Science.gov

Sample records for 3d parallel mechanism

  1. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm. PMID:22319408

  2. Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  3. Design and Sensitivity Analysis Simulation of a Novel 3D Force Sensor Based on a Parallel Mechanism

    PubMed Central

    Yang, Eileen Chih-Ying

    2016-01-01

    Automated force measurement is one of the most important technologies in realizing intelligent automation systems. However, while many methods are available for micro-force sensing, measuring large three-dimensional (3D) forces and loads remains a significant challenge. Accordingly, the present study proposes a novel 3D force sensor based on a parallel mechanism. The transformation function and sensitivity index of the proposed sensor are analytically derived. The simulation results show that the sensor has a larger effective measuring capability than traditional force sensors. Moreover, the sensor has a greater measurement sensitivity for horizontal forces than for vertical forces over most of the measurable force region. In other words, compared to traditional force sensors, the proposed sensor is more sensitive to shear forces than normal forces. PMID:27999246

  4. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  5. Parallel CARLOS-3D code development

    SciTech Connect

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions to the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.

  6. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  7. 3-D Visualization on Workspace of Parallel Manipulators

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshito; Yokomichi, Isao; Ishii, Junko; Makino, Toshiaki

    In parallel mechanisms, the form and volume of workspace also change variously with the attitude of a platform. This paper presents a method to search for the workspace of parallel mechanisms with 6-DOF and 3D visualization of the workspace. Workspace is a search for the movable range of the central point of a platform when it moves with a given orientation. In order to search workspace, geometric analysis based on inverse kinematics is considered. Plots of 2D of calculations are compared with those measured by position sensors. The test results are shown to have good agreement with simulation results. The workspace variations are demonstrated in terms of 3D and 2D plots for prototype mechanisms. The workspace plots are created with OpenGL and Visual C++ by implementation of the algorithm. An application module is developed, which displays workspace of the mechanism in 3D images. The effectiveness and practicability of 3D visualization on workspace are successfully demonstrated by 6-DOF parallel mechanisms.

  8. Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT.

    PubMed

    Maruyama, Yutaka; Yoshida, Norio; Tadano, Hiroto; Takahashi, Daisuke; Sato, Mitsuhisa; Hirata, Fumio

    2014-07-05

    A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems.

  9. CALTRANS: A parallel, deterministic, 3D neutronics code

    SciTech Connect

    Carson, L.; Ferguson, J.; Rogers, J.

    1994-04-01

    Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.

  10. A parallel algorithm for solving the 3d Schroedinger equation

    SciTech Connect

    Strickland, Michael; Yager-Elorriaga, David

    2010-08-20

    We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.

  11. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  12. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  13. Parallel 3-D viscoelastic finite difference seismic modelling

    NASA Astrophysics Data System (ADS)

    Bohlen, Thomas

    2002-10-01

    Computational power has advanced to a state where we can begin to perform wavefield simulations for realistic (complex) 3-D earth models at frequencies of interest to both seismologists and engineers. On serial platforms, however, 3-D calculations are still limited to small grid sizes and short seismic wave traveltimes. To make use of the efficiency of network computers a parallel 3-D viscoelastic finite difference (FD) code is implemented which allows to distribute the work on several PCs or workstations connected via standard ethernet in an in-house network. By using the portable message passing interface standard (MPI) for the communication between processors, running times can be reduced and grid sizes can be increased significantly. Furthermore, the code shows good performance on massive parallel supercomputers which makes the computation of very large grids feasible. This implementation greatly expands the applicability of the 3-D elastic/viscoelastic finite-difference modelling technique by providing an efficient, portable and practical C-program.

  14. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  15. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  16. Parallel tempering and 3D spin glass models

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.

  17. Parallel PAB3D: Experiences with a Prototype in MPI

    NASA Technical Reports Server (NTRS)

    Guerinoni, Fabio; Abdol-Hamid, Khaled S.; Pao, S. Paul

    1998-01-01

    PAB3D is a three-dimensional Navier Stokes solver that has gained acceptance in the research and industrial communities. It takes as computational domain, a set disjoint blocks covering the physical domain. This is the first report on the implementation of PAB3D using the Message Passing Interface (MPI), a standard for parallel processing. We discuss briefly the characteristics of tile code and define a prototype for testing. The principal data structure used for communication is derived from preprocessing "patching". We describe a simple interface (COMMSYS) for MPI communication, and some general techniques likely to be encountered when working on problems of this nature. Last, we identify levels of improvement from the current version and outline future work.

  18. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  19. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  20. Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing

    NASA Technical Reports Server (NTRS)

    Fricker, David M.

    1997-01-01

    The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.

  1. Mechanical properties of 3D ceramic nanolattices

    NASA Astrophysics Data System (ADS)

    Meza, Lucas

    Developments in advanced nanoscale fabrication techniques have allowed for the creation of 3-dimensional hierarchical structural meta-materials that can be designed with arbitrary geometry. These structures can be made on length scales spanning multiple orders of magnitude, from tens of nanometers to hundreds of microns. The smallest features are controllable on length scales where materials have been shown to exhibit size effects in their mechanical properties. Combining novel nanoscale mechanical properties with a 3-dimensional architecture enables the creation of new classes of materials with tunable and unprecedented mechanical properties. We present the fabrication and mechanical deformation of hollow tube alumina nanolattices that were fabricated using two-photon lithography direct laser writing (DLW), atomic layer deposition (ALD), and oxygen plasma etching. Nanolattices were designed in a number of different geometries including octet-truss, octahedron, and 3D Kagome. Additionally, a number of structural parameters were varied including tube wall thickness (t) , tube major axis (a) , and unit cell size (L) . The resulting nanolattices had a range of densities from ρ = 4 to 250 mg/cm3. Uniaxial compression and cyclic loading tests were performed on the nanolattices to obtain the yield strength and modulus. In these tests, a marked change in the deformation response was observed when the wall thickness was reduced below 20nm; thick-walled nanolattices (t>20nm) underwent catastrophic, brittle failure, which transitioned to a gradual, ductile-like deformation as wall thickness was reduced. Thick-walled nanolattices also exhibited no recovery after compression, while thin-walled structures demonstrated notable recovery, with some recovering by 98% after compression to 50% strain and by 80% when compressed to 90% strain. Across all geometries, unit cell sizes, and wall thicknesses, we found a consistent power law relation between strength and modulus with

  2. Squire's transformation and 3D Optimal Perturbations in Bounded Parallel Shear Flows

    NASA Astrophysics Data System (ADS)

    Chomaz, Jean-Marc; Soundar Jerome, J. John

    2011-11-01

    The aim of this short communication is to present the implication of Squire's transformation on the optimal transient growth of arbitrary 3D disturbances in parallel shear flow bounded in the cross-stream direction. To our best knowledge this simple property has never been discussed before. In particular it allows to express the long-time optimal growth for perturbations of arbitrary wavenumbers as the product of the gains from the 2D optimal at a lower Reynolds number itself due to the Orr-mechanism by a term that may be identified as due to the lift-up mechanism. This property predict scalings for the 3D optimal perturbation well verified by direct computation. It may be extended to take into account buoyancy effect.

  3. Parallel deterministic neutronics with AMR in 3D

    SciTech Connect

    Clouse, C.; Ferguson, J.; Hendrickson, C.

    1997-12-31

    AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.

  4. Parallel beam optical tomography apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2005-06-01

    Since the discovery of X rays radiotherapy has had the same aim - to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to surrounding healthy tissue. Recent developments in radiotherapy such as intensity modulated radiotherapy (IMRT) can generate complex shapes of dose distributions. Until recently it has not been possible to verify that the delivered dose matches the planned dose. However, one often wants to know the real three-dimensional dose distribution. Three-dimensional radiation dosimeters have been developed since the early 1980s. Most chemical formulations involve a radiosensitive species immobilised in space by gelling agent. Magnetic Resonance Imaging (MRI) and optical techniques have been the most successful gel scanning techniques so far. Optical techniques rely on gels changing colour once irradiated. Parallel beam optical tomography has been developed at the University of Surrey since the late 1990s. The apparatus involves light emitting diode light source collimated to a wide (12cm) parallel beam. The beam is attenuated or scattered (depending on the chemical formulation) as it passes through the gel. Focusing optics projects the beam onto a CCD chip. The dosimeter sits on a rotation stage. The tomography scan involves continuously rotating the dosimeter and taking CCD images. Once the dosimeter has been rotated over 180 degrees the images are processed by filtered back projection. The work presented discusses the optics of the apparatus in more detail.

  5. Parallel Cartesian grid refinement for 3D complex flow simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2013-11-01

    A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.

  6. Parallel OSEM Reconstruction Algorithm for Fully 3-D SPECT on a Beowulf Cluster.

    PubMed

    Rong, Zhou; Tianyu, Ma; Yongjie, Jin

    2005-01-01

    In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency. This parallel implementation methodology is expected to be helpful to make fully 3-D OSEM algorithms more feasible in clinical SPECT studies.

  7. Prediction of parallel NIKE3D performance on the KSR1 system

    SciTech Connect

    Su, P.S.; Zacharia, T.; Fulton, R.E.

    1995-05-01

    Finite element method is one of the bases for numerical solutions to engineering problems. Complex engineering problems using finite element analysis typically imply excessively large computational time. Parallel supercomputers have the potential for significantly increasing calculation speeds in order to meet these computational requirements. This paper predicts parallel NIKE3D performance on the Kendall Square Research (KSR1) system. The first part of the prediction is based on the implementation of parallel Cholesky (U{sup T}DU) matrix decomposition algorithm through actual computations on the KSRI multiprocessor system, with 64 processors, at Oak Ridge National Laboratory. The other predictions are based on actual computations for parallel element matrix generation, parallel global stiffness matrix assembly, and parallel forward/backward substitution on the BBN TC2000 multiprocessor system at Lawrence Livermore National Laboratory. The preliminary results indicate that parallel NIKE3D performance can be attractive under local/shared-memory multiprocessor system environments.

  8. 3D Kirchhoff depth migration algorithm: A new scalable approach for parallelization on multicore CPU based cluster

    NASA Astrophysics Data System (ADS)

    Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran

    2017-03-01

    In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.

  9. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  10. Design of 3D-Printed Titanium Compliant Mechanisms

    NASA Technical Reports Server (NTRS)

    Merriam, Ezekiel G.; Jones, Jonathan E.; Howell, Larry L.

    2014-01-01

    This paper describes 3D-printed titanium compliant mechanisms for aerospace applications. It is meant as a primer to help engineers design compliant, multi-axis, printed parts that exhibit high performance. Topics covered include brief introductions to both compliant mechanism design and 3D printing in titanium, material and geometry considerations for 3D printing, modeling techniques, and case studies of both successful and unsuccessful part geometries. Key findings include recommended flexure geometries, minimum thicknesses, and general design guidelines for compliant printed parts that may not be obvious to the first time designer.

  11. 3D parallel inversion of time-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yun-He; Yin, Chang-Chun; Ren, Xiu-Yan; Qiu, Chang-Kai

    2016-12-01

    To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.

  12. Parallel implementation of the FETI-DPEM algorithm for general 3D EM simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu-Jia; Jin, Jian-Ming

    2009-05-01

    A parallel implementation of the electromagnetic dual-primal finite element tearing and interconnecting algorithm (FETI-DPEM) is designed for general three-dimensional (3D) electromagnetic large-scale simulations. As a domain decomposition implementation of the finite element method, the FETI-DPEM algorithm provides fully decoupled subdomain problems and an excellent numerical scalability, and thus is well suited for parallel computation. The parallel implementation of the FETI-DPEM algorithm on a distributed-memory system using the message passing interface (MPI) is discussed in detail along with a few practical guidelines obtained from numerical experiments. Numerical examples are provided to demonstrate the efficiency of the parallel implementation.

  13. A Preliminary Study of 3D Printing on Rock Mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Zhao, Gao-Feng

    2015-05-01

    3D printing is an innovative manufacturing technology that enables the printing of objects through the accumulation of successive layers. This study explores the potential application of this 3D printing technology for rock mechanics. Polylactic acid (PLA) was used as the printing material, and the specimens were constructed with a "3D Touch" printer that employs fused deposition modelling (FDM) technology. Unconfined compressive strength (UCS) tests and direct tensile strength (DTS) tests were performed to determine the Young's modulus ( E) and Poisson's ratio ( υ) for these specimens. The experimental results revealed that the PLA specimens exhibited elastic to brittle behaviour in the DTS tests and exhibited elastic to plastic behaviour in the UCS tests. The influence of structural changes in the mechanical response of the printed specimen was investigated; the results indicated that the mechanical response is highly influenced by the input structures, e.g., granular structure, and lattice structure. Unfortunately, our study has demonstrated that the FDM 3D printing with PLA is unsuitable for the direct simulation of rock. However, the ability for 3D printing on manufactured rock remains appealing for researchers of rock mechanics. Additional studies should focus on the development of an appropriate substitution for the printing material (brittle and stiff) and modification of the printing technology (to print 3D grains with arbitrary shapes).

  14. Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows

    NASA Technical Reports Server (NTRS)

    Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.

    1999-01-01

    A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.

  15. Implementation of parallel matrix decomposition for NIKE3D on the KSR1 system

    SciTech Connect

    Su, Philip S.; Fulton, R.E.; Zacharia, T.

    1995-06-01

    New massively parallel computer architecture has revolutionized the design of computer algorithms and promises to have significant influence on algorithms for engineering computations. Realistic engineering problems using finite element analysis typically imply excessively large computational requirements. Parallel supercomputers that have the potential for significantly increasing calculation speeds can meet these computational requirements. This report explores the potential for the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm on NIKE3D through actual computations. The examples of two- and three-dimensional nonlinear dynamic finite element problems are presented on the Kendall Square Research (KSR1) multiprocessor system, with 64 processors, at Oak Ridge National Laboratory. The numerical results indicate that the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm is attractive for NIKE3D under multi-processor system environments.

  16. A Portable 3D FFT Package for Distributed-Memory Parallel Architectures

    NASA Technical Reports Server (NTRS)

    Ding, H. Q.; Ferraro, R. D.; Gennery, D. B.

    1995-01-01

    A parallel algorithm for 3D FFTs is implemented as a series of local 1D FFTs combined with data transposes. This allows the use of vendor supplied (often fully optimized) sequential 1D FFTs. The FFTs are carried out in-place by using an in-place data transpose across the processors.

  17. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  18. Highly-stretchable 3D-architected Mechanical Metamaterials

    PubMed Central

    Jiang, Yanhui; Wang, Qiming

    2016-01-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity. PMID:27667638

  19. Highly-stretchable 3D-architected Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  20. Highly-stretchable 3D-architected Mechanical Metamaterials.

    PubMed

    Jiang, Yanhui; Wang, Qiming

    2016-09-26

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  1. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  2. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  3. High-speed 3D imaging by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Matoba, Osamu

    2015-07-01

    As a high-speed three-dimensional (3D) imaging technique, parallel phase-shifting digital holography is presented. This technique records a single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. Also, we present a high-speed parallel phase-shifting digital holography system. The system consists of an interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Motion pictures of dynamic phenomena at the rate of up to 1,000,000 frames per second have been achieved by the high-speed system.

  4. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  5. A 3D Printed Toolbox for Opto-Mechanical Components

    PubMed Central

    P. Torres, Juan; Valencia, Alejandra

    2017-01-01

    In this article we present the development of a set of opto-mechanical components (a kinematic mount, a translation stage and an integrating sphere) that can be easily built using a 3D printer based on Fused Filament Fabrication (FFF) and parts that can be found in any hardware store. Here we provide a brief description of the 3D models used and some details on the fabrication process. Moreover, with the help of three simple experimental setups, we evaluate the performance of the opto-mechanical components developed by doing a quantitative comparison with its commercial counterparts. Our results indicate that the components fabricated are highly customizable, low-cost, require a short time to be fabricated and surprisingly, offer a performance that compares favorably with respect to low-end commercial alternatives. PMID:28099494

  6. DANTSYS/MPI: a system for 3-D deterministic transport on parallel architectures

    SciTech Connect

    Baker, R.S.; Alcouffe, R.E.

    1996-12-31

    Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS to perform time-independent fixed source and eigenvalue calculations on the CM-200`s at Los Alamos National Laboratory (LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial decomposition which retains the ability to invert the source iteration equation in a single iteration (i.e., the diagonal plane sweep). We have now implemented a message passing version of DANTSYS, referred to as DANTSYS/MPI, on the Cray T3D installed at Los Alamos in 1995. By taking advantage of the SPMD (Single Program, Multiple Data) architecture of the Cray T3D, as well as its low latency communications network, we have managed to achieve grind times (time to solve a single cell in phase space) of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical grind times of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-MP. In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are used to accelerate the convergence of the transport equation. DANTSYS/MPI currently runs on traditional Cray PVP`s and the Cray T3D, and it`s computational kernel (Sweep3D) has been ported to and tested on an array of SGI SMP`s (Symmetric Memory Processors), a network of IBM 590 workstations, an IBM SP2, and the Intel TFLOPs machine at Sandia National Laboratory. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately predicts the grind time as a function of the number of PE`s and problem size, or scalability. This paper also describes the parallel implementation and performance of the elliptic solver used in DANTSYS/MPI for solving the synthetic acceleration equations.

  7. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  8. Multiple mechanisms of 3D migration: the origins of plasticity.

    PubMed

    Petrie, Ryan J; Yamada, Kenneth M

    2016-10-01

    Cells migrate through 3D environments using a surprisingly wide variety of molecular mechanisms. These distinct modes of migration often rely on the same intracellular components, which are used in different ways to achieve cell motility. Recent work reveals that how a cell moves can be dictated by the relative amounts of cell-matrix adhesion and actomyosin contractility. A current concept is that the level of difficulty in squeezing the nucleus through a confining 3D environment determines the amounts of adhesion and contractility required for cell motility. Ultimately, determining how the nucleus controls the mode of cell migration will be essential for understanding both physiological and pathological processes dependent on cell migration in the body.

  9. Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing

    PubMed Central

    Lee, Hyung Seok; Cho, Soon-Woo; Kim, Gyeong Hun; Jeong, Myung Yung; Won, Young Jae; Kim, Chang-Seok

    2016-01-01

    We have developed a modified optical frequency domain imaging (OFDI) system that performs parallel imaging of three-dimensional (3D) surface profiles by using the space division multiplexing (SDM) method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs) of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively. PMID:26805840

  10. Parallel graph search: application to intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2012-02-01

    Image segmentation is of paramount importance for quantitative analysis of medical image data. Recently, a 3-D graph search method which can detect globally optimal interacting surfaces with respect to the cost function of volumetric images has been introduced, and its utility demonstrated in several application areas. Although the method provides excellent segmentation accuracy, its limitation is a slow processing speed when many surfaces are simultaneously segmented in large volumetric datasets. Here, we propose a novel method of parallel graph search, which overcomes the limitation and allows the quick detection of multiple surfaces. To demonstrate the obtained performance with respect to segmentation accuracy and processing speedup, the new approach was applied to retinal optical coherence tomography (OCT) image data and compared with the performance of the former non-parallel method. Our parallel graph search methods for single and double surface detection are approximately 267 and 181 times faster than the original graph search approach in 5 macular OCT volumes (200 x 5 x 1024 voxels) acquired from the right eyes of 5 normal subjects. The resulting segmentation differences were small as demonstrated by the mean unsigned differences between the non-parallel and parallel methods of 0.0 +/- 0.0 voxels (0.0 +/- 0.0 μm) and 0.27 +/- 0.34 voxels (0.53 +/- 0.66 μm) for the single- and dual-surface approaches, respectively.

  11. 3-D Hybrid Simulation of Quasi-Parallel Bow Shock and Its Effects on the Magnetosphere

    SciTech Connect

    Lin, Y.; Wang, X.Y.

    2005-08-01

    A three-dimensional (3-D) global-scale hybrid simulation is carried out for the structure of the quasi-parallel bow shock, in particular the foreshock waves and pressure pulses. The wave evolution and interaction with the dayside magnetosphere are discussed. It is shown that diamagnetic cavities are generated in the turbulent foreshock due to the ion beam plasma interaction, and these compressional pulses lead to strong surface perturbations at the magnetopause and Alfven waves/field line resonance in the magnetosphere.

  12. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  13. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  14. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    SciTech Connect

    Prudencio, E.; Candel, A.; Ge, L.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; /SLAC

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation time from days to some hours.

  15. Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Ben-Zvi, I.; Kewisch, J.; /Brookhaven

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.

  16. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    SciTech Connect

    Martinez, E.; Monasterio, P.R.; Marian, J.

    2011-02-20

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  17. Assessing the performance of a parallel MATLAB-based 3D convection code

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, G. J.; Hasenclever, J.; Phipps Morgan, J.; Shi, C.

    2008-12-01

    We are currently building 2D and 3D MATLAB-based parallel finite element codes for mantle convection and melting. The codes use the MATLAB implementation of core MPI commands (eg. Send, Receive, Broadcast) for message passing between computational subdomains. We have found that code development and algorithm testing are much faster in MATLAB than in our previous work coding in C or FORTRAN, this code was built from scratch with only 12 man-months of effort. The one extra cost w.r.t. C coding on a Beowulf cluster is the cost of the parallel MATLAB license for a >4core cluster. Here we present some preliminary results on the efficiency of MPI messaging in MATLAB on a small 4 machine, 16core, 32Gb RAM Intel Q6600 processor-based cluster. Our code implements fully parallelized preconditioned conjugate gradients with a multigrid preconditioner. Our parallel viscous flow solver is currently 20% slower for a 1,000,000 DOF problem on a single core in 2D as the direct solve MILAMIN MATLAB viscous flow solver. We have tested both continuous and discontinuous pressure formulations. We test with various configurations of network hardware, CPU speeds, and memory using our own and MATLAB's built in cluster profiler. So far we have only explored relatively small (up to 1.6GB RAM) test problems. We find that with our current code and Intel memory controller bandwidth limitations we can only get ~2.3 times performance out of 4 cores than 1 core per machine. Even for these small problems the code runs faster with message passing between 4 machines with one core each than 1 machine with 4 cores and internal messaging (1.29x slower), or 1 core (2.15x slower). It surprised us that for 2D ~1GB-sized problems with only 3 multigrid levels, the direct- solve on the coarsest mesh consumes comparable time to the iterative solve on the finest mesh - a penalty that is greatly reduced either by using a 4th multigrid level or by using an iterative solve at the coarsest grid level. We plan to

  18. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.

    PubMed

    Goryawala, Mohammed; Guillen, Magno R; Cabrerizo, Mercedes; Barreto, Armando; Gulec, Seza; Barot, Tushar C; Suthar, Rekha R; Bhatt, Ruchir N; Mcgoron, Anthony; Adjouadi, Malek

    2012-01-01

    This study describes a new 3-D liver segmentation method in support of the selective internal radiation treatment as a treatment for liver tumors. This 3-D segmentation is based on coupling a modified k-means segmentation method with a special localized contouring algorithm. In the segmentation process, five separate regions are identified on the computerized tomography image frames. The merit of the proposed method lays in its potential to provide fast and accurate liver segmentation and 3-D rendering as well as in delineating tumor region(s), all with minimal user interaction. Leveraging of multicore platforms is shown to speed up the processing of medical images considerably, making this method more suitable in clinical settings. Experiments were performed to assess the effect of parallelization using up to 442 slices. Empirical results, using a single workstation, show a reduction in processing time from 4.5 h to almost 1 h for a 78% gain. Most important is the accuracy achieved in estimating the volumes of the liver and tumor region(s), yielding an average error of less than 2% in volume estimation over volumes generated on the basis of the current manually guided segmentation processes. Results were assessed using the analysis of variance statistical analysis.

  19. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2016-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933

  20. Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA.

    PubMed

    Mrozek, Dariusz; Brożek, Miłosz; Małysiak-Mrozek, Bożena

    2014-02-01

    Searching for similar 3D protein structures is one of the primary processes employed in the field of structural bioinformatics. However, the computational complexity of this process means that it is constantly necessary to search for new methods that can perform such a process faster and more efficiently. Finding molecular substructures that complex protein structures have in common is still a challenging task, especially when entire databases containing tens or even hundreds of thousands of protein structures must be scanned. Graphics processing units (GPUs) and general purpose graphics processing units (GPGPUs) can perform many time-consuming and computationally demanding processes much more quickly than a classical CPU can. In this paper, we describe the GPU-based implementation of the CASSERT algorithm for 3D protein structure similarity searching. This algorithm is based on the two-phase alignment of protein structures when matching fragments of the compared proteins. The GPU (GeForce GTX 560Ti: 384 cores, 2GB RAM) implementation of CASSERT ("GPU-CASSERT") parallelizes both alignment phases and yields an average 180-fold increase in speed over its CPU-based, single-core implementation on an Intel Xeon E5620 (2.40GHz, 4 cores). In this paper, we show that massive parallelization of the 3D structure similarity search process on many-core GPU devices can reduce the execution time of the process, allowing it to be performed in real time. GPU-CASSERT is available at: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm.

  1. PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Štěpán, J.

    2014-10-01

    The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).

  2. Simulations of high current wire array Z-pinches using a parallel 3D resistive MHD

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Jennings, C. A.; Ciardi, A.

    2006-10-01

    We present calculations of the implosion and stagnation phases of wire array Z-pinches at Sandia National Laboratory which model the full 3D plasma volume. Modelling the full volume in 3D is found to be necessary in order to accommodate all possible mechanisms for broadening the width of the imploding plasma and for modelling all modes of instability in the stagnated pinch. The width of the imploding plasma is shown to arise from the evolution of the uncorrelated modulations present on each wire in the array early in time into a globally correlated 3D instability structure. The 3D nature of the collision of two nested arrays is highlighted and the implications for radiation pulse shaping are discussed. The addition of a simple circuit model to model the Z generator allows the pinch energetics during stagnation to be treated more accurately and provides another point of comparison to experimental data. The implications of these results for improved X-ray production are discussed both for the keV range and for soft X-ray radiation sources used in inertial confinement fusion research. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  3. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  4. A parallel 3-D discrete wavelet transform architecture using pipelined lifting scheme approach for video coding

    NASA Astrophysics Data System (ADS)

    Hegde, Ganapathi; Vaya, Pukhraj

    2013-10-01

    This article presents a parallel architecture for 3-D discrete wavelet transform (3-DDWT). The proposed design is based on the 1-D pipelined lifting scheme. The architecture is fully scalable beyond the present coherent Daubechies filter bank (9, 7). This 3-DDWT architecture has advantages such as no group of pictures restriction and reduced memory referencing. It offers low power consumption, low latency and high throughput. The computing technique is based on the concept that lifting scheme minimises the storage requirement. The application specific integrated circuit implementation of the proposed architecture is done by synthesising it using 65 nm Taiwan Semiconductor Manufacturing Company standard cell library. It offers a speed of 486 MHz with a power consumption of 2.56 mW. This architecture is suitable for real-time video compression even with large frame dimensions.

  5. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOEpatents

    Kwiatkowski, Kris; Lyke, James

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  6. Prostate Mechanical Imaging: 3-D Image Composition and Feature Calculations

    PubMed Central

    Egorov, Vladimir; Ayrapetyan, Suren; Sarvazyan, Armen P.

