-{{t}\\text{w}}\\gg {{t}\\text{w}}\\gg 1 the autocorrelation functions for diluted systems are extremely slow due to the pinning of domain walls on impurity sites. We have found that the fluctuation-dissipation ratio {{X}∞}=0 for diluted systems with spin concentration p  <  1 while the pure system is characterized by {{X}∞}=0.784(7) . The autocorrelation function power-law delay becomes the same as for the time dependence of the magnetization in the critical point and is characterized by exponent -β /zν . Also, for diluted systems we reveal memory effects for critical evolution in the ageing regime with realization of cyclic temperature change and quenching at T<{{T}\\text{c}} .

  20. First-order and subsidiary faults controlling the time-space evolution of the Central Italy 2016 seismic sequence - a multi-source data detailed 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco

    2017-04-01

    The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months

  1. Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores.

    PubMed

    Ma, Tian-Yi; Lin, Xiu-Zhen; Zhang, Xue-Jun; Yuan, Zhong-Yong

    2011-04-01

    Organic-inorganic hybrid materials of mesostructured titanium phosphonates with unusual uniform lines of macropores were synthesized by using bis(hexamethylenetriamine) penta(methylenephosphonic acid) (BHMTPMP) as the coupling molecule, through a one-pot hydrothermal process without any surfactant assistance. A wormhole-like mesostructure and many uniform parallel lines of macropores divided by solid ridges in the same direction were confirmed by N(2) sorption, SEM and TEM observations. This novel macropore architecture has never been observed in other metal phosphonate materials, which may be directly related to the structure nature of BHMTPMP with extra long alkyl chains. The structural characterization of FT-IR and MAS NMR revealed the integrity of organic groups inside the hybrid framework. The hybrid materials were also used as adsorbents for heavy metal ions and CO(2), in order to clarify the impacts of the organic contents and organic types on the physicochemical properties of the synthesized hierarchical macro-/mesoporous phosphonate materials.

  2. Strong magnetoelastic coupling at the transition from harmonic to anharmonic order in NaFe(WO 4)2 with 3 d5 configuration

    NASA Astrophysics Data System (ADS)

    Holbein, S.; Ackermann, M.; Chapon, L.; Steffens, P.; Gukasov, A.; Sazonov, A.; Breunig, O.; Sanders, Y.; Becker, P.; Bohatý, L.; Lorenz, T.; Braden, M.

    2016-09-01

    The crystal structure of the double tungstate NaFe (WO4)2 arises from that of the spin-driven multiferroic MnWO4 by inserting nonmagnetic Na layers. NaFe (WO4)2 exhibits a three-dimensional incommensurate spin-spiral structure at low temperature and zero magnetic field, which, however, competes with commensurate order induced by magnetic field. The incommensurate zero-field phase corresponds to the condensation of a single irreducible representation but it does not imply ferroelectric polarization because spirals with opposite chirality coexist. Sizable anharmonic modulations emerge in this incommensurate structure, which are accompanied by large magnetoelastic anomalies, while the onset of the harmonic order is invisible in the thermal-expansion coefficient. In magnetic fields applied along the monoclinic axis, we observe a first-order transition to a commensurate structure that again is accompanied by large magnetoelastic effects. The large magnetoelastic coupling, a reduction of the b lattice parameter, is thus associated only with the commensurate order. Upon releasing the field at low temperature, the magnetic order transforms to another commensurate structure that considerably differs from the incommensurate low-temperature phase emerging upon zero-field cooling. The latter phase, which exhibits a reduced ordered moment, seems to be metastable.

  3. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  4. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  5. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  6. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  7. Higher-order in time "quasi-unconditionally stable" ADI solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains

    NASA Astrophysics Data System (ADS)

    Bruno, Oscar P.; Cubillos, Max

    2016-02-01

    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are ;quasi-unconditionally stable; in the following sense: each algorithm is stable for all couples (h , Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0 ,Mh) × (0 ,Mt). In other words, for each fixed value of Δt below a certain threshold, the Navier-Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier-Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier-Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions.

  8. Controlled release of ibuprofen by meso-macroporous silica

    NASA Astrophysics Data System (ADS)

    Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.

    2014-02-01

    Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.

  9. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    PubMed Central

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  10. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

    PubMed

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm

    2016-01-01

    This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

  11. A New Model for Root Growth in Soil with Macropores

    NASA Astrophysics Data System (ADS)

    Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.

    2016-12-01

    In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop

  12. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  13. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  14. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  15. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  16. Medical 3-D Printing.

    PubMed

    Furlow, Bryant

    2017-05-01

    Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.

  17. Preferential flow in macroporous swelling soil with internal catchment: model development and applications

    NASA Astrophysics Data System (ADS)

    Greco, Roberto

    2002-12-01

    A new model of infiltration in swelling and shrinking clay soil was developed. The model consisted of two flow domains: soil matrix, with flow modelled by means of Darcy equation, and macropores; the latter was divided in turn into two sub-domains: shrinkage cracks, with aperture dynamically depending on matrix water content, and permanent macropores, independent of matrix saturation. In the shrinkage cracks sub-domain, a kinematic wave equation was derived by considering laminar motion of thin water films, along two parallel nearly vertical walls; in the permanent macropores sub-domain, a kinematic wave equation was assumed, with parameters physically related with macropores shape and dimension. Exchange of water between macropore domains and matrix was introduced in form of sink terms in the macropores mass balance equations, and as source terms in the matrix continuity equation. Infiltration through macropore walls was modelled using a diffusivity function derived from aggregates sorptivity measurements. The internal catchment was included by considering at each layer a fraction of dead end permanent macropores. Water ponding at the bottom of dead end macropores, infiltrated into the corresponding matrix layer. The model was tested against the results of infiltration transients through a large undisturbed swelling and shrinking clay soil column. Outflow rate from column bottom surface was constantly measured, while water content profile was registered at regular time intervals by means of five TDR horizontal probes. In order to quantify model parameters, characterisation of soil matrix was carried out, providing hydraulic conductivity curve, water retention curve, shrinkage characteristic and aggregates diffusivity. All of the other model parameters, thanks to their clear physical meaning, were estimated from direct observation of soil structure, except macropores morphologic parameters, some of which, although measurable, were obtained by calibration due to

  18. Self-assembled synthesis of 3D Cu(In(1-x)Ga(x))Se2 nanoarrays by one-step electroless deposition into ordered AAO template.

    PubMed

    Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong

    2014-07-25

    Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.

  19. Self-assembled synthesis of 3D Cu(In1 - xGax)Se2 nanoarrays by one-step electroless deposition into ordered AAO template

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong

    2014-07-01

    Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.

  20. 3D-printing of pH-responsive and functional polymers on an affordable desktop printer.

    PubMed

    Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A

    2016-10-03

    In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D- printable filaments for fused deposition modeling (FDM). We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are crosslinked and quaternized post-printing to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was harassed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.

  1. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  2. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  3. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  4. Macroporous chitin affinity membranes for lysozyme separation.

    PubMed

    Ruckenstein, E; Zeng, X

    1997-12-20

    Macroporous chitin membranes with high, controlled porosity and good mechanical properties have been prepared using a technique developed in this laboratory based on silica particles as porogen. They were employed for the affinity separation of lysozyme. Chitin membranes (1 mm thickness) can be operated at high fluxes (>/=1.1 mL/min/cm(2)) corresponding to pressure drops >/=2 psi. Their adsorption capacity for lysozyme ( approximately 50 mg/mL membrane) is by an order of magnitude higher than that of the chitin beads employed in column separation. In a binary mixture of lysozyme and ovalbumin, the membranes showed very high selectivity towards lysozyme. The effect of some important operation parameters, such as the flow rates during loading and elution were investigated. Lysozyme of very high purity (>98%) was obtained from a mixture of lysozyme and ovalbumin, and from egg white. The results indicate that the macroporous chitin membranes can be used for the separation, purification, and recovery of lysozyme at large scale. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 610-617, 1997.

  5. Three dimensional mesoporous silica strucutres with templated macropores

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Watkins, James J.

    2013-03-01

    A novel approach to fabricate three dimensional macroporous structures comprised of mesoporous silica is demonstrated. Well-ordered mesoporous silica structures with macroporosity were obtained by using humidified supercritical carbon dioxide as a carrier medium to infuse and domain selectively condense silica alkoxide precursor in a microphase separated block copolymer/small molecule additive blend solution casted on macroporous supports such as cellulose filter paper and sponge. Subsequent calcination was used to remove both the block copolymer template and the macroporous support. Transition electron microscopy (TEM) and small angle x-ray diffraction (SAXD) confirmed the presence of well-ordered mesopores. Scanning electron microscopy confirmed faithful replication of the features of the macroporous supports. Physisorption showed BET surface areas as high as 400m2/g and the BJH pore size distributions obtained are in close agreement with the TEM and SAXD results. This dual scale porosity within the silica template will enhance overall transport and diffusion, which is appropriate for many applications including catalysis and sensing.

  6. New skeletal 3D polymeric inorganic cluster [W4S16Cu16Cl16]n with Cu in mixed-valence states: solid-state synthesis, crystal structure, and third-order nonlinear optical properties.

    PubMed

    Cai, Ya; Wang, Yan; Li, Yizhi; Wang, Xiaoshu; Xin, Xinquan; Liu, Caiming; Zheng, Hegen

    2005-12-12

    A new 3D polymeric inorganic cluster with Cu in mixed-valence states was synthesized by the solid-state reaction of (NH4)2WS4, S8, CuCl, and Et4NCl; S8 may be regarded as the oxidizing agent converting Cu(I) to Cu(II) and causing the polymerization of [WS4]2-. The third-order nonlinear optical (NLO) properties are determined, and the results show that the cluster exhibits both large NLO absorptive and strong refractive behaviors.

  7. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  8. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  9. Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications

    NASA Astrophysics Data System (ADS)

    Cardador, D.; Vega, D.; Segura, D.; Trifonov, T.; Rodríguez, A.

    2017-07-01

    A macroporous silicon photonic crystal is designed and optimized theoretically for its use in gas sensing applications and IR optical filters. Light impinges perpendicularly onto the sample surface (vertical propagation) so a three-dimensional (3d) structure is used. For gas sensing, a sharp resonance is desired in order to isolate an absorption line of the gas of interest. The high Q-factors needed mandate the use of a plane defect inside the PhC to give rise to a resonant mode inside the bandgap tuned to the gas absorption line. Furthermore to allow gas passage through the device, an open membrane is required. This can affect the mechanical resilience. To improve the strength of the photonic crystal the pores are extended after the ;active; 3d part. The number of modulations, and the extension length have been optimized to obtain the largest Q-factor with reasonable transmitted power. These proposed structures have been experimentally performed, probing an enhancement of almost an order of magnitude in the Q-factor in respect with the basic case. Simulations considering CO2 have been performed showing that the proposed structures are promising as precise optical gas sensors.

  10. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  11. Effects of hydrophilic macropore fillings and coatings on the infiltration into water repellent porous media

    NASA Astrophysics Data System (ADS)

    Suetsugu, A.; Mori, Y.

