Science.gov

Sample records for 3d particle simulations

  1. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  2. 3-D spreadsheet simulation of a modern particle detector

    NASA Astrophysics Data System (ADS)

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  3. 3-D Spreadsheet Simulation of a Modern Particle Detector

    ERIC Educational Resources Information Center

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  4. Particle Acceleration in the Low Corona Over Broad Longitudes: Coupling MHD and 3D Particle Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.; Schwadron, N.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Titov, V. S.; Mikic, Z.; Riley, P.; Desai, M. I.; Dayeh, M. A.

    2014-12-01

    Recent work on the coupling between the Energetic Particle Radiation Environment Module (EPREM, a 3D energetic particle model) and Magnetohydrodynamics Around a Sphere (MAS, an MHD code developed at Predictive Science, Inc.) has demonstrated the efficacy of compression regions around fast coronal mass ejections (CMEs) for particle acceleration low in the corona (˜ 3 - 6 solar radii). These couplings show rapid particle acceleration over a broad longitudinal extent (˜ 80 degrees) resulting from the pile-up of magnetic flux in the compression regions and their subsequent expansion. The challenge for forming large SEP events in such compression-acceleration scenarios is to have enhanced scattering within the acceleration region while also allowing for efficient escape of accelerated particles downstream (away from the Sun) from the compression region. We present here the most recent simulation results including energetic particle and CME plasma profiles, the subsequent flux and dosages at 1AU, and an analysis of the compressional regions as efficient accelerators.

  5. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  6. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Fen; Adamsen, Tom C. H.; Pisarev, Gleb I.; Hoffmann, Alex C.

    2013-05-01

    Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT) and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES) turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  7. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    SciTech Connect

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  8. Simulation of 3-D Magnetic Reconnection by Gyrokinetic Electron and Fully Kinetic Ion Particle Model

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lin, Y.; Chen, L.

    2015-12-01

    3-D collisionless magnetic reconnection is investigated using the gyrokinetic electron and fully-kinetic ion (GeFi) particle simulation model. The simulation is carried out for cases with various finite guide field BG in a current sheet as occurring in space and laboratory plasmas. Turbulence power spectrum of magenetic field is found in the reconnection current sheet, with a clear k-5/3 dependence. The wave properties are analyzed. The anomalous resistivity in the electron diffusion region is estimated. The Dependence of the reconnection physics on the ion-to-electron mass ratio mi/me, beta values, and the half-width of the current sheet are also investigated.

  9. M3D Simulations of Energetic Particle-driven MHD Mode with Unstructured Mesh

    NASA Astrophysics Data System (ADS)

    Fu, G. Y.; Park, W.; Strauss, H. R.

    2001-10-01

    The energetic particle-driven MHD modes are studied using a multi-level extended MHD code M3D(W. Park et al., Phys. Plasmas 6, 1796 (1999)). In a Extended-MHD model, the plasma is divided into the bulk part and the energetic particle component. The bulk plasma is treated as either a single fluid or two fluids. The energetic particles are described by gyrokinetic particles following the self-consistent electromagnetic field. The model is self-consistent, including nonlinear effects of hot particles on the MHD dynamics and the nonlinear MHD mode coupling. Previously we had shown the results of nonlinear saturation of TAEfootnote G.Y. Fu and W. Park, Phys. Rev. Lett. 74, 1594 (1995), energetic particle stabilization of an internal kink and excitation of fishbone^2, and nonlinear saturation of fishbone in circular tokamaks (G.Y. Fu et al, 2000 Sherwood Meeting, Paper 2C2.). In this work, we extend the simulations to general geometry using unstructured mesh(H.R. Strauss and W. Park, Phys. Plasmas 5, 2676 (1998). We also use a gyrofluid model for fishbone in order to study the role of MHD nonlinearity in saturation near the marginal stability. Results of applications to tokamaks and spherical tokamaks will be presented.

  10. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  11. Particle entry through "Sash" groove simulated by Global 3D Electromagnetic Particle code with duskward IMF By

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.

    2004-12-01

    We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.

  12. 3D Unsteady Multiphase Simulation of Uranium Tetrafluoride Particle Fluorination in Fluidized Bed Pilot

    NASA Astrophysics Data System (ADS)

    Konan, N. A.; Neau, H.; Simonin, O.; Dupoizat, M.; Le Geaziou, T.

    This paper investigates Eulerian simulation approach of uranium hexafluoride production in fluidized bed pilot. Mass transfer is modeled by using the shrinking particle model. The model successfully predicts expected amount of uranium hexafluoride. As heat transfers with wall are neglected, temperature increases within the reactor and there is no gradient in wall-normal direction of reactor. External diffusion model of reactive gas around particle is developed. Effect of fluorine diffusion within nitrogen is found to be negligible under the simulation conditions. Moreover, inter-particle radiative heat transfer between particles of dense phase in the bed is investigated in the frame of Rosseland approximation.

  13. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  14. Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme

    NASA Astrophysics Data System (ADS)

    Jin-Lian, Ren; Tao, Jiang

    2016-02-01

    In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).

  15. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  16. Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract

    NASA Astrophysics Data System (ADS)

    Lin, J.; Fan, J. R.; Zheng, Y. Q.; Hu, G. L.; Pan, D.

    2010-03-01

    Computational fluid dynamics (CFD) simulations of airflow and particle deposition in the upper respiratory tract (URT) were conducted in this paper. Based on the CT (Computerized Tomography) scanned images of a 19-years-old healthy boy, a realistic geometric model of URT from oral cavity to the upper six-generation bronchial is rebuilt. To investigate airflow and particle deposition in the obtained realistic human upper respiratory tract, RNG k-ɛ turbulence model was used to describe the primary flow and particle deposition under three breathing intensity such as 15 L/min, 30 L/min and 60 L/min. The particle is tracked and analyzed in the Lagrangian frame. The velocity fields of airflow under different airflow rates were computed and discussed. In order to study the characteristics of particles movement and the effect of particles diameter on the deposition pattern, eleven kinds of sphere particles with different diameters are selected as research object. The diameters of selected particles as follows: 0.1 μm, 0.5 μm, 1 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm, 6.5 μm and 8 μm. The variation of inhalable particles deposition in realistic human upper respiratory tract with respiratory intensity and particle size was researched and compared. Furthermore, the more real inhalable particles with Rosin-Rammler mass distribution are used to study the effect