    2008-01-01

    We have developed a method and a device entitled prostate mechanical imager (PMI) for the real-time imaging of prostate using a transrectal probe equipped with a pressure sensor array and position tracking sensor. PMI operation is based on measurement of the stress pattern on the rectal wall when the probe is pressed against the prostate. Temporal and spatial changes in the stress pattern provide information on the elastic structure of the gland and allow two-dimensional (2-D) and three-dimensional (3-D) reconstruction of prostate anatomy and assessment of prostate mechanical properties. The data acquired allow the calculation of prostate features such as size, shape, nodularity, consistency/hardness, and mobility. The PMI prototype has been validated in laboratory experiments on prostate phantoms and in a clinical study. The results obtained on model systems and in vivo images from patients prove that PMI has potential to become a diagnostic tool that could largely supplant DRE through its higher sensitivity, quantitative record storage, ease-of-use and inherent low cost. PMID:17024836

  7. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings

    NASA Astrophysics Data System (ADS)

    Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad

    2014-03-01

    Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution

  8. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used.

  9. Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi

    2017-04-01

    Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.

  10. 3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions

    SciTech Connect

    Leclercq, L.; Mancini, M.

    2016-03-15

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  11. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    SciTech Connect

    Xie, G.; Li, J.; Majer, E.; Zuo, D.

    1998-07-01

    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  12. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  13. The 3-D inelastic analyses for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.

  14. Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    PubMed Central

    Dharmaraj, Christopher D.; Thadikonda, Kishan; Fletcher, Anthony R.; Doan, Phuc N.; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A.; Cook, John A.; Mitchell, James B.; Subramanian, Sankaran; Krishna, Murali C.

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 × 23 × 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time. PMID:19672315

  15. The early mouse 3D osteocyte network in the presence and absence of mechanical loading.

    PubMed

    Sugawara, Yasuyo; Kamioka, Hiroshi; Ishihara, Yoshihito; Fujisawa, Naoko; Kawanabe, Noriaki; Yamashiro, Takashi

    2013-01-01

    Osteocytes are considered to act as mechanosensory cells in bone. They form a functional synctia in which their processes become interconnected to constitute a three-dimensional (3D) network. Previous studies reported that in mice, the two-dimensional osteocyte network becomes progressively more regular as they grow, although the key factors governing the arrangement of the osteocyte network during bone growth remain unknown. In this study, we characterized the 3D formation of the osteocyte network during bone growth. Morphological skeletal changes have been reported to occur in response to mechanical loading and unloading. In order to evaluate the effect of mechanical unloading on osteocyte network formation, we subjected newborn mice to sciatic neurectomy in order to immobilize their left hind limb as an unloading model. The osteocyte network was visualized by staining osteocyte cell bodies and processes with fluorescently labeled phalloidin. First, we compared the osteocyte network in the femora of embryonic and 6-week-old mice in order to understand the morphological changes that occur with normal growth and mechanical loading. In embryonic mice, the osteocyte network in the femur cortical bone displayed a random cell body distribution, non-directional orientation of cell processes, and irregularly shaped cells. In 6-week-old mice, the 3D network contained spindle-shaped osteocytes, which were arranged parallel to the longitudinal axis of the femur. In addition, more and longer cell processes radiated from each osteocyte. Second, we compared the cortical osteocyte networks of 6-week-old mice that had or had not undergone sciatic neurectomy in order to evaluate the effect of unloading on osteocyte network formation. The osteocyte network formation in both cortical bone and cancellous bone was affected by mechanical loading. However, there were differences in the extent of network formation between cortical bone and cancellous bone in response to mechanical

  16. MESA: A 3-D Eulerian hydrocode for penetration mechanics studies

    SciTech Connect

    Mandell, D.A.; Holian, K.S.; Henninger, R.

    1991-01-01

    We describe an explicit, finite-difference hydrocode, called MESA, and compare calculations to metal and ceramic plate impacts with spall and to Taylor cylinder tests. The MESA code was developed with support from DARPA, the Army and the Marine Corps for use in armor/anti-armor problems primarily, but the code has been used for a number of other applications. MESA includes 2-D and 3-D Eulerian hydrodynamics, a number of material strength and fracture models, and a programmed burn high explosives model. 15 refs., 4 figs.

  17. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  18. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  19. Computational models of hair cell bundle mechanics: III. 3-D utricular bundles.

    PubMed

    Silber, Joe; Cotton, John; Nam, Jong-Hoon; Peterson, Ellengene H; Grant, Wally

    2004-11-01

    Six utricular hair bundles from a red-eared turtle are modeled using 3-D finite element analysis. The mechanical model includes shear deformable stereocilia, realignment of all forces during force load increments, and tip and lateral link inter-stereocilia connections. Results show that there are two distinct bundle types that can be separated by mechanical bundle stiffness. The more compliant group has fewer total stereocilia and short stereocilia relative to kinocilium height; these cells are located in the medial and lateral extrastriola. The stiff group are located in the striola. They have more stereocilia and long stereocilia relative to kinocilia heights. Tip link tensions show parallel behavior in peripheral columns of the bundle and serial behavior in central columns when the tip link modulus is near or above that of collagen (1x10(9) N/m(2)). This analysis shows that lumped parameter models of single stereocilia columns can show some aspects of bundle mechanics; however, a distributed, 3-D model is needed to explore overall bundle behavior.

  20. 3-D prestack Kirchhoff depth migration: From prototype to production in a massively parallel processor environment

    SciTech Connect

    Chang, H.; Solano, M.; VanDyke, J.P.; McMechan, G.A.; Epili, D.

    1998-03-01

    Portable, production-scale 3-D prestack Kirchhoff depth migration software capable of full-volume imaging has been successfully implemented and applied to a six-million trace (46.9 Gbyte) marine data set from a salt/subsalt play in the Gulf of Mexico. Velocity model building and updates use an image-driven strategy and were performed in a Sun Sparc environment. Images obtained by 3-D prestack migration after three velocity iterations are substantially better focused and reveal drilling targets that were not visible in images obtained from conventional 3-D poststack time migration. Amplitudes are well preserved, so anomalies associated with known reservoirs conform to the petrophysical predictions. Prototype development was on an 8-node Intel iPSC860 computer; the production version was run on an 1824-node Intel Paragon computer. The code has been successfully ported to CRAY (T3D) and Unix workstation (PVM) environments.

  1. Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.

    1997-12-01

    Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.

  2. Diagnosis and control of 3D elastic mechanical structures

    NASA Astrophysics Data System (ADS)

    Krajcin, Idriz; Soeffker, Dirk

    2005-05-01

    In this paper, a model-based approach for fault detection and vibration control of flexible structures is proposed and applied to 3D-structures. Faults like cracks or impacts acting on a flexible structure are considered as unknown inputs acting on the structure. The Proportional-Integral-Observer (PI-Observer) is used to estimate the system states as well as unknown inputs acting on a system. Also the effects of structural changes are understood as external effects (related to the unchanged structure) and are considered as fictitious external forces or moments. The paper deals with the design of the PI-Observer for practical applications when measurement noise and model uncertainties are present and shows its performance in experimental results. As examples, impacts acting upon a one side clamped elastic beam and on a thin plate structure are estimated using displacement or strain measurements. To control the vibration of the flexible plate, two piezoelectric patches bonded on the structure are used as actuators. The control algorithm introduced in this contribution contains a state feedback control and additionally a disturbance rejection. The disturbances are estimated using the PI-Observer. Experimental results show the performance and the robustness properties of the control strategy for the vibration control of a very thin plate.

  3. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  4. Scalable Iterative Solvers Applied to 3D Parallel Simulation of Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    García-Loureiro, A. J.; Aldegunde, M.; Seoane, N.

    2009-08-01

    We have studied the performance of a preconditioned iterative solver to speed up a 3D semiconductor device simulator. Since 3D simulations necessitate large computing resources, the choice of algorithms and their parameters become of utmost importance. This code uses a density gradient drift-diffusion semiconductor transport model based on the finite element method which is one of the most general and complex discretisation techniques. It has been implemented for a distributed memory multiprocessor environment using the Message Passing Interface (MPI) library. We have applied this simulator to a 67 nm effective gate length Si MOSFET.

  5. gEMfitter: a highly parallel FFT-based 3D density fitting tool with GPU texture memory acceleration.

    PubMed

    Hoang, Thai V; Cavin, Xavier; Ritchie, David W

    2013-11-01

    Fitting high resolution protein structures into low resolution cryo-electron microscopy (cryo-EM) density maps is an important technique for modeling the atomic structures of very large macromolecular assemblies. This article presents "gEMfitter", a highly parallel fast Fourier transform (FFT) EM density fitting program which can exploit the special hardware properties of modern graphics processor units (GPUs) to accelerate both the translational and rotational parts of the correlation search. In particular, by using the GPU's special texture memory hardware to rotate 3D voxel grids, the cost of rotating large 3D density maps is almost completely eliminated. Compared to performing 3D correlations on one core of a contemporary central processor unit (CPU), running gEMfitter on a modern GPU gives up to 26-fold speed-up. Furthermore, using our parallel processing framework, this speed-up increases linearly with the number of CPUs or GPUs used. Thus, it is now possible to use routinely more robust but more expensive 3D correlation techniques. When tested on low resolution experimental cryo-EM data for the GroEL-GroES complex, we demonstrate the satisfactory fitting results that may be achieved by using a locally normalised cross-correlation with a Laplacian pre-filter, while still being up to three orders of magnitude faster than the well-known COLORES program.

  6. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  7. Parallel computation of the SAR distribution in a 3D human head model

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech

    2008-01-01

    This work presents a way of parallel computation of the Specific Absorption Rate distribution. The parallel program used in the computation was based on the FDTD (Finite-Difference Time-Domain) method [1,2,3]. In order to establish communication among the computational nodes, the MPI (Message Passing Interface) standard was used [4,5,6]. The presented example of a human head numerical model was built with the use of MRI (Magnetic Resonance Image) pictures.

  8. Categorical prototyping: incorporating molecular mechanisms into 3D printing

    NASA Astrophysics Data System (ADS)

    Brommer, Dieter B.; Giesa, Tristan; Spivak, David I.; Buehler, Markus J.

    2016-01-01

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to ‘protoype a model’, as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  9. Categorical prototyping: incorporating molecular mechanisms into 3D printing.

    PubMed

    Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J

    2016-01-15

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  10. Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties.

    PubMed

    Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong

    2016-07-01

    Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials.

  11. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  12. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  13. A parallel 3D poisson solver for space charge simulation in cylindrical coordinates.

    SciTech Connect

    Xu, J.; Ostroumov, P. N.; Nolen, J.; Physics

    2008-02-01

    This paper presents the development of a parallel three-dimensional Poisson solver in cylindrical coordinate system for the electrostatic potential of a charged particle beam in a circular tube. The Poisson solver uses Fourier expansions in the longitudinal and azimuthal directions, and Spectral Element discretization in the radial direction. A Dirichlet boundary condition is used on the cylinder wall, a natural boundary condition is used on the cylinder axis and a Dirichlet or periodic boundary condition is used in the longitudinal direction. A parallel 2D domain decomposition was implemented in the (r,{theta}) plane. This solver was incorporated into the parallel code PTRACK for beam dynamics simulations. Detailed benchmark results for the parallel solver and a beam dynamics simulation in a high-intensity proton LINAC are presented. When the transverse beam size is small relative to the aperture of the accelerator line, using the Poisson solver in a Cartesian coordinate system and a Cylindrical coordinate system produced similar results. When the transverse beam size is large or beam center located off-axis, the result from Poisson solver in Cartesian coordinate system is not accurate because different boundary condition used. While using the new solver, we can apply circular boundary condition easily and accurately for beam dynamic simulations in accelerator devices.

  14. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  15. Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme

    NASA Astrophysics Data System (ADS)

    Jin-Lian, Ren; Tao, Jiang

    2016-02-01

    In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).

  16. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    SciTech Connect

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.

  17. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  18. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  19. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  20. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    PubMed Central

    Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit

    2014-01-01

    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105

  1. Waveform inversion for 3-D earth structure using the Direct Solution Method implemented on vector-parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko

    2004-08-01

    We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.

  2. 3D parallel-detection microwave tomography for clinical breast imaging

    NASA Astrophysics Data System (ADS)

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to -130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500-2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery

  3. 3D parallel-detection microwave tomography for clinical breast imaging.

    PubMed

    Epstein, N R; Meaney, P M; Paulsen, K D

    2014-12-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to -130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500-2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery

  4. 3D parallel-detection microwave tomography for clinical breast imaging

    SciTech Connect

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-15

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate

  5. 3D parallel-detection microwave tomography for clinical breast imaging

    PubMed Central

    Meaney, P. M.; Paulsen, K. D.

    2014-01-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate

  6. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  7. Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Strawn, Roger C.

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.OX speedup on 64 processors when 10% of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  8. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    PubMed

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines.

  9. Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.0X speedup on 64 processors when 10 percent of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all the mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  10. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.

    PubMed

    Podoleanu, Adrian Gh; Bradu, Adrian

    2013-08-12

    Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

  11. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  12. Improvements to the Pool Critical Assembly Pressure Vessel Benchmark with 3-D Parallel SN PENTRAN

    NASA Astrophysics Data System (ADS)

    Edgar, Christopher A.; Sjoden, Glenn E.; Yi, Ce

    2014-06-01

    The internationally circulated Pool Critical Assembly (PCA) Pressure Vessel Benchmark was analyzed using the PENTRAN Parallel SN code system for the geometry, material, and source specifications as described in the PCA Benchmark documentation. Improvements to the benchmark are proposed here through the application of more representative flux and volume weighted homogenized cross sections for the PCA reactor core, which were obtained from a rigorous heterogeneous modeling of all fuel assembly types in the core. A new source term definition is also proposed based on calculated relative power in each core fuel assembly with a spectrum based on the Uranium-235 fission spectra. This research focused on utilizing the BUGLE-96 cross section library and accompanying reaction rates, while also examining PENTRAN's adaptive differencing implemented on a coarse mesh basis, as well as fixed use of Directional Theta-Weighted (DTW) SN differencing scheme in order to compare the calculated PENTRAN results to measured data. The results show good comparison with the measured benchmark data, which suggests PENTRAN is a viable, reliable code system for calculation of light water reactor neutron shielding and pressure vessel dosimetry calculations. Furthermore, the improvements to the benchmark methodology resulting from this work provide a 6 percent increase in accuracy of the calculation (based on the average of all calculation points), when compared with experimentally measured results at the same spatial locations in the PCA pressure vessel simulator.

  13. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

  14. Guided Formation of 3D Helical Mesostructures by Mechanical Buckling: Analytical Modeling and Experimental Validation.

    PubMed

    Liu, Yuan; Yan, Zheng; Lin, Qing; Guo, Xuelin; Han, Mengdi; Nan, Kewang; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-05-03

    Three-dimensional (3D) helical mesostructures are attractive for applications in a broad range of microsystem technologies, due to their mechanical and electromagnetic properties as stretchable interconnects, radio frequency antennas and others. Controlled compressive buckling of 2D serpentine-shaped ribbons provides a strategy to formation of such structures in wide ranging classes of materials (from soft polymers to brittle inorganic semiconductors) and length scales (from nanometer to centimeter), with an ability for automated, parallel assembly over large areas. The underlying relations between the helical configurations and fabrication parameters require a relevant theory as the basis of design for practical applications. Here, we present an analytic model of compressive buckling in serpentine microstructures, based on the minimization of total strain energy that results from various forms of spatially dependent deformations. Experiments at micro- and millimeter-scales, together with finite element analyses (FEA), were exploited to examine the validity of developed model. The theoretical analyses shed light on general scaling laws in terms of three groups of fabrication parameters (related to loading, material and 2D geometry), including a negligible effect of material parameters and a square root dependence of primary displacements on the compressive strain. Furthermore, analytic solutions were obtained for the key physical quantities (e.g., displacement, curvature and maximum strain). A demonstrative example illustrates how to leverage the analytic solutions in choosing the various design parameters, such that brittle fracture or plastic yield can be avoided in the assembly process.

  15. Slab-Dip Variability and Trench-Parallel Flow beneath Non-Uniform Overriding Plates: Insights form 3D Numerical Models

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J.; Billen, M. I.; Negredo, A. M.

    2012-12-01

    Forces driving plate tectonics are reasonably well known but some factors controlling the dynamics and the geometry of subduction processes are still poorly understood. The effect of the thermal state of the subducting and overriding plates on the slab dip have been systematically studied in previous works by means of 2D and 3D numerical modeling. These models showed that kinematically-driven slabs subducting under a cold overriding plate are affected by an increased hydrodynamic suction, due to the lower temperature of the mantle wedge, which leads to a lower subduction angle, and eventually to the formation of flat slab segments. In these models the subduction is achieved by imposing a constant velocity at the top of the overriding plate, which may lead to unrealistic results. Here we present the results of 3D non-Newtonian thermo-mechanical numerical models, considering a dynamically-driven self-sustained subduction, to test the influence of a non-uniform overriding plate. Variations of the thermal state of the overriding plate along the trench cause variation in the hydrodynamic suction, which lead to variations of the slab dip along strike (Fig. 1) and a significant trench-parallel flow. When the material can flow around the edges of the slab, through the addition of lateral plates, the trench parallel flow is enhanced (Fig. 2), whereas the variations on the slab dip are diminished.; Effect of a non-uniform overriding plate on slab-dip. 3D view of the 1000 C isosurface. ; Effect of a non-uniform overriding plate on trench-parallel flow. Map view of the slab at different depths and times, showing the viscosity (colormap) and the velocity (arrows).

  16. High-performance parallel solver for 3D time-dependent Schrodinger equation for large-scale nanosystems

    NASA Astrophysics Data System (ADS)

    Gainullin, I. K.; Sonkin, M. A.

    2015-03-01

    A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.

  17. Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin

    2017-02-01

    We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.

  18. A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids

    SciTech Connect

    Xia, Yidong; Luo, Hong; Frisbey, Megan; Nourgaliev, Robert

    2014-07-01

    A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P2). Also, three approaches -- analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flow solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.

  19. A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids

    DOE PAGES

    Xia, Yidong; Luo, Hong; Frisbey, Megan; ...

    2014-07-01

    A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P2). Also, three approaches -- analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flowmore » solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.« less

  20. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties

    NASA Astrophysics Data System (ADS)

    Grimmelsmann, N.; Meissner, H.; Ehrmann, A.

    2016-07-01

    The 3D printing technology can be applied into manufacturing primary shaping diverse products, from models dealing as examples for future products that will be produced with another technique, to useful objects. Since 3D printing is nowadays significantly slower than other possibilities to manufacture items, such as die casting, it is often used for small parts that are produced in small numbers or for products that cannot be created in another way. Combinations of 3D printing with other objects, adding novel functionalities to them, are thus favourable to a complete primary shaping process. Textile fabrics belong to the objects whose mechanical and other properties can notably be modified by adding 3D printed forms. This article mainly reports on a new possibility to change the permeability of textile fabrics by 3D printing auxetic forms, e.g. for utilising them in textile filters. In addition, auxetic forms 3D printed on knitted fabrics can bring about mechanical properties that are conducive to tensile constructions.

  1. Beta-MnO2 3D nanostructures: mineralizer-assisted synthesis, characterization, and growth mechanism.

    PubMed

    Zhou, Fu; Zhao, Xuemei; Yuan, Cunguang; Xu, Hai

    2007-09-01

    The beta-MnO2 three-dimensional (3D) nanostructures were synthesized in large area by a mineralizer-assisted hydrothermal route. KNO3 was introduced as inorganic mineralizer to direct the growth of beta-MnO2 3D nanostructures from Mn(NO3)2 solutions. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Possible growth mechanism of beta-MnO2 3D nanostructures was proposed based on comparative experiments, indicating that KNO3 mineralizer and the concentration of Mn(NO3)2 solution were the two decisive factors in the fabrication of beta-MnO2 3D nanostructures.

  2. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.

    PubMed

    Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto

    2016-12-21

    3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic.

  3. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  4. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices.

    PubMed

    Kunschmann, Tom; Puder, Stefanie; Fischer, Tony; Perez, Jeremy; Wilharm, Nils; Mierke, Claudia Tanja

    2017-03-01

    The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility.

  5. Mechanical response of 3D Insert(®) PCL to compression.

    PubMed

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-01-01

    3D polymeric scaffolds are increasingly used for in vitro experiments aiming to mimic the environment found in vivo, to support for cellular growth and to induce differentiation through the application of external mechanical cues. In research, experimental results must be shown to be reproducible to be claimed as valid and the first clause to ensure consistency is to provide identical initial experimental conditions between trials. As a matter of fact, 3D structures fabricated in batch are supposed to present a highly reproducible geometry and consequently, to give the same bulk response to mechanical forces. This study aims to measure the overall mechanical response to compression of commercially available 3D Insert PCL scaffolds (3D PCL) fabricated in series by fuse deposition and evaluate how small changes in the architecture of scaffolds affect the mechanical response. The apparent elastic modulus (Ea) was evaluated by performing quasi-static mechanical tests at various temperatures showing a decrease in material stiffness from 5MPa at 25°C to 2.2MPa at 37°C. Then, a variability analysis revealed variations in Ea related to the repositioning of the sample into the testing machine, but also consistent differences comparing different scaffolds. To clarify the source of the differences measured in the mechanical response, the same scaffolds previously undergoing compression, were scanned by micro computed tomography (μCT) to identify any architectural difference. Eventually, to clarify the contribution given by differences in the architecture to the standard deviation of Ea, their mechanical response was qualitatively compared to a compact reference material such as polydimethylsiloxane (PDMS). This study links the geometry, architecture and mechanical response to compression of 3D PCL scaffolds and shows the importance of controlling such parameters in the manufacturing process to obtain scaffolds that can be used in vitro or in vivo under reproducible

  6. Untethered hovering flapping flight of a 3D-printed mechanical insect.

    PubMed

    Richter, Charles; Lipson, Hod

    2011-01-01

    This project focuses on developing a flapping-wing hovering insect using 3D-printed wings and mechanical parts. The use of 3D printing technology has greatly expanded the possibilities for wing design, allowing wing shapes to replicate those of real insects or virtually any other shape. It has also reduced the time of a wing design cycle to a matter of minutes. An ornithopter with a mass of 3.89 g has been constructed using the 3D printing technique and has demonstrated an 85-s passively stable untethered hovering flight. This flight exhibits the functional utility of printed materials for flapping-wing experimentation and ornithopter construction and for understanding the mechanical principles underlying insect flight and control.

  7. 3D multi-scale modelling of mechanical behaviour of sound and leached mortar

    SciTech Connect

    Bernard, F.; Kamali-Bernard, S. Prince, W.

    2008-04-15

    A 3D multi-scale modelling of mechanical properties of cement-based materials approach is presented. The proposed approach provides a quantitative means to estimate and predict the mechanical properties of cement-based materials taking into account the eventual changes in the micro-structure. Two numerical tools are combined. First, the NIST's 3D model (CEMHYD3D) is used to generate a realistic 3D Representative Volume Element of cement-based materials at different scales. Then, multi-scale simulations are performed by using the FE software Abaqus for the calculation of the mechanical behaviour. The approach is then successfully applied to a specific mortar in order to determine firstly its mechanical behaviour under tensile and compression loadings and secondly the evolution of its Young's modulus under the leaching phenomenon. This evolution is a key parameter since the leaching may be critical for the mechanical integrity of concrete structures such as radioactive waste storage systems in which cement-based materials may be largely used. The numerical results of the modelling are consistent with the experimental ones.

  8. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  9. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES

    Maiti, A.; Small, W.; Lewicki, J.; ...

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  10. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    SciTech Connect

    Maiti, A.; Small, W.; Lewicki, J.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  11. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  12. Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair.

    PubMed

    Wu, Yang; Wong, Yoke San; Fuh, Jerry Ying Hsi

    2017-04-01

    A three-dimensional (3D) scaffold fabricated via electrohydrodynamic jet printing (E-jetting) and thermally uniaxial stretching, has been developed for tendon tissue regeneration in our previous study. In this study, more in-depth biological test showed that the aligned cell morphology guided by the anisotropic geometries of the 3D tendon scaffolds, leading to up-regulated tendious gene expression including collagen type I, decorin, tenascin-C, and biglycan, as compared to the electrospun scaffolds. Given the importance of geometric cues to the biological function of the scaffolds, the degradation behaviors of the 3D scaffolds were investigated. Results from accelerated hydrolysis showed that the E-jetted portion followed bulk-controlled erosion, while the unaixially stretched portion followed surface-controlled erosion. The 3D tendon scaffold exhibited consistency between the weight loss and the decline of mechanical properties, which indicated by a 65% decrease in mass with a corresponding 56% loss in ultimate tensile strength after degradation. This study not only reveals that the anisotropic geometries of 3D tendon scaffold could affect cell morphology and lead to desired gene expression toward tendon tissue but also gives an insight into how the degradation impacts geometric cues and mechanical properties of the as-fabricated scaffold. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1138-1149, 2017.

  13. GPU-based, parallel-line, omni-directional integration of measured acceleration field to obtain the 3D pressure distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2016-11-01

    A PIV based method to reconstruct the volumetric pressure field by direct integration of the 3D material acceleration directions has been developed. Extending the 2D virtual-boundary omni-directional method (Omni2D, Liu & Katz, 2013), the new 3D parallel-line omni-directional method (Omni3D) integrates the material acceleration along parallel lines aligned in multiple directions. Their angles are set by a spherical virtual grid. The integration is parallelized on a Tesla K40c GPU, which reduced the computing time from three hours to one minute for a single realization. To validate its performance, this method is utilized to calculate the 3D pressure fields in isotropic turbulence and channel flow using the JHU DNS Databases (http://turbulence.pha.jhu.edu). Both integration of the DNS acceleration as well as acceleration from synthetic 3D particles are tested. Results are compared to other method, e.g. solution to the Pressure Poisson Equation (e.g. PPE, Ghaemi et al., 2012) with Bernoulli based Dirichlet boundary conditions, and the Omni2D method. The error in Omni3D prediction is uniformly low, and its sensitivity to acceleration errors is local. It agrees with the PPE/Bernoulli prediction away from the Dirichlet boundary. The Omni3D method is also applied to experimental data obtained using tomographic PIV, and results are correlated with deformation of a compliant wall. ONR.

  14. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  15. Mechanical properties of 2D and 3D braided textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.

    1991-01-01

    The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.

  16. Activating the nuclear piston mechanism of 3D migration in tumor cells.

    PubMed

    Petrie, Ryan J; Harlin, Heather M; Korsak, Lulu I T; Yamada, Kenneth M

    2017-01-02

    Primary human fibroblasts have the remarkable ability to use their nucleus like a piston, switching from low- to high-pressure protrusions in response to the surrounding three-dimensional (3D) matrix. Although migrating tumor cells can also change how they migrate in response to the 3D matrix, it is not clear if they can switch between high- and low-pressure protrusions like primary fibroblasts. We report that unlike primary fibroblasts, the nuclear piston is not active in fibrosarcoma cells. Protease inhibition rescued the nuclear piston mechanism in polarized HT1080 and SW684 cells and generated compartmentalized pressure. Achieving compartmentalized pressure required the nucleoskeleton-cytoskeleton linker protein nesprin 3, actomyosin contractility, and integrin-mediated adhesion, consistent with lobopodia-based fibroblast migration. In addition, this activation of the nuclear piston mechanism slowed the 3D movement of HT1080 cells. Together, these data indicate that inhibiting protease activity during polarized tumor cell 3D migration is sufficient to restore the nuclear piston migration mechanism with compartmentalized pressure characteristic of nonmalignant cells.

  17. Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet

    2013-04-01

    the world with its ability to stream high resolution national and world scale datasets seamlessly. All of these tools have some technological and visualisation limitations and not one delivery mechanism is suitable for all. The idea from the BGS when it comes to model delivery mechanisms is to offer as many different 3D data formats and delivery options as possible to cover all user requirements. Most importantly, it is about giving the user what they want and engaging with them to encourage the use of the advanced functionality of some of this software so that a deeper understanding about the subsurface is gained. Sometimes this solution might be a high-tech solution via mobile devices, but at other times a print-out of a contour plot might be what is required. In the end it is the consumer that has to be satisfied with the product they are receiving.