    2012-12-01

    Macropores generate rapid flow paths in the surface soils by their high permeability under saturated/near-saturated moisture conditions. In natural soils, some macropores are filled/coated with various materials including decayed plant roots (Meek et al., 1989), exudates from plants/soil organisms (Jegou et al., 2001), iron oxides or other precipitates from preferentially-introduced solutes/colloids to the macropores (Rasmussen et al., 2001), or the surrounding soils with reduced bulk density (Ela et al., 1992). When we expect infiltration into water repellent soils through macropores or hydrophilic patches created from the macropore cementation processes, hydrophilicity of the macropore fillings/coatings should be understood. In the present study, we conducted an infiltration experiment with water repellent porous media and some macropore fillings/coatings, in order to clarify the roles of hydrophilic macropore fillings/coatings in infiltration. Ponding depth and flow distribution were monitored with a micro-focus X-ray computational tomography apparatus (SMX-90CT, Shimadzu Corp., Kyoto, Japan) at 90 kV and 110 μA. Dilute CsCl(aq) (density: 1.04 Mg m-3) was used as the contrast media to avoid density-driven alteration of the flows. Water repellency of the samples was evaluated by the water drop penetration time (WDPT, Van't Woudt, 1959). A glass beads (mean diameter: 0.46 mm, BZ-04, ASONE Corp., Osaka, Japan) was used as water repellent porous media. The glass beads sample was packed in 50-mL polypropylene centrifugation tubes at 1.55 Mg m-3 bulk density. A 2-mm hole was made at the bottom of each centrifugation tube for ventilation. The hole was covered with mesh cloth. Macroporous structure was made at the center of each tube from the surface. Each macroporous structure had 4-mm diameter and 30-mm length. Six types of macropores were prepared including 1) no macropore, 2) empty macropore, 3) an aluminum (Al) pipe (4-mm inner diameter, 5-mm outer diameter), 4) a

  12. Scale Invariant Power Laws Capture the 3-D Coupling Between Water, Energy and Carbon Budgets Across River Basins of Increasing Horton-Strahler Orders in the Andes-Amazon System

    NASA Astrophysics Data System (ADS)

    Poveda, G.; Zapata, A. F.

    2016-12-01

    The Andes-Amazon system exhibits complex interactions and feedbacks between hydrological, ecological, biogeochemical and climatic factors in a broad range of temporal and spatial scales. We aim to understand the coupling existing between water, energy and carbon budgets in the Andes-Amazon system, by performing a systematic study of the system for river basins of increasing Horton-Strahler orders, from the headwaters of the Amazon River basin along the Andes (order ω=1 river sub-basins) to the low-lying larger river sub-basins (order ω=10). To that end, this works introduces a 3-D generalization of the Budyko framework that aims to link the water, energy, and Carbon budgets in river basins. The newly proposed 3-D non-dimensional space is defined by: (1) the ratio between long-term mean values of Actual Evapotranspiration (AET) and Precipitation (P), α=AET/P, representing the water balance; (2) the ratio between AET and Potential Evapotranspiration (PET), β=AET/PET, representing the energy balance; and (3) the ratio between AET and Aboveground Net Primary Productivity, δ=AET/ANPP, representing the carbon budget. We use a 3" Digital Elevation Model (DEM), which allows defining river basins with Horton-Strahler orders from 1 to 10. The long-term water, energy, and carbon budgets are estimated for increasing values of the Horton-Strahler orders during the period 1987-2007. Data sets pertaining to the water balance come from ORE-HYBAM, potential evapotranspiration (PET) from GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology). Data for the energy budget are from the Surface Radiation Budget (SRB). Data for the Carbon budget (annual mean net primary productivity, ANPP, gross primary productivity, GPP, and respiration rates, Rr, come from AMAZALERT and ORCHEDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms), as well as from Flux Tower Data and the LBA project. Our results show that scale invariant power-laws emerge to capture the three 2-D

  13. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  14. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. Changes in hydraulic soil conductivity in the walls of zoogenic macropores due to the soil compaction

    NASA Astrophysics Data System (ADS)

    Pelíšek, Igor

    2015-04-01

    This study focuses on assessement of the hydric functions and effectiveness of the preferential zoogenic routes (preferentially lumbricid burrows), with primary focus on the hydric functions and parameters of individual vertical tubular macropores and on the analysis of selected possible detailed effects on these functions. The effect of earthworms (Lumbricidae) on the physical soil properties is notable. During burrowing, earthworms press the material in the vicinity of the hollowed burrows. Several variants of the relationship between the macropores and the soil compaction, permeability and erodibility were verified. Both measurements in the field and laboratory tests of intact collected samples and engineered samples were performed. With regard to preferential focus on the hydraulic processes in gravity macropores, to the limits of the instrumentation and the size of individual earthworms in agricultural soils in the Czech Republic, we assessed the processes in the macropores with diameter of ca 5 mm or larger. In some cases, saturated hydraulic conductivity of zoogenic macropore walls was reduced in order of tens of percent compared with hydraulic conductivity of soil matrix, and the increase of bulk density of soil in the macropore vicinity achieved 25%. The effect of repeated rise and water level stagnation (repeated macropore washing during multiple wetting cycles) was tested. Investigation of water erosion of macropores was limited by adjustable flow, vessel capacity and pump capacity of the accurate continuous infiltrometer. Investigation of the water inlet from above gave more data on the washed-off material in the selected time intervals. Analysis of water rise from below and macropore sealing provided one cumulative data for each testing period.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. 3D-printing of undisturbed soil imaged by X-ray

    NASA Astrophysics Data System (ADS)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  20. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  1. Three-dimensional macroporous carbon/hierarchical Co3O4 nanoclusters for nonenzymatic electrochemical glucose sensor

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Yayun; Xie, Yingzhen; Yu, Jie; Yang, Han; Miao, Longfei; Song, Yonghai

    2017-04-01

    A novel supporting material named as three-dimensional kenaf stem-derived carbon (3D-KSCs) was used to load hierarchical Co3O4 nanoclusters for electrochemical sensing glucose. The 3D-KSCs/hierarchical Co3O4 nanoclusters were constructed by two steps. Los of acicular precursor nanoclusters firstly grew on the channels of 3D-KSCs densely by hydrothermal method and then the as-prepared 3D-KSCs/hierarchical Co3O4 nanoclusters was obtained by thermal pyrolysis of the 3D-KSCs/precursors nanocomposites at 400 °C. The 3D macroporous configuration of 3D-KSCs resulted in lots of hierarchical Co3O4 nanoclusters arrayed on the surface of 3D-KSCs owing to its large enough specific surface area, which effectively avoided their aggregations and improved the stability of nanocomposites. The obtained 3D-KSCs/hierarchical Co3O4 nanoclusters showed a large number of needle-shaped and layered Co3O4 nanoclusters uniformly grew on the macropore's walls of 3D-KSC. Due to its unique nanostructures, the 3D-KSCs/hierarchical Co3O4 nanoclusters integrated electrode showed superior performance for nonenzymatic electrochemical glucose sensing, showing wide linear range (0.088-7.0 mM) and low detection limit of 26 μM. It might be a new strategy to prepare nanostructures on 3D-KSC for future applications.

  2. Well-Ordered Oxygen-Deficient CoMoO4 and Fe2O3 Nanoplate Arrays on 3D Graphene Foam: Toward Flexible Asymmetric Supercapacitors with Enhanced Capacitive Properties.

    PubMed

    Chi, Kai; Zhang, Zheye; Lv, Qiying; Xie, Chuyi; Xiao, Jian; Xiao, Fei; Wang, Shuai

    2017-02-22

    In this work, we report the development of well-ordered hydrogenated CoMoO4 (H-CoMoO4) and hydrogenated Fe2O3 (H-Fe2O3) nanoplate arrays on 3D graphene foam (GF) and explore their practice application as binder-free electrodes in assembling flexible all-solid-state asymmetric supercapacitor (ASC) devices. Our results show that the monolithic 3D porous GF prepared by solution casting method using Ni foam template possesses large surface area, superior electrical conductivity, and sufficient surface functional groups, which not only facilitate in situ growth of CoMoO4 and Fe2O3 nanoplates but also contribute the double-layer capacitance of the resultant supercapacitor. The well-ordered pseudocapacitive metal oxide nanoplate arrays standing up on 3D GF scaffold can provide efficient space and shorten the length for electrolyte diffusion from the outer to the inner region of the electrode material for Faradaic energy storage. Furthermore, one of our major findings is that the introduction of oxygen vacancies in CoMoO4 and Fe2O3 nanoplates by hydrogenation treatment can increase their electronic conductivity as well as improve their donor density and surface properties, which gives rise to a substantially improved electrochemical performance. Benefiting from the synergistic contributions of different components in the nanohybrid electrode, the resultant flexible ASC device with GF/H-CoMoO4 as the positive electrode and GF/H-Fe2O3 as the negative electrode achieves a wide operation voltage of 1.5 V and a maximum volumetric specific capacitance of 3.6 F cm(-3), which is two times larger than that of the Ni/GF/CoMoO4//Ni/GF/Fe2O3 device (1.8 F cm(-3)), and the rate capability is up to 70% as the current density increases from 2 to 200 mA cm(-3). Moreover, the Ni/GF/H-CoMoO4//Ni/GF/H-Fe2O3 device also exhibits a high energy density of 1.13 mWh cm(-3) and a high power density of 150 mW cm(-3), good mechanical flexibility with the decrease in capacitance of less than 4% after

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  5. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  6. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  7. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  8. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  9. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  10. Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators, Ca2Ru1--xM xO4 (M = 3d transition metal ion)

    NASA Astrophysics Data System (ADS)

    Qi, Tongfei

    Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at T N = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-- xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio, DeltaV/V, reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions. KEYWORDS: Transition Metal Oxide, Ruthenate, Negative Thermal Expansion, Single crystal XRD, Invar Effect, Orbital Ordering, Magnetic Ordering, Jahn-Teller Effect.

  11. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering.

    PubMed

    Cai, You-Zhi; Zhang, Guo-Rong; Wang, Lin-Lin; Jiang, Yang-Zi; Ouyang, Hong-Wei; Zou, Xiao-Hui

    2012-05-01

    This study aimed to develop a practical three-dimensional (3D) macroporous scaffold from aligned electrospun nanofibrous yarns for bone tissue engineering. A novel 3D unwoven macroporous nanofibrous (MNF) scaffold was manufactured with electrospun poly(L-lactic acid) and polycaprolactone (w/w 9:1) nanofibers through sequential yarns manufacture and honeycombing process at 65°C. The efficacy of 3D MNF scaffold for bone formation were evaluated using human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) differentiation model and rabbit tibia bone defect model. In vitro, more cell proliferation and cell ingrowth were observed in 3D MNF scaffold. Moreover, calcium deposit was obviously detected in vitro differentiation of hESC-MSCs. In vivo, histology and X-ray showed that 3D MNF scaffold treated bone defect had fine 3D bony tissue formation around the scaffold as well as inside the scaffold at 3 weeks and 6 weeks. This study demonstrated that 3D MNF scaffold provides a structural support for hESC-MSCs growth and guides bone formation suggesting that this novel strategy successfully makes use of electrospun fibers for bone tissue engineering, which may help realize the clinical translation of electrospun nanofibers for regenerative medicine in future.

  12. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin.

    PubMed

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy.

  13. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  14. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  15. An Improved Version of TOPAZ 3D

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  16. Soft 3D acoustic metamaterial with negative index.