  18. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime

    NASA Astrophysics Data System (ADS)

    Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.

    2015-12-01

    Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.

  19. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds.

    PubMed

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Malone, E; Wu, J; Girardi, L N; Bonassar, L J; Lipson, H; Chu, C C; Butcher, J T

    2012-09-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12-22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment.

  20. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Doumalin, P.; Dupré, J. C.; Brèque, C.; Brémand, F.; D'Houtaud, S.; Rigoard, P.

    2010-06-01

    This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  1. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  2. Mechanical Performance and Parameter Sensitivity Analysis of 3D Braided Composites Joints

    PubMed Central

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N. PMID:25121121

  3. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.

  4. Mechanism of self-propulsion in 3D-printed active granular particles

    NASA Astrophysics Data System (ADS)

    Koumakis, N.; Gnoli, A.; Maggi, C.; Puglisi, A.; Di Leonardo, R.

    2016-11-01

    Active granular particles can harness unbiased mechanical vibrations in the environment to generate directed motion. We provide a theoretical framework that connects the geometrical shape of a three dimensional object to its self-propulsion characteristics over a vertically vibrated plate. We find that a maximally efficient propulsion is achieved for structures having tilted flexible legs forming a characteristic angle with the vertical. Our predictions are verified by experimental observations on a class of 3D printed structures with smoothly varying geometrical features.

  5. A Parallel 3D Spectral Difference Method for Solutions of Compressible Navier Stokes Equations on Deforming Grids and Simulations of Vortex Induced Vibration

    NASA Astrophysics Data System (ADS)

    DeJong, Andrew

    Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.

  6. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Jin; Cai, Deng'an; Zhou, Guangming

    2016-12-01

    Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

  7. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.

    PubMed

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33-54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10-0.37 GPa, and 11.1-30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering.

  8. Mechanical Properties of 3-D Printed Cellular Foams with triangular cells

    NASA Astrophysics Data System (ADS)

    Bunga, Pratap Kumar

    In the present work, poly lactic acid (PLA) is used as a model system to investigate the mechanical behavior of 3-D printed foams with triangular cells. Solid PLA tension and compression specimens and foams made of PLA were fabricated using fused deposition 3-D printing technique. The solid PLA tension specimens were characterized for their densities and found to be about 10% lower in density as compared to their bulk counter parts. The triangular foams had a relative density of about 64%. The relationships between the structure of the foams and its deformation behavior under compression along two in-plane directions were characterized. Furthermore, simple finite element models were developed to understand the observed deformation behavior of triangular foams.

  9. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis

    PubMed Central

    Rossman, Phillip J.; Arani, Arvin; Lake, David S.; Glaser, Kevin J.; Trzasko, Joshua D.; Manduca, Armando; McGee, Kiaran P.; Ehman, Richard L.; Araoz, Philip A.

    2016-01-01

    Purpose Magnetic resonance elastography (MRE) is a rapidly growing noninvasive imaging technique for measuring tissue mechanical properties in vivo. Previous studies have compared two‐dimensional MRE measurements with material properties from dynamic mechanical analysis (DMA) devices that were limited in frequency range. Advanced DMA technology now allows broad frequency range testing, and three‐dimensional (3D) MRE is increasingly common. The purpose of this study was to compare 3D MRE stiffness measurements with those of DMA over a wide range of frequencies and shear stiffnesses. Methods 3D MRE and DMA were performed on eight different polyvinyl chloride samples over 20–205 Hz with stiffness between 3 and 23 kPa. Driving frequencies were chosen to create 1.1, 2.2, 3.3, 4.4, 5.5, and 6.6 effective wavelengths across the diameter of the cylindrical phantoms. Wave images were analyzed using direct inversion and local frequency estimation algorithm with the curl operator and compared with DMA measurements at each corresponding frequency. Samples with sufficient spatial resolution and with an octahedral shear strain signal‐to‐noise ratio > 3 were compared. Results Consistency between the two techniques was measured with the intraclass correlation coefficient (ICC) and was excellent with an overall ICC of 0.99. Conclusions 3D MRE and DMA showed excellent consistency over a wide range of frequencies and stiffnesses. Magn Reson Med 77:1184–1192, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:27016276

  10. Direct Manufacturing of CubeSat Using 3-D Digital Printer and Determination of its Mechanical Properties

    DTIC Science & Technology

    2010-12-01

    mechanical properties (i.e. strength and elastic modulus) of samples fabricated from a 3-D digital printer as a function of processing parameters (2) to...geometry is brought into the 3D printer software application and rotated for the desired build orientation. The software then slices horizontal build...Arlington, VA 22203-1714 Direct Manufacturing of CubeSat Using 3-D Digital Printer and Determination of Its Mechanical Properties

  11. Parallel Algebraic Multigrids for Structural mechanics

    SciTech Connect

    Brezina, M; Tong, C; Becker, R

    2004-05-11

    This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.

  12. Coupling of highly explicit gas and aqueous chemistry mechanisms for use in 3-D

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, Diana L.; Jacobson, Mark Z.

    2012-12-01

    This study discusses the coupling of a near-explicit gas-phase chemical mechanism with an extensive aqueous-phase mechanism in an accurate chemical solver designed for use in 3-D models. The gas and aqueous mechanisms and the solver used are the Master Chemical Mechanism (MCM 3.1), the Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i), and the SMVGEAR II ordinary differential solver, respectively. The MCM has over 13,500 reactions and 4600 species, whereas CAPRAM treats aqueous chemistry among 390 species and 829 reactions (including 51 gas-to-aqueous phase reactions). SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. MCM has been used previously with SMVGEAR II in 3-D, and computer timings here indicate that coupling MCM with CAPRAM in SMVGEAR II is also practical. Gas- and aqueous-phase species are coupled through time-dependent dissolutional growth and dissociation equations. This method is validated with a smaller mechanism against results from a previous model intercomparison. When the smaller mechanism is compared with the full MCM-CAPRAM mechanism, some concentrations are still similar but others differ due to the greater detail in chemistry. We also expand the mechanism to include gas-aqueous transfer of two acids, glycolic acid and glyoxylic acid, and modify the glyoxal Henry's law constant from recent measurements. The average glyoxal partitioning in the cloud changed from 67% aqueous-phase to 87% aqueous-phase with the modifications. The addition of gas-aqueous transfer reactions increased the average gas-phase percentage of glycolic acid to 19% and of glyoxylic acid to 16%. This full gas-phase and aqueous-phase chemistry module is a potentially useful tool for studying air pollution in a cloud or a fog.

  13. Swelling and folding as mechanisms of 3D shape formation in thin elastic sheets

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.

    We work with two different mechanisms to generate geometric frustration on thin elastic sheets; isotropic differential growth and folding. We describe how controlled growth and prescribing folding patterns are useful tools for designing three-dimensional objects from information printed in two dimensions. The first mechanism is inspired by the possibility to control shapes by swelling polymer films, where we propose a solution for the problem of shape formation by asking the question, “what 2D metric should be prescribed to achieve a given 3D shape?”', namely the reverse problem. We choose two different types of initial configurations of sheets, disk-like with one boundary and annular with two boundaries. We demonstrate our technique by choosing four examples of 3D axisymmetric shapes and finding the respective swelling factors to achieve the desired shape. Second, we present a mechanical model for a single curved fold that explains both the buckled shape of a closed fold and its mechanical stiffness. The buckling arises from the geometrical frustration between the prescribed crease angle and the bending energy of the sheet away from the crease. This frustration increases as the sheet's area increases. Stiff folds result in creases with constant space curvature while softer folds inherit the broken symmetry of the buckled shape. We extend the application of our numerical model to show the potential to study multiple fold structures.

  14. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks.

    PubMed

    Carey, Shawn P; Rahman, Aniqua; Kraning-Rush, Casey M; Romero, Bethsabe; Somasegar, Sahana; Torre, Olivia M; Williams, Rebecca M; Reinhart-King, Cynthia A

    2015-03-15

    Tumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear. We previously reported the development of an in vitro model of patterned type I collagen microtracks that enable matrix metalloproteinase-independent microtrack migration. Here we show that collagen microtracks closely resemble channel-like gaps in native mammary stroma ECM and examine the extracellular and intracellular mechanisms underlying microtrack migration. Cell-matrix mechanocoupling, while critical for migration through 3D matrix, is not necessary for microtrack migration. Instead, cytoskeletal dynamics, including actin polymerization, cortical tension, and microtubule turnover, enable persistent, polarized migration through physiological microtracks. These results indicate that tumor cells employ context-specific mechanisms to migrate and suggest that selective targeting of cytoskeletal dynamics, but not adhesion, proteolysis, or cell traction forces, may effectively inhibit cancer cell migration through preformed matrix microtracks within the tumor stroma.

  15. Methods for using 3-D ultrasound speckle tracking in biaxial mechanical testing of biological tissue samples.

    PubMed

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2015-04-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making the full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation.

  16. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-04-25

    Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.

  17. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  18. A rolling 3-UPU parallel mechanism

    NASA Astrophysics Data System (ADS)

    Miao, Zhihuai; Yao, Yan'an; Kong, Xianwen

    2013-12-01

    A novel rolling mechanism is proposed based on a 3-UPU parallel mechanism in this paper. The rolling mechanism is composed of two platforms connected by three UPU (universal-prismatic-universal) serial-chain type limbs. The degree-of-freedom of the mechanism is analyzed using screw theory. Gait analysis and stability analysis are presented in detail. Four rolling modes of the mechanism are discussed and simulated. The feasibility of the rolling mechanism is verified by means of a physical prototype. Finally, its terrain adaptability is enhanced through planning the rolling gaits.

  19. A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Janutolo, Michele; Barla, Giovanni

    2012-07-01

    For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon-Turin Base Tunnel are discussed.

  20. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  1. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.

    PubMed

    Ott, Lindsey M; Zabel, Taylor A; Walker, Natalie K; Farris, Ashley L; Chakroff, Jason T; Ohst, Devan G; Johnson, Jed K; Gehrke, Steven H; Weatherly, Robert A; Detamore, Michael S

    2016-04-21

    Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications.

  2. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.

    PubMed

    Martini, Roberto; Balit, Yanis; Barthelat, Francois

    2017-03-16

    Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention for their unique combinations of hardness, flexibility and light weight. The extreme contrast of stiffness between hard scales and surrounding soft tissues gives rise to unusual and attractive mechanisms, which now serve as models for the design of bio-inspired armors. Despite this growing interest, there is little guideline for the choice of materials, optimum thickness, size, shape and arrangement for the protective scales. In this work, we explore how the geometry and arrangement of hard scales can be tailored to promote scale-scale interactions. We use 3D printing to fabricate arrays of scales with increasingly complex geometries and arrangements, from simple squares with no overlap to complex ganoid-scales with overlaps and interlocking features. We performed puncture tests and flexural tests on each of the 3D printed materials, and we report the puncture resistance - compliance characteristics of each design on an Ashby chart. The interactions between the scales can significantly increase the resistance to puncture, and these interactions can be maximized by tuning the geometry and arrangement of the scales. Interestingly, the designs that offer the best combinations of puncture resistance and flexural compliance are similar to the geometry and arrangement of natural teleost and ganoid scales, which suggests that natural evolution has shaped these systems to maximize flexible protection. This study yields new insights into the mechanisms of natural dermal armor, and also suggests new designs for personal protective systems.

  3. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    NASA Astrophysics Data System (ADS)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  4. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    PubMed Central

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  5. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    PubMed

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  6. N=4, 3D supersymmetric quantum mechanics in a non-Abelian monopole background

    SciTech Connect

    Ivanov, Evgeny; Konyushikhin, Maxim

    2010-10-15

    Using the harmonic superspace approach, we construct the 3D N=4 supersymmetric quantum mechanics of the supermultiplet (3,4,1) coupled to an external SU(2) gauge field. The off-shell N=4 supersymmetry requires the gauge field to be a static form of the 't Hooft ansatz for the 4D self-dual SU(2) gauge fields, that is a particular solution of Bogomolny equations for Bogomolny-Prasad-Sommerfeld monopoles. We present the explicit form of the corresponding superfield and component actions, as well as of the quantum Hamiltonian and N=4 supercharges. The latter can be used to describe a more general N=4 mechanics system, with an arbitrary Bogomolny-Prasad-Sommerfeld monopole background and on-shell N=4 supersymmetry. The essential feature of our construction is the use of semidynamical spin (4,4,0) multiplet with the Wess-Zumino type action.

  7. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  8. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI

    PubMed Central

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi; Wens, Stephan C. A.; van Doorn, Pieter A.; Tiddens, Harm A. W. M.; van der Ploeg, Ans T.; de Bruijne, Marleen

    2016-01-01

    Background Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness. Methods The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle. Results Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls. Conclusion Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response. PMID:27391236

  9. Implementation of 3D prostrate ring-scanning mechanism for NIR diffuse optical imaging phantom validation

    NASA Astrophysics Data System (ADS)

    Yu, Jhao-Ming; Chen, Liang-Yu; Pan, Min-Cheng; Hsu, Ya-Fen; Pan, Min-Chun

    2015-03-01

    Diffuse optical imaging (DOI) providing functional information of tissues has drawn great attention for the last two decades. Near infrared (NIR) DOI systems composed of scanning bench, opt-electrical measurement module, system control, and data processing and image reconstruction schemes are developed for the screening and diagnosis of breast tumors. Mostly, the scanning bench belonging to fixed source-and-detector configuration limits computed image resolution to an extent. To cope with the issue, we propose, design and implement a 3D prostrate ring-scanning equipment for NIR DOI with flexible combinations of illumination and detection, and with the function of radial, circular and vertical movement without hard compression of breast tissue like the imaging system using or incorporating with X-ray mammographic bench. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel movement. Following the previous justification for synthesized image reconstruction, in the paper the validation using varied phantoms is further conducted and 3D image reconstruction for their absorption and scattering coefficients is illustrated through the computation of our in-house coded schemes. The source and detection NIR data are acquired to reconstruct the 3D images through the operation of scanning bench in the movement of vertical, radial and circular directions. Rather than the fixed configuration, the addressed screening/diagnosing equipment has the flexibility for optical-channel expansion with a compromise among construction cost, operation time, and spatial resolution of reconstructed μa and μs' images.

  10. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.

    PubMed

    Xie, Zhuang; Chen, Chaojian; Zhou, Xuechang; Gao, Tingting; Liu, Danqing; Miao, Qian; Zheng, Zijian

    2014-08-13

    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of poly(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm × 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput "bench-top" serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies.

  11. Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing.

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    3D hydrogel scaffolds are widely used in cellular microcultures and tissue engineering. Using direct ink writing, microperiodic poly(2-hydroxyethyl-methacrylate) (pHEMA) scaffolds are created that are then printed, cured, and modified by absorbing 30 kDa protein poly-l-lysine (PLL) to render them biocompliant in model NIH/3T3 fibroblast and MC3T3-E1 preosteoblast cell cultures. Spatial light interference microscopy (SLIM) live cell imaging studies are carried out to quantify cellular motilities for each cell type, substrate, and surface treatment of interest. 3D scaffold mechanics is investigated using atomic force microscopy (AFM), while their absorption kinetics are determined by confocal fluorescence microscopy (CFM) for a series of hydrated hydrogel films prepared from prepolymers with different homopolymer-to-monomer (Mr ) ratios. The observations reveal that the inks with higher Mr values yield relatively more open-mesh gels due to a lower degree of entanglement. The biocompatibility of printed hydrogel scaffolds can be controlled by both PLL content and hydrogel mesh properties.

  12. Review on Chalcogenide 3D Nano-structured Crystals: Synthesis and Growth Mechanism.

    PubMed

    Qiu, Qi

    2015-01-01

    Three dimensional (3D) nano-structured crystals have received extensive attention for their superior properties over zero dimensional (0D), one dimensional (1D), or two dimensional (2D) nanomaterials in many areas. This review is generalized for the group of chalcogenide nanoflowers (NFs) by the synthetic techniques, such as solvothermal, wet chemical, sol-gel, surface oxidation, microwave, coating, electrochemical, and several other methods. The formation mechanism was also described for the purpose of opening up new food for thoughts to bring up new functionality of materials by tuning the morphology of crystals. The pH value or the template plays fundamental role in forming the nano-flowered structure. Moreover, the correlations between the surface area (SA), contact angle (CA), and the NFs are also discussed within the context. Here, we also discussed some patents relevant to the topic.

  13. 3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots.

    PubMed

    Silverberg, Jesse L; Noar, Roslyn D; Packer, Michael S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai; Gerbode, Sharon J

    2012-10-16

    We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that the size of the deformation varies with gel stiffness as expected by a mathematical model based on the theory of buckled rods. Moreover, we show that plant-to-plant variations can be accounted for by biomechanically plausible values of the model parameters.

  14. Spatial Distribution of Yarns and Mechanical Properties in 3D Braided Tubular Composites

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wang, A. S. D.

    1997-03-01

    This paper outlines a method which links the following analytically simulated events in sequence: (1) braiding of a 3D preform of tubular cross-section characterized by a set of braiding parameters defining the braiding setup and braiding steps; (2) geometric description of the yarn topology in the braided preform in explicit terms of a set of topological parameters defined by the preform shape and the braiding parameters; (3) description of the exact yarn distribution after preform consolidation with a binding matrix the values of the topological parameters are related to the exterior dimensions and surface features of the consolidated preform; and (4) forecasting the mechanical properties in the final composite via a suitable micromechanics model that takes into account the spatial yarn distribution in the composite and properties of the constituents.

  15. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  16. 3D imaging and mechanical modeling of helical buckling in Medicago truncatula plant roots

    PubMed Central

    Silverberg, Jesse L.; Noar, Roslyn D.; Packer, Michael S.; Harrison, Maria J.; Henley, Christopher L.; Cohen, Itai; Gerbode, Sharon J.

    2012-01-01

    We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that the size of the deformation varies with gel stiffness as expected by a mathematical model based on the theory of buckled rods. Moreover, we show that plant-to-plant variations can be accounted for by biomechanically plausible values of the model parameters. PMID:23010923

  17. Multiple Colors Output on Voile through 3D Colloidal Crystals with Robust Mechanical Properties.

    PubMed

    Meng, Yao; Tang, Bingtao; Ju, Benzhi; Wu, Suli; Zhang, Shufen

    2017-01-25

    Distinguished from the chromatic mechanism of dyes and pigments, structural color is derived from physical interactions of visible light with structures that are periodic at the scale of the wavelength of light. Using colloidal crystals with coloring functions for fabrics has resulted in significant improvements compared with chemical colors because the structural color from colloidal crystals bears many unique and fascinating optical properties, such as vivid iridescence and nonphotobleaching. However, the poor mechanical performance of the structural color films cannot meet actual requirements because of the weak point contact of colloidal crystal particles. Herein, we demonstrate in this study the patterning on voile fabrics with high mechanical strength on account of the periodic array lock effect of polymers, and multiple structural color output was simultaneously achieved by a simple two-phase self-assembly method for printing voile fabrics with 3D colloidal crystals. The colored voile fabrics exhibit high color saturation, good mechanical stability, and multiple-color patterns printable. In addition, colloidal crystals are promising potential substitutes for organic dyes and pigments because colloidal crystals are environmentally friendly.

  18. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.

    PubMed

    Allo, Bedilu A; Lin, Shigang; Mequanint, Kibret; Rizkalla, Amin S

    2013-08-14

    Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.

  19. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces.

    PubMed

    Bizet, François; Bengough, A Glyn; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice; Dupuy, Lionel X

    2016-10-01

    Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN touch-elongation sensitivity, and the critical elongation force applied by growing roots that resulted in bending. Kinematic analysis revealed a multiphase bio-mechanical response of elongation rate and curvature in 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils.

  20. 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces

    PubMed Central

    Bizet, François; Bengough, A. Glyn; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice; Dupuy, Lionel X.

    2016-01-01

    Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young’s elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN touch-elongation sensitivity, and the critical elongation force applied by growing roots that resulted in bending. Kinematic analysis revealed a multiphase bio-mechanical response of elongation rate and curvature in 3D. Measured critical elongation force was accurately predicted from an Euler buckling model, indicating that no biologically mediated accommodation to mechanical forces influenced bending during this short period of time. Force applied by growing roots increased more than 15-fold when buckling was prevented by lateral bracing of the root. The junction between the growing and the mature zones was identified as a zone of mechanical weakness that seemed critical to the bending process. This work identified key limiting factors for root growth and buckling under mechanical constraints. The findings are relevant to crop and soil sciences, and advance our understanding of root growth in heterogeneous structured soils. PMID:27664958

  1. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  2. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  3. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  4. Scaling and performance of a 3-D radiation hydrodynamics code on message-passing parallel computers: final report

    SciTech Connect

    Hayes, J C; Norman, M

    1999-10-28

    This report details an investigation into the efficacy of two approaches to solving the radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-edge scientific computing platforms have evolved from large single-node vector processors to parallel aggregates containing tens to thousands of individual CPU's, the ability of an algorithm to maintain high compute efficiency when distributed over a large array of nodes is critically important. The viability of an algorithm thus hinges upon the tripartite question of numerical accuracy, total time to solution, and parallel efficiency.

  5. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone.

    PubMed

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating

  6. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone

    PubMed Central

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar–canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30–50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in

  7. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  8. Combining 3D printed forms with textile structures - mechanical and geometrical properties of multi-material systems

    NASA Astrophysics Data System (ADS)

    Sabantina, L.; Kinzel, F.; Ehrmann, A.; Finsterbusch, K.

    2015-07-01

    The 3D printing belongs to the rapidly emerging technologies which have the chance to revolutionize the way products are created. In the textile industry, several designers have already presented creations of shoes, dresses or other garments which could not be produced with common techniques. 3D printing, however, is still far away from being a usual process in textile and clothing production. The main challenge results from the insufficient mechanical properties, especially the low tensile strength, of pure 3D printed products, prohibiting them from replacing common technologies such as weaving or knitting. Thus, one way to the application of 3D printed forms in garments is combining them with textile fabrics, the latter ensuring the necessary tensile strength. This article reports about different approaches to combine 3D printed polymers with different textile materials and fabrics, showing chances and limits of this technique.

  9. Reversible-strain criteria of ferromagnetic shape memory alloys under cyclic 3D magneto-mechanical loadings

    NASA Astrophysics Data System (ADS)

    He, Y. J.; Chen, X.; Moumni, Z.

    2012-08-01

    Recent researches revealed that ferromagnetic shape memory alloys (FSMA) in 2D/3D configurations (with multi-axial stresses) had much more advantages (e.g., higher working stress and more application flexibility) than that in 1D configuration (with uniaxial stress). In literature, however, there is no simple criterion to judge whether a cyclic 3D magneto-mechanical loading can induce a large reversible strain (via martensite reorientation in FSMA). In this paper, a 3D magneto-mechanical energy analysis is proposed and incorporated into a phase diagram in terms of deviatoric stresses (including mechanical and magneto-stresses) to study the path-dependent (hysteretic) martensite reorientation in FSMA under 3D cyclic loadings. Based on the phase diagram (a plane graph), general criteria for obtaining reversible strain under cyclic magneto-mechanical loadings are derived, which provide basic guidelines for FSMA's applications under multi-axial loadings. Particularly for FSMA actuators driven by cyclic magnetic fields, the criteria of setting the 3D mechanical stresses to allow field-induced reversible strain are formulated. The 3D criteria can be reduced to 1D and 2D criteria which agree with the existing 1D/2D theoretical and experimental studies.

  10. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.

    PubMed

    Boudon, Frédéric; Chopard, Jérôme; Ali, Olivier; Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

  11. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  12. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  13. Regional 3D Numerical Modeling of the Lithosphere-Mantle System: Implications for Continental Rift-Parallel Surface Velocities

    NASA Astrophysics Data System (ADS)

    Stamps, S.; Bangerth, W.; Hager, B. H.

    2014-12-01

    The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.

  14. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min

    2015-09-01

    Auxetic metamaterials are synthetic materials with microstructures engineered to achieve negative Poisson’s ratios. Auxetic metamaterials are of great interest because of their unusual properties and various potential applications. However, most of the previous research has been focused on auxetic behaviour of elastomers under elastic deformation. Inspired by our recent finding of the loss of auxetic behaviour in metallic auxetic metamaterials, a systematic experimental and numerical investigation has been carried out to explore the mechanism behind this phenomenon. Using an improved methodology of generating buckling-induced auxetic metamaterials, several samples of metallic auxetic metamaterials have been fabricated using a 3D printing technique. The experiments on those samples have revealed the special features of auxetic behaviour for metallic auxetic metamaterials and proved the effectiveness of our structural modification. Parametric studies have been performed through experimentally validated finite element models to explore the auxetic performance of the designed metallic metamaterials. It is found that the auxetic performance can be tuned by the geometry of microstructures, and the strength and stiffness can be tuned by the plasticity of the base material while maintaining the auxetic performance.

  15. Mechanical properties of aligned carbon nanotube architectures: origin from 3D morphology

    NASA Astrophysics Data System (ADS)

    Stein, Itai Y.; Wardle, Brian L.

    The scale-dependent properties of carbon nanotubes (CNTs) continue to motivate their study for next-generation material architectures. While recent work has shown that aligned CNT arrays can be made on the cm-scale, such systems exhibit properties that are orders of magnitude below those predicted by existing theories. This deviation mainly stems from the rudimentary assumptions made about the CNT morphology: CNTs are either devoid of local curvature (i.e. waviness) or have waviness that is easy to model, e.g. using helices and sine waves. Here, we use a simulation framework comprised of 105 CNTs with realistic 3D stochastic morphologies to elucidate the role morphology plays in the orders of magnitude over-prediction of the effective stiffness of aligned CNT structures. Application to aligned CNT polymer and carbon matrix nanocomposites reveals that the elimination of the torsion deformation mechanism, which dominates the effective compliance of CNT arrays, through CNT interactions with the matrix is responsible for the stiffness enhancement in CNT nanocomposites. This works paves the way to more accurate property prediction of CNT nanocomposites, and further work to predict the transport properties of aligned CNT architectures is planned.

  16. Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography

    PubMed Central

    Kieffer, Collin; Ladinsky, Mark S; Ninh, Allen; Galimidi, Rachel P; Bjorkman, Pamela J

    2017-01-01

    Dissemination of HIV-1 throughout lymphoid tissues leads to systemic virus spread following infection. We combined tissue clearing, 3D-immunofluorescence, and electron tomography (ET) to longitudinally assess early HIV-1 spread in lymphoid tissues in humanized mice. Immunofluorescence revealed peak infection density in gut at 10–12 days post-infection when blood viral loads were low. Human CD4+ T-cells and HIV-1–infected cells localized predominantly to crypts and the lower third of intestinal villi. Free virions and infected cells were not readily detectable by ET at 5-days post-infection, whereas HIV-1–infected cells surrounded by pools of free virions were present in ~10% of intestinal crypts by 10–12 days. ET of spleen revealed thousands of virions released by individual cells and discreet cytoplasmic densities near sites of prolific virus production. These studies highlight the importance of multiscale imaging of HIV-1–infected tissues and are adaptable to other animal models and human patient samples. DOI: http://dx.doi.org/10.7554/eLife.23282.001 PMID:28198699

  17. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  18. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications

    NASA Astrophysics Data System (ADS)

    Nizenkov, Paul; Noeding, Peter; Konopka, Martin; Fasoulas, Stefanos

    2017-03-01

    The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a 70° blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.

  19. N-Body Classical Systems and Neural Networks on a 3d SIMD Massive Parallel Processor:. APE100/QUADRICS

    NASA Astrophysics Data System (ADS)

    Paolucci, P. S.

    A number of physical systems (e.g., N body Newtonian, Coulombian or Lennard-Jones systems) can be described by N2 interaction terms. Completely connected neural networks are characterised by the same kind of connections: Each neuron sends signals to all the other neurons via synapses. The APE100/Quadricsmassive parallel architecture, with processing power in excess of 100 Gigaflops and a central memory of 8 Gigabytes seems to have processing power and memory adequate to simulate systems formed by more than 1 billion synapses or interaction terms. On the other hand the processing nodes of APE100/Quadrics are organised in a tridimensional cubic lattice; each processing node has a direct communication path only toward the first neighboring nodes. Here we describe a convenient way to map systems with global connectivity onto the first-neighbors connectivity of the APE100/Quadrics architecture. Some numeric criteria, which are useful for matching SIMD tridimensional architectures with globally connected simulations, are introduced.

  20. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications

    NASA Astrophysics Data System (ADS)

    Nizenkov, Paul; Noeding, Peter; Konopka, Martin; Fasoulas, Stefanos

    2016-07-01

    The in-house direct simulation Monte Carlo solver PICLas, which enables parallel, three-dimensional simulations of rarefied gas flows, is verified and validated. Theoretical aspects of the method and the employed schemes are briefly discussed. Considered cases include simple reservoir simulations and complex re-entry geometries, which were selected from literature and simulated with PICLas. First, the chemistry module is verified using simple numerical and analytical solutions. Second, simulation results of the rarefied gas flow around a 70° blunted-cone, the REX Free-Flyer as well as multiple points of the re-entry trajectory of the Orion capsule are presented in terms of drag and heat flux. A comparison to experimental measurements as well as other numerical results shows an excellent agreement across the different simulation cases. An outlook on future code development and applications is given.

  1. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  2. Fundamental Study on Applicability of Powder-Based 3D Printer for Physical Modeling in Rock Mechanics

    NASA Astrophysics Data System (ADS)

    Fereshtenejad, Sayedalireza; Song, Jae-Joon

    2016-06-01

    Applications of 3D printing technology become more widespread in many research fields because of its rapid development and valuable capabilities. In rock mechanics and mining engineering, this technology has the potential to become a useful tool that might help implement a number of research studies previously considered impractical. Most commercial 3D printers cannot print prototypes with mechanical properties that match precisely those of natural rock samples. Therefore, some additional enhancements are required for 3D printers to be effectively utilized for rock mechanics applications. In this study, we printed and studied specimens using a powder-based commercial ZPrinter® 450 with ZP® 150 powder and Zb® 63 binder used as raw materials. The specimens printed by this 3D printer exhibited relatively low strength and ductile behavior, implying that it needs further improvements. Hence, we focused on several ways to determine the best combination of printing options and post-processing including the effects of the printing direction, printing layer thickness, binder saturation level, and heating process on the uniaxial compressive strength (UCS) and stress-strain behavior of the printed samples. The suggested procedures have demonstrated their effectiveness by obtaining the printed samples that behave similarly to the natural rocks with low UCS. Although our optimization methods were particularly successful, further improvements are required to expand 3D printer application in the area of rock mechanics.

  3. Enterovirus 71 VPg Uridylation Uses a Two-Molecular Mechanism of 3D Polymerase

    PubMed Central

    Sun, Yuna; Wang, Yaxin; Shan, Chao; Chen, Cheng; Xu, Peng; Song, Mohan; Zhou, Honggang; Yang, Cheng; Xu, Wenbo; Shi, Pei-Yong

    2012-01-01

    VPg uridylylation is essential for picornavirus RNA replication. The VPg uridylylation reaction consists of the binding of VPg to 3D polymerase (3Dpol) and the transfer of UMP by 3Dpol to the hydroxyl group of the third amino acid Tyr of VPg. Previous studies suggested that different picornaviruses employ distinct mechanisms during VPg binding and uridylylation. Here, we report a novel site (Site-311, located at the base of the palm domain of EV71 3Dpol) that is essential for EV71 VPg uridylylation as well as viral replication. Ala substitution of amino acids (T313, F314, and I317) at Site-311 reduced the VPg uridylylation activity of 3Dpol by >90%. None of the Site-311 mutations affected the RNA elongation activity of 3Dpol, which indicates that Site-311 does not directly participate in RNA polymerization. However, mutations that abrogated VPg uridylylation significantly reduced the VPg binding ability of 3Dpol, which suggests that Site-311 is a potential VPg binding site on enterovirus 71 (EV71) 3Dpol. Mutation of a polymerase active site in 3Dpol and Site-311 in 3Dpol remarkably enables trans complementation to restore VPg uridylylation. In contrast, two distinct Site-311 mutants do not cause trans complementation in vitro. These results indicate that Site-311 is a VPg binding site that stabilizes the VPg molecule during the VPg uridylylation process and suggest a two-molecule model for 3Dpol during EV71 VPg uridylylation, such that one 3Dpol presents the hydroxyl group of Tyr3 of VPg to the polymerase active site of another 3Dpol, which in turn catalyzes VPg→VPg-pU conversion. For genome-length RNA, the Site-311 mutations that reduced VPg uridylylation were lethal for EV71 replication, which indicates that Site-311 is a potential antiviral target. PMID:23055549

  4. 3-D thermo-mechanical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, M.; Gerya, T.; Sobolev, S. V.

    2016-11-01

    Here, we study the 3-D subduction initiation process induced by the interaction between a hot thermo-chemical mantle plume and oceanic lithosphere using thermo-mechanical viscoplastic finite difference marker-in-cell models. Our numerical modeling results show that self-sustaining subduction is induced by plume-lithosphere interaction when the plume is sufficiently buoyant, the oceanic lithosphere is sufficiently old and the plate is weak enough to allow the buoyant plume to pass through it. Subduction initiation occurs following penetration of the lithosphere by the hot plume and the downward displacement of broken, nearly circular segments of lithosphere (proto-slabs) as a result of partially molten plume rocks overriding the proto-slabs. Our experiments show four different deformation regimes in response to plume-lithosphere interaction: a) self-sustaining subduction initiation, in which subduction becomes self-sustaining; b) frozen subduction initiation, in which subduction stops at shallow depths; c) slab break-off, in which the subducting circular slab breaks off soon after formation; and d) plume underplating, in which the plume does not pass through the lithosphere and instead spreads beneath it (i.e., failed subduction initiation). These regimes depend on several parameters, such as the size, composition, and temperature of the plume, the brittle/plastic strength and age of the oceanic lithosphere, and the presence/absence of lithospheric heterogeneities. The results show that subduction initiates and becomes self-sustaining when the lithosphere is older than 10 Myr and the non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than approximately 2. The outcomes of our numerical experiments are applicable for subduction initiation in the modern and Precambrian Earth and for the origin of plume-related corona structures on Venus.

  5. Fracture mechanics of propagating 3-D fatigue cracks with parametric dislocations

    NASA Astrophysics Data System (ADS)

    Takahashi, Akiyuki; Ghoniem, Nasr M.

    2013-07-01

    Propagation of 3-D fatigue cracks is analyzed using a discrete dislocation representation of the crack opening displacement. Three dimensional cracks are represented with Volterra dislocation loops in equilibrium with the applied external load. The stress intensity factor (SIF) is calculated using the Peach-Koehler (PK) force acting on the crack tip dislocation loop. Loading mode decomposition of the SIF is achieved by selection of Burgers vector components to correspond to each fracture mode in the PK force calculations. The interaction between 3-D cracks and free surfaces is taken into account through application of the superposition principle. A boundary integral solution of an elasticity problem in a finite domain is superposed onto the elastic field solution of the discrete dislocation method in an infinite medium. The numerical accuracy of the SIF is ascertained by comparison with known analytical solution of a 3-D crack problem in pure mode I, and for mixed-mode loading. Finally, fatigue crack growth simulations are performed with the Paris law, showing that 3-D cracks do not propagate in a self-similar shape, but they re-configure as a result of their interaction with external boundaries. A specific numerical example of fatigue crack growth is presented to demonstrate the utility of the developed method for studies of 3-D crack growth during fatigue.

  6. Mars-solar wind interaction: LatHyS, an improved parallel 3-D multispecies hybrid model

    NASA Astrophysics Data System (ADS)

    Modolo, Ronan; Hess, Sebastien; Mancini, Marco; Leblanc, Francois; Chaufray, Jean-Yves; Brain, David; Leclercq, Ludivine; Esteban-Hernández, Rosa; Chanteur, Gerard; Weill, Philippe; González-Galindo, Francisco; Forget, Francois; Yagi, Manabu; Mazelle, Christian

    2016-07-01

    In order to better represent Mars-solar wind interaction, we present an unprecedented model achieving spatial resolution down to 50 km, a so far unexplored resolution for global kinetic models of the Martian ionized environment. Such resolution approaches the ionospheric plasma scale height. In practice, the model is derived from a first version described in Modolo et al. (2005). An important effort of parallelization has been conducted and is presented here. A better description of the ionosphere was also implemented including ionospheric chemistry, electrical conductivities, and a drag force modeling the ion-neutral collisions in the ionosphere. This new version of the code, named LatHyS (Latmos Hybrid Simulation), is here used to characterize the impact of various spatial resolutions on simulation results. In addition, and following a global model challenge effort, we present the results of simulation run for three cases which allow addressing the effect of the suprathermal corona and of the solar EUV activity on the magnetospheric plasma boundaries and on the global escape. Simulation results showed that global patterns are relatively similar for the different spatial resolution runs, but finest grid runs provide a better representation of the ionosphere and display more details of the planetary plasma dynamic. Simulation results suggest that a significant fraction of escaping O+ ions is originated from below 1200 km altitude.

  7. Three Degree of Freedom Parallel Mechanical Linkage

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D. (Inventor)

    1998-01-01

    A three degree of freedom parallel mechanism or linkage that couples three degree of freedom translational displacements at an endpoint, such as a handle, a hand grip, or a robot tool, to link rotations about three axes that are fixed with respect to a common base or ground link. The mechanism includes a three degree of freedom spherical linkage formed of two closed loops, and a planar linkage connected to the endpoint. The closed loops are rotatably interconnected, and made of eight rigid links connected by a plurality of single degree of freedom revolute joints. Three of these revolute joints are base joints and are connected to a common ground. such that the axis lines passing through the revolute joints intersect at a common fixed center point K forming the center of a spherical work volume in which the endpoint is capable of moving. 'Me three degrees of freedom correspond to the spatial displacement of the endpoint, for instance. The mechanism provides a new overall spatial kinematic linkage composed of a minimal number of rigid links and rotary joints. The mechanism has improved mechanical stiffness, and conveys mechanical power bidirectionally between the human operator and the electromechanical actuators. It does not require gears, belts. cable, screw or other types of transmission elements, and is useful in applications requiring full backdrivability. Thus, this invention can serve as the mechanical linkage for actively powered devices such as compliant robotic manipulators and force-reflecting hand controllers, and passive devices such as manual input devices for computers and other systems.

  8. A supervisor for the successive 3D computations of magnetic, mechanical and acoustic quantities in power oil inductors and transformers

    SciTech Connect

    Reyne, G.; Magnin, H.; Berliat, G.; Clerc, C.

    1994-09-01

    A supervisor has been developed so as to allow successive 3D computations of different quantities by different softwares on the same physical problem. Noise of a given power oil transformer can be deduced from the surface vibrations of the tank. These vibrations are obtained through a mechanic computation whose Inputs are the electromagnetic forces provided . by an electromagnetic computation. Magnetic, mechanic and acoustic experimental data are compared with the results of the 3D computations. Stress Is put on the main characteristics of the supervisor such as the transfer of a given quantity from one mesh to the other.

  9. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE PAGES

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...

    2016-09-18

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  10. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    PubMed

    Lee, Howon; Fang, Nicholas X

    2012-11-27

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops

  11. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Si, Jennifer L; Cooper, David M L; Eames, B Frank; Chen, Daniel X B

    2016-06-22

    Three-dimensional (3D)-printed poly(ε)-caprolactone (PCL)-based scaffolds are increasingly being explored for cartilage tissue engineering (CTE) applications. However, ensuring that the mechanical properties of these PCL-based constructs are comparable to that of articular cartilage that they are meant to regenerate is an area that has been under-explored. This paper presents the effects of PCL's molecular weight (MW) and scaffold's pore geometric configurations; strand size (SZ), strand spacing (SS), and strand orientation (SO), on mechanical properties of 3D-printed PCL scaffolds. The results illustrate that MW has significant effect on compressive moduli and yield strength of 3D-printed PCL scaffolds. Specifically, PCL with MW of 45 K was a more feasible choice for fabrication of visco-elastic, flexible and load-bearing PCL scaffolds. Furthermore, pore geometric configurations; SZ, SS, and SO, all significantly affect on tensile moduli of scaffolds. However, only SZ and SS have statistically significant effects on compressive moduli and porosity of these scaffolds. That said, inverse linear relationship was observed between porosity and mechanical properties of 3D-printed PCL scaffolds in Pearson's correlation test. Altogether, this study illustrates that modulating MW of PCL and pore geometrical configurations of the scaffolds enabled design and fabrication of PCL scaffolds with mechanical and biomimetic properties that better mimic mechanical behaviour of human articular cartilage. Thus, the modulated PCL scaffold proposed in this study is a framework that offers great potentials for CTE applications.

  12. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    PubMed Central

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2016-01-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts. PMID:27679820

  13. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-09-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts.

  14. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.

    PubMed

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A

    2015-09-22

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.

  15. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    PubMed Central

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design. PMID:26372959

  16. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    DOE PAGES

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; ...

    2015-09-08

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This article introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved usingmore » other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. Lastly, a 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.« less

  17. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    SciTech Connect

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A.

    2015-09-08

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This article introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. Lastly, a 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.

  18. 3D chiral nanoplasmonics: fabrication, chiroptic engineering, mechanism, and application in enantioselection (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng

    2015-09-01

    Chirality does naturally exist, and the building blocks of life (e.g. DNA, proteins, peptides and sugars) are usually chiral. Chirality inherently imposes chemical/biological selectivity on functional molecules; hence the discrimination in molecular chirality from an enantiomer to the other mirror image (i.e. enantioselection) has fundamental and application significance. Enantiomers interact with left and right handed circularly polarized light in a different manner with respect to optical extinction; hence, electronic circular dichroism (ECD) has been widely used for enantioselection. However, enantiomers usually have remarkably low ECD intensity, mainly owing to the small electric transition dipole moment induced by molecular sizes compared to the ECD-active wavelength in the UV-visible-near IR region. To enhance ECD magnitude, recently it has being developed 3D chiral nanoplasmonic structures having a helical path, and the dimensions are comparable to the ECD wavelength. However, it is still ambiguous the origin of 3D chiroplasmonics, and there is a lack of studying the interaction of 3D chiroplasmoncs with enantiomers for the application of enantioselection. Herein, we will present a one-step fabrication of 3D silver nanospirals (AgNSs) via low-substrate-temperature glancing angle deposition. AgNSs can be deposited on a wide range of substrates (including transparent and flexible substrates), in an area on the order of cm2. A set of spiral dimensions (such as spiral pitches, number of turns and handedness) have been easily engineered to tune the chiroptic properties, leading to studying the chiroplasmonic principles together with finite element simulation and the LC model. At the end, it will be demonstrated that 3D chiroplasmonics can differentiate molecular chirality of enantiomers with dramatic enhancement in the anisotropy g factor. This study opens a door to sensitively discriminate enantiomer chirality.

  19. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  20. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  1. Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Skliutas, Edvinas; Jonušauskas, Linas; Mizeras, Deividas; Šešok, Andžela; Piskarskas, Algis

    2015-05-01

    Herein we present 3D Printing (3DP) fabrication of structures having internal microarchitecture and characterization of their mechanical properties. Depending on the material, geometry and fill factor, the manufactured objects mechanical performance can be tailored from "hard" to "soft." In this work we employ low-cost fused filament fabrication 3D printer enabling point-by-point structuring of poly(lactic acid) (PLA) with~̴400 µm feature spatial resolution. The chosen architectures are defined as woodpiles (BCC, FCC and 60 deg rotating). The period is chosen to be of 1200 µm corresponding to 800 µm pores. The produced objects structural quality is characterized using scanning electron microscope, their mechanical properties such as flexural modulus, elastic modulus and stiffness are evaluated by measured experimentally using universal TIRAtest2300 machine. Within the limitation of the carried out study we show that the mechanical properties of 3D printed objects can be tuned at least 3 times by only changing the woodpile geometry arrangement, yet keeping the same filling factor and periodicity of the logs. Additionally, we demonstrate custom 3D printed µ-fluidic elements which can serve as cheap, biocompatible and environmentally biodegradable platforms for integrated Lab-On-Chip (LOC) devices.

  2. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.

    PubMed

    de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2015-08-01

    Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate

  3. A Fast Parallel Simulation Code for Interaction between Proto-Planetary Disk and Embedded Proto-Planets: Implementation for 3D Code

    SciTech Connect

    Li, Shengtai; Li, Hui

    2012-06-14

    the position of the planet, we adopt the corotating frame that allows the planet moving only in radial direction if only one planet is present. This code has been extensively tested on a number of problems. For the earthmass planet with constant aspect ratio h = 0.05, the torque calculated using our code matches quite well with the the 3D linear theory results by Tanaka et al. (2002). The code is fully parallelized via message-passing interface (MPI) and has very high parallel efficiency. Several numerical examples for both fixed planet and moving planet are provided to demonstrate the efficacy of the numerical method and code.

  4. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  5. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    PubMed

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm(-1) optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies.

  6. Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering

    PubMed Central

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity. PMID:25233468

  7. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    PubMed

    Farzadi, Arghavan; Solati-Hashjin, Mehran; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2014-01-01

    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  8. Mechanisms of clay smear formation in 3D - a field study

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  9. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  10. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites

    PubMed Central

    Skorski, Matthew R.; Esenther, Jake M.; Ahmed, Zeeshan; Miller, Abigail E.; Hartings, Matthew R.

    2016-01-01

    Abstract To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1, 5, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young’s modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures. PMID:27375367

  11. The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites.

    PubMed

    Skorski, Matthew; Esenther, Jake; Ahmed, Zeeshan; Miller, Abigail E; Hartings, Matthew R

    To expand the chemical capabilities of 3D printed structures generated from commercial thermoplastic printers, we have produced and printed polymer filaments that contain inorganic nanoparticles. TiO2 was dispersed into acrylonitrile butadiene styrene (ABS) and extruded into filaments with 1.75 mm diameters. We produced filaments with TiO2 compositions of 1%, 5%, and 10% (kg/kg) and printed structures using a commercial 3D printer. Our experiments suggest that ABS undergoes minor degradation in the presence of TiO2 during the different processing steps. The measured mechanical properties (strain and Young's modulus) for all of the composites are similar to those of structures printed from the pure polymer. TiO2 incorporation at 1% negatively affects the stress at breaking point and the flexural stress. Structures produced from the 5 and 10% nanocomposites display a higher breaking point stress than those printed from the pure polymer. TiO2 within the printed matrix was able to quench the intrinsic fluorescence of the polymer. TiO2 was also able to photocatalyze the degradation of a rhodamine 6G in solution. These experiments display chemical reactivity in nanocomposites that are printed using commercial 3D printers, and we expect that our methodology will help to inform others who seek to incorporate catalytic nanoparticles in 3D printed structures.

  12. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.

    PubMed

    Chen, Chong; Zhao, Ming-Liang; Zhang, Ren-Kun; Lu, Gang; Zhao, Chang-Yu; Fu, Feng; Sun, Hong-Tao; Zhang, Sai; Tu, Yue; Li, Xiao-Hong

    2017-01-25

    Effective treatments promoting axonal regeneration and functional recovery for spinal cord injury (SCI) are still in the early stages of development. Most approaches have been focused on providing supportive substrates for guiding neurons and overcoming the physical and chemical barriers to healing that arise after SCI. Although collagen has become a promising natural substrate with good compatibility, its low mechanical properties restrict its potential applications. The mechanical properties mainly rely on the composition and pore structure of scaffolds. For the composition of a scaffold, we used heparin sulfate to react with collagen by crosslinking. For the structure, we adopted a three-dimensional (3D) printing technology to fabricate a scaffold with a uniform pore distributions. We observed that the internal structure of the scaffold printed with a 3D bioprinter was regular and porous. We also found that both the compression modulus and strengths of the scaffold were significantly enhanced by the collagen/heparin sulfate composition compared to a collagen scaffold. Meanwhile, the collagen/heparin sulfate scaffold presented good biocompatibility when it was co-cultured with neural stem cells in vitro. We also demonstrated that heparin sulfate modification significantly improved bFGF immobilization and absorption to the collagen by examining the release kinetics of bFGF from scaffolds. Two months after implantating the scaffold into transection lesions in T10 of the spinal cord in rats, the collagen/heparin sulfate group demonstrated significant recovery of locomotor function and according to electrophysiological examinations. Parallel to functional recovery, collagen/heparin sulfate treatment further ameliorated the pathological process and markedly increased the number of neurofilament (NF) positive cells compared to collagen treatment alone. These data suggested that a collagen/heparin sulfate scaffold fabricated by a 3D bioprinter could enhance the

  13. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  14. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  15. A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite

    NASA Astrophysics Data System (ADS)

    Jaya Christiyan, K. G.; Chandrasekhar, U.; Venkateswarlu, K.

    2016-02-01

    Additive Manufacturing (AM) technologies have been emerged as a fabrication method to obtain engineering components within a short span of time. Desktop 3D printing, also referred as additive layer manufacturing technology is one of the powerful method of rapid prototyping (RP) technique that fabricates three dimensional engineering components. In this method, 3D digital CAD data is converted directly to a product. In the present investigation, ABS + hydrous magnesium silicate composite was considered as the starting material. Mechanical properties of ABS + hydrous magnesium silicate composite material were evaluated. ASTM D638 and ASTM D760 standards were followed for carrying out tensile and flexural tests, respectively. Samples with different layer thickness and printing speed were prepared. Based on the experimental results, it is suggested that low printing speed, and low layer thickness has resulted maximum tensile and flexural strength, as compared to all the other process parameters samples.

  16. 3D methodology for modeling and analysis of medium-complexity mechanical assemblies: Application in elevator-car design

    NASA Astrophysics Data System (ADS)

    Karaoglanidis, Georgios A.; Sapidis, Nickolas S.

    2012-12-01

    This paper deals with design methods for medium-complexity mechanical systems, and focuses on two standard steps in such a method: "2D drawing" (included in the early stages of design) and "3D CADmodel simplification & defeaturing" (in the concluding "analysis stages" of a design procedure), whose contribution to mechanical design has always been a controversial subject. On the basis of the state-of-the-art in mechanical design, this "position paper" advocates complete elimination of the above two steps, and details the corresponding modified mechanical-design method. Application of this new design-method on a real-life industrial case (: elevator-car design) is fully analyzed, demonstrating the method's efficacy for mediumcomplexity mechanical assemblies. [Figure not available: see fulltext.

  17. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs.

    PubMed

    Elsaadany, Mostafa; Harris, Matthew; Yildirim-Ayan, Eda

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo.

  18. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs

    PubMed Central

    Harris, Matthew

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo. PMID:28168197

  19. The Double Hierarchy Method. A parallel 3D contact method for the interaction of spherical particles with rigid FE boundaries using the DEM

    NASA Astrophysics Data System (ADS)

    Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria

    2016-07-01

    In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.

  20. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  1. A self-sustaining mechanism that prevents tokamak plasmas from sawtoothing in non-linear 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Ferraro, N.

    2016-10-01

    We use the finite element 3D MHD code M3D-C1 to study large-scale instabilities in the center of tokamak plasmas. It has been shown that in 3D MHD simulations of plasmas with a flat central q 1 , an ideal interchange instability can develop that keeps the current density from peaking despite central heating. The instability yields a (m = 1 , n = 1) perturbation of the core plasma, i.a. a helical flow that flattens the central current density by (1) flattening the temperature profile and (2) combining with the perturbed magnetic field to generate a negative loop voltage through a dynamo effect. This might explain the ``flux-pumping'' effect observed in hybrid discharges. We study in which parameter range the two effects are strong enough to prevent sawtoothing. We describe a new regime of quasi-stationary oscillating states and analyze cases in between the stationary and the cycling regime in which the sawtooth behaviour is modified by the current flattening mechanisms. To connect to experimental observations, we have set up simulations starting with a scenario comparable to the current ramp-up phase.

  2. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  3. 3D-FEM electrical-thermal-mechanical analysis and experiment of Si-based MEMS infrared emitters

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Wang, Na; Chen, Ran-Bin; San, Hai-Sheng; Chen, Xu-Yuan

    2016-11-01

    Designs, simulations, and fabrications of silicon-based MEMS infrared (IR) emitters for gas sensing application are presented. A 3D finite element method (3D-FEM) was used to analyze the coupled electrical-thermal-mechanical properties of a bridge hotplate structure (BHS) IR emitter and closed hotplate structure (CHS) IR emitter using Joule heating and thermal expansion models of COMSOL™. The IR absorptions of n- and p-silicon were calculated for the design of self-heating structure. The BHS and CHS IR emitters were fabricated synchronously using micro-electromechanical systems technology for a direct performance comparison. Both types of IR emitters were characterized by electrical and optical measurements. The experimental results show that BHS IR emitters have higher radiation density, lower power consumption, and faster frequency-response than CHS IR emitters due to the use of a thermal isolation structure and self-heating structure. Meanwhile, the simulated results agree well with the corresponding measured results, which indicate that the 3D-FEM-model is effective and can be used in the optimal design of electro-thermal devices.

  4. Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM.

    PubMed

    Du, Qi-Shi; Liu, Peng-Jun; Huang, Ri-Bo

    2008-02-01

    In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.

  5. Engineering Multi-scale Electrospun Structure for Integration into Architected 3-D Nanofibers for Cimex Annihilation: Fabrication and Mechanism Study

    NASA Astrophysics Data System (ADS)

    He, Shan; Zhang, Linxi; Liu, Ying; Rafailovich, Miriam; Garcia CenterPolymers at Engineered Interfaces Team

    In this study, engineered electrospun scaffolds with fibers oriented with designed curvature in three dimensions (3D) including the looped structure were developed based on the principle of electrostatic repulsion. Here we illustrate that 3D electrospun recycled polystyrene fibers could closely mimic the unique architectures of multi-direction and multi-layer nano-spiderweb. In contrast to virgin PS, the recycled PS (Dart Styrofoam) are known to contain zinc stearate which acts as a surfactant resulting in higher electrical charge and larger fiber curvature, hence, lower modulus. The surfactant, which is known to decrease the surface tension, may have also been effective at decreasing the confinement of the PS, where chain stretching was shown to occur, in response to the high surface tension at the air interface. Three dimensional flexible architecture with complex structures are shown to be necessary in order to block the motion of Cimex lectularius. Here we show how an engineered electrospun network of surfactant modified polymer fibers with calculated dimensions can be used to immobilize the insects. The mechanical response of the fibers has to be specifically tailored so that it is elastically deformed, without fracturing or flowing. Carefully controlling and tailoring the electrospinning parameters we can now utilize architected 3D nanofiber to create an environmental-friendly Cimex immobilization device which can lead to annihilation solution for all the other harmful insects.

  6. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications.