    PubMed

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

  17. Cm-scale Heterogeneity in Degradation - Potential Impact on Leaching of MCPA through a Variably-Saturated Macroporous Clayey Till

    NASA Astrophysics Data System (ADS)

    Rosenbom, A. E.; Johnsen, A. R.; Aamand, J.; Binning, P. J.; Dechesne, A.; Smets, B. F.; "Cream-Spatial Heterogeneity"-Team

    2011-12-01

    Recent research has revealed a large variation in pesticide mineralization potentials, but little is known about the scale at which these heterogeneities impact the spreading of contaminants. A modeling study aiming at quantifying how heterogeneous degradation potentials in agricultural soil will affect MCPA degradation and leaching was conducted. 2D-distributions (96-well micro plate mineralization assay) of the mineralization potentials of phenoxy acid herbicides (MCPA, 2,4-D) representing layers in the upper meter of variably-saturated clayey till were applied. The rapid mineralization measured was represented by Monod mineralization kinetics, whereas the rest were either represented by slow 0-order mineralization kinetics or no degradation. Five 3D-modelling scenarios were set up using the COMSOL Multiphysics 4.1 toolbox (COMSOL Inc., Burlington, MA, USA): 1) simple matrix flow of water with no biodegradation of the MCPA at all nodes; 2) preferential flow (including a wormhole) of water with no biodegradation of the MCPA at all nodes; 3) simple matrix flow of water with average biodegradation of the MCPA at all nodes, which corresponds to results derived from a conventional homogenized soil sample; 4) simple matrix flow of water with the observed high variation in biodegradation of the MCPA corresponding to random variation in degradation; and 5) vertical structure in water flow combined with vertically structured degradation (defined hot spots and cold spots), which corresponds to a situation where both flow and degradation are associated with macropores/wormholes. Results show that cm-scale heterogeneity in degradation potential with simple matrix flow has a negligible effect on MCPA leaching at one meter below soil surface. By introducing a wormhole in the low-permeable 3D-soil modeling domain, however, the risk of MCPA-leaching below one meter depth increase drastically with low degradation potential along the wall of macropores/wormholes.

  18. Detection of macropore flow at field scales using electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2008-12-01

    Even though macropores make up a very small portion of the pore space in a soil, their high connectivity allows them to carry large fluxes of flow to the subsurface. As a result, macropores can be a critical factor in determining groundwater recharge and contaminant transport. Despite their importance, there is a lack of field-scale methodologies for detecting the existence and activation of macropores in watersheds. The connectivity that makes macropores good conductors of fluid flow suggests that they may also be good conductors of electrical current when filled with water and could therefore be monitored using electrical resistivity measurements. To test this hypothesis and evaluate whether the resulting electrical response could be detected with field-scale dipole-dipole resistivity measurements this work combines hydrologically- driven equivalent medium models with anisotropic 3D numerical models of electrical current flow. The equivalent medium models are based on a dual-domain concept where the bulk electrical conductivity of the soil matrix is governed by water content and pore-water solute concentration, whereas macropore conductivity is directly related to the solute concentration of the filling fluid. Therefore, vertical and horizontal electrically conductivity values have dynamic responses depending on the soil saturation characteristics, evaporation and precipitation history, and activation of macropore flow. The resulting equivalent bulk electrical conductivity for the dual-domain is then used in a numerical model to determine the apparent resistivity response for a dipole-dipole array located on the ground surface. For conditions typical of watersheds near Clemson, i.e., runoff TDS values of about 50mg/L, the results of the model indicate that apparent resistivity measurements drop by 40% when macroporosity represents only 0.5% of the sample volume and by 80% when macroporosity is increased to 5% of the sample volume. This result represents the

  19. 3D palmprint data fast acquisition and recognition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2014-11-01

    This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.

  20. Incorporating preferential flow into a 3D model of a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian

    2016-04-01

    Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the

  1. 3D whiteboard: collaborative sketching with 3D-tracked smart phones

    NASA Astrophysics Data System (ADS)

    Lue, James; Schulze, Jürgen P.

    2014-02-01

    We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D, based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area where they can be seen by the smart phones' cameras, in order to estimate the pose of each phone in the room. Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in 3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their smart phones' displays, as if the display was a window into this space. Besides lines, our prototype application also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other user's phone.

  2. Scaling hydraulic properties of a macroporous soil

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak P.

    1999-06-01

    Macroporous soils exhibit significant differences in their hydraulic properties for different pore domains. Multimodal hydraulic functions may be used to describe the characteristics of multiporosity media. I investigated the usefulness of scaling to describe the spatial variability of hydraulic conductivity (K(-h)) functions of a macroporous soil in Las Nutrias, New Mexico. Piecewise-continuous hydraulic conductivity functions suitable for macroporous soils in conjunction with a hybrid similar media-functional normalization scaling approach were used. Results showed that gravity-dominated flow and the related hydraulic conductivity (K(minus;h) functions of the macropore region are more readily scalable than capillary-dominated flow properties of the mesopore and micropore regions. A possible reason for this behavior is that gravity-dominated flow in the larger pores is mostly influenced by the pore diameter which remains more uniform as compared to tortuous mesopores and micropores with variable neck and body sizes along the pore length.

  3. Macroporous materials: microfluidic fabrication, functionalization and applications.

    PubMed

    Wang, Bingjie; Prinsen, Pepijn; Wang, Huizhi; Bai, Zhishan; Wang, Hualin; Luque, Rafael; Xuan, Jin

    2017-02-06

    This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.

  4. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    SciTech Connect

    Afshar, Mehran Zaefferer, Stefan

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amount of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.

  5. Stereoscopic reconfiguration for 3D displays

    NASA Astrophysics Data System (ADS)

    Houde, Jean-Christophe; Jodoin, Pierre-Marc; Desch"nes, François

    2012-03-01

    In this paper, we present a method to reconfigure 3D movies in order to minimize distortion when seen on a different display than the one it has been configured for. By their very nature, 3D broadcasts come with a stereoscopic pair to be seen by the left and right eyes. However, according to reasons that we ought to explain in the paper, the cameras used to shoot a movie are calibrated according to specific viewing parameters such as the screen size, the viewing distance and the eye separation. As a consequence, a 3D broadcast seen on a different display (say a home theater or a PC screen) than the one it has been configured for (say an IMAX R screen) will suffer from noticeable distortions. In this paper, we describe the relationship between the size of the 3D display, the position of the observer, and the intrinsic and extrinsic parameters of the cameras. With this information, we propose a method to reorganize the stereoscopic pair in order to minimize distortion when seen on an arbitrary display. In addition to the raw video pair, our method uses the viewing distance, a rough estimate of the 3D scene, and some basic information on the 3D display. An inpainting technique is used to fill disoccluded areas.

  6. Development of 3D video and 3D data services for T-DMB

    NASA Astrophysics Data System (ADS)

    Yun, Kugjin; Lee, Hyun; Hur, Namho; Kim, Jinwoong

    2008-02-01

    In this paper, we present motivation, system concept, and implementation details of stereoscopic 3D visual services on T-DMB. We have developed two types of 3D visual service : one is '3D video service', which provides 3D depth feeling for a video program by sending left and right view video streams, and the other is '3D data service', which provides presentation of 3D objects overlaid on top of 2D video program. We have developed several highly efficient and sophisticated transmission schemes for the delivery of 3D visual data in order to meet the system requirements such as (1) minimization of bitrate overhead to comply with the strict constraint of T-DMB channel bandwidth; (2) backward and forward compatibility with existing T-DMB; (3) maximize the eye-catching effect of 3D visual representation while reducing eye fatigue. We found that, in contrast to conventional way of providing a stereo version of a program as a whole, the proposed scheme can lead to variety of efficient and effective 3D visual services which can be adapted to many business models.

  7. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  8. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  9. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  10. A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m-3

    NASA Astrophysics Data System (ADS)

    Ren, Hao; Tian, He; Gardner, Cameron L.; Ren, Tian-Ling; Chae, Junseok

    2016-02-01

    A microbial fuel cell (MFC) is a bio-inspired renewable energy converter which directly converts biomass into electricity. This is accomplished via the unique extracellular electron transfer (EET) of a specific species of microbe called the exoelectrogen. Many studies have attempted to improve the power density of MFCs, yet the reported power density is still nearly two orders of magnitude lower than other power sources/converters. Such a low performance can primarily be attributed to two bottlenecks: (i) ineffective electron transfer from microbes located far from the anode and (ii) an insufficient buffer supply to the biofilm. This work takes a novel approach to mitigate these two bottlenecks by integrating a three-dimensional (3D) macroporous graphene scaffold anode in a miniaturized MFC. This implementation has delivered the highest power density reported to date in all MFCs of over 10 000 W m-3. The miniaturized configuration offers a high surface area to volume ratio and improved mass transfer of biomass and buffers. The 3D graphene macroporous scaffold warrants investigation due to its high specific surface area, high porosity, and excellent conductivity and biocompatibility which facilitates EET and alleviates acidification in the biofilm. Consequently, the 3D scaffold houses an extremely thick and dense biofilm from the Geobacter-enriched culture, delivering an areal/volumetric current density of 15.51 A m-2/31 040 A m-3 and a power density of 5.61 W m-2/11 220 W m-3, a 3.3 fold increase when compared to its planar two-dimensional (2D) control counterparts.A microbial fuel cell (MFC) is a bio-inspired renewable energy converter which directly converts biomass into electricity. This is accomplished via the unique extracellular electron transfer (EET) of a specific species of microbe called the exoelectrogen. Many studies have attempted to improve the power density of MFCs, yet the reported power density is still nearly two orders of magnitude lower than

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. Development of a 3D pixel module for an ultralarge screen 3D display

    NASA Astrophysics Data System (ADS)

    Hashiba, Toshihiko; Takaki, Yasuhiro

    2004-10-01

    A large screen 2D display used at stadiums and theaters consists of a number of pixel modules. The pixel module usually consists of 8x8 or 16x16 LED pixels. In this study we develop a 3D pixel module in order to construct a large screen 3D display which is glass-free and has the motion parallax. This configuration for a large screen 3D display dramatically reduces the complexity of wiring 3D pixels. The 3D pixel module consists of several LCD panels, several cylindrical lenses, and one small PC. The LCD panels are slanted in order to differentiate the distances from same color pixels to the axis of the cylindrical lens so that the rays from the same color pixels are refracted into the different horizontal directions by the cylindrical lens. We constructed a prototype 3D pixel module, which consists of 8x4 3D pixels. The prototype module is designed to display 300 different patterns into different horizontal directions with the horizontal display angle pitch of 0.099 degree. The LCD panels are controlled by a small PC and the 3D image data is transmitted through the Gigabit Ethernet.

  13. A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10,000 W m(-3) .

    PubMed

    Ren, Hao; Tian, He; Gardner, Cameron L; Ren, Tian-Ling; Chae, Junseok

    2016-02-14

    A microbial fuel cell (MFC) is a bio-inspired renewable energy converter which directly converts biomass into electricity. This is accomplished via the unique extracellular electron transfer (EET) of a specific species of microbe called the exoelectrogen. Many studies have attempted to improve the power density of MFCs, yet the reported power density is still nearly two orders of magnitude lower than other power sources/converters. Such a low performance can primarily be attributed to two bottlenecks: (i) ineffective electron transfer from microbes located far from the anode and (ii) an insufficient buffer supply to the biofilm. This work takes a novel approach to mitigate these two bottlenecks by integrating a three-dimensional (3D) macroporous graphene scaffold anode in a miniaturized MFC. This implementation has delivered the highest power density reported to date in all MFCs of over 10,000 W m(-3). The miniaturized configuration offers a high surface area to volume ratio and improved mass transfer of biomass and buffers. The 3D graphene macroporous scaffold warrants investigation due to its high specific surface area, high porosity, and excellent conductivity and biocompatibility which facilitates EET and alleviates acidification in the biofilm. Consequently, the 3D scaffold houses an extremely thick and dense biofilm from the Geobacter-enriched culture, delivering an areal/volumetric current density of 15.51 A m(-2)/31,040 A m(-3) and a power density of 5.61 W m(-2)/11,220 W m(-3), a 3.3 fold increase when compared to its planar two-dimensional (2D) control counterparts.

  14. [Fracture of macroporous hydroxyapatite prosthesis].

    PubMed

    Adetchessi, A T; Pech-Gourg, G; Metellus, P; Fuentes, S

    2012-12-01

    Different prosthesis implants are offered to perform a cranioplasty after a decompressive craniectomy when autologous bone graft cannot be used. The authors report the case of a 25-year-old man who benefited a unilateral decompressive craniectomy after a severe head trauma. Seven months later, a cranioplasty using custom macroporous hydroxyapatite prosthesis was performed. The postoperative course was marked by a generalized seizure leading to a traumatic head injury. The CT-scan showed a comminutive fracture of the prosthesis and an extradural hematoma. The patient underwent a removal of the fractured prosthesis and an evacuation of the extradural clot. The postoperative course was uneventful with a Glasgow outcome scale score at 5. A second cranioplasty using a polyether ether ketone (PEEK) implant was performed. Among cranioplasty prosthesis solutions, hydroxyapatite implants seem to have similar property to the bone. However, its weak mechanic resistance is an actual problem in patients susceptible to present generalized seizures with consecutive head impact. Hence, in patients with decompressive craniectomy who are exposed to potential brain injury, we favor the use of more resistant implant as PEEK prosthesis.

  15. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  16. Organic matter composition of soil macropore surfaces under different agricultural management practices

    NASA Astrophysics Data System (ADS)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  17. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  18. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  19. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  20. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  1. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes.

    PubMed

    Uz, Metin; Büyüköz, Melda; Sharma, Anup D; Sakaguchi, Donald S; Altinkaya, Sacide Alsoy; Mallapragada, Surya K

    2017-02-16

    In this study, gelatin-based 3D conduits with three different microstructures (nanofibrous, macroporous and ladder-like) were fabricated for the first time via combined molding and thermally induced phase separation (TIPS) technique for peripheral nerve regeneration. The effects of conduit microstructure and mechanical properties on the transdifferentiation of bone marrow-derived mesenchymal stem cells (MSCs) into Schwann cell (SC) like phenotypes were examined to help facilitate neuroregeneration and understand material-cell interfaces. Results indicated that 3D macroporous and ladder-like structures enhanced MSC attachment, proliferation and spreading, creating interconnected cellular networks with large numbers of viable cells compared to nanofibrous and 2D-tissue culture plate counterparts. 3D-ladder-like conduit structure with complex modulus of ∼0.4×10(6)Pa and pore size of ∼150μm provided the most favorable microenvironment for MSC transdifferentiation leading to ∼85% immunolabeling of all SC markers. On the other hand, the macroporous conduits with complex modulus of ∼4×10(6)Pa and pore size of ∼100μm showed slightly lower (∼65% for p75, ∼75% for S100 and ∼85% for S100β markers) immunolabeling. Transdifferentiated MSCs within 3D-ladder-like conduits secreted significant amounts (∼2.5pg/mL NGF and ∼0.7pg/mL GDNF per cell) of neurotrophic factors, while MSCs in macroporous conduits released slightly lower (∼1.5pg/mL NGF and 0.7pg/mL GDNF per cell) levels. PC12 cells displayed enhanced neurite outgrowth in media conditioned by conduits with transdifferentiated MSCs. Overall, conduits with macroporous and ladder-like 3D structures are promising platforms in transdifferentiation of MSCs for neuroregeneration and should be further tested in vivo.

  3. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  4. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  5. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  6. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  7. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  8. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  9. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  10. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  11. How to See Shadows in 3D

    ERIC Educational Resources Information Center

    Parikesit, Gea O. F.

    2014-01-01

    Shadows can be found easily everywhere around us, so that we rarely find it interesting to reflect on how they work. In order to raise curiosity among students on the optics of shadows, we can display the shadows in 3D, particularly using a stereoscopic set-up. In this paper we describe the optics of stereoscopic shadows using simple schematic…

  12. How to See Shadows in 3D

    ERIC Educational Resources Information Center

    Parikesit, Gea O. F.

    2014-01-01

    Shadows can be found easily everywhere around us, so that we rarely find it interesting to reflect on how they work. In order to raise curiosity among students on the optics of shadows, we can display the shadows in 3D, particularly using a stereoscopic set-up. In this paper we describe the optics of stereoscopic shadows using simple schematic…

  13. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  14. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  15. Superplastic forming using NIKE3D

    SciTech Connect

    Puso, M.

    1996-12-04

    The superplastic forming process requires careful control of strain rates in order to avoid strain localizations. A load scheduler was developed and implemented into the nonlinear finite element code NIKE3D to provide strain rate control during forming simulation and process schedule output. Often the sheets being formed in SPF are very thin such that less expensive membrane elements can be used as opposed to shell elements. A large strain membrane element was implemented into NIKE3D to assist in SPF process modeling.

  16. Black silicon with controllable macropore array for enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Ao, Xianyu; Tong, Xili; Sik Kim, Dong; Zhang, Lianbing; Knez, Mato; Müller, Frank; He, Sailing; Schmidt, Volker

    2012-09-01

    Macroporous silicon with multiscale texture for reflection suppression and light trapping was achieved through a controllable electrochemical etching process. It was coated with TiO2 by atomic layer deposition, and used as the photoanode in photocatalytic water splitting. A conformal pn-junction was also built-in in order to split water without external bias. A 45% enhancement in photocurrent density was observed after black silicon etching. In comparison with nano-structured silicon, the etching process here has neither metal contamination nor requirement of vacuum facilities.

  17. ASI/MET - 3-D

    NASA Image and Video Library

    1997-07-13

    The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.

  18. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  19. [Tridimensional (3D) endoscopic ultrasonography].

    PubMed

    Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R

    2007-01-01

    A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.

  20. 3D Modelisation of Monophasic Flow in Bimodal Porous Rocks: Darcy-Brinkman Solved by TRT Lattice-Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Gland, N. F.; Talon, L.; Bauer, D.; Youssef, S.; Auradou, H.

    2010-12-01

    We present a numerical study of the flow field in complex geological porous media on the basis of 3D X-ray microtomography reconstructions of their microstructure using a Lattice-Boltzmann numerical method. Indeed LB method is now classicaly used to simulate Stockes flow in porous media. However, we are mainly interested in double porosity media as can often be found in reservoir rocks (e.g. carbonates), generally characterized by a macropore network (typical pore size of few µm to few tens of µm), a microporous matrix (typical pore size <µm), and impermeable grains. Thus, our principal goal is to evaluate the flow field in the macropores and in the microporous matrix as a function of their spatial arrangement and we will show that LB method can be successfully used to simulate such complex flow. A laboratory X-Ray microscanner scans cylindrical plugs of 5mm in diameter and delivers grey-level volumes (with sizes of 1000^3 voxels and a resolution of 3µm) to be segmented and labelled. The partitioning between macropores and microporous matrix is thus constrained by the system resolution; while the complex shapes of the macropores are well captured, the microporosity has to be treated as a single phase. A set of morphological operations is applied to the grey level volumes, in order to obtain a three phase's segmented volume. Flow modelling in bimodal porous media requires the use of specific boundaries conditions between the flows in the macropores and in the porous matrix (continuity of the velocity and the shear stress at the interface). This requires the extension of the Darcy's law with the Brinkman term. In order to solve for the flow field one needs to affect effective petrophysical properties to the microporous matrix (porosity φ_µ and permeability K_µ). The porosity φ_µ being estimated from the grey level images, the permeability K_µ is determined on the basis of an experimental K(φ) law representative of the microstructure of the microporous

  1. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  2. Macroporous Monolithic Polymers: Preparation and Applications

    PubMed Central

    Arrua, Ruben Dario; Strumia, Miriam Cristina; Alvarez Igarzabal, Cecilia Inés

    2009-01-01

    In the last years, macroporous monolithic materials have been introduced as a new and useful generation of polymers used in different fields. These polymers may be prepared in a simple way from a homogenous mixture into a mold and contain large interconnected pores or channels allowing for high flow rates at moderate pressures. Due to their porous characteristics, they could be used in different processes, such as stationary phases for different types of chromatography, high-throughput bioreactors and in microfluidic chip applications. This review reports the contributions of several groups working in the preparation of different macroporous monoliths and their modification by immobilization of specific ligands on the products for specific purposes.

  3. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  4. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  5. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  6. Osteogenic differentiation of cultured marrow stromal stem cells on surface of microporous hydroxyapatite based mica composite and macroporous synthetic hydroxyapatite.

    PubMed

    Nordström, E; Ohgushi, H; Yoshikawa, T; Yokobori, A T; Yokobori, T

    1999-01-01

    In order to investigate the significance of hydroxyapatite based microporous composite (HA/mica composite) surfaces and a macroporous synthetic hydroxyapatite, rat marrow cell culture, which shows osteogenic differentiation, was carried out on six different culture substrata (two control culture dishes, two identical HA/mica composites, and two identical macroporous synthetic hydroxyapatites). A culture period of two weeks in the presence of beta-glycerophosphate (BGP), ascorbic acid, and dexamethasone resulted in abundant mineralized nodule formations that were positive for alkaline phosphatase (ALP) stain. The stain on the macroporous synthetic hydroxyapatite and the HA/mica composites were intense, the enzyme activity being about double that of control culture dishes. These data indicate that the synthetic macroporous hydroxyapatite surface and the HA/mica composite surface promotes osteoblastic differentiation.

  7. Superplot3d: an open source GUI tool for 3d trajectory visualisation and elementary processing.

    PubMed

    Whitehorn, Luke J; Hawkes, Frances M; Dublon, Ian An

    2013-09-30

    When acquiring simple three-dimensional (3d) trajectory data it is common to accumulate large coordinate data sets. In order to examine integrity and consistency of object tracking, it is often necessary to rapidly visualise these data. Ordinarily, to achieve this the user must either execute 3d plotting functions in a numerical computing environment or manually inspect data in two dimensions, plotting each individual axis.Superplot3d is an open source MATLAB script which takes tab delineated Cartesian data points in the form x, y, z and time and generates an instant visualization of the object's trajectory in free-rotational three dimensions. Whole trajectories may be instantly presented, allowing for rapid inspection. Executable from the MATLAB command line (or deployable as a compiled standalone application) superplot3d also provides simple GUI controls to obtain rudimentary trajectory information, allow specific visualization of trajectory sections and perform elementary processing.Superplot3d thus provides a framework for non-programmers and programmers alike, to recreate recently acquired 3d object trajectories in rotatable 3d space. It is intended, via the use of a preference driven menu to be flexible and work with output from multiple tracking software systems. Source code and accompanying GUIDE .fig files are provided for deployment and further development.