    PubMed

    El-Hajje, Aouni; Kolos, Elizabeth C; Wang, Jun Kit; Maleksaeedi, Saeed; He, Zeming; Wiria, Florencia Edith; Choong, Cleo; Ruys, Andrew J

    2014-11-01

    The elastic modulus of metallic orthopaedic implants is typically 6-12 times greater than cortical bone, causing stress shielding: over time, bone atrophies through decreased mechanical strain, which can lead to fracture at the implantation site. Introducing pores into an implant will lower the modulus significantly. Three dimensional printing (3DP) is capable of producing parts with dual porosity features: micropores by process (residual pores from binder burnout) and macropores by design via a computer aided design model. Titanium was chosen due to its excellent biocompatibility, superior corrosion resistance, durability, osteointegration capability, relatively low elastic modulus, and high strength to weight ratio. The mechanical and physical properties of 3DP titanium were studied and compared to the properties of bone. The mechanical and physical properties were tailored by varying the binder (polyvinyl alcohol) content and the sintering temperature of the titanium samples. The fabricated titanium samples had a porosity of 32.2-53.4% and a compressive modulus of 0.86-2.48 GPa, within the range of cancellous bone modulus. Other physical and mechanical properties were investigated including fracture strength, density, fracture toughness, hardness and surface roughness. The correlation between the porous 3DP titanium-bulk modulus ratio and porosity was also quantified.

  7. Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique.

    PubMed

    Siegler, S; Udupa, J K; Ringleb, S I; Imhauser, C W; Hirsch, B E; Odhner, D; Saha, P K; Okereke, E; Roach, N

    2005-03-01

    A technique to study the three-dimensional (3D) mechanical characteristics of the ankle and of the subtalar joints in vivo and in vitro is described. The technique uses an MR scanner compatible 3D positioning and loading linkage to load the hindfoot with precise loads while the foot is being scanned. 3D image processing algorithms are used to derive from the acquired MR images bone morphology, hindfoot architecture, and joint kinematics. The technique was employed to study these properties both in vitro and in vivo. The ankle and subtler joint motion and the changes in architecture produced in response to an inversion load and an anterior drawer load were evaluated. The technique was shown to provide reliable measures of bone morphology. The left-to-right variations in bone morphology were less than 5%. The left-to-right variations in unloaded hindfoot architecture parameters were less than 10%, and these properties were only slightly affected by inversion and anterior drawer loads. Inversion and anterior drawer loads produced motion both at the ankle and at the subtalar joint. In addition, high degree of coupling, primarily of internal rotation with inversion, was observed both at the ankle and at the subtalar joint. The in vitro motion produced in response to inversion and anterior drawer load was greater than the in vivo motion. Finally, external motion, measured directly across the ankle complex, produced in response to load was much greater than the bone movements measured through the 3D stress MRI technique indicating the significant effect of soft tissue and skin interference.

  8. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens

  9. Mechanical Testing of 3D Fabric Composites and Their Matrix Material SC-15

    DTIC Science & Technology

    2012-11-01

    materials on military vehicles allows increased agility while maintaining a light- weight primary structure. Traditional laminated structures suffer from...Mouritz and Cox showed that damage can be induced through Z-pin insertion, but also results in the creation of resin rich areas that can aid in...damage the fibers prior to curing with the resin (7). This in turn results in decreased mechanical performance as damaged fibers provide a path for

  10. Hypercluster - Parallel processing for computational mechanics

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1988-01-01

    An account is given of the development status, performance capabilities and implications for further development of NASA-Lewis' testbed 'hypercluster' parallel computer network, in which multiple processors communicate through a shared memory. Processors have local as well as shared memory; the hypercluster is expanded in the same manner as the hypercube, with processor clusters replacing the normal single processor node. The NASA-Lewis machine has three nodes with a vector personality and one node with a scalar personality. Each of the vector nodes uses four board-level vector processors, while the scalar node uses four general-purpose microcomputer boards.

  11. Parasitic rotation evaluation and avoidance of 3-UPU parallel mechanism

    NASA Astrophysics Data System (ADS)

    Qu, Haibo; Fang, Yuefa; Guo, Sheng

    2012-06-01

    Based on the prototype of 3-UPU (universal-prismatic-universal joint) parallel mechanism proposed by Tsai [1], the parasitic rotation evaluation is performed and calculated the bound of instability of SNU (Seoul National University) 3-UPU parallel mechanism. Through analysis of the terminal constraint system of the 3-UPU parallel mechanism, the equation about the parasitic rotation and limited clearance is presented. Then the norm of possible parasitic rotation is employed to evaluate the mechanism stability with limited clearance. The higher this number the worst is the pose, the lower it is the best it is. And the contour atlas of parasitic rotation is obtained, which can be used for further analysis and design. With the practice experiment result of SUN 3-UPU parallel mechanism, we find it's bound of instability, which indicates there will appear the parasitic rotation when the number exceeds the bound. Finally, the method for avoidance of possible parasitic motions is presented by adding redundantly actuated limbs.

  12. 3D mechanical modeling of facial soft tissue for surgery simulation.

    PubMed

    Mazza, Edoardo; Barbarino, Giuseppe Giovanni

    2011-11-01

    State of the art medical image acquisition, image analysis procedures and numerical calculation techniques are used to realize a computer model of the face capable of realistically represent the force-deformation characteristics of soft tissue. The model includes a representation of the superficial layers of the face (skin, superficial musculoaponeurotic system, fat), and most facial muscles. The whole procedure is illustrated for determining geometrical information, assigning mechanical properties to each soft tissue represented in the model, and validating model predictions based on a comparison with experimental observations. The capabilities, limitations and possible future use of this approach are discussed.

  13. A fully 3D atomistic quantum mechanical study on random dopant induced effects in 25nm MOSFETs

    SciTech Connect

    Wang, Lin-Wang; Jiang, Xiang-Wei; Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wang, Lin-Wang; Xia, Jian-Bai

    2008-07-11

    We present a fully 3D atomistic quantum mechanical simulation for nanometered MOSFET using a coupled Schroedinger equation and Poisson equation approach. Empirical pseudopotential is used to represent the single particle Hamiltonian and linear combination of bulk band (LCBB) method is used to solve the million atom Schroedinger's equation. We studied gate threshold fluctuations and threshold lowering due to the discrete dopant configurations. We compared our results with semiclassical simulation results. We found quantum mechanical effects increase the threshold fluctuation while decreases the threshold lowering. The increase of threshold fluctuation is in agreement with previous study based on approximated density gradient approach to represent the quantum mechanical effect. However, the decrease in threshold lowering is in contrast with the previous density gradient calculations.

  14. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2013-10-01

    New pathways to form secondary organic aerosols (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and deliquesced aerosols where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include a detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aqueous-phase of aerosols. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. In all simulations the LA basin was found to be the hotspot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a simple uptake coefficient, as frequently employed in global modeling studies, leads to higher SOA contributions from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to be the main contributor to SOA mass compared to a volume process and reversible formation. We find that contribution of the latter is limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A kinetic limitation in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute >20% of glyoxal SOA mass, and the total mass formed (5.8% of total SOA in the LA

  15. Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model

    PubMed Central

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis. PMID:25933372

  16. Formation mechanism of silver nanoparticle 1D microstructures and their hierarchical assembly into 3D superstructures

    NASA Astrophysics Data System (ADS)

    Suber, Lorenza; Plunkett, William. R.

    2010-01-01

    Flower-like silver nanoparticle superstructures are prepared by the reaction of silver nitrate and ascorbic acid in an acidic aqueous solution of a polynaphthalene system. The three-dimensional flower-like structure has a purely hierarchic arrangement, wherein each petal is composed of bundles of silver particle chains, each enclosed in a polymer sheath. The ordering arises from strong adsorption of silver ions onto the polymer and by the interplay of the redox properties of nitric and ascorbic acid. As a result, linear silver cyanide, formed on the polymer, probably due to intrinsic electric dipole fields, organizes the silver particle chains in dumbbell-like structures, resembling buds and flower-like structures. By dilution and heating of the mother liquors, it is also possible to obtain single petals, i.e. micrometer sized bundles of linearly aggregated silver nanoparticle chains, each enclosed in a polymer sheath. The comprehension of the hierarchic assembly of silver nanoparticles, paves the way to a facile general method to prepare polymer-metal nanoparticle chains and flower-like superstructures. The results of this study improve both the understanding of the formation mechanism of hierarchic structures at mild temperatures and our ability to tailor them to sizes and shapes appropriate for technological purposes.Flower-like silver nanoparticle superstructures are prepared by the reaction of silver nitrate and ascorbic acid in an acidic aqueous solution of a polynaphthalene system. The three-dimensional flower-like structure has a purely hierarchic arrangement, wherein each petal is composed of bundles of silver particle chains, each enclosed in a polymer sheath. The ordering arises from strong adsorption of silver ions onto the polymer and by the interplay of the redox properties of nitric and ascorbic acid. As a result, linear silver cyanide, formed on the polymer, probably due to intrinsic electric dipole fields, organizes the silver particle chains in

  17. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair.

    PubMed

    Sawkins, M J; Mistry, P; Brown, B N; Shakesheff, K M; Bonassar, L J; Yang, J

    2015-07-02

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young's moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins.

  18. LDRD final report: Automated planning and programming of assembly of fully 3D mechanisms

    SciTech Connect

    Kaufman, S.G.; Wilson, R.H.; Jones, R.E.; Calton, T.L.; Ames, A.L.

    1996-11-01

    This report describes the results of assembly planning research under the LDRD. The assembly planning problem is that of finding a sequence of assembly operations, starting from individual parts, that will result in complete assembly of a device specified as a CAD model. The automated assembly programming problem is that of automatically producing a robot program that will carry out a given assembly sequence. Given solutions to both of these problems, it is possible to automatically program a robot to assemble a mechanical device given as a CAD data file. This report describes the current state of our solutions to both of these problems, and a software system called Archimedes 2 we have constructed to automate these solutions. Because Archimedes 2 can input CAD data in several standard formats, we have been able to test it on a number of industrial assembly models more complex than any before attempted by automated assembly planning systems, some having over 100 parts. A complete path from a CAD model to an automatically generated robot program for assembling the device represented by the CAD model has also been demonstrated.

  19. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-03

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  20. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.

    PubMed

    Yang, W; Fung, T C; Chian, K S; Chong, C K

    2006-12-01

    The identification of a three dimensional constitutive model is useful for describing the complex mechanical behavior of a nonlinear and anisotropic biological tissue such as the esophagus. The inflation tests at the fixed axial extension of 1, 1.125, and 1.25 were conducted on the muscle and mucosa layer of a porcine esophagus separately and the pressure-radius-axial force was recorded. The experimental data were fitted with the constitutive model to obtain the structure-related parameters, including the collagen amount and fiber orientation. Results showed that a bilinear strain energy function (SEF) with four parameters could fit the inflation data at an individual extension very well while a six-parameter model had to be used to capture the inflation behaviors at all three extensions simultaneously. It was found that the collagen distribution was axial preferred in both layers and the mucosa contained more collagen, which were in agreement with the findings through a pair of uniaxial tensile test in our previous study. The model was expected to be used for the prediction of stress distribution within the esophageal wall under the physiological state and provide some useful information in the clinical studies of the esophageal diseases.

  1. The Effect of Dissipation Mechanism on X-line Spreading in 3D Magnetic

    NASA Astrophysics Data System (ADS)

    Shepherd, L. S.; Cassak, P.; Phan, T.; Shay, M. A.; Gosling, J. T.

    2012-12-01

    Naturally occurring magnetic reconnection generally begins in a spatially localized region and spreads in the direction perpendicular to the reconnection plane as time progresses. Reconnection spreading is associated with dawn-dusk asymmetries during substorms in the magnetotail and has been observed in two-ribbon flares (such as the Bastille Day flare) and laboratory experiments at the Versatile Toroidal Facility (VTF) and the Magnetic Reconnection eXperiment (MRX). It was suggested that X-line spreading is necessary to explain the existence of X-lines extending more than 390 Earth radii (Phan et al., Nature, 404, 848, 2006). Previous numerical studies exploring the spreading of localized magnetic reconnection exclusively addressed collisionless (Hall) reconnection. Here, we address the effect of dissipation mechanism has on X-line spreading with and without a guide field. We compare previous results with simulations using three alternate phases of reconnection - Sweet-Parker reconnection, collisional reconnection with secondary islands, and reconnection with anomalous resistivity. We present results from three-dimensional resistive magnetohydrodynamic numerical simulations to address the nature of X-line spreading. Applications to reconnection in the solar wind and corona will be discussed.

  2. A Mechanism-based 3D-QSAR Approach for Classification ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86

  3. Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials.

    PubMed

    Davidson, Joshua R; Appuhamillage, Gayan A; Thompson, Christina M; Voit, Walter; Smaldone, Ronald A

    2016-07-06

    A design paradigm is demonstrated that enables new functional 3D printed materials made by fused filament fabrication (FFF) utilizing a thermally reversible dynamic covalent Diels-Alder reaction to dramatically improve both strength and toughness via self-healing mechanisms. To achieve this, we used as a mending agent a partially cross-linked terpolymer consisting of furan-maleimide Diels-Alder (fmDA) adducts that exhibit reversibility at temperatures typically used for FFF printing. When this mending agent is blended with commercially available polylactic acid (PLA) and printed, the resulting materials demonstrate an increase in the interfilament adhesion strength along the z-axis of up to 130%, with ultimate tensile strength increasing from 10 MPa in neat PLA to 24 MPa in fmDA-enhanced PLA. Toughness in the z-axis aligned prints increases by up to 460% from 0.05 MJ/m(3) for unmodified PLA to 0.28 MJ/m(3) for the remendable PLA. Importantly, it is demonstrated that a thermally reversible cross-linking paradigm based on the furan-maleimide Diels-Alder (fmDA) reaction can be more broadly applied to engineer property enhancements and remending abilities to a host of other 3D printable materials with superior mechanical properties.

  4. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  5. Investigation of flexibility in Myosin V using a new 3D mechanical model

    NASA Astrophysics Data System (ADS)

    Haghshenas-Jaryani, Mahdi

    2012-02-01

    This paper presents the development of a three dimensional rigid multibody model for the simulation and analysis of motor protein locomotion. The interesting aspect of this model is that it retains the mass properties, in contrast to the commonly used models which omit mass properties at the nano scale. The disproportionate size of the small mass of Myosin V relative to the large viscous friction forces requires a small integration step size that leads to a long simulation run time; however, the proposed model can be numerically integrated in a reasonable amount of time. This paper discusses modeling flexibility in the protein as an extension of the original rigid body model. Empirical studies have shown that Myosin V's neck domain can be considered as three pairs of tandem elements called IQ motifs which can bending at junctures between them. Therefore, each neck is modeled by three rigid bodies connected by ball-and-socket joints together, rather than single rigid body has been used in the previous works. Euler parameters are used to model the orientation of bodies in order to eliminate singularities in the description of orientation. In order to accomplish this, the equations of motion are reduced to minimal form using changing holonomic and non-holonomic constraints applied to the model which represent the normalization of the Euler parameters as well as contact and impact non-penetration conditions. The differences between the dynamic behavior of the new mechanical model, with flexible neck domains, and the original rigid body model are compared using simulation results.

  6. Slab breakoff: Insights from 3D thermo-mechanical analogue modelling experiments

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Cruden, A. R.

    2017-01-01

    The detachment or breakoff of subducted lithosphere is investigated using scaled three-dimensional thermo-mechanical analogue experiments in which forces are measured and deformation is monitored using high-speed particle imaging velocimetry (PIV). The experiments demonstrate that the convergence rate in a subduction zone determine if and when slab detachment occurs. Slow subduction experiments (with scaled convergence rates ∼1 cm yr-1) have lower Peclet numbers and are characterized by lower tensile strength subducted lithosphere, causing detachment to occur when the downward pull force exerted by a relatively short subducted slab is relatively low. Therefore when continental collision is preceded by slow oceanic subduction, the hot and weak subducted lithosphere need not be very long or extremely negatively buoyant to cause detachment. Under such conditions, detachment may occur sooner after the onset of continental subduction than previously predicted. In contrast, if collision is preceded by rapid subduction (∼10 cm yr-1), breakoff will be delayed and occur only when the convergence rate has slowed sufficiently to thermally weaken the slab and cause its eventual failure. The analogue experiments further confirm that slab detachment occurs diachronously as it propagates along the plate boundary. Stereoscopic PIV reveals a characteristic strain pattern that accompanies the detachment. Horizontal contraction and subsidence (with scaled values up to 1200 m) in the trench and forearc area precedes the passage of the detachment, and is followed by horizontal extension and uplift (up to 900 m). High-frequency monitoring captures rapid propagation of the detachment along the plate boundary at scaled rates of up to 100 cm yr-1. However this rate is not constant and interaction between the slab and lower mantle or opening of a backarc basin in the upper plate can reduce or stop slab breakoff propagation altogether.

  7. Compact 3D lidar based on optically coupled horizontal and vertical scanning mechanism for the autonomous navigation of robots

    NASA Astrophysics Data System (ADS)

    Lee, Min-Gu; Baeg, Seung-Ho; Lee, Ki-Min; Lee, Hae-Seok; Baeg, Moon-Hong; Park, Jong-Ok; Kim, Hong-Ki

    2011-06-01

    The purpose of this research is to develop a new 3D LIDAR sensor, named KIDAR-B25, for measuring 3D image information with high range accuracy, high speed and compact size. To measure a distance to the target object, we developed a range measurement unit, which is implemented by the direct Time-Of-Flight (TOF) method using TDC chip, a pulsed laser transmitter as an illumination source (pulse width: 10 ns, wavelength: 905 nm, repetition rate: 30kHz, peak power: 20W), and an Si APD receiver, which has high sensitivity and wide bandwidth. Also, we devised a horizontal and vertical scanning mechanism, climbing in a spiral and coupled with the laser optical path. Besides, control electronics such as the motor controller, the signal processing unit, the power distributor and so on, are developed and integrated in a compact assembly. The key point of the 3D LIDAR design proposed in this paper is to use the compact scanning mechanism, which is coupled with optical module horizontally and vertically. This KIDAR-B25 has the same beam propagation axis for emitting pulse laser and receiving reflected one with no optical interference each other. The scanning performance of the KIDAR-B25 has proven with the stable operation up to 20Hz (vertical), 40Hz (horizontal) and the time is about 1.7s to reach the maximum speed. The range of vertical plane can be available up to +/-10 degree FOV (Field Of View) with a 0.25 degree angular resolution. The whole horizontal plane (360 degree) can be also available with 0.125 degree angular resolution. Since the KIDAR-B25 sensor has been planned and developed to be used in mobile robots for navigation, we conducted an outdoor test for evaluating its performance. The experimental results show that the captured 3D imaging data can be usefully applicable to the navigation of the robot for detecting and avoiding the moving objects with real time.

  8. 3D mechanical modeling of the GPS velocity field along the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Provost, Ann-Sophie; Chéry, Jean; Hassani, Riad

    2003-04-01

    The North Anatolian fault (NAF) extends over 1500 km in a complex tectonic setting. In this region of the eastern Mediterranean, collision of the Arabian, African and Eurasian plates resulted in creation of mountain ranges (i.e. Zagros, Caucasus) and the westward extrusion of the Anatolian block. In this study we investigate the effects of crustal rheology on the long-term displacement rate along the NAF. Heat flow and geodetic data are used to constrain our mechanical model, built with the three-dimensional finite element code ADELI. The fault motion occurs on a material discontinuity of the model which is controlled by a Coulomb-type friction. The rheology of the lithosphere is composed of a frictional upper crust and a viscoelastic lower crust. The lithosphere is supported by a hydrostatic pressure at its base (representing the asthenospheric mantle). We model the long-term deformation of the surroundings of the NAF by adjusting the effective fault friction and also the geometry of the surface fault trace. To do so, we used a frictional range of 0.0-0.2 for the fault, and a viscosity varying between 10 19 and 10 21 Pa s. One of the most striking results of our rheological tests is that the upper part of the fault is locked if the friction exceeds 0.2. By comparing our results with geodetic measurements [McClusky et al., J. Geophys. Res. B 105 (2000) 5695-5719] and tectonic observations, we have defined a realistic model in which the displacement rate on the NAF reaches ˜17 mm/yr for a viscosity of 10 19 Pa s and a fault friction of 0.05. This strongly suggests that the NAF is a weak fault like the San Andreas fault in California. Adding topography with its corresponding crustal root does not induce gravity flow of Anatolia. Rather, it has the counter-intuitive effect of decreasing the westward Anatolian escape. We find a poor agreement between our calculated velocity field and what is observed with GPS in the Marmara and the Aegean regions. We suspect that the

  9. 3D Numerical Simulations of Coupled Solid and Fluid Mechanics in Volcanic Conduit Erosion and Crater Formation

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.

    2008-12-01

    An essential element of explosive volcanic eruptions is the effect of the evolving conduit and vent on the erupting multiphase flow and the effect of the flow upon the conduit and vent rocks, a 3D geological nozzle problem. This coupling of the host rock solid mechanics with the fluid dynamics of an erupting multiphase fluid has never been directly simulated and is poorly understood. We apply a library of computer codes called CFDLib, which has been developed by the Theoretical Division at Los Alamos National Laboratory. This code provides the unique capability of being able to solve the interaction of an Eulerian fluid with a Lagrangian solid in 3D while treating multiphase turbulence that this interaction generates. Our previous work with CFDLib has been directed at validating results with laboratory experiments, verification against analytical models, and free-jet decompression. This work demonstrated the importance of vent overpressure in determining the characteristics of an erupted column of gas and tephra. However, eruption of an overpressured jet is strongly coupled to the dynamics of the vent shape that in turn is dependent upon conduit dynamics. For this reason most previous computer simulations of volcanic eruptions have assumed pressure-balanced conditions of flow from the vent. Here we demonstrate our progress in simulating vent evolution during eruption of an overpressured multiphase (steam and magma/rock) fluid. With increasing overpressure the evolved vent radius increases with the formation of a crater. The Mach Stem structure of the erupted jet resembles those of our previous simulations from a fixed vent, but the evolving vent nozzle and contributions of eroded material to the jet make its structure more complicated and variable with time. Future work will focus on study of the effects of host rock properties and 3D conduit shape.

  10. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    NASA Astrophysics Data System (ADS)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  11. Mechanism of Enzymatic Reaction and Protein-Protein Interactions of PLD from a 3D Structural Model

    PubMed Central

    Mahankali, Madhu; Alter, Gerald; Gomez-Cambronero, Julian

    2014-01-01

    The phospholipase D (PLD) superfamily catalyzes the hydrolysis of cell membrane phospholipids generating the key intracellular lipid second messenger phosphatidic acid. However, there is not yet any resolved structure either from a crystallized protein or from NMR of any mammalian PLDs. We propose here a 3D model of the PLD2 by combining homology and ab initio 3 dimensional structural modeling methods, and docking conformation. This model is in agreement with the biochemical and physiological behavior of PLD in cells. For the lipase activity, the N- and C-terminal histidines of the HKD motifs (His 442/His 756) form a catalytic pocket, which accommodates phosphatidylcholine head group (but not phosphatidylethanolamine or phosphatidyl serine). The model explains the mechanism of the reaction catalysis, with nucleophilic attacks of His 442 and water, the latter aided by His 756. Further, the secondary structure regions superimposed with bacterial PLD crystal structure, which indicated an agreement structure model obtained. It also explains protein-protein interactions, such as PLD2-Rac2 transmodulation (with a 1:2 stoichiometry), PLD2 GEF activity on Rac2 that is relevant for actin polymerization and cell migration, and a biding site for phosphoinositides. Since tumor-aggravating properties have been found in mice overexpressing PLD2 enzyme, the 3D model of PLD2 will be also useful, to a large extent, in developing pharmaceuticals to modulate its in vivo activity. PMID:25308783

  12. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    PubMed

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.

  13. 3D modelling of mechanical peat properties in the Holocene coastal-deltaic sequence of the Netherlands

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans

    2016-04-01

    Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore

  14. Mechanical performance of endodontic restorations with prefabricated posts: sensitivity analysis of parameters with a 3D finite element model.

    PubMed

    González-Lluch, Carmen; Pérez-González, Antonio; Sancho-Bru, Joaquín L; Rodríguez-Cervantes, Pablo-Jesús

    2014-08-01

    Many studies have investigated the effect of different parameters of the endodontically restored tooth on its final strength, using in vitro tests and model simulations. However, the differences in the experimental set-up or modelling conditions and the limited number of parameters studied in each case prevent us from obtaining clear conclusions about the relative importance of each parameter. In this study, a validated 3D biomechanical model of the restored tooth was used for an exhaustive sensitivity analysis. The individual influence of 20 different parameters on the mechanical performance of an endodontic restoration with prefabricated posts was studied. The results bring up the remarkable importance of the loading angle on the final restoration strength. Flexural loads are more critical than compressive or tensile loads. Young's modulus of the post and its length and diameter are the most influential parameters for strength, whereas other parameters such as ferrule geometry or core and crown characteristics are less significant.

  15. Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects

    PubMed Central

    Sun, Miao; Liu, An; Shao, Huifeng; Yang, Xianyan; Ma, Chiyuan; Yan, Shigui; Liu, Yanming; He, Yong; Gou, Zhongru

    2016-01-01

    Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi (CSi-Mgx, x = 6, 10, 14) can enhance the mechanical strength (>40 MPa) but not compromise biological performances of the 3D printed porous scaffolds with open porosity of 60‒63%. The in vitro cell culture tests in vitro indicated that the dilute Mg doping into CSi was beneficial for ALP activity and high expression of osteogenic marker genes of MC3T3-E1 cells in the scaffolds. A good bone tissue regeneration response and elastoplastic response in mechanical strength in vivo were determined after implantation in rabbit calvarial defects for 6‒12 weeks. Particularly, the CSi-Mg10 and CSi-Mg14 scaffolds could enhance new bone regeneration with a significant increase of newly formed bone tissue (18 ~ 22%) compared to the pure CSi (~14%) at 12 weeks post-implantation. It is reasonable to consider that, therefore, such CSi-Mgx scaffolds possessing excellent strength and reasonable degradability are promising for bone reconstruction in thin-wall bone defects. PMID:27658481

  16. Kinematic analysis of a flexible six-DOF parallel mechanism.

    PubMed

    Jing, Feng-Shui; Tan, Min; Hou, Zeng-Guang; Liang, Zi-Ze; Wang, Yun-Kuan; Gupta, Madan M; Nikiforuk, Peter N

    2006-04-01

    In this paper, a new type of six-degrees of freedom (DOF) flexible parallel mechanism (FPM) is presented. This type of parallel mechanism possesses several favorable properties: (1) its number of DOFs is independent of the number of serial chains which make up the mechanism; (2) it has no kinematical singularities; (3) it is designed to move on rails, and therefore its workspace is much larger than that of a conventional parallel manipulator; and (4) without changing the number of DOFs and the kinematics of the mechanisms, the number of the serial chains can be reconfigured according to the needs of the tasks. These properties make the mechanism very preferable in practice, especially for such tasks as joining huge ship blocks, in which the manipulated objects vary dramatically both in weights and dimensions. Furthermore, the mechanism can be used as either a fully actuated system or an underactuated system. In the fully actuated case, the mechanism has six DOF motion capabilities and manipulation capabilities. However, in the underactuated case, the mechanism still has six DOF motion capabilities, but it has only five DOF manipulation capabilities. In this paper, both the inverse and forward kinematics are studied and expressed in a closed form. The workspace and singularity analysis of the mechanism are also presented. An example is presented to illustrate how to calculate the kinematics of the mechanism in both fully-actuated and underactuated cases. Finally, an application of such a mechanism to manufacturing industry is introduced.