  8. Preferential water and solute fluxes in a model macropored porous medium as a function of flow rate

    NASA Astrophysics Data System (ADS)

    batany, stephane; Peyneau, Pierre-Emmanuel; Lassabatere, Laurent; Bechet, Beatrice; Faure, Pamela; Dangla, Patrick

    2016-04-01

    Macropores in soils can induce preferential flow and increase solute transport. Close to water saturation, most of the water flows through macropores at a much higher rate than it would in the same soil without any macropore. Preferential flow and water infiltration in soils with macropores have been investigated with different modeling approaches. Most of these are based on dual porosity or dual permeability approaches. These approaches consider that macropored soils are constituted by the association of two regions exchanging water, a matrix and a macropore domain, both of them obeying Darcy's law. Nevertheless, these approaches restrict preferential flow to the macropore domain and cannot simulate any enhancement of flow in the matrix surrounding the macropores. However, this hypothesis has been strongly questioned by several studies that had investigated solute transfer in macropored soils for which solute breakthrough curves (BTCs) were in complete disagreement with the flow restriction to the macropore domain. Thus, the understanding of water infiltration in soils requires more investigations regarding the effect of macropore and cracks in soils. The proposed paper aims at investigating water flow and tracer transport in a water saturated model macropored system as a function of the flow rate. Various solutes were injected in a 5 cm diameter, 14.5 cm high column filled with 425-800 μm diameter glass beads glued together. A 3 mm diameter Teflon rod inserted along the axis of the column during the preparation of the system was removed after the consolidation of the porous medium to create a macropore. Several flow rates - always ensuring a laminar flow - were tested, from values for which the diffusion transport rate is similar to the advective transport rate to values several orders of magnitude higher for which advection dominates. For all flow rates, solute BTCs were analyzed using the moment method and MIM model to quantify the volume of water visited by

  9. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  10. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  11. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  12. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  13. GestAction3D: A Platform for Studying Displacements and Deformations of 3D Objects Using Hands

    NASA Astrophysics Data System (ADS)

    Lingrand, Diane; Renevier, Philippe; Pinna-Déry, Anne-Marie; Cremaschi, Xavier; Lion, Stevens; Rouel, Jean-Guilhem; Jeanne, David; Cuisinaud, Philippe; Soula*, Julien

    We present a low-cost hand-based device coupled with a 3D motion recovery engine and 3D visualization. This platform aims at studying ergonomic 3D interactions in order to manipulate and deform 3D models by interacting with hands on 3D meshes. Deformations are done using different modes of interaction that we will detail in the paper. Finger extremities are attached to vertices, edges or facets. Switching from one mode to another or changing the point of view is done using gestures. The determination of the more adequate gestures is part of the work

  14. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  15. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  16. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  17. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as

  18. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  19. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  20. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  1. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  2. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  3. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  4. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as

  5. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  6. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.

    PubMed

    Xu, Mengchi; Zhai, Dong; Chang, Jiang; Wu, Chengtie

    2014-01-01

    It is known that porous scaffolds play an important role in bone/periodontal tissue engineering. A new nagelschmidtite (NAGEL, Ca7Si2P2O16) ceramic has recently been prepared which shows excellent apatite mineralization ability and osteo-/cementostimulation properties in vitro. However, up to now porous NAGEL scaffolds have not been developed yet. There has been no systematic study of the effect of macropore morphology of bioceramic scaffolds on their physico-chemical and biological properties. The aim of this study was to prepare NAGEL scaffolds for bone tissue engineering applications. We applied a modified three-dimensional (3-D) plotting method to prepare highly controllable NAGEL scaffolds and investigated the effect of macropore morphology on the physico-chemical and biological properties. The results showed that the macropore size and morphology of 3-D plotted NAGEL scaffolds could be effectively controlled. Compared with β-tricalcium phosphate (β-TCP) scaffolds NAGEL scaffolds possess a significantly enhanced compressive strength, a higher modulus and better degradability. Nagel scaffolds with a square pore morphology presented a higher compressive strength, a higher modulus and greater weight loss rate than those with triangular and parallelogram pore morphologies. In addition, all of the NAGEL scaffolds with the three macropore morphologies supported the attachment and proliferation of MC3T3 cells. The proliferation of MC3T3 cells on NAGEL scaffolds with triangular and parallelogram structures was higher than that on β-TCP scaffolds with the same pore structure. Cells on all three groups of NAGEL scaffolds revealed higher alkaline phosphatase (ALP) activity compared with cells on β-TCP scaffolds, and among the three NAGEL scaffolds groups those with a parallelogram pore structure showed the highest ALP activity. Furthermore, the angiogenic cell experiments showed that the ionic products from NAGEL scaffolds promoted tube formation, expression of pro

  9. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. Baghdad Sulcus in 3-D

    NASA Image and Video Library

    2010-02-23

    This anaglyph from images captured by NASA Cassini spacecraft shows a dramatic, 3-D view of one of the deep fractures nicknamed tiger stripes on Saturn moon Enceladus which are located near the moon south pole, spray jets of water ice.

  11. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  12. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  13. Ganges Chasma in 3-D

    NASA Image and Video Library

    1999-06-25

    Ganges Chasma is part of the Valles Marineris trough system that stretches nearly 5,000 kilometers 3,000 miles across the western equatorial region of Mars. This stereo anaglyph is from NASA Mars Global Surveyor. 3D glasses are necessary.

  14. Opportunity Stretches Out 3-D

    NASA Image and Video Library

    2004-02-02

    This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.

  15. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  16. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  17. Rosetta Comet in 3-D

    NASA Image and Video Library

    2014-11-21

    A 3D image shows what it would look like to fly over the surface of comet 67P/Churyumov-Gerasimenko. The image was generated by data collected by ESA Philae spacecraft during the decent to the spacecraft initial touchdown on the comet Nov. 12, 2014.

  18. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  19. Simulation of 3D diamond detectors

    NASA Astrophysics Data System (ADS)

    Forcolin, G. T.; Oh, A.; Murphy, S. A.

    2017-02-01

    3D diamond detectors present an interesting prospect for future Particle Physics experiments. They have been studied in detail at beam tests with 120 GeV protons and 4 MeV protons. To understand the observations that have been made, simulations have been carried out using Synopsys TCAD in order to explain the movement of charge carriers within the sample, as well as the effects of charge sharing. Reasonable agreement has been observed between simulation and experiment.

  20. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  1. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  2. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  3. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex

  4. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  5. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy.

    PubMed

    Qiu, Wu; Yuchi, Ming; Ding, Mingyue; Tessier, David; Fenster, Aaron

    2013-04-01

    Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200,000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. The proposed needle segmentation algorithm is accurate, robust, and

  6. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  7. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  8. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  9. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  10. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In each of these areas, the IRIS implementation of PLOT3D offers

  11. 3D straight-stick laparoscopy versus 3D robotics for task performance in novice surgeons: a randomised crossover trial.

    PubMed

    Shakir, Fevzi; Jan, Haider; Kent, Andrew

    2016-12-01

    The advent of three-dimensional passive stereoscopic imaging has led to the development of 3D laparoscopy. In simulation tasks, a reduction in error rate and performance time is seen with 3D compared to two-dimensional (2D) laparoscopy with both novice and expert surgeons. Robotics utilises 3D and instrument articulation through a console interface. Robotic trials have demonstrated that tasks performed in 3D produced fewer errors and quicker performance times compared with those in 2D. It was therefore perceived that the main advantage of robotic surgery was in fact 3D. Our aim was to compare 3D straight-stick laparoscopic task performance (3D) with robotic 3D (Robot), to determine whether robotic surgery confers additional benefit over and above 3D visualisation. We randomised 20 novice surgeons to perform four validated surgical tasks, either with straight-stick 3D laparoscopy followed by 3D robotic surgery or in the reverse order. The trial was conducted in two fully functional operating theatres. The primary outcome of the study was the error rate as defined for each task, and the secondary outcome was the time taken to complete each task. The participants were asked to perform the tasks as quickly and as accurately as possible. Data were analysed using SPSS version 21. The median error rate for completion of all four tasks with the robot was 2.75 and 5.25 for 3D with a P value <0.001. The median performance time for completion of all four tasks with the robot was 157.1 and 342.5 s for 3D with a P value <0.001. Our study has shown that for novice surgeons, there is a significant benefit in a simulated setting of 3D robotic systems over 3D straight-stick laparoscopy, in terms of reduced error rate and quicker task performance time.

  12. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin

    PubMed Central

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy. PMID:26236742

  13. 3-D Force-balanced Magnetospheric Configurations

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng; K. Maezawa

    2003-02-10

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions.

  14. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  15. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  17. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  18. 3-D sprag ratcheting tool

    NASA Technical Reports Server (NTRS)

    Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)

    2003-01-01

    A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.

  19. Comparing swimsuits in 3D.

    PubMed

    van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib

    2012-01-01

    In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.

  20. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  1. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  3. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  4. 3D Geo: An Alternative Approach

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.

    2016-10-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.

  5. Recent Development in 3D Food Printing.

    PubMed

    Yang, Fan; Zhang, Min; Bhandari, Bhesh

    2015-10-19

    Robots and softwares have been significantly improving our daily lives by rendering us much convenience. And 3D printing is a typical example, for it is going to usher in a new era of localized manufacturing that is actually based on digital fabrication by layer-by-layer deposition in three dimensional space. In terms of food industry, the revolution that three-dimensional printing technologies is bringing to food manufacturing is convenience of low-cost customized fabrication and even precise nutrition control. This paper is aimed to give a brief introduction of recent development of food printing and material property of food ingredients that can be used to design the 3D food matrix and investigate the relationship between process parameters and resulting printed food properties in order to establish a food manufacturing process with this new food production approach.

  6. Macropore Network Connectivity and Preferential Flow

    NASA Astrophysics Data System (ADS)

    Jarvis, N.; Koestel, J. K.; Larsbo, M.

    2016-12-01

    The increasingly widespread application of non-invasive X-ray imaging has led to the realization that macropores usually comprise complex multi-scale networks of multiple inter-connected and disconnected pathways, including dead-end pores and bottleneck constrictions. Combining X-ray scanning with flow and transport experiments carried out on the same soil columns may further our understanding of how network characteristics control preferential flow. We carried out tracer breakthrough experiments at a flow rate of 2 mm/hour on forty topsoil columns sampled from five different sites in east-central Sweden (four cultivated and one under long-term grass-clover ley) that had previously been imaged by X-ray tomography at a resolution of 0.3 mm. The results suggest that preferential flow is increasingly triggered as the macroporosity decreases towards a `percolation threshold' (i.e. the macroporosity that is required to establish long-range network connectivity). Sample size effects on the connectivity of the X-ray imaged macropore networks were also analyzed at two different resolutions (local pore thicknesses > 0.3 mm or > 1 mm) with two different methods: i.) a traditional technique for estimation of the REV using the statistics of the connection probability (the probability that two pore voxels belong to the same cluster) and ii.) a finite-size scaling analysis of the percolation probabilities. The analyses show that a cube of side length 8 cm is representative for imaged porosity and connectivity in these soil horizons. We conclude that percolation concepts could be used to account for the effects of macropore network connectivity in Darcy-scale models of preferential flow, although similar analyses should first be performed in subsoil horizons more susceptible to macropore flow.

  7. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  8. 3D joint dynamics analysis of healthy children's gait.

    PubMed

    Samson, William; Desroches, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-11-13

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this 3D angle may help in characterizing the level of gait maturation. The present study explores 3D joint moments, 3D joint power and the proposed 3D angle for both children's and adults' gaits to highlight differences in the strategies used. The results seem to confirm that children have an alternative strategy of mainly ankle stabilization and hip propulsion compared to the adults' strategy of mainly ankle resistance and propulsion and hip stabilization. In the future, the same 3D angle analysis should be applied to different age groups for better describing the evolution of the 3D joint dynamic strategies during the growth.

  9. Macroporous photonic crystal-based anti-ultraviolet and anti-near-infrared materials by doctor blade coating

    NASA Astrophysics Data System (ADS)

    Cai, Chang-Yun; Lin, Kun-Yi Andrew; Chen, Ying-Chu; Yang, Hongta

    2016-02-01

    In this article, we report a roll-to-roll compatible bottom-up self-assembly approach to fabricate double-multilayer macroporous polymer photonic crystals consisting of a multilayer of three-dimensional (3D) hexagonal close-packed (HCP) 200 nm spherical pores and a multilayer of 3D HCP 500 nm spherical pores. Both optical measurements and theoretical predictions reveal that the as-prepared polymer film exhibits anti-ultraviolet and anti-near-infrared properties caused by the Bragg's diffractive of incident ultraviolet radiation and near-infrared radiation from the crystalline lattice of air cavities in the polymer film.

  10. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration.