  17. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  18. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  19. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    SciTech Connect

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore; Cook, Ann; Hillman, Jess

    2015-12-15

    . Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.

  20. Assessing Methane Migration Mechanisms at Walker Ridge, Gulf of Mexico, via 3D Methane Hydrate Reservoir Modeling

    NASA Astrophysics Data System (ADS)

    Nole, M.; Daigle, H.; Mohanty, K. K.; Hillman, J. I. T.; Cook, A.

    2015-12-01

    We employ a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ organic methanogenesis, and the influences of both pore size contrast and salt exclusion from the hydrate phase on solubility gradients. Using environmental parameters of Walker Ridge, Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. With sufficient methane supplied by methanogenesis in the clays, a 200x sand-clay pore size contrast allows for a strong enough concentration gradient to significantly drop the concentration of hydrate in clays immediately surrounding a thin sand, a phenomenon observed in corresponding well log data. Building upon previous work, our simulations account for a depth-wise increase in sand-clay solubility contrast from about 1.6% near the seafloor to 8.6% at depth, progressively strengthening the diffusive flux of methane with time. An exponentially decaying methanogenesis input to the clay lithology decreases the methane supplied to clays surrounding the sand layer with time, further enhancing the sand-clay hydrate saturation contrast. Significant diffusive methane transport occurs in a clay interval of about 11m above the sand and 4m below it, matching well log observations. Clay-sand pore size contrast alone is not enough to create hydrate-free zones seen in logs, because the corresponding diffusive methane flux is slower than the rate at which methanogenesis supplies methane. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus flow and allow for heterogeneity in locally dominant methane migration mechanisms. Incorporating recent 3D seismic data to inform the model

  1. Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Haopeng; Zhu, Liangbao; Su, Youjin

    2016-08-01

    We used teleseismic data recorded by a permanent seismic network in Yunnan, SE Tibet, and measured the interstation Rayleigh wave phase velocity between 10 and 60 s. A two-step inversion scheme was used to invert for the 3D S-wave velocity and azimuthal anisotropy structure of 10-110 km. The results show that there are two low velocity channels between depths of 20-30 km in Yunnan and that the fast axes are sub-parallel to the strikes of the low velocity channels, which supports the crustal flow model. The azimuthal anisotropy pattern is quite complicated and reveals a complex crust-mantle coupling mechanism in Yunnan. The N-S trending Lüzhijiang Fault separates the Dianzhong Block into two parts. In the western Dianzhong Block, the fast axis of the S-wave changes with depth, which indicates that the crust and the lithospheric mantle are decoupled. In the eastern Dianzhong Block and the western Yangtze Craton, the crust and the lithospheric mantle may be decoupled because of crustal flow, despite a coherent S-wave fast axis at depths of 10-110 km. In addition, the difference between the S-wave fast axis in the lithosphere and the SKS splitting measurement suggests that the lithosphere and the upper mantle are decoupled there. In the Baoshan Block, the stratified anisotropic pattern suggests that the crust and the upper mantle are decoupled.

  2. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.

    2015-01-01

    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  3. Characterization of High Strain Rate Mechanical behavior of AZ31 magnesium alloy using 3D Digital Image Correlation

    SciTech Connect

    Wang, Yanli; Xu, Hanbing; ERDMAN III, DONALD L; Starbuck, J Michael; Simunovic, Srdjan

    2011-01-01

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}.

  4. Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia Edith

    2013-10-01

    Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 °C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 °C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 μm at the surface and 19 μm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 °C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent.

  5. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli

    PubMed Central

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent

    2015-01-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force–displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications. PMID:25714129

  6. 3D seismic geomorphology and geologic controls on gas hydrate accumulation mechanism in the Miyazaki-oki forearc basin, Japan

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Kobayashi, T.; Fujii, T.

    2015-12-01

    The stratigraphy of the Miyazaki-oki forearc basin along the Southwest Japan Arc comprises the early Miocene to early Pleistocene Miyazaki Group and the Hyuganada Group. These groups comprise sediments (up to 5000 m) deposited in deep marine to shallow marine environments. Based on characteristics of well data outside seismic exploration area and stratigraphy of land areas, the Miyazaki Group was divided into four seismic units and the Hyuganada Group was divided into two seismic units. In this area, bottom-simulating reflectors (BSRs) have been widely observed and considered as representing lower boundaries of methane-hydrate-bearing deposits. However, the gas hydrate accumulation mechanism for this area is not yet well understood. We show the relation between sandy sediment distribution identified from the 3D seismic geomorphological analysis and methane hydrate occurrence to identify the accumulation mechanism. A submarine fan system was subdivided into four seismic facies: Submarine canyon complexes; Leveed channel complexes; Submarine fan complexes; Mass transport complexes (MTD). Depositional systems of target layers are characterized by a transition from submarine fan deposits (Miyazaki Group) to channel-levee deposits and MTD (Hyuganada Group). This transition of depositional environments is strongly influenced by global tectonics since early Miocene in the Southwest Japan Arc. A part of channel-fill located around structural wing and middle fan deposits above the BSR is inferred as sediments intercalated with sandy layers. We consider that these deposits contain methane hydrate because the sandy sediment distribution approximately coincides with a high-velocity zone as an indicator of gas hydrate. The comparison of the areal extent of the seismic facies and the mapped structural configuration, suggest that the gas hydrate accumulation represent combination structural-stratigraphic trap.

  7. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  8. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    , a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04

  9. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  10. Applications of parallel global optimization to mechanics problems

    NASA Astrophysics Data System (ADS)

    Schutte, Jaco Francois

    Global optimization of complex engineering problems, with a high number of variables and local minima, requires sophisticated algorithms with global search capabilities and high computational efficiency. With the growing availability of parallel processing, it makes sense to address these requirements by increasing the parallelism in optimization strategies. This study proposes three methods of concurrent processing. The first method entails exploiting the structure of population-based global algorithms such as the stochastic Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA). As a demonstration of how such an algorithm may be adapted for concurrent processing we modify and apply the PSO to several mechanical optimization problems on a parallel processing machine. Desirable PSO algorithm features such as insensitivity to design variable scaling and modest sensitivity to algorithm parameters are demonstrated. A second approach to parallelism and improving algorithm efficiency is by utilizing multiple optimizations. With this method a budget of fitness evaluations is distributed among several independent sub-optimizations in place of a single extended optimization. Under certain conditions this strategy obtains a higher combined probability of converging to the global optimum than a single optimization which utilizes the full budget of fitness evaluations. The third and final method of parallelism addressed in this study is the use of quasiseparable decomposition, which is applied to decompose loosely coupled problems. This yields several sub-problems of lesser dimensionality which may be concurrently optimized with reduced effort.

  11. The mechanisms of driving lithospheric deformation in India-Asia collision zone: a perspective from 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Kaus, Boris

    2016-04-01

    The mechanism of intraplate deformation remains incompletely understood by plate tectonics theory. The India-Asia collision zone is the largest present-day example of continental collision, which makes it an ideal location to study the processes of continental deformation. Existing models of lithospheric deformation are typically quasi two-dimensional and often assume that the lithosphere is a thin viscous sheet, which deforms homogeneously as a result of the collision, or flows above a partially molten lower crust, which explains the exhumation of Himalayan units and lateral spreading of Tibetan plateau. An opposing view is that most deformation localize in shear zones separating less deformed blocks, requiring the lithosphere to have an elasto-plastic rather than a viscous rheology. In order to distinguish which model best fits the observations we develop a 3-D visco-elasto-plastic model, which can model both distributed and highly localized deformation. In our preliminary result, most of the large-scale strike-slips faults including Altyn-Tagh fault, Xianshuihe fault, Red-River fault, Sagaing fault and Jiali fault can be simulated. The topography is consistent with observations that flat plateau in central Tibet and steep, abrupt margins adjacent to Sichuan basin, and gradual topography in southeast Tibet. These models suggest that the localized large-scale strike-slip faults accommodate the continental deformation. These results show the importance of a weak lower crust and topographic effects, as well as the effect of rheology and temperature structure of the lithosphere on the deformation patterns.

  12. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

    PubMed

    Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N

    2009-06-01

    Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability

  13. Parallelism in computational chemistry: Applications in quantum and statistical mechanics

    NASA Astrophysics Data System (ADS)

    Clementi, E.; Corongiu, G.; Detrich, J. H.; Kahnmohammadbaigi, H.; Chin, S.; Domingo, L.; Laaksonen, A.; Nguyen, N. L.

    1985-08-01

    Often very fundamental biochemical and biophysical problems defy simulations because of limitation in today's computers. We present and discuss a distributed system composed of two IBM-4341 and one IBM-4381, as front-end processors, and ten FPS-164 attached array processors. This parallel system-called LCAP-has presently a peak performance of about 120 MFlops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have migrated from sequential to parallel; a molecular quantum mechanical, a Metropolis-Monte Carlo and a Molecular Dynamics program. Descriptions of the parallel codes are briefly outlined. As examples and tests of these applications we report on a study for proton tunneling in DNA base-pairs, very relevant to spontaneous mutations in genetics. As a second example, we present a Monte Carlo study of liquid water at room temperature where not only two- and three-body interactions are considered but-for the first time-also four-body interactions are included. Finally we briefly summarize a molecular dynamics study where two- and three-body interactions have been considered. These examples, and very positive performance comparison with today's supercomputers allow us to conclude that parallel computers and programming of the type we have considered, represent a pragmatic answer to many computer intensive problems.

  14. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  15. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    SciTech Connect

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-15

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  16. Probabilistic structural mechanics research for parallel processing computers

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.

    1991-01-01

    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.

  17. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    PubMed

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  18. Argos: A novel 3-DoF parallel wrist mechanism

    SciTech Connect

    Vischer, P.; Clavel, R.

    2000-01-01

    This article presents a novel parallel spherical mechanism called argos with three rotational degrees of freedom. Design aspects of the first prototype built of the Argos mechanism are discussed. The direct kinematic problem is solved, leading always to four nonsingular configurations of the end effector for a given set of joint angles. The inverse-kinematic problem yields two possible configurations for each of the three pantographs for a given orientation of the end effector. Potential applications of the Argos mechanism are robot wrists, orientable machine tool beds, joy sticks, surgical manipulators, and orientable units for optical components. Another pantograph based new structure named PantoScope having two rotational DoF is also briefly introduced.

  19. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  20. A Parallel 3d Model for The Multi-Species Low Energy BeamTransport System of the RIA Prototype ECR Ion Source Venus

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.

    2005-05-16

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented.

  1. Mechanisms of clay smear formation in unconsolidated sediments - insights from 3-D observations of excavated normal faults

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Thronberens, Sebastian; Juarez, Oscar; Lajos Urai, Janos; Ziegler, Martin; Asmus, Sven; Kruger, Ulrich

    2016-05-01

    Clay smears in normal faults can form seals for hydrocarbons and groundwater, and their prediction in the subsurface is an important problem in applied and basic geoscience. However, neither their complex 3-D structure, nor their processes of formation or destruction are well understood, and outcrop studies to date are mainly 2-D. We present a 3-D study of an excavated normal fault with clay smear, together with both source layers, in unlithified sand and clay of the Hambach open-cast lignite mine in Germany. The faults formed at a depth of 150 m, and have shale gouge ratios between 0.1 and 0.3. The fault zones are layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. The thickness of clay smears in two excavated fault zones of 1.8 and 3.8 m2 is approximately log-normal, with values between 5 mm and 5 cm, without holes. The 3-D thickness distribution is heterogeneous. We show that clay smears are strongly affected by R and R' shears, mostly at the footwall side. These shears can locally cross and offset clay smears, forming holes in the clay smear, while thinning of the clay smear by shearing in the fault core is less important. The thinnest parts of the clay smears are often located close to source layer cut-offs. Locally, the clay smear consists of overlapping patches of sheared clay, separated by sheared sand. More commonly, it is one amalgamated zone of sheared sand and clay. A microscopic study of fault-zone samples shows that grain-scale mixing can lead to thickening of the low permeability smears, which may lead to resealing of holes.

  2. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.

    PubMed

    Zeinali, Soheila; Çetin, Barbaros; Oliaei, Samad Nadimi Bavil; Karpat, Yiğit

    2015-07-01

    Microfluidics is the combination of micro/nano fabrication techniques with fluid flow at microscale to pursue powerful techniques in controlling and manipulating chemical and biological processes. Sorting and separation of bio-particles are highly considered in diagnostics and biological analyses. Dielectrophoresis (DEP) has offered unique advantages for microfluidic devices. In DEP devices, asymmetric pair of planar electrodes could be employed to generate non-uniform electric fields. In DEP applications, facing 3D sidewall electrodes is considered to be one of the key solutions to increase device throughput due to the generated homogeneous electric fields along the height of microchannels. Despite the advantages, fabrication of 3D vertical electrodes requires a considerable challenge. In this study, two alternative fabrication techniques have been proposed for the fabrication of a microfluidic device with 3D sidewall electrodes. In the first method, both the mold and the electrodes are fabricated using high precision machining. In the second method, the mold with tilted sidewalls is fabricated using high precision machining and the electrodes are deposited on the sidewall using sputtering together with a shadow mask fabricated by electric discharge machining. Both fabrication processes are assessed as highly repeatable and robust. Moreover, the two methods are found to be complementary with respect to the channel height. Only the manipulation of particles with negative-DEP is demonstrated in the experiments, and the throughput values up to 105 particles / min is reached in a continuous flow. The experimental results are compared with the simulation results and the limitations on the fabrication techniques are also discussed.

  3. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  4. Effects of H+, He+ ion reflection at the lunar surface and pickup ion dynamics in case of oblique/quasi-parallel magnetic field: 3-D hybrid kinetic modeling

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Cooper, J. F.; Sittler, E. C.; Hartle, R. E.; Sarantos, M.

    2013-12-01

    The hybrid kinetic model used here supports comprehensive simulation of the interaction between different spatial and energetic elements of the moon-solar wind-magnetosphere of the Earth system. This involves variable upstream magnetic field and solar wind plasma, including energetic ions, electrons, and neutral atoms. This capability is critical to improved interpretation of existing measurements for surface and atmospheric composition from previous missions and planning future missions. Recently, MAP-PAGE-IMA (Plasma energy Angle and Composition Experiment, and Ion Mass Analyzer) onboard Japanese lunar orbiter SELENE (KAGUYA) detected Moon originating ions at 100 km altitude. Ion species of H+, He++, He+, C+, O+, Na+, K+, and Ar+ were definitively identified. The first portion of our modeling devotes to a study of the H+, H2+, He+, Na+ pickup ion dynamics in cases of flow with a oblique and quasi-parallel magnetic field. In the second series of modeling we also take into account collisions between ions and the surface of the moon and further sputtering of fragments from the surface of the moon. The ion reflection at the lunar surface is also responsible for wave activity in the upstream flow. The solar wind parameters are chosen from ARTEMIS observations. The hybrid kinetic model allows us to take into account the finite gyroradius effects of pickup ions and to estimate correctly the ions velocity distribution and the fluxes along the magnetic field. Modeling shows the asymmetric Mach cone, pickup and reflected ion tails, and presents another type of lunar-solar wind interaction. Our simulation may be also important for the study of the interaction between the solar wind and very weak comets, Mercury and Pluto.

  5. A 3-D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation

    PubMed Central

    Chen, Luyun; Ashton-Miller, James A.; DeLancey, John O.L.

    2009-01-01

    Objectives To develop a 3D computer model of the anterior vaginal wall and its supports, validate that model, and then use it to determine the combinations of muscle and connective tissue impairments that result in cystocele formation, as observed on dynamic magnetic resonance imaging (MRI). Methods A subject-specific 3D model of the anterior vaginal wall and its supports was developed based on MRI geometry from a healthy nulliparous woman. It included simplified representations of the anterior vaginal wall, levator muscle, cardinal and uterosacral ligaments, arcus tendineus fascia pelvis and levator ani, paravaginal attachments, and the posterior compartment. This model was then imported into ABAQUS™ and tissue properties were assigned from the literature. An iterative process was used to refine anatomical assumptions until convergence was obtained between model behavior under increases of abdominal pressure up to 168 cmH2O and deformations observed on dynamic MRI. Results Cystocele size was sensitive to abdominal pressure and impairment of connective tissue and muscle. Larger cystocele formed in the presence of impairments in muscular and apical connective tissue support compared to either support element alone. Apical impairment resulted in a larger cystocele than paravaginal impairment. Levator ani muscle impairment caused a larger urogenital hiatus size, longer length of the distal vagina exposed to a pressure differential, larger apical descent and resulted in a larger cystocele size. Conclusions Development of a cystocele requires a levator muscle impairment, an increase in abdominal pressure, and apical and paravaginal support defects. PMID:19481208

  6. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  7. Preparation of 3D network Na2Ti2O4(OH)2 nanotube film and study on formation mechanism of nanotubes and light absorption properties.

    PubMed

    Miao, Hui; Hu, Xiaoyun; Shang, Yibo; Zhang, Dekai; Ji, Ruonan; Liu, Enzhou; Zhang, Qian; Wang, Yue; Fan, Jun

    2012-10-01

    The 3D network Na2Ti2O4(OH)2 nanotube film was prepared by combining interface chemical reaction with hydrothermal reaction. It can be readily indexed based on an orthorhombic system Na2Ti2O4(OH)2 (JCPDS, 47-0124), corresponding with (200), (110), (600), and (020). The nanotubes are commonly multiwalled with a diameter about 40 nm, and a length more than 2000 nm. The interlamellar space of the nanotubes is about 0.9 nm, and these nanotubes loaded with silver exhibit a strong UV-Vis-NIR absorption from 200 nm to 1000 nm, with a resonance-absorption peak at 490 nm. In addition, the formation mechanism of 3D network Na2Ti2O4(OH)2 nanotube film was investigated, the formation mechanism can be expressed as follows: Ti --> TiCl3 --> TiO2(anatase) --> Na2Ti2O4(OH)2(nanotube).

  8. High resolution earthquake source mechanisms in a subduction zone: 3-D waveform simulations of aftershocks from the 2010 Mw 8.8 Chile rupture

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Rietbrock, Andreas

    2015-04-01

    The earthquake rupture process is extremely heterogeneous. For subduction zone earthquakes in particular, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood (e.g. Hayes et al., 2012); however, the nature of slip style along any finer-scale structures remains elusive. Regional earthquake moment tensor (RMT) inversion can shed light on faulting mechanisms. However, many traditional regional moment tensor inversions use simplified (1-D) Earth models (e.g. Agurto et al., 2012; Hayes et al., 2013) that only use the lowest frequency parts of the waveform, which may mask source complexity. As a result, we may have to take care when making small-scale interpretations about the causative fault and its slip style. This situation is compounded further by strong lateral variations in subsurface geology, as well as poor station coverage for recording offshore subduction earthquakes. A formal assessment of the resolving capability of RMT inversions in subduction zones is challenging and the application of 3-D waveform simulation techniques in highly heterogeneous media is needed. We generate 3-D waveform simulations of aftershocks from a large earthquake that struck Chile in 2010. The Mw 8.8 Maule earthquake is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best observed aftershock sequences to date. We therefore have a unique opportunity to compare recorded waveforms with simulated waveforms for many earthquakes, shedding light on the effect of 3-D heterogeneity on source imaging. We perform forward simulations using the spectral element wave propagation code, SPEFEM3D (e.g. Komatitsch et al., 2010) for a set of moderate-sized aftershocks (Mw 4.0-5.5). A detailed knowledge of velocity structure

  9. Molecular docking and 3D-QSAR studies on the binding mechanism of statine-based peptidomimetics with beta-secretase.

    PubMed

    Zuo, Zhili; Luo, Xiaomin; Zhu, Weiliang; Shen, Jianhua; Shen, Xu; Jiang, Hualiang; Chen, Kaixian

    2005-03-15

    beta-Secretase is an important protease in the pathogenesis of Alzheimer's disease. Some statine-based peptidomimetics show inhibitory activities to the beta-secretase. To explore the inhibitory mechanism, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on these analogues were performed. The Lamarckian Genetic Algorithm (LGA) was applied to locate the binding orientations and conformations of the peptidomimetics with the beta-secretase. A good correlation between the calculated binding free energies and the experimental inhibitory activities suggests that the identified binding conformations of these potential inhibitors are reliable. Based on the binding conformations, highly predictive 3D-QSAR models were developed with q(2) values of 0.582 and 0.622 for CoMFA and CoMSIA, respectively. The predictive abilities of these models were validated by some compounds that were not included in the training set. Furthermore, the 3D-QSAR models were mapped back to the binding site of the beta-secretase, to get a better understanding of vital interactions between the statine-based peptidomimetics and the protease. Both the CoMFA and the CoMSIA field distributions are in well agreement with the structural characteristics of the binding groove of the beta-secretase. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction would be useful in developing new drug leads against Alzheimer's disease.

  10. Final Report: Migration Mechanisms for Large-scale Parallel Applications

    SciTech Connect

    Jason Nieh

    2009-10-30

    Process migration is the ability to transfer a process from one machine to another. It is a useful facility in distributed computing environments, especially as computing devices become more pervasive and Internet access becomes more ubiquitous. The potential benefits of process migration, among others, are fault resilience by migrating processes off of faulty hosts, data access locality by migrating processes closer to the data, better system response time by migrating processes closer to users, dynamic load balancing by migrating processes to less loaded hosts, and improved service availability and administration by migrating processes before host maintenance so that applications can continue to run with minimal downtime. Although process migration provides substantial potential benefits and many approaches have been considered, achieving transparent process migration functionality has been difficult in practice. To address this problem, our work has designed, implemented, and evaluated new and powerful transparent process checkpoint-restart and migration mechanisms for desktop, server, and parallel applications that operate across heterogeneous cluster and mobile computing environments. A key aspect of this work has been to introduce lightweight operating system virtualization to provide processes with private, virtual namespaces that decouple and isolate processes from dependencies on the host operating system instance. This decoupling enables processes to be transparently checkpointed and migrated without modifying, recompiling, or relinking applications or the operating system. Building on this lightweight operating system virtualization approach, we have developed novel technologies that enable (1) coordinated, consistent checkpoint-restart and migration of multiple processes, (2) fast checkpointing of process and file system state to enable restart of multiple parallel execution environments and time travel, (3) process migration across heterogeneous

  11. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  12. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  13. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  14. Microfabrics and 3D grain shape of Gorleben rock salt: Constraints on deformation mechanisms and paleodifferential stress

    NASA Astrophysics Data System (ADS)

    Thiemeyer, Nicolas; Zulauf, Gernold; Mertineit, Michael; Linckens, Jolien; Pusch, Maximilian; Hammer, Jörg

    2016-04-01

    The Permian Knäuel- and Streifensalz formations (z2HS1 and z2HS2) are main constituents of the Gorleben salt dome (Northern Germany) and show different amounts and distributions of anhydrite. The reconstruction of 3D halite grain shape ellipsoids reveals small grain size (3.4 ± 0.6 mm) and heterogeneous grain shapes in both formations, the latter attributed to the polyphase deformation of the rock salt during diapirism. The halite microfabrics of both formations indicate that strain-induced grain boundary migration was active during deformation. Crystal plastic deformation of halite is further documented by lattice bending, subgrain formation and minor subgrain rotation. Evidence for pressure solution of halite has not been found, but cannot be excluded because of the small grain size, the lack of LPO and the low differential stress (1.1-1.3 MPa) as deduced from subgrain-size piezometry. Anhydrite has been deformed in the brittle-ductile regime by solution precipitation creep, minor dislocation creep and brittle boudinage. No continuous anhydrite layers are preserved, and halite has acted as a sealing matrix embedding the disrupted anhydrite fragments prohibiting any potential migration pathways for fluids. Thus, anhydrite should not have a negative effect on the barrier properties of the Gorleben rock salts investigated in this study.

  15. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    SciTech Connect

    Chen, J.; Alpan, F. A.; Fischer, G.A.; Fero, A.H.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locations and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)

  16. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation.

    PubMed

    Zhang, W; Kong, C W; Tong, M H; Chooi, W H; Huang, N; Li, R A; Chan, B P

    2017-02-01

    Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study.

  17. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    PubMed

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  18. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

  19. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    PubMed

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  20. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development

    PubMed Central

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C.; Park, Shery; Sanchez-Lara, Pedro A.; Chai, Yang

    2015-01-01

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell–derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2fl/fl;Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC–derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2fl/fl;Wnt1-Cre, and Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+ mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2fl/fl;Wnt1-Cre;Alk5fl/+ mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC–derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis. PMID:25722190

  1. Insect stereopsis demonstrated using a 3D insect cinema.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-07

    Stereopsis - 3D vision - has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, "anaglyph" filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception.

  2. Evaluation of resolution of flexure parallel mechanisms for ultraprecision manipulation

    SciTech Connect

    Pham, H.-H.; Chen, I-M.

    2004-09-01

    A method for evaluating the resolution of ultraprecision manipulation systems based on the flexure parallel mechanism (FPM) is presented. The resolution of the open-loop system is theoretically determined by the resolution transmission from the actuated joints to the end-effector and the resolution of actuators. The method studies the definition of the resolution indicators that includes the global resolution transmission scale and the uniformity of resolution over the entire workspace of the flexure mechanism. The computational algorithm for the defined resolution indicators is established based on the sampling method. For illustration, the evaluation method is employed to gauge the resolution performance of a two-degree-of-freedom and a three-degree-of-freedom (3-DOF) planar FPM. To demonstrate its application for optimal design, we use this method for the development of a 3-DOF spatial translational FPM. An experiment is carried out to determine the resolution and the repeatability of the developed FPM and verify the proposed evaluation method. The result shows that the method is suitable for the design of FPM for any desired resolution.

  3. Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark

    2010-11-01

    Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase

  4. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  5. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  6. Effect of Hydrostatic Pressure on the 3D Porosity Distribution and Mechanical Behavior of a High Pressure Die Cast Mg AZ91 Alloy

    NASA Astrophysics Data System (ADS)

    Sket, Federico; Fernández, Ana; Jérusalem, Antoine; Molina-Aldareguía, Jon M.; Pérez-Prado, María Teresa

    2015-09-01

    A limiting factor of high pressure die cast (HPDC) Mg alloys is the presence of porosity, which has a detrimental effect on the mechanical strength and gives rise to a large variability in the ductility. The application of hydrostatic pressure after casting is known to be beneficial to improve the mechanical response of HPDC Mg alloys. In this study, a combined experimental and simulation approach has been developed in order to investigate the influence of pressurization on the 3D porosity distribution and on the mechanical behavior of an HPDC Mg AZ91 alloy. Examination of about 10,000 pores by X-ray computed microtomography allowed determining the effect of hydrostatic pressure on the bulk porosity volume fraction, as well as the change in volume and geometry of each individual pore. The evolution of the 3D porosity distribution and mechanical behavior of a sub-volume containing 200 pores was also simulated by finite element analysis. Both experiments and simulations consistently revealed a decrease in the bulk porosity fraction and a bimodal distribution of the individual volume changes after the application of the pressure. This observation is associated with pores containing internal pressure as a result of the HPDC process. Furthermore, a decrease in the complexity factor with increasing volume change is observed experimentally and predicted by simulations. The pressure-treated samples have consistently higher plastic flow strengths.

  7. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  8. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering.

    PubMed

    Jeong, Claire G; Hollister, Scott J

    2010-04-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into three-dimensional (3D) scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability, and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data were fitted to a one-dimensional (1D) nonlinear elastic model, and solid tensile data were fitted to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness, which also became less nonlinear. Scaffold characterization in this article will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage.

  9. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    PubMed Central

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  10. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    PubMed

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  11. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel

    PubMed Central

    Cochis, A.; Grad, S.; Stoddart, M. J.; Farè, S.; Altomare, L.; Azzimonti, B.; Alini, M.; Rimondini, L.

    2017-01-01

    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes’ poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis. PMID:28332587

  12. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel.

    PubMed

    Cochis, A; Grad, S; Stoddart, M J; Farè, S; Altomare, L; Azzimonti, B; Alini, M; Rimondini, L

    2017-03-23

    Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis.

  13. A 3D Musculo-Mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion.

    PubMed

    Harischandra, Nalin; Cabelguen, Jean-Marie; Ekeberg, Orjan

    2010-01-01

    Computer simulation has been used to investigate several aspects of locomotion in salamanders. Here we introduce a three-dimensional forward dynamics mechanical model of a salamander, with physically realistic weight and size parameters. Movements of the four limbs and of the trunk and tail are generated by sets of linearly modeled skeletal muscles. In this study, activation of these muscles were driven by prescribed neural output patterns. The model was successfully used to mimic locomotion on level ground and in water. We compare the walking gait where a wave of activity in the axial muscles travels between the girdles, with the trotting gait in simulations using the musculo-mechanical model. In a separate experiment, the model is used to compare different strategies for turning while stepping; either by bending the trunk or by using side-stepping in the front legs. We found that for turning, the use of side-stepping alone or in combination with trunk bending, was more effective than the use of trunk bending alone. We conclude that the musculo-mechanical model described here together with a proper neural controller is useful for neuro-physiological experiments in silico.

  14. Recumbent vs. upright bicycles: 3D trajectory of body centre of mass, limb mechanical work, and operative range of propulsive muscles.

    PubMed

    Telli, Riccardo; Seminati, Elena; Pavei, Gaspare; Minetti, Alberto Enrico

    2017-03-01

    Recumbent bicycles (RB) are high performance, human-powered vehicles. In comparison to normal/upright bicycles (NB) the RB may allow individuals to reach higher speeds due to aerodynamic advantages. The purpose of this investigation was to compare the non-aerodynamic factors that may potentially influence the performance of the two bicycles. 3D body centre of mass (BCoM) trajectory, its symmetries, and the components of the total mechanical work necessary to sustain cycling were assessed through 3D kinematics and computer simulations. Data collected at 50, 70, 90 110 rpm during stationary cycling were used to drive musculoskeletal modelling simulation and estimate muscle-tendon length. Results demonstrated that BCoM trajectory, confined in a 15-mm side cube, changed its orientation, maintaining a similar pattern across all cadences in both bicycles. RB displayed a reduced additional mechanical external power (16.1 ± 9.7 W on RB vs. 20.3 ± 8.8 W on NB), a greater symmetry on the progression axis, and no differences in the internal mechanical power compared to NB. Simulated muscle activity revealed small significant differences for only selected muscles. On the RB, quadriceps and gluteus demonstrated greater shortening, while biceps femoris, iliacus, and psoas exhibited greater stretch; however, aerodynamics still remains the principal benefit.

  15. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    PubMed

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  16. Effects of SiO2 and ZnO doping on mechanical and biological properties of 3D printed TCP scaffolds

    PubMed Central

    Fielding, Gary A.; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    Objectives To evaluate the effects of SiO2 (0.5 wt %) and ZnO (0.25 wt %) dopants on the mechanical and biological properties of tricalcium phosphate (TCP) scaffolds with three dimensionally (3D) interconnected pores. Methods Scaffolds were created with a commercial 3D printer. Post sintering phase analysis was determined by x-ray diffraction. Surface morphology of the scaffolds was examined by field emission electron microscopy. Mechanical strength was evaluated with a screw driven universal testing machine. MTT assay was used for cellular proliferation characteristics and cellular morphology was examined by field emission electron microscopy. Results Addition of dopants into TCP increased the average density of pure TCP from 90.8 ± 0.8% to 94.1 ± 1.6% and retarded the β to α phase transformation at high sintering temperatures, which resulted in up to 2.5 fold increase in compressive strength. In vitro cell-materials interaction studies, carried out using hFOB cells, confirmed that the addition of SiO2 and ZnO to the scaffolds facilitates faster cell proliferation when compared to pure TCP scaffolds. Significance Addition of SiO2 and ZnO dopants to the TCP scaffolds showed increased mechanical strength as well as increased cellular proliferation. PMID:22047943

  17. Development of gel materials with high transparency and mechanical strength for use with a 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Tase, Taishi; Okada, Koji; Takamatsu, Kyuichiro; Saito, Azusa; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Medical doctors use artificial blood vessels and organ models, which are usually made of plastic, to explain operations to students, or patients awaiting treatment. However, there are some problems such as the high cost of making the model and there is not a realistic feel because the model is hard. These problems can be solved using soft and wet material for instance gel. Gels are materials with unique properties such as transparency, biocompatibility, and low friction. In recent years, high strength gel has been developed and is expected to be applied in medical fields in the future. Artificial models of gel can be produced by 3D gel printers. Our group has been developing a 3D gel printer with 1mm precision in printing, but the shape, size and mechanical strength are not sufficient for medical models. In this study, we overcome these problems and make a gel model which is transparent, mechanically strong with a fine shape. The strength and molding accuracy is improved by changing and preparing the cross linker and ultraviolet absorber. We conducted mechanical and molding tests to confirm that the gel material properties improved.

  18. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs.

    PubMed

    Akkineni, Ashwini Rahul; Ahlfeld, Tilman; Lode, Anja; Gelinsky, Michael

    2016-10-07

    Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support. The respective c/s scaffolds were characterized concerning their morphology, mechanical properties and swelling behavior. It could be shown that core as well as shell part can be loaded with growth factors and that the release depends on core composition and shell thickness. Neither the plotting process nor the crosslinking with 1M CaCl2 denatured the proteins. When core and shell were loaded with different growth factors (VEGF and BMP-2, respectively) a dual release was achieved. Finally, live human endothelial cells were integrated in the core material, demonstrating that this new strategy can be used for bioprinting purposes as well.

  19. 3D Seismic Interpretation, Mechanical Stratigraphy and Production Analysis of the Marcellus Shale in Northern West Virginia

    NASA Astrophysics Data System (ADS)

    Kish, Mollie K.

    The Marcellus shale is one of the most developed unconventional shale gas reservoirs in the world with a calculated 84.5 trillion cubic feet in proved natural gas reserves in Pennsylvania and West Virginia. To better exploit this resource all geological aspects of the Marcellus shale are being studied. In this study, mechanical stratigraphy and interpreted seismic fracture zones within the Marcellus shale are examined. These geologic criteria are assessed for potential to impact gas production by analyzing the gas production of fourteen horizontal Marcellus shale wells within and around the study area. Mechanical stratigraphy is evaluated from the top of the Tully limestone to the base of the Onondaga limestone to assess vertical heterogeneity of brittleness within and around the Marcellus shale. Brittleness estimations are derived from petrophysical well logs including bulk density, shear velocity and compressional velocity. Mineralogy assessment is completed using Schlumberger's SpectroLithRTM gamma ray spectroscopy mineralogy logs. Elastic moduli including Young's modulus, Poisson's ratio and Lame's parameters are assessed in terms of brittleness and total organic content to develop constraints for areas of high brittleness and high total organic content. The constraints developed at the study well are compared to studies at four other unconventional shale gas sites. The results suggest that mechanical properties are variable and site dependent. Conclusive ranges for Poisson's ratio and Young's modulus constraints for areas of high brittleness and high total organic cannot be developed for an entire shale play but may be useful in local analyses. Seismic discontinuities were extracted from two three dimensional seismic surveys using a post-stack processing workflow that included Ant-Tracking. They are interpreted to be associated with small faults and fracture zones. The relationship between the number of seismic discontinuities intersecting horizontal wells in

  20. Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced with Zinc Oxide for Bone Tissue Engineering

    PubMed Central

    Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially. PMID:24498185

  1. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    PubMed

    Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping

    2014-01-01

    A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  2. Computational analysis of the effect of valvular regurgitation on ventricular mechanics using a 3D electromechanics model

    PubMed Central

    Lim, Ki Moo; Hong, Seung-Bae; Lee, Byong Kwon; Shim, Eun Bo; Trayanova, Natalia

    2016-01-01

    Using a three-dimensional electromechanical model of the canine ventricles with dyssynchronous heart failure, we investigated the relationship between severity of valve regurgitation and ventricular mechanical responses. The results demonstrated that end-systolic tension in the septum and left ventricular free wall was significantly lower under the condition of mitral regurgitation (MR) than under aortic regurgitation (AR). Stroke work in AR was higher than that in MR. On the other hand, the difference in stroke volume between the two conditions was not significant, indicating that AR may cause worse pumping efficiency than MR in terms of consumed energy and performed work. PMID:25644379

  3. Computational analysis of the effect of valvular regurgitation on ventricular mechanics using a 3D electromechanics model.

    PubMed

    Lim, Ki Moo; Hong, Seung-Bae; Lee, Byong Kwon; Shim, Eun Bo; Trayanova, Natalia

    2015-03-01

    Using a three-dimensional electromechanical model of the canine ventricles with dyssynchronous heart failure, we investigated the relationship between severity of valve regurgitation and ventricular mechanical responses. The results demonstrated that end-systolic tension in the septum and left ventricular free wall was significantly lower under the condition of mitral regurgitation (MR) than under aortic regurgitation (AR). Stroke work in AR was higher than that in MR. On the other hand, the difference in stroke volume between the two conditions was not significant, indicating that AR may cause worse pumping efficiency than MR in terms of consumed energy and performed work.

  4. 3D numerical test objects for the evaluation of a software used for an automatic analysis of a linear accelerator mechanical stability

    NASA Astrophysics Data System (ADS)

    Torfeh, Tarraf; Beaumont, Stéphane; Guédon, Jeanpierre; Benhdech, Yassine

    2010-04-01

    Mechanical stability of a medical LINear ACcelerator (LINAC), particularly the quality of the gantry, collimator and table rotations and the accuracy of the isocenter position, are crucial for the radiation therapy process, especially in stereotactic radio surgery and in Image Guided Radiation Therapy (IGRT) where this mechanical stability is perturbed due to the additional weight the kV x-ray tube and detector. In this paper, we present a new method to evaluate a software which is used to perform an automatic measurement of the "size" (flex map) and the location of the kV and the MV isocenters of the linear accelerator. The method consists of developing a complete numerical 3D simulation of a LINAC and physical phantoms in order to produce Electronic Portal Imaging Device (EPID) images including calibrated distortions of the mechanical movement of the gantry and isocenter misalignments.

  5. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians.

    PubMed

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.

  6. Synchrotron radiation CT methods for 3D quantitative assessment of mechanically relevant ultrastructural properties in murine bone

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Voide, Romain; Stampanoni, Marco; Müller, Ralph

    2008-03-01

    Recent data have shown that predicting bone strength can be greatly improved by including microarchitectural parameters in the analysis. Moreover, bone ultrastructure has been implicated as an important contributor to bone strength. We therefore hypothesized that a better understanding of phenotypes linked to bone ultrastructure will provide new insight in the assessment of bone quality and its contribution to bone strength and fracture risk. Therefore, we first developed an experimental design to assess quantitatively ultrastructural murine bone tissue properties non-invasively in three dimensions by using synchrotron radiation-based (SR) computed tomography (CT) methods with resolutions on the order of one micrometer and below. New morphometric indices were introduced to quantify ultrastructural phenotypes of murine cortical bone assessed by our SR CT-based setup, namely the canal network and the osteocyte lacunar system. These ultrastructural phenotypes were then successfully studied in two genetically distinct mouse strains. Finally, we provided strong evidence for a significant influence of the canal network on murine bone mechanics. In the long run, we believe that the morphometric analysis of the ultrastructural phenotypes and the study of bone phenotypes at different hierarchy levels, in conjunction with bone mechanics, will provide new insights in the assessment of bone quality.

  7. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. 3-D Hybrid Kinetic Modeling of the Interaction Between the Solar Wind and Lunar-like Exospheric Pickup Ions in Case of Oblique/ Quasi-Parallel/Parallel Upstream Magnetic Field

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.

    2015-01-01

    The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.

  9. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  10. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Kohl, I. E.; Lollar, B. Sherwood; Etiope, G.; Rumble, D.; Li (李姝宁), S.; Haghnegahdar, M. A.; Schauble, E. A.; McCain, K. A.; Foustoukos, D. I.; Sutclife, C.; Warr, O.; Ballentine, C. J.; Onstott, T. C.; Hosgormez, H.; Neubeck, A.; Marques, J. M.; Pérez-Rodríguez, I.; Rowe, A. R.; LaRowe, D. E.; Magnabosco, C.; Yeung, L. Y.; Ash, J. L.; Bryndzia, L. T.

    2017-04-01

    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant Δ12CH2D2 and Δ13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where Δ12CH2D2 and Δ13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and Δ12CH2D2 values are a key tracer of microbial recycling.

  11. The Effect of Dissipation Mechanism and Guide Field Strength on X-line Spreading in 3D Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shepherd, Lucas; Cassak, P.; Drake, J.; Gosling, J.; Phan, T.; Shay, M. A.

    2013-07-01

    In two-ribbon flares, the fact that the ribbons separate in time is considered evidence of magnetic reconnection. However, in addition to the ribbons separating, they can also elongate (as seen in animations of, for example, the Bastille Day flare). The elongation is undoubtedly related to the reconnection spreading in the out-of-plane direction. Indeed, naturally occurring magnetic reconnection generally begins in a spatially localized region and spreads in the direction perpendicular to the reconnection plane as time progresses. For example, it was suggested that X-line spreading is necessary to explain the observation of X-lines extending more than 390 Earth radii (Phan et al., Nature, 404, 848, 2006), and has been seen in reconnection experiments. A sizeable out-of-plane (guide) magnetic field is present at flare sites and in the solar wind. Here, we study the effect of dissipation mechanism and the strength of the guide field has on X-line spreading. We present results from three-dimensional numerical simulations of magnetic reconnection, comparing spreading with the Hall term to spreading with anomalous resistivity. Applications to solar flares and magnetic reconnection in the solar wind will be discussed.

  12. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control

    PubMed Central

    Bizarro, Jonathan; Charron, Christophe; Boulon, Séverine; Westman, Belinda; Pradet-Balade, Bérengère; Vandermoere, Franck; Chagot, Marie-Eve; Hallais, Marie; Ahmad, Yasmeen; Leonhardt, Heinrich; Lamond, Angus; Manival, Xavier; Branlant, Christiane; Charpentier, Bruno

    2014-01-01

    In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90–R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA+ adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs. PMID:25404746

  13. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon; Reyes, Edgar I.; Moon, Kyoung-sik; Rumpf, Raymond C.; Kim, Nam Soo

    2015-03-01

    New metal/polymer composite filaments for fused deposition modeling (FDM) processes were developed in order to observe the thermo-mechanical properties of the new filaments. The acrylonitrile butadiene styrene (ABS) thermoplastic was mixed with copper and iron particles. The percent loading of the metal powder was varied to confirm the effects of metal particles on the thermo-mechanical properties of the filament, such as tensile strength and thermal conductivity. The printing parameters such as temperature and fill density were also varied to see the effects of the parameters on the tensile strength of the final product which was made with the FDM process. As a result of this study, it was confirmed that the tensile strength of the composites is decreased by increasing the loading of metal particles. Additionally, the thermal conductivity of the metal/polymer composite filament was improved by increasing the metal content. It is believed that the metal/polymer filament could be used to print metal and large-scale 3-dimensional (3D) structures without any distortion by the thermal expansion of thermoplastics. The material could also be used in 3D printed circuits and electromagnetic structures for shielding and other applications.

  14. 3D Seismic, Mechanical Stratigraphy, and Petrophysical Analysis of the Marcellus Shale in Taylor County, West Virginia

    NASA Astrophysics Data System (ADS)

    Weicht, Derek

    The Marcellus Shale is a Devonian age black shale formed during the Acadian Orogeny along the eastern margin of North America. The Middle Devonian Marcellus Shale is an unconventional shale-gas reservoir that has been a major target of seismic exploration and gas extraction using hydraulic fracturing and horizontal drilling. This study focuses on analyses of seismic response, mechanical, and petrophysical properties of the Marcellus Shale and surrounding strata in Taylor County, West Virginia. Spectral blueing was performed on the post stack migration seismic volume to enhance the resolution. The resolution of the volume was increased from 61 feet to 47 feet, which improved the detail observed in the seismic response and provided additional insights in the interpretation of the Marcellus and bounding intervals. The isochore map created from the modified Marcellus picks shows greater variability in the thickness of the Marcellus, with an overall trend of thickening to the east. Within the thicker part of the Marcellus, a second negative reflection event appeared that was not obvious in the post stack migration. This event was interpreted to be part of the Lower Marcellus Shale. Lambda-rho and Mu-rho parameters were calculated using compressional and shear wave vibrations and density obtained from the well logs. When combined with the Young's modulus and Poisson's ratio, these cross-plots are indicative of favorable brittle and total organic carbon (TOC) rich zones that highlight potential drilling targets in the Marcellus. TOC was estimated using the Schmoker and Passey methods, and provide very similar estimates within the Marcellus Shale. Specifically note that the Middle and Lower Marcellus are generally the more TOC rich and productive Marcellus zones.

  15. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  16. The structural domains of Pseudomonas aeruginosa phosphorylcholine phosphatase cooperate in substrate hydrolysis: 3D structure and enzymatic mechanism.

    PubMed

    Infantes, Lourdes; Otero, Lisandro Horacio; Beassoni, Paola Rita; Boetsch, Cristhian; Lisa, Angela Teresita; Domenech, Carlos Eduardo; Albert, Armando

    2012-11-02

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site-directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three-dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.

  17. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  18. Molecular mechanism of parallel fiber-Purkinje cell synapse formation.

    PubMed

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki

    2012-01-01

    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  19. A Cray T3D performance study

    SciTech Connect

    Nallana, A.; Kincaid, D.R.

    1996-05-01

    We carry out a performance study using the Cray T3D parallel supercomputer to illustrate some important features of this machine. Timing experiments show the speed of various basic operations while more complicated operations give some measure of its parallel performance.

  20. The influence of ascorbic acid, TGF-beta1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG-fibrinogen constructs.

    PubMed

    Kim, Peter D; Peyton, Shelly R; VanStrien, Amy J; Putnam, Andrew J

    2009-08-01

    Two-dimensional cell culture studies have shown that matrix rigidity can influence cell function, but little is known about how matrix physical properties, and their changes with time, influence cell function in 3-D. Biosynthetic hydrogels based on PEGylated fibrinogen permit the initial decoupling of matrix chemical and mechanical properties, and are thus potentially attractive for addressing this question. However, the mechanical stability of these gels due to passive hydrolysis and cell-mediated remodeling has not previously been addressed. Here, we show that the bulk mechanical properties of acellular PEG-fibrinogen hydrogels significantly decrease over time in PBS regardless of matrix cross-linking density in 7 days. To compensate, smooth muscle cells (SMCs) were encapsulated and stimulated to produce their own matrix using ascorbic acid or TGF-beta1. Ascorbic acid treatment improved the mechanical properties of the constructs after 14 days in less cross-linked matrices, but TGF-beta1 did not. The increase in matrix modulus of the constructs was not due to an increase in type I collagen deposition, which remained low and pericellular regardless of cross-link density or the soluble factor applied. Instead, ascorbic acid, but not TGF-beta1, preferentially enhanced the contractile SMC phenotype in the less cross-linked gels. Inhibition of contractility reduced cell spreading and the expression of contractile markers, and eliminated any beneficial increase in matrix modulus induced by cell-generated contraction of the gels. Together, these data show that PEG-fibrinogen hydrogels are susceptible to both hydrolysis and proteolysis, and suggest that some soluble factors may stimulate matrix remodeling by modulating SMC phenotype instead of inducing ECM synthesis in a 3-D matrix.

  1. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    approaches, so there is no image jitter, and has an inherent parallel mechanism for 3D voxel addressing. High spatial resolution is possible with a full color display being easy to implement. The system is low-cost and low-maintenance.

  2. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  3. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.

    PubMed

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P; Yu, Qian; Mao, Scott X; Ritchie, Robert O

    2017-02-20

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  4. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-02-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

  5. An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold.

    PubMed

    Govoni, Marco; Lotti, Fabrizio; Biagiotti, Luigi; Lannocca, Maurizio; Pasquinelli, Gianandrea; Valente, Sabrina; Muscari, Claudio; Bonafè, Francesca; Caldarera, Claudio M; Guarnieri, Carlo; Cavalcanti, Silvio; Giordano, Emanuele

    2014-10-01

    Much evidence in the literature demonstrates the effect of cyclic mechanical stretch in maintaining, or addressing, a muscle phenotype. Such results were obtained using several technical approaches, useful for the experimental collection of proofs of principle but probably unsuitable for application in clinical regenerative medicine. Here we aimed to design a reliable innovative bioreactor, acting as a stand-alone cell culture incubator, easy to operate and effective in addressing mesenchymal stem cells (MSCs) seeded onto a 3D bioreabsorbable scaffold, towards a muscle phenotype via the transfer of a controlled and highly-reproducible cyclic deformation. Electron microscopy, immunohistochemistry and biochemical analysis of the obtained pseudotissue constructs showed that cells 'trained' over 1 week: (a) displayed multilayer organization and invaded the 3D mesh of the scaffold; and (b) expressed typical markers of muscle cells. This effect was due only to physical stimulation of the cells, without the need of any other chemical or genetic manipulation. This device is thus proposed as a prototypal instrument to obtain pseudotissue constructs to test in cardiovascular regenerative medicine, using good manufacturing procedures.

  6. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy

    PubMed Central

    Zhang, Zijiao; Sheng, Hongwei; Wang, Zhangjie; Gludovatz, Bernd; Zhang, Ze; George, Easo P.; Yu, Qian; Mao, Scott X.; Ritchie, Robert O.

    2017-01-01

    Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness. PMID:28218267

  7. ThreadedComposite: A Mechanism for Building Concurrent and Parallel Ptolemy II Models

    DTIC Science & Technology

    2008-12-07

    ThreadedComposite: A Mechanism for Building Concurrent and Parallel Ptolemy II Models Edward A. Lee Electrical Engineering and Computer Sciences...Concurrent and Parallel Ptolemy II Models 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Instruments, and Toyota. ThreadedComposite: A Mechanism for Building Concurrent and Parallel Ptolemy II Models ∗ Edward A. Lee UC Berkeley eal

  8. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    PubMed

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  9. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  11. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  12. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  13. Crashworthiness simulations with DYNA3D

    SciTech Connect

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  14. Relationship Between the 3D Porosity and β-Phase Distributions and the Mechanical Properties of a High Pressure Die Cast AZ91 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Biswas, Somjeet; Sket, Federico; Chiumenti, Michele; Gutiérrez-Urrutia, Iván; Molina-Aldareguía, Jon M.; Pérez-Prado, Maria Teresa

    2013-09-01

    Currently, most magnesium lightweight components are fabricated by casting as this process is cost effective and allows forming parts with complex geometries and weak textures. However, cast microstructures are known to be heterogeneous and contain unpredictable porosity distributions, which give rise to a large variability in the mechanical properties. This work constitutes an attempt to correlate the microstructure and the mechanical behavior of a high pressure die cast (HPDC) Mg AZ91 alloy, aimed at facilitating process optimization. We have built a stairway-shaped die to fabricate alloy sections with different thicknesses and, thus, with a range of microstructures. The grain size distributions and the content of β-phase (Mg17Al12) were characterized by optical and electron microscopy techniques as well as by electron backscatter diffraction (EBSD). The bulk porosity distribution was measured by 3D computed X-ray microtomography. It was found that the through-thickness microhardness distribution is mostly related to the local area fraction of the β-phase and to the local area fraction of the pores. We correlate the tensile yield strength to the average pore size and the fracture strength and elongation to the bulk porosity volume fraction. We propose that this empirical approach might be extended to the estimation of mechanical properties in other HPDC Mg alloys.

  15. Opportunities in computational mechanics: Advances in parallel computing

    SciTech Connect

    Lesar, R.A.

    1999-02-01

    In this paper, the authors will discuss recent advances in computing power and the prospects for using these new capabilities for studying plasticity and failure. They will first review the new capabilities made available with parallel computing. They will discuss how these machines perform and how well their architecture might work on materials issues. Finally, they will give some estimates on the size of problems possible using these computers.

  16. Structure and mechanical properties of a-C:H films deposited on a 3D target: comparative study on target scale and aspect ratio

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Choi, J.

    2017-04-01

    Recently, the bipolar-type plasma-based ion implantation and deposition (bipolar PBII&D) method has attracted large attention owing to its non-line-of-sight coating technique. In particular, bipolar PBII&D is beneficial in coating a hydrogenated amorphous carbon (a-C:H) film on a 3D target. Therefore, in this study, a-C:H films were prepared onto a complex-shaped 3D target such as macrotrench (pitch: 20 mm, aspect ratio: 1.0), microchannel (width: 100 µm, aspect ratio: 20), microtrench (pitch: 4 µm, aspect ratio: 2.0), or nanotrench (pitch: 300 nm, aspect ratio: 2.0) using bipolar PBII&D, and the film properties were evaluated. With regard to the mechanical properties, the film thickness and hardness were evaluated using a scanning electron microscope (SEM) and nanoindentation measurements, respectively. With regard to the structural properties, the microstructure of the films was evaluated by Raman spectroscopy. Subsequently, the structural and mechanical properties were compared with each other to reveal the target scale- and aspect ratio-dependence on the film properties. Furthermore, the coating mechanism was elucidated by analyzing the plasma behavior around the target using a plasma simulation method. The particle-in-cell/Monte Carlo collision (PIC-MCC) and the direct simulation Monte Carlo (DSMC) methods were simultaneously used as the plasma simulation method. Each of these is a calculation method that analyzes the behavior of ions and radicals, respectively. As a result, the a-C:H films were successfully coated onto any scale and any shape of the target. In contrast, the results of the hardness and those from the Raman spectroscopy on the sidewall surface indicated non-uniformity of the film structure and depended on the scale and aspect ratio of a target, i.e. the hardness and Raman data show different values depending on the target scale and aspect ratio. The result of the plasma simulation suggested that such non-uniform mechanical or structural

  17. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics – Insights from a 3D Model of the Human Atria

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  19. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: A 3D fluid-structure interaction analysis

    PubMed Central

    Yuan, Jianmin; Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Brown, Adam J; Gillard, Jonathan H; Jing, Zaiping; Lu, Qingsheng

    2015-01-01

    Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified into hard, intermediate and soft according to their incremental Young's modulus. Lipid and intraplaque haemorrhage/thrombus strips were classified as hard and soft. Idealised geometry-based 3D fluid-structure interaction analyses were performed to assess the impact of material property variability in predicting maximum principal stress (Stress-P1) and stretch (Stretch-P1). When FC was thick (1000 or 600 µm), Stress-P1 at the shoulder was insensitive to changes in material stiffness, whereas Stress-P1 at mid FC changed significantly. When FC was thin (200 or 65 µm), high stress concentrations shifted from the shoulder region to mid FC, and Stress-P1 became increasingly sensitive to changes in material properties, in particular at mid FC. Regardless of FC thickness, Stretch-P1 at these locations was sensitive to changes in material properties. Variability in tissue material properties influences both the location and overall stress/stretch value. This variability needs to be accounted for when interpreting the results of mechanical modelling. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. PMID:25940741

  20. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds.