    PubMed

    Wei, Jie; Jia, Junfeng; Wu, Fan; Wei, Shicheng; Zhou, Huanjun; Zhang, Hongbo; Shin, Jung-Woog; Liu, Changsheng

    2010-02-01

    Hierarchically 3D microporous/macroporous magnesium-calcium phosphate (micro/ma-MCP) scaffolds containing magnesium ammonium phosphate hexahydrate [NH(4)MgPO(4).6H(2)O] and hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] were fabricated from cement utilizing leaching method in the presence of sodium chloride (NaCl) particles and NaCl saturated water solution. NaCl particles produced macroporosity, and NaCl solution acted as both cement liquid and porogens, inducing the formation of microporosity. The micro/ma-MCP scaffolds with porosities varied from 52 to 78% showed well interconnected and open macropores with the sizes of 400-500 microm, and degradation of the scaffolds was significantly enhanced in Tris-HCl solution compared with macroporous MCP (ma-MCP) and corresponding calcium phosphate cement (CPC) scaffolds. Cell attachment and proliferation of MG(63) on micro/ma-MCP were significantly better than ma-MCP and CPC scaffolds because of the presence of microporosity, which enhanced the surface area of the scaffolds. Moreover, the alkaline phosphatase (ALP) activity of the MG(63) cells on micro/ma-MCP was significantly higher than ma-MCP and CPC scaffolds at 7 days, and the MG(63) cells with normal phenotype spread well and formed confluent layers across the macroporous walls of the micro/ma-MCP scaffolds. Histological evaluation confirmed that the micro/ma-MCP scaffolds improved the efficiency of new bone regeneration, and exhibited excellent biocompatibility, biodegradability and faster and more effective osteogenesis in vivo.

  11. Isolation of brefeldin A from Eupenicillium brefeldianum broth using macroporous resin adsorption chromatography.

    PubMed

    Wang, Ya-Jun; Wu, Ye-Fei; Xue, Feng; Wu, Zhi-Xian; Xue, Ya-Ping; Zheng, Yu-Guo; Shen, Yin-Chu

    2012-05-01

    Brefeldin A (BFA) is a macrolide lactone antibiotic, possessing antitumor, antiviral, antifungal activities. In this work, a separation strategy involving one-step macroporous resin adsorption chromatography combined with crystallization was established for BFA purification from Eupenicillium brefeldianum CCTCC M 208113 fermentation broth. Among six macroporous resin adsorbents tested, the non-polar resin HZ830 had the best adsorption and desorption performance. The static equilibrium adsorption data fitted well with the Freundlich equation, and the adsorption kinetic followed the pseudo-second order model. Through experimental optimization of column adsorption and desorption, BFA in purity of 90.4% (w/w), 92.1% (w/w) yield was obtained by a one-step macroporous resin adsorption chromatography, using a stepwise elution protocol. Furthermore, high purity (>99%, w/w) of BFA crystals were prepared from E. brefeldianum CCTCC M 208113 fermentation broth in an overall recovery of 67.0% (w/w), using a combination of adsorption chromatography packed with non-polar macroporous adsorbent HZ830 and crystallization in acetone. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings.

    PubMed

    Muwaffak, Zaid; Goyanes, Alvaro; Clark, Vivienne; Basit, Abdul W; Hilton, Stephen T; Gaisford, Simon

    2017-07-15

    The increasing prevalence of wound infections caused by antibiotic resistant bacteria is an urgent challenge facing modern medicine. To address this issue the expedient use of antimicrobial metals such as zinc, copper and silver were incorporated into an FDA-approved polymer (polycaprolactone - PCL) to produce filaments for 3D printing. These metals have broad-spectrum antimicrobial properties, and moreover, copper and zinc can enhance the wound healing process. 3D scanning was used to construct 3D models of a nose and ear to provide the opportunity to customize shape and size of a wound dressing to an individual patient. Hot melt extrusion was used to extrude pellets obtained by vacuum-drying of solutions of PCL and the different metals in order to manufacture metal-homogeneously-loaded filaments. Wound dressings with different shapes were produced with the filaments containing different concentrations of metals. Release of the metals from the dressings was determined by inductively coupled plasma atomic emission spectroscopy. All the different metal dressings show fast release (up to 24h) followed by slow release (up to 72h). The antibacterial efficacy of the wound dressings was tested using a thermal activity monitor system, revealing that silver and copper wound dressings had the most potent bactericidal properties. This study shows that 3D scanning and 3D printing, which are becoming simpler and more affordable, have the potential to offer solutions to produce personalised wound dressings. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Elastic wave modelling in 3D heterogeneous media: 3D grid method

    NASA Astrophysics Data System (ADS)

    Jianfeng, Zhang; Tielin, Liu

    2002-09-01

    We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.

  14. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2010-12-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  15. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  16. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  17. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  18. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  19. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  20. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  1. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  2. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  3. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  4. Study of resonant modes in a 700 nm pitch macroporous silicon photonic crystal

    NASA Astrophysics Data System (ADS)

    Cardador, D.; Vega, D.; Segura, D.; Rodríguez, A.

    2017-01-01

    In this study the modes produced by a defect inserted in a macroporous silicon (MP) photonic crystal (PC) have been studied theoretical and experimentally. In particular, the transmitted and reflected spectra have been analyzed for variations in the defect's length and width. The performed simulations show that the resonant frequency is more easily adjusted for the fabricated samples by length tuning rather than width. The optimum resonance peak results when centered in the PC bandgap. The changes in the defect geometry result in small variations of the optical response of the PC. The resonance frequency is most sensitive to length variations, while the mode linewidth shows greater change with the defect width variation. Several MPS photonic crystals were fabricated by the electrochemical etching (EE) process with optical response in the range of 5.8 μm to 6.5 μm. Results of the characterization are in good agreement with simulations. Further samples were fabricated consisting of ordered modulated pores with a pitch of 700 nm. This allowed to reduce the vertical periodicity and therefore to have the optical response in the range of 4.4 μm to 4.8 μm. To our knowledge, modes working in this range of wavelengths have not been previously reported in 3-d MPS structures. Experimental results match with simulations, showing a linear relationship between the defect's length and working frequency inside the bandgap. We demonstrate the possibility of tailoring the resonance peak in both ranges of wavelengths, where the principal absorption lines of different gases in the mid infrared are placed. This makes these structures very promising for their application to compact gas sensors.

  5. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  6. Conformal 3D visualization for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Haker, Steven; Angenent, Sigurd; Tannenbaum, Allen R.; Kikinis, Ron

    2000-04-01

    In this paper, we propose a new 3D visualization technique for virtual colonoscopy. Such visualization methods could have a major impact since they have the potential for non-invasively determining the presence of polyps and other pathologies. We moreover demonstrate a method which presents a surface scan of the entire colon as a cine, and affords the viewer the opportunity to examine each point on the surface without distortion. We use the theory of conformal mappings from differential geometry in order to derive an explicit method for flattening surfaces obtained from 3D colon computerized tomography (CT) imagery. Indeed, we describe a general finite element method based on a discretization of the Laplace- Beltrami operator for flattening a surface onto the plane in an angle preserving manner. We also provide simple formulas which may be used in a real time cine to correct for distortion. We apply our method to 3D colon CT data provided to us by the Surgical Planning Laboratory of Brigham and Women's Hospital. We show how the conformal nature of the flattening function provides a flattened representation of the colon which is similar in appearance to the original. Finally, we indicate a few frames of a distortion correcting cine which can be used to examine the entire colon surface.

  7. Novel Scalable 3-D MT Inverse Solver

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.

    2016-12-01

    We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.

  8. Two Eyes, 3D: Stereoscopic Design Principles

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  9. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  10. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  11. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  12. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  14. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  15. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  16. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  17. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  20. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  2. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  3. 3D Sisyphus Cooling of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Ejtemaee, S.; Haljan, P. C.

    2017-07-01

    Using a laser polarization gradient, we realize 3D Sisyphus cooling of Yb+ 171 ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order of magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.

  4. 3D Printed Shelby Cobra

    ScienceCinema

    Love, Lonnie

    2016-11-02

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  5. Quasi 3D dispersion experiment

    NASA Astrophysics Data System (ADS)

    Bakucz, P.

    2003-04-01

    This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.

  6. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  7. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  8. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores.

    PubMed

    Machoke, Albert G; Beltrán, Ana M; Inayat, Alexandra; Winter, Benjamin; Weissenberger, Tobias; Kruse, Nadine; Güttel, Robert; Spiecker, Erdmann; Schwieger, Wilhelm

    2015-02-01

    Zeolite crystals with an embedded and interconnected macropore system are prepared by using mesoporous silica particles as a silica source and as a sacrificial macroporogen. These novel hierarchical zeolite crystals are expected to reduce diffusion limitations in all zeolite-catalyzed reactions, especially in the transformation of larger molecules like in the catalytic cracking of polymers and the conversion of biomass.

  9. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  10. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  11. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-06

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  12. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  13. Unidirectional Order and 3D Stacking of Stripes in Orthorhombic Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4.

    NASA Astrophysics Data System (ADS)

    Hücker, Markus; Tranquada, John M.; Gu, Gen D.; Zimmermann, Martin V.; Büchner, Bernd K.

    2006-03-01

    The crystal structure and charge stripe order in Pr1. 67Sr0.33NiO4 and Nd1. 67Sr0.33NiO4 was studied by means of single crystal x-ray diffraction in zero and high electric fields. In contrast to tetragonal La1.67Sr0.33NiO4, these crystals are orthorhombic at room temperature. We find that the distortion of the NiO2 planes associated with the orthorhombic strain dictates the direction of the charge stripes. The critical temperature for charge stripe order is the same as in La1.67Sr0.33NiO4 (TCO˜245 K), i.e., it does not depend on the crystal symmetry. A second structural transition observed only in Nd1.67Sr0.33NiO4 at temperatures T˜100 K has no noticeable influence on the stripe order. In crystals with a hole content very close to 1/3 we observe a tripling of the charge stripe unit cell along the c-axis for temperatures T < 225 K, which indicates a strong tendency towards a well defined three dimensional order. A high electric field applied to Nd1.67Sr0.33NiO4 had no noticeable impact on the charge stripe order, i.e., a sliding of stripes was not observed. The work at Brookhaven was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  14. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  15. Optimization of macropore evolution towards high photocatalytic activity enhancement in meso/macro porous Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Vijayan, C.

    2017-01-01

    We report on an optimization strategy for macro pore evolution leading to the design of highly photocatalytic 3D hierarchical meso/macroporous TiO2 via much simpler, faster and cost effective synthesis scheme. Meso/macro porous TiO2 is an excellent candidate material for photocatalytic applications owing to the availability of internal surfaces as active sites for redox reactions. The current research scenario focuses on the design of highly efficient photocatalytic systems as well as rapid, facile and cost effective methods of synthesis and optimization of parameters. The present report is on the gradual evolution of macropores in anatase TiO2 by the effective control of pH of the solvent, reaction time, temperature, solvent ratio and reactant concentration via a facile hydrothermal method in this regard. 3D hierarchical macroporous structures are obtained at pH 7 within a comparatively short reaction time of 5 h and demonstrated to be highly photocatalytic (with rate constant four times that of P25 nanoparticles) through photodegradation of Rhodamine B dye.

  16. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  17. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    PubMed

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  18. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  19. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  20. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  1. Highly compressible 3D periodic graphene aerogel microlattices

    SciTech Connect

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  2. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  3. Highly compressible 3D periodic graphene aerogel microlattices

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  4. A colour image reproduction framework for 3D colour printing

    NASA Astrophysics Data System (ADS)

    Xiao, Kaida; Sohiab, Ali; Sun, Pei-li; Yates, Julian M.; Li, Changjun; Wuerger, Sophie

    2016-10-01

    In this paper, the current technologies in full colour 3D printing technology were introduced. A framework of colour image reproduction process for 3D colour printing is proposed. A special focus was put on colour management for 3D printed objects. Two approaches, colorimetric colour reproduction and spectral based colour reproduction are proposed in order to faithfully reproduce colours in 3D objects. Two key studies, colour reproduction for soft tissue prostheses and colour uniformity correction across different orientations are described subsequently. Results are clear shown that applying proposed colour image reproduction framework, performance of colour reproduction can be significantly enhanced. With post colour corrections, a further improvement in colour process are achieved for 3D printed objects.

  5. Effects of the hydraulic conductivity of the matrix/macropore interface on cumulative infiltrations into dual-permeability media

    NASA Astrophysics Data System (ADS)

    Lassabatere, L.; Peyrard, X.; Angulo-Jaramillo, R.; Simunek, J.

    2009-12-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model (referred to as the 2K model) assumes that flow is governed by Richards equation in both porous regions (matrix and macropores). Water can be exchanged between the two regions following a first-order rate law. Although several studies have dealt with such modeling, no study has evaluated the influence of the hydraulic conductivity of the matrix/macropore interface on water cumulative infiltration. And this is the focus of this study. An analytical scaling method reveals the role of the following main parameters for given boundary and initial conditions: the saturated hydraulic conductivity ratio (R_Ks), the water pressure scale parameter ratio (R_hg), the saturated volumetric water content ratio (R_θs), and the shape parameters of the water retention and hydraulic conductivity functions. The last essential parameter is related to the interfacial hydraulic conductivity (Ka) between the macropore and matrix regions. The scaled 2K flow equations were solved using HYDRUS-1D 4.09 for the specific case of water infiltrating into an initially uniform soil profile and a zero pressure head at the soil surface. A sensitivity of water infiltration was studied for different sets of scale parameters (R_Ks, R_hg, R_θs, and shape parameters) and the scaled interfacial conductivity (Ka). Numerical results illustrate two extreme behaviors. When the interfacial conductivity is zero (i.e., no water exchange), water infiltrates separately into matrix and macropore regions, producing a much deeper moisture front in the macropore domain. In the opposite case

  6. Soil matrix and macropore biodegradation of 2,4-D

    SciTech Connect

    Pivetz, B.E.; Steenhuis, T.S.

    1995-07-01

    Preferential flow of pesticides in macropores can lead to decreased travel times through the vadose zone and increased groundwater contamination. Macropores, however, may present a favorable environment for biodegradation because of greater oxygen, nutrient, and substrate supply, and higher microbial populations in earthworm burrows, compared to the soil matrix. The biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was measured in macropores and soil matrix of packed soil columns (7.0-cm diam., 10-cm length) and undisturbed cores contained as well-defined artificial macropore and the undisturbed cores contained earthworm-burrow macropores. A 50 {mu}g/L 2,4-D solution was continuously applied to the unsaturated soil surface and breakthrough curves (BTCs) indicating pesticide loss in the effluent were obtained from the soil matrix and macropore flow paths. Biodegradation rates were calculated separately for each flow path by comparing the BTCs to BTCs representing abiotic conditions, and dividing the 2,4-D loss by the travel time through each flow path. The biodegradation rates increased with time in both flow paths, and the final biodegradation rate in the macropore region surpassed that of the matrix, presumably because of increased microbial populations in the macropore. Complete loss of the 2,4-D in both flow paths was observed after continuous application of 2,4-D for 400 h, with maximum column-averaged 2,4-D loss rates of 0.879 {mu}g/(L h) in the matrix and 1.073 {mu}g/(L h) in the macropore. Biodegradation of 2,4-D was also observed in the macropore and matrix regions of the undisturbed soil cores. 19 refs., 7 figs., 2 tabs.

  7. Personal perceptual and cognitive property for 3D recognition

    NASA Astrophysics Data System (ADS)

    Matozaki, Takeshi; Tanisita, Akihiko

    1996-04-01

    3D closed circuit TV which produces stereoscopic vision by observing different images through each eye alternately, has been proposed. But, there are several problems, both physiological and psychological, for 3D image observation in many fields. From this prospective, we are learning personal visual characteristics for 3D recognition in the transition from 2D to 3D. We have separated the mechanism of 3D recognition into several categories, and formed some hypothesis about the personal features. These hypotheses are related to an observer's personal features, as follows: (1) consideration of the angle between the left and the right eye's line of vision and the adjustment of focus, (2) consideration of the angle of vision and the time required for fusion, (3) consideration of depth sense based on life experience, (4) consideration of 3D experience, and (5) consideration of 3D sense based on the observer's age. To establish these hypotheses, and we have analyzed the personal features of the time interval required for 3D recognition through some examinations to examinees. Examinees indicate their response for 3D recognition by pushing a button. Recently, we introduced a method for picking up the reaction of 3D recognition from examinees through their biological information, for example, analysis of pulse waves of the finger. We also bring a hypothesis, as a result of the analysis of pulse waves. (1) We can observe chaotic response when the examinee is recognizing a 2D image. (2) We can observe periodic response when the examinee is recognizing a 3D image. We are making nonlinear forecasts by getting correlation between the forecast and the biological phenomena. Deterministic nonlinear prediction are applied to the data, as a promising method of chaotic time series analysis in order to analyze the long term unpredictability, one of the fundamental characteristics of deterministic chaos.

  8. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery.

    PubMed

    Seyfoddin, A; Chan, A; Chen, W-T; Rupenthal, I D; Waterhouse, G I N; Svirskis, D

    2015-08-01

    Corticosteroids such as dexamethasone are first line ophthalmic treatment for non-infectious posterior uveitis. Corticosteroids are often administered via intravitreal injection to treat this condition with frequent injections associated with poor treatment adherence and complications such as endophthalmitis. Current ocular implants provide sustained corticosteroid release at predetermined rates and lack the ability for dose individualisation. This study describes the successful fabrication of electrically responsive macroporous polypyrrole (PPy) thin films, and their subsequent application to triggered dexamethasone release. Colloidal crystal films composed of 370nm polymethylmethacrylate colloids were first deposited on ITO coated glass substrates, and subsequently used as sacrificial templates for the fabrication of high surface area, 3-dimensionally ordered macroporous PPy inverse opal (PPy IO) thin films. SEM, UV-Vis reflectance and cyclic voltammetry measurements established that the redox state of the PPy IO films could be controlled via electrical stimulation, which in turn influences both porosity and optical properties of the films. Incorporation of the anti-inflammatory corticosteroid, dexamethasone phosphate (DexP), in the PPy IO films during their fabrication resulted in an effective delivery platform for triggered DexP release. A sustained release profile was observed for the PPy IO-DexP films, bursts of release could be triggered by electrical stimulation. The amount of DexP released from the PPy IO-DexP films was significantly higher than that released from the conventional non-porous PPy-DexP films of comparable mass. Results suggest that electrically responsive PPy IO structures are highly suitable for on-demand drug delivery applications. This technology may enable physicians to fine-tune the required dose according to disease state and patients' needs to enhance the safety and efficacy of corticosteroid treatment. Copyright © 2015 Elsevier B

  9. Quasi-3D space charge simulation

    SciTech Connect

    Yang, Xi; /Fermilab

    2007-04-01

    The longitudinal space charge effect is simulated by binning the longitudinal beam profile in order to calculate the force on the bins using the binned particle distribution via FFT, and applying momentum kick based upon this space charge force to macro-particles. Usually, the longitudinal space charge kick is calculated once per turn since the longitudinal profile doesn't change much in a single turn. Besides, the longitudinal profile is used as a weighting factor for the transverse space charge force. The transverse space charge effect is simulated by projecting the 3-D beam to a 2-D Gaussian distribution in order to use the complex error function to compute the transverse space charge force, and applying this space charge force to macro-particles. One transverse space charge calculation per scale length of the beam shape variation requires at least ten transverse space charge force calculations per betatron oscillation.

  10. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  11. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  12. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    PubMed

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  14. Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate

    NASA Astrophysics Data System (ADS)

    Vogel, Laure E.; Makowski, David; Garnier, Patricia; Vieublé-Gonod, Laure; Coquet, Yves; Raynaud, Xavier; Nunan, Naoise; Chenu, Claire; Falconer, Ruth; Pot, Valérie

    2015-09-01

    Soil structure and interactions between biotic and abiotic processes are increasingly recognized as important for explaining the large uncertainties in the outputs of macroscopic SOM decomposition models. We present a numerical analysis to assess the role of meso- and macropore topology on the biodegradation of a soluble carbon substrate in variably water saturated and pure diffusion conditions . Our analysis was built as a complete factorial design and used a new 3D pore-scale model, LBioS, that couples a diffusion lattice-Boltzmann model and a compartmental biodegradation model. The scenarios combined contrasted modalities of four factors: meso- and macropore space geometry, water saturation, bacterial distribution and physiology. A global sensitivity analysis of these factors highlighted the role of physical factors in the biodegradation kinetics of our scenarios. Bacteria location explained 28% of the total variance in substrate concentration in all scenarios, while the interactions among location, saturation and geometry explained up to 51% of it.

  15. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  16. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  17. Substantial increase of the ordering temperature for [MnII/MoIII(CN)7]-based magnets as a function of the 3d ion site geometry: example of two supramolecular materials with Tc = 75 and 106 K.

    PubMed

    Tanase, Stéfania; Tuna, Floriana; Guionneau, Philippe; Maris, Thierry; Rombaut, Guillaume; Mathonière, Corine; Andruh, Marius; Kahn, Olivier; Sutter, Jean-Pascal

    2003-03-10

    Two molecule-based magnets, [Mn(2)(tea)Mo(CN)(7)].H(2)O, 1, and [Mn(2)(tea)Mo(CN)(7)], 2 (tea stands for triethanolamine), formed with the 4d ion building block, [Mo(CN)(7)](4)(-), Mn(II) ions, and an additional ligand, tea, have been prepared and structurally characterized by single-crystal X-ray analyses. Whereas 1 is obtained by a self-assembling process in solution, compound 2 is quantitatively formed through a smooth thermal treatment of 1. Their magnetic properties revealed that these compounds exhibit magnetic ordering at T(c) = 75 and 106 K respectively for compounds 1 and 2. The difference for their critical temperature is attributed to the geometry of the coordination sphere of a Mn(II) site found to be square-pyramidal for 1 and tetrahedral for 2.

  18. 3D-Pathology: a real-time system for quantitative diagnostic pathology and visualisation in 3D

    NASA Astrophysics Data System (ADS)

    Gottrup, Christian; Beckett, Mark G.; Hager, Henrik; Locht, Peter

    2005-02-01

    This paper presents the results of the 3D-Pathology project conducted under the European EC Framework 5. The aim of the project was, through the application of 3D image reconstruction and visualization techniques, to improve the diagnostic and prognostic capabilities of medical personnel when analyzing pathological specimens using transmitted light microscopy. A fully automated, computer-controlled microscope system has been developed to capture 3D images of specimen content. 3D image reconstruction algorithms have been implemented and applied to the acquired volume data in order to facilitate the subsequent 3D visualization of the specimen. Three potential application fields, immunohistology, cromogenic in situ hybridization (CISH) and cytology, have been tested using the prototype system. For both immunohistology and CISH, use of the system furnished significant additional information to the pathologist.

  19. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage.