    PubMed

    Valonen, Piia K; Moutos, Franklin T; Kusanagi, Akihiko; Moretti, Matteo G; Diekman, Brian O; Welter, Jean F; Caplan, Arnold I; Guilak, Farshid; Freed, Lisa E

    2010-03-01

    Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21 days of culture on PCL scaffolds, and (iii) study effects of scaffold structure (loosely vs. tightly woven), culture vessel (static dish vs. oscillating bioreactor), and medium composition (chondrogenic additives with or without serum). Aggregate moduli of 21-day constructs approached normal articular cartilage for tightly woven PCL cultured in bioreactors, were lower for tightly woven PCL cultured statically, and lowest for loosely woven PCL cultured statically (p<0.05). Construct DNA, total collagen, and glycosaminoglycans (GAG) increased in a manner dependent on time, culture vessel, and medium composition. Chondrogenesis was verified histologically by rounded cells within a hyaline-like matrix that immunostained for collagen type II but not type I. Bioreactors yielded constructs with higher collagen content (p<0.05) and more homogenous matrix than static controls. Chondrogenic additives yielded constructs with higher GAG (p<0.05) and earlier expression of collagen II mRNA if serum was not present in medium. These results show feasibility of functional cartilage tissue engineering from hMSC and 3D-woven PCL scaffolds.

  1. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors

    PubMed Central

    Smeets, Bart; Odenthal, Tim; Luyten, Frank P.; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-01-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell’s micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications. PMID:27658116

  2. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis.

    PubMed

    Yuan, Jianmin; Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Brown, Adam J; Gillard, Jonathan H; Jing, Zaiping; Lu, Qingsheng

    2015-08-01

    Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified into hard, intermediate and soft according to their incremental Young's modulus. Lipid and intraplaque haemorrhage/thrombus strips were classified as hard and soft. Idealised geometry-based 3D fluid-structure interaction analyses were performed to assess the impact of material property variability in predicting maximum principal stress (Stress-P1 ) and stretch (Stretch-P1 ). When FC was thick (1000 or 600 µm), Stress-P1 at the shoulder was insensitive to changes in material stiffness, whereas Stress-P1 at mid FC changed significantly. When FC was thin (200 or 65 µm), high stress concentrations shifted from the shoulder region to mid FC, and Stress-P1 became increasingly sensitive to changes in material properties, in particular at mid FC. Regardless of FC thickness, Stretch-P1 at these locations was sensitive to changes in material properties. Variability in tissue material properties influences both the location and overall stress/stretch value. This variability needs to be accounted for when interpreting the results of mechanical modelling.

  3. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(ε-caprolactone) scaffolds

    PubMed Central

    Valonen, P.K.; Moutos, F.T.; Kusanagi, A.; Moretti, M.; Diekman, B.O.; Welter, J.F.; Caplan, A.I.; Guilak, F.

    2009-01-01

    Three-dimensionally woven poly(ε-caprolactone)(PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21-days of culture on PCL scaffolds, and (iii) study effects of scaffold structure (loosely vs. tightly woven), culture vessel (static dish vs. oscillating bioreactor), and medium composition (chondrogenic additives with or without serum). Aggregate moduli of 21-day constructs approached normal articular cartilage for tightly woven PCL cultured in bioreactors, were lower for tightly woven PCL cultured statically, and lowest for loosely woven PCL cultured statically (p<0.05). Construct DNA, total collagen, and glyocosaminoglycans (GAG) increased in a manner dependent on time, culture vessel, and medium composition. Chondrogenesis was verified histologically by rounded cells within a hyaline-like matrix that immunostained for collagen type II but not type I. Bioreactors yielded constructs with higher collagen content (p<0.05) and more homogenous matrix than static controls. Chondrogenic additives yielded constructs with higher GAG (p<0.05) and earlier expression of collagen II mRNA if serum was not present in medium. These results show feasibility of functional cartilage tissue engineering from hMSC and 3D woven PCL scaffolds. PMID:20034665

  4. Application of Three Unit-Cells Models on Mechanical Analysis of 3D Five-Directional and Full Five-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Xiwu; Chen, Kang

    2013-10-01

    As new lightweight textile material, 3D five directional and full five directional braided composites (5DBC and F5DBC) have tremendous potential applications in the aerospace industry. Before they are used in primary loading-bearing structures, a rational characterization of their mechanical properties is essential. In this paper, three types of unit-cell models corresponding to the interior, surface and corner regions of 5DBC and F5DBC are proposed. By introducing the reasonable boundary conditions, the effective stiffness properties of these two materials are predicted and compared by the three unit-cells models. The detailed mechanical response characteristic of the three unit-cell models is presented and analyzed in various loading cases. Numerical results show good agreement with experiment data, thus validates the proposed simulation method. Moreover, a parametric study is carried out for analyzing the effects of braiding angle and fiber volume fraction on the elastic properties of 5DBC and F5DBC. The obtained results can help designers to optimize the braided composite structures.

  5. Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study.

    PubMed

    Cai, Shaobo; Xu, Helan; Jiang, Qiuran; Yang, Yiqi

    2013-02-19

    In this work, novel electrospun scaffolds with fibers oriented randomly and evenly in three dimensions (3D) including in the thickness direction were developed based on the principle of electrostatic repulsion. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrices (ECMs). The cell culture results of this study indicated that, instead of becoming flattened cells when cultured in conventional electrospun scaffolds, the cells cultured on novel 3D scaffolds could develop into stereoscopic topographies, which highly simulated in vivo 3D cellular morphologies and are believed to be of vital importance for cells to function and differentiate appropriately. Also, due to the randomly oriented fibrous structure, improvement of nearly 5 times in cell proliferation could be observed when comparing our 3D scaffolds with 2D counterparts after 7 days of cell culture, while most currently reported 3D scaffolds only showed 1.5- to 2.5-fold improvement for the similar comparison. One mechanism of this fabrication process has also been proposed and showed that the rapid delivery of electrons on the fibers was the crucial factor for formation of 3D architectures.

  6. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  7. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  8. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis.

  9. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  10. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  11. Vorticity generation mechanisms in parallel injection schemes for supersonic mixing

    NASA Astrophysics Data System (ADS)

    Donohue, James M.; Haj-Hariri, Hossein; McDaniel, James C., Jr.

    1992-07-01

    A numerical study is reported of the three-dimensional nonreacting supersonic flow field produced by three parallel fuel injection schemes. Such injections are being considered as a means of enhancing fuel mixing in future Scramjet engine designs. The strength of vortex structures produced by ramp injectors and by rocket/jet interactions are quantified and their relative effectiveness in enhancing the fuel mixing process is addressed. An experimental setup for validation of the above numerical results has been constructed and preliminary results are presented. For the flow field parameters chosen, the ramp generated vorticity is found to be considerably larger than that generated by the shock. The unsteady recirculating flow field in the wake of the injector appears also to give rise to important additional vorticity and mixing.

  12. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  13. A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance.

    PubMed

    Fair, Merlin J; Gatehouse, Peter D; DiBella, Edward V R; Firmin, David N

    2015-08-01

    A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.

  14. Conceptual design of a hybrid parallel mechanism for mask exchanging of TMT

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Zhou, Hongfei; Li, Kexuan; Zhou, Zengxiang; Zhai, Chao

    2015-10-01

    Mask exchange system is an important part of the Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). To solve the problem of stiffness changing with the gravity vector of the mask exchange system in the MOBIE, the hybrid parallel mechanism design method was introduced into the whole research. By using the characteristics of high stiffness and precision of parallel structure, combined with large moving range of serial structure, a conceptual design of a hybrid parallel mask exchange system based on 3-RPS parallel mechanism was presented. According to the position requirements of the MOBIE, the SolidWorks structure model of the hybrid parallel mask exchange robot was established and the appropriate installation position without interfering with the related components and light path in the MOBIE of TMT was analyzed. Simulation results in SolidWorks suggested that 3-RPS parallel platform had good stiffness property in different gravity vector directions. Furthermore, through the research of the mechanism theory, the inverse kinematics solution of the 3-RPS parallel platform was calculated and the mathematical relationship between the attitude angle of moving platform and the angle of ball-hinges on the moving platform was established, in order to analyze the attitude adjustment ability of the hybrid parallel mask exchange robot. The proposed conceptual design has some guiding significance for the design of mask exchange system of the MOBIE on TMT.

  15. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  16. DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics, User manual. Revision 1

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-11-01

    This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.

  17. 3D Bite Modeling and Feeding Mechanics of the Largest Living Amphibian, the Chinese Giant Salamander Andrias davidianus (Amphibia:Urodela)

    PubMed Central

    Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel

    2015-01-01

    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their “conservative” morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints. PMID:25853557

  18. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Jeziorna, Agata; Trébosc, Julien; Hou, Guangjin; Vega, Alexander J; Amoureux, Jean-Paul; Dracinsky, Martin; Polenova, Tatyana; Potrzebowski, Marek J

    2015-11-21

    We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.

  19. 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia:Urodela).

    PubMed

    Fortuny, Josep; Marcé-Nogué, Jordi; Heiss, Egon; Sanchez, Montserrat; Gil, Lluis; Galobart, Àngel

    2015-01-01

    Biting is an integral feature of the feeding mechanism for aquatic and terrestrial salamanders to capture, fix or immobilize elusive or struggling prey. However, little information is available on how it works and the functional implications of this biting system in amphibians although such approaches might be essential to understand feeding systems performed by early tetrapods. Herein, the skull biomechanics of the Chinese giant salamander, Andrias davidianus is investigated using 3D finite element analysis. The results reveal that the prey contact position is crucial for the structural performance of the skull, which is probably related to the lack of a bony bridge between the posterior end of the maxilla and the anterior quadrato-squamosal region. Giant salamanders perform asymmetrical strikes. These strikes are unusual and specialized behavior but might indeed be beneficial in such sit-and-wait or ambush-predators to capture laterally approaching prey. However, once captured by an asymmetrical strike, large, elusive and struggling prey have to be brought to the anterior jaw region to be subdued by a strong bite. Given their basal position within extant salamanders and their "conservative" morphology, cryptobranchids may be useful models to reconstruct the feeding ecology and biomechanics of different members of early tetrapods and amphibians, with similar osteological and myological constraints.

  20. A thermodynamic and mechanical model for the earliest Solar System: Formation via 3-d collapse of dust in the pre-Solar nebula

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A.

    2012-12-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time

  1. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble

    PubMed Central

    Liang, Zhe; Liu, Chenguang; Li, Lili; Xu, Peidi; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-01-01

    Fabrication of cell-encapsulated fibers could greatly contribute to tissue engineering and regenerative medicine. However, existing methods suffered from not only unavoidability of cell damaging conditions and/or sophisticated equipment, but also unavailability of proper materials to satisfy both mechanical and biological expectations. In this work, a simple method is proposed to prepare cell-encapsulated fibers with tunable mechanical strength and stretching behavior as well as diameter and microstructure. The hydrogel fibers are made from optimal combination of alginate and poly(N-iso-propylacrylamide)-poly(ethylene glycol), characteristics of double-network hydrogel, with enough stiffness and flexibility to create a variety of three dimensional structures like parallel helical and different knots without crack. Furthermore, such hydrogel fibers exhibit better compatibility as indicated by the viability, proliferation and expression of pluripotency markers of embryonic stem cells encapsulated after 4-day culture. The double-network hydrogel possesses specific quick responses to either of alginate lyase, EDTA or lower environmental temperature which facilitate the optional degradation of fibers or fibrous assemblies to release the cells encapsulated for subsequent assay or treatment. PMID:27628933

  2. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  3. Introduction to 3D Graphics through Excel

    ERIC Educational Resources Information Center

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  4. Static & Dynamic Response of 3D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  5. Determination of focal mechanisms of intermediate-magnitude earthquakes in Mexico, based on Greens functions calculated for a 3D Earth model

    NASA Astrophysics Data System (ADS)

    Rodrigo Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala

    2015-04-01

    One important ingredient in the study of the complex active tectonics in Mexico is the analysis of earthquake focal mechanisms, or the seismic moment tensor. They can be determined trough the calculation of Green functions and subsequent inversion for moment-tensor parameters. However, this calculation is gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes excite waves of longer periods that interact weakly with laterally heterogeneities in the crust. For these earthquakes, using 1D velocity models to compute the Greens fucntions works well. The opposite occurs for smaller and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle and requires more specific or regional 3D models. In this study, we calculate Greens functions for earthquakes in Mexico using a laterally heterogeneous seismic wave speed model, comprised of mantle model S362ANI (Kustowski et al 2008) and crustal model CRUST 2.0 (Bassin et al 1990). Subsequently, we invert the observed seismograms for the seismic moment tensor using a method developed by Liu et al (2004) an implemented by Óscar de La Vega (2014) for earthquakes in Mexico. By following a brute force approach, in which we include all observed Rayleigh and Love waves of the Mexican National Seismic Network (Servicio Sismológico Naciona, SSN), we obtain reliable focal mechanisms for events that excite a considerable amount of low frequency waves (Mw > 4.8). However, we are not able to consistently estimate focal mechanisms for smaller events using this method, due to high noise levels in many of the records. Excluding the noisy records, or noisy parts of the records manually, requires interactive edition of the data, using an efficient tool for the editing. Therefore, we developed a graphical user interface (GUI), based on python and the python library ObsPy, that allows the edition of observed and

  6. Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin

    2015-01-01

    The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.

  7. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study.

  8. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  10. Workspace Analysis and Optimization of 3-PUU Parallel Mechanism in Medicine Base on Genetic Algorithm

    PubMed Central

    Hou, Yongchao; Zhao, Yang

    2015-01-01

    A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients. PMID:26628930

  11. Workspace Analysis and Optimization of 3-PUU Parallel Mechanism in Medicine Base on Genetic Algorithm.

    PubMed

    Hou, Yongchao; Zhao, Yang

    2015-01-01

    A novel 3-PUU parallel robot was put forward, on which kinematic analysis was conducted to obtain its inverse kinematics solution, and on this basis, the limitations of the sliding pair and the Hooke joint on the workspace were analyzed. Moreover, the workspace was solved through the three dimensional limit search method, and then optimization analysis was performed on the workspace of this parallel robot, which laid the foundations for the configuration design and further analysis of the parallel mechanism, with the result indicated that this type of robot was equipped with promising application prospect. In addition that, the workspace after optimization can meet more requirements of patients.

  12. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  13. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage

    NASA Astrophysics Data System (ADS)

    Jiang, Yao; Li, Tie-Min; Wang, Li-Ping

    2015-09-01

    This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.

  15. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  16. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  17. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  18. The hypercluster: A parallel processing test-bed architecture for computational mechanics applications

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1987-01-01

    The development of numerical methods and software tools for parallel processors can be aided through the use of a hardware test-bed. The test-bed architecture must be flexible enough to support investigations into architecture-algorithm interactions. One way to implement a test-bed is to use a commercial parallel processor. Unfortunately, most commercial parallel processors are fixed in their interconnection and/or processor architecture. In this paper, we describe a modified n cube architecture, called the hypercluster, which is a superset of many other processor and interconnection architectures. The hypercluster is intended to support research into parallel processing of computational fluid and structural mechanics problems which may require a number of different architectural configurations. An example of how a typical partial differential equation solution algorithm maps on to the hypercluster is given.

  19. Design and study of the mask exchange system based on Delta parallel mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Feifan; Wang, Jianping; Zhou, Hongfei; Zhou, Zengxiang; Chu, Jiaru

    2016-07-01

    Mask exchange system is the main part of Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). The robot is one of the key parts in the mask exchange process. In view of the facts that the scheme the on-board robot is hard to meet the requirements of TMT and the traditional industrial robot is difficult to use in the Mask Exchange System (MEX). The delta parallel mechanism has much advantages such as good dynamic performance, high speed and could integrate a vision recognition system to identify the masks. The design for MEX based on off-board Delta parallel mechanism was proposed in the paper.

  20. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  1. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  2. Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016).

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment.

  3. NIKE3D a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics user's manual update summary

    SciTech Connect

    Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O

    2000-03-24

    This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.

  4. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  5. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. Gait analysis of a radial symmetrical hexapod robot based on parallel mechanisms

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Ding, Xilun

    2014-09-01

    Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height. This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism. Assuming the constraints between the supporting feet and the ground with hinges, the supporting legs and the hexapod body are taken as a parallel mechanism, and each swing leg is regarded as a serial manipulator. The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground. Locomotion performance can be got by analyzing these equivalent mechanisms. The kinematics of the whole robotic system is established, and the influence of foothold position on the workspace of robot body is analyzed. A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle. Referring to service region and service sphere, weight service sphere and weight service region are put forward to evaluate the dexterity of robot body. The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated. Simulation shows when the foothold offset goes up to 174 mm, the dexterity of robot body achieves its maximum value 0.1644 in mixed gait. The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot, and provide new approach to determine the stride length, body height, footholds in gait planning of multi-legged robot.

  8. Parallel Magnetic Flow Electromagnet for Movable Coil Control-rod Driving Mechanism

    SciTech Connect

    Jige, Zhang

    2006-07-01

    The parallel magnetic flow electromagnet can effectively relax the saturation, which easily takes place in the single magnetic flow electromagnet, and accordingly can improve the drive capacity of the movable coil electromagnet drive mechanism for a mobile reactor control rod. (authors)

  9. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  10. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  11. HPF Implementation of ARC3D

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    We present an HPF (High Performance Fortran) implementation of ARC3D code along with the profiling and performance data on SGI Origin 2000. Advantages and limitations of HPF as a parallel programming language for CFD applications are discussed. For achieving good performance results we used the data distributions optimized for implementation of implicit and explicit operators of the solver and boundary conditions. We compare the results with MPI and directive based implementations.

  12. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    PubMed

    Schwartz, Michael P; Rogers, Robert E; Singh, Samir P; Lee, Justin Y; Loveland, Samuel G; Koepsel, Justin T; Witze, Eric S; Montanez-Sauri, Sara I; Sung, Kyung E; Tokuda, Emi Y; Sharma, Yasha; Everhart, Lydia M; Nguyen, Eric H; Zaman, Muhammad H; Beebe, David J; Ahn, Natalie G; Murphy, William L; Anseth, Kristi S

    2013-01-01

    Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels ("synthetic extracellular matrix" or "synthetic ECM"). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we

  13. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism

    NASA Astrophysics Data System (ADS)

    Longchamp, Céline; Abellan, Antonio; Jaboyedoff, Michel; Manzella, Irene

    2016-09-01

    Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (> 106 m3) and several complex processes, and they are difficult to witness. For this reason the study of these phenomena using analog modeling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior.The main objective of this research is to analyze rock avalanche dynamics and deformation process by means of a detailed structural analysis of the deposits coming from data of 3-D measurements of mass movements of different magnitudes, from decimeter level scale laboratory experiments to well-studied rock avalanches of several square kilometers' magnitude.Laboratory experiments were performed on a tilting plane on which a certain amount of a well-defined granular material is released, propagates and finally stops on a horizontal surface. The 3-D geometrical model of the deposit is then obtained using either a scan made with a 3-D digitizer (Konica Minolta VIVID 9i) or a photogrammetric method called structure from motion (SfM), which requires taking several pictures from different point of view of the object to be modeled.In order to emphasize and better detect the fault structures present in the deposits, we applied a median filter with different moving window sizes (from 3 × 3 to 9 × 9 nearest neighbors) to the 3-D datasets and a gradient operator along the direction of propagation.The application of these filters on the datasets results in (1) a precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits and (2) a more accurate interpretation of the relative movements along the deposit (i.e., normal, strike-slip, inverse faults) by using cross sections. Results show how the use of filtering techniques reveals disguised features in the original point cloud and that similar displacement patterns

  14. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  15. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and

  17. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  18. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations.

  19. NIKE3D96. Static & Dynamic Response of 3D Solids

    SciTech Connect

    Maker, B.; Hallquist, J.O.; Ferencz, R.M.

    1991-02-01

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  20. 3-D Microprobe Metrology

    SciTech Connect

    Swallow, Kevin

    2008-10-14

    This report documents the results of a project undertaken to develop an ultra-high-accuracy measurement capability, which is necessary to address a rising trend toward miniaturized mechanical products exhibiting dramatically reduced product tolerances. A significant improvement in measurement capability is therefore required to insure that a 4:1 ratio can be maintained between product tolerances and measurement uncertainty.

  1. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

    PubMed

    Domingos, M; Intranuovo, F; Russo, T; De Santis, R; Gloria, A; Ambrosio, L; Ciurana, J; Bartolo, P

    2013-12-01

    Novel additive manufacturing processes are increasingly recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. With regard to the mechanical and biological performances of 3D scaffolds, pore size and geometry play a crucial role. In this study, a novel integrated automated system for the production and in vitro culture of 3D constructs, known as BioCell Printing, was used only to manufacture poly(ε-caprolactone) scaffolds for tissue engineering; the influence of pore size and shape on their mechanical and biological performances was investigated. Imposing a single lay-down pattern of 0°/90° and varying the filament distance, it was possible to produce scaffolds with square interconnected pores with channel sizes falling in the range of 245-433 µm, porosity 49-57% and a constant road width. Three different lay-down patterns were also adopted (0°/90°, 0°/60/120° and 0°/45°/90°/135°), thus resulting in scaffolds with quadrangular, triangular and complex internal geometries, respectively. Mechanical compression tests revealed a decrease of scaffold stiffness with the increasing porosity and number of deposition angles (from 0°/90° to 0°/45°/90°/135°). Results from biological analysis, carried out using human mesenchymal stem cells, suggest a strong influence of pore size and geometry on cell viability. On the other hand, after 21 days of in vitro static culture, it was not possible to detect any significant variation in terms of cell morphology promoted by scaffold topology. As a first systematic analysis, the obtained results clearly demonstrate the potential of the BioCell Printing process to produce 3D scaffolds with reproducible well organized architectures and tailored mechanical properties.

  2. Static balancing of spherical 3-DoF parallel mechanisms and manipulators

    SciTech Connect

    Gosselin, C.M.

    1999-08-01

    The static balancing of spherical three-degree-of-freedom (DoF) parallel mechanisms and manipulators is addressed in this paper. Static balancing is defined here as the set of conditions on mechanism dimensional and inertial parameters which, when satisfied, ensure that the weight of the links does not produce any torque (or force) at the actuators for any configuration of the mechanism, under static conditions. First, the static balancing of a single body mounted on a spherical joint is studied. It is shown that it is possible to balance such a mechanism with springs, and that complete balancing can be achieved even with a single spring. Geometric conditions for the location of the spring attachments are given. Then, the results are applied to the balancing of the two types of 3-DoF spherical parallel mechanisms. The first mechanism is a 9R manipulator, while the second one is referred to as the 3-6-6 spherical mechanism. For each of these mechanisms, the balancing conditions are first derived for systems in which no springs are used. Then, conditions for the balancing using springs are obtained. Static balancing leads to considerable reduction in the actuator torques (or forces), which in turn allows the use of less powerful actuators and therefore leads to more efficient designs. Hence, the balancing conditions derived here are of great interest in a context of design.

  3. Designing Biomaterials for 3D Printing.

    PubMed

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  4. Mechanics unloading analysis and experimentation of a new type of parallel biomimetic shoulder complex

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Li, Zhisen; Wang, Yi; Zhang, Wenwen; Zeng, Daxing; Zhou, Yulin

    2016-07-01

    The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism, while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex. A new type biomimetic shoulder complex, which adopts 3-PSS/S(P for prismatic pair, S for spherical pair) spherical parallel mechanism (SPM), is proposed. The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved. Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism. In addition, the prototype mechanism of the shoulder complex is developed, and the force feedback experiment is conducted to verify the static analysis, which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved. The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex, and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.

  5. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  6. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  7. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  8. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  10. Synthesis, antiviral activity, 3D-QSAR, and interaction mechanisms study of novel malonate derivatives containing quinazolin-4(3H)-one moiety.

    PubMed

    Chen, Meihang; Li, Pei; Hu, Deyu; Zeng, Song; Li, Tianxian; Jin, Linhong; Xue, Wei; Song, Baoan

    2016-01-01

    A series of novel malonate derivatives containing quinazolin-4(3H)-one moiety were synthesized and evaluated for their antiviral activities against cucumber mosaic virus (CMV). Results indicated that the title compounds exhibited good antiviral activities. Notably, compounds g15, g16, g17, and g18 exhibited excellent curative activities in vivo against CMV, with 50% effective concentration (EC50) values of 208.36, 153.78, 181.47, and 164.72μg/mL, respectively, which were better than that of Ningnanmycin (256.35μg/mL) and Ribavirin (523.34μg/mL). Moreover, statistically valid three-dimensional quantitative structure-activity relationship (3D-QSAR) models with good correlation and predictive power were obtained with comparative molecular field analysis (CoMFA) steric and electrostatic fields (r(2)=0.990, q(2)=0.577) and comparative molecular similarity indices analysis (CoMSIA) with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2)=0.977, q(2)=0.516), respectively. Based on those models, compound g25 was designed, synthesized, and showed better curative activity (146.30μg/mL) than that of compound g16. The interaction of between cucumber mosaic virus coat protein (CMV CP) and g25 with 1:1.83 ratio is typically spontaneous and exothermic with micromole binding affinity by isothermal titration calorimetry (ITC) and fluorescence spectroscopy investigation.

  11. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    NASA Astrophysics Data System (ADS)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  12. The FORCE: A portable parallel programming language supporting computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna

    1989-01-01

    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.

  13. Experimental study on narrow linewidth fiber ring laser based on parallel feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Cui-yun; Wang, Da-liang; Wang, Zi-nan; Lu, Ping; Xu, Lian-yu; Yu, Xiao-qi; Jiang, Yun; Zhu, Li-xin; Li, Zheng-bin

    2011-06-01

    Narrow linewidth fiber lasers are intensively studied during these years, for their wide use in coherent optical communication, optical fiber sensing, high-precision spectroscopy and many other industrial and military applications. A usual technique to suppress linewidth is narrow band filtering in the resonating structure of the laser. However, it is hard in fabrication for a tradition optical filter to achieve an ultra narrow pass band such as kilo-Hertz. In this paper, the parallel feedback structure is proposed and experimentally studied. A fiber laser with ultra narrow linewidth (15Hz detected) is achieved in laboratory, basing on the parallel feedback mechanism in a fiber ring cavity. In multimode fiber, each transverse mode has a different propagation constant. Equivalently, when a light beam propagates form single mode fiber to multimode fiber, it will split into a few parallel light paths with different propagation constants. The parallel feedback structure of a fiber ring laser is carried out by introducing one or more pieces of multi-mode fiber into its resonant cavity. Lasing light in the cavity must fit the restrictions of all light paths, thus linewidth of the laser output is suppressed. Ultra narrow linewidth can be achieved by carefully adjusting the amount and length of multi-mode fiber pieces. The narrowest linewidth achieved in laboratory is 15Hz detected by a delayed self-heterodyne interferometer with a 100km fiber delay line. In this work, we focus on pressuring linewidth, and mechanism of selecting and stabilizing mode isn't employed. Therefore, the narrow linewidth fiber laser isn't single-longitudinal-mode (SLM). A similar ring laser structure with bidirectional output is also experimental implemented, achieving a bandwidth of the same order. The bidirectional ring laser is the basic component of a laser gyroscope, and its linewidth is one key limiting factor of the gyroscope accuracy. This narrow linewidth bidirectional ring laser is a

  14. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  17. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  18. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  19. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  20. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  2. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  3. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI.

    PubMed

    Fernandez, M; House, M; Jambawalikar, S; Zork, N; Vink, J; Wapner, R; Myers, K

    2016-01-01

    Preterm birth is a