    PubMed

    Huang, Chun-Hsien; Zhang, Qiang; Chou, Tsu-Chin; Chen, Cheng-Meng; Su, Dang Sheng; Doong, Ruey-An

    2012-03-12

    Three-dimensional, hierarchically ordered, porous carbon (HOPC) with designed porous textures, serving as an ion-buffering reservoir, an ion-transport channel, and a charge-storage material, is expected to be advanced an energy material for high-rate supercapacitors. Herein, HOPC without/with partially graphitic nanostructures have been directly synthesized by means of a simple one-pot synthesis procedure. The designed porous textures of the 3D HOPC materials are composed of highly ordered, fcc macroporous (300 nm), interconnected porous structures, including macroporous windows (170 nm), hexagonally ordered mesopores (5.0 nm), and useful micropores (1.2 nm). 3D HOPC-g-1000 (g=graphitic, 1000=pyrolysis temperature of 1000 °C) with partially graphitic nanostructures has a low specific surface area (296 m(2) g(-1)) and a low gravimetric specific capacitance (73.4 F g(-1) at 3 mV s(-1)), but improved electrical conductivity, better rate performance, higher electrolyte accessibility (24.8 μF cm(-2) at 3 mV s(-1)), faster frequency response (≈1 Hz), and excellent cycling performance (>5400 cycles). The specific capacitance per surface area is higher than that of conventional porous carbons, carbon nanotubes, and modified graphene (10-19 μF cm(-2)). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of self-assembly process of latex spheres on the final topology of macroporous silica.

    PubMed

    Barros Filho, Djalma A; Hisano, Cíntia; Bertholdo, Roberto; Schiavetto, Matheus G; Santilli, Celso; Ribeiro, Sidney J L; Messaddeq, Younés

    2005-11-15

    This paper surveys the topology of macroporous silica prepared using latex templates covering the submicrometric range (0.1-0.7 mum). The behavior of latex spheres in aqueous dispersion has been analyzed by dynamic light scattering (DLS) measurement indicating the most appropriate conditions to form well-defined cubic arrays. The optical behavior of latex spheres has been analyzed by transmittance and reflectance measurements in order to determine their diameter and filling factor when they were assembled in bidimensional arrays. Macroscopic templates have been obtained by a centrifugation process and their crystalline ordering has been confirmed by porosimetry and scanning electron microscopy. These self-assembled structures have been used to produce macroporous silica, whose final topology depends on the pore size distribution of the original template. It has been seen that latex spheres are ordered in a predominant fcc arrangement with slipping of tetragonal pores due to the action of attractive electrostatic interactions. The main effect is to change the spherical shape of voids in macroporous silica into a hexagonal configuration with possible applications to fabricate photonic devices with novel optical properties.

  1. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  2. The 3D Reference Earth Model (REM-3D): Update and Outlook

    NASA Astrophysics Data System (ADS)

    Lekic, V.; Moulik, P.; Romanowicz, B. A.; Dziewonski, A. M.

    2016-12-01

    Elastic properties of the Earth's interior (e.g. density, rigidity, compressibility, anisotropy) vary spatially due to changes in temperature, pressure, composition, and flow. In the 20th century, seismologists have constructed reference models of how these quantities vary with depth, notably the PREM model of Dziewonski and Anderson (1981). These 1D reference earth models have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, more sophisticated efforts by seismologists have yielded several generations of models of how properties vary not only with depth, but also laterally. Yet, though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. We propose to overcome these challenges by compiling, reconciling, and distributing a long period (>15 s) reference seismic dataset, from which we will construct a 3D seismic reference model (REM-3D) for the Earth's mantle, which will come in two flavors: a long wavelength smoothly parameterized model and a set of regional profiles. Here, we summarize progress made in the construction of the reference long period dataset, and present preliminary versions of the REM-3D in order to illustrate the two flavors of REM-3D and their relative advantages and disadvantages. As a community reference model and with fully quantified uncertainties and tradeoffs, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. In this presentation, we outline the outlook for setting up advisory community

  3. America's National Parks 3d (4)

    Atmospheric Science Data Center

    2017-04-11

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4)   ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D.   ...

  4. America's National Parks 3d (3)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3)   ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D.   ...

  5. America's National Parks 3d (2)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2)   ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D.   ...

  6. America's National Parks 3d (1)

    Atmospheric Science Data Center

    2016-12-30

    article title:  America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1)   ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D.   ...

  7. 3D ultrasound in fetal spina bifida.

    PubMed

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  8. An interactive multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  9. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  10. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  11. 3D foveated visualization on the Web

    NASA Astrophysics Data System (ADS)

    Schermann, John; Barron, John L.; Gargantini, Irene A.

    2000-12-01

    Recent developments in Internet technology, combined with the computerization of hospital radiology departments, allow the remote viewing of medical data images. Generally, however, medical images are data intensive and the transmission of such images over a network can consumer large amounts of network resources. Previous work by Liptay et al, presented an interactive, progressive program (implemented in JAVA and requiring a web browser) that allowed the transmission of multi-resolution JPEG image data using various ROI (Region of Interest) strategies in order to minimize Internet bandwidth requirements. This work handles both 2D and 3D image data, but 3D data was treated as a sequence of 2D images, where each 2D image had to be individually requested by the system. The work described in this paper replaces the representation of 3D data as a 2D JPEG image sequence with a single block of lossy 3D image data compressed using wavelets. In a similar fashion, 2D image data is wavelet compressed. Wavelet decomposition has been shown to have consistently better image quality at high compression ratios than other lossy compression methods. We use wavelet compression in a JAVA application program on the server side to construct a lossy low resolution version of the data. As well, high resolution difference sub-blocks of data are also created by the JAVA application; a difference sub-block and the corresponding low resolution lossless data. Transmitting the low resolution image and difference sub-blocks (as requested) only requires a small fraction of the network bandwidth compared to that which would otherwise be needed to transmit the entire lossless data set. The user, via a JAVA applet on the client side, is provided with a number of methods to choose a trajectory (sequence) of regions of interest in the low resolution image. Once the region(s) of interest are chosen, the sub-blocks of image data in the various trajectories are then retrieved and integrated into the low

  12. Evaluating scatterometry 3D capabilities for EUV

    NASA Astrophysics Data System (ADS)

    Li, Jie; Kritsun, Oleg; Dasari, Prasad; Volkman, Catherine; Wallow, Tom; Hu, Jiangtao

    2013-04-01

    Optical critical dimension (OCD) metrology using scatterometry has been demonstrated to be a viable solution for fast and non-destructive in-line process control and monitoring. As extreme ultraviolet lithography (EUVL) is more widely adopted to fabricate smaller and smaller patterns for electronic devices, scatterometry faces new challenges due to several reasons. For 14nm node and beyond, the feature size is nearly an order of magnitude smaller than the shortest wavelength used in scatterometry. In addition, thinner resist layer is used in EUVL compared with conventional lithography, which leads to reduced measurement sensitivity. Despite these difficulties, tolerance has reduced for smaller feature size. In this work we evaluate 3D capability of scatterometry for EUV process using spectroscopic ellipsometry (SE). Three types of structures, contact holes, tip-to-tip, and tip-to-edge, are studied to test CD and end-gap metrology capabilities. The wafer is processed with focus and exposure matrix. Good correlations to CD-SEM results are achieved and good dynamic precision is obtained for all the key parameters. In addition, the fit to process provides an independent method to evaluate data quality from different metrology tools such as OCD and CDSEM. We demonstrate 3D capabilities of scatterometry OCD metrology for EUVL using spectroscopic ellipsometry, which provides valuable in-line metrology for CD and end-gap control in electronic circuit fabrications.

  13. 3D Tracking via Shoe Sensing

    PubMed Central

    Li, Fangmin; Liu, Guo; Liu, Jian; Chen, Xiaochuang; Ma, Xiaolin

    2016-01-01

    Most location-based services are based on a global positioning system (GPS), which only works well in outdoor environments. Compared to outdoor environments, indoor localization has created more buzz in recent years as people spent most of their time indoors working at offices and shopping at malls, etc. Existing solutions mainly rely on inertial sensors (i.e., accelerometer and gyroscope) embedded in mobile devices, which are usually not accurate enough to be useful due to the mobile devices’ random movements while people are walking. In this paper, we propose the use of shoe sensing (i.e., sensors attached to shoes) to achieve 3D indoor positioning. Specifically, a short-time energy-based approach is used to extract the gait pattern. Moreover, in order to improve the accuracy of vertical distance estimation while the person is climbing upstairs, a state classification is designed to distinguish the walking status including plane motion (i.e., normal walking and jogging horizontally), walking upstairs, and walking downstairs. Furthermore, we also provide a mechanism to reduce the vertical distance accumulation error. Experimental results show that we can achieve nearly 100% accuracy when extracting gait patterns from walking/jogging with a low-cost shoe sensor, and can also achieve 3D indoor real-time positioning with high accuracy. PMID:27801839

  14. Wax-bonding 3D microfluidic chips.

    PubMed

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2010-10-07

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  15. Backhoe 3D "gold standard" image

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy; Naidu, Kiranmai D.; Majumder, Uttam; Minardi, Michael A.

    2005-05-01

    ViSUAl-D (VIsual Sar Using ALl Dimensions), a 2004 DARPA/IXO seedling effort, is developing a capability for reliable high confidence ID from standoff ranges. Recent conflicts have demonstrated that the warfighter would greatly benefit from the ability to ID targets beyond visual and electro-optical ranges[1]. Forming optical-quality SAR images while exploiting full polarization, wide angles, and large bandwidth would be key evidence such a capability is achievable. Using data generated by the Xpatch EM scattering code, ViSUAl-D investigates all degrees of freedom available to the radar designer, including 6 GHz bandwidth, full polarization and angle sampling over 2π steradians (upper hemisphere), in order to produce a "literal" image or representation of the target. This effort includes the generation of a "Gold Standard" image that can be produced at X-band utilizing all available target data. This "Gold Standard" image of the backhoe will serve as a test bed for future more relevant military targets and their image development. The seedling team produced a public release data which was released at the 2004 SPIE conference, as well as a 3D "Gold Standard" backhoe image using a 3D image formation algorithm. This paper describes the full backhoe data set, the image formation algorithm, the visualization process and the resulting image.

  16. Nonlinear dynamics of 3D massive gravity

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Gabadadze, Gregory; Pirtskhalava, David; Tolley, Andrew J.; Yavin, Itay

    2011-06-01

    We explore the nonlinear classical dynamics of the three-dimensional theory of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find that the theory passes remarkably highly nontrivial consistency checks at the nonlinear level. In particular, we show that: (1) In the decoupling limit of the theory, the interactions of the helicity-0 mode are described by a single cubic term — the so-called cubic Galileon — previously found in the context of the DGP model and in certain 4D massive gravities. (2) The conformal mode of the metric coincides with the helicity-0 mode in the decoupling limit. Away from this limit the nonlinear dynamics of the former is described by a certain generalization of Galileon interactions, which like the Galileons themselves have a well-posed Cauchy problem. (3) We give a non-perturbative argument based on the presence of additional symmetries that the full theory does not lead to any extra degrees of freedom, suggesting that a 3D analog of the 4D Boulware-Deser ghost is not present in this theory. Last but not least, we generalize "New Massive Gravity" and construct a class of 3D cubic order massive models that retain the above properties.

  17. Superfast 3D absolute shape measurement using five binary patterns

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  18. 3-D Extensions for Trustworthy Systems

    DTIC Science & Technology

    2011-01-01

    modifications to the floor planning stage of the 3-D design flow that are necessary to support our design approach. We strongly recommend that the 3-D EDA ...and we outline problems, challenges, attacks, solutions, and topics for future research. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Requirements for automated 3-D IC design tools for the physical layout of components. Since fully automated Electronic Design Automation ( EDA ) for 3-D

  19. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  20. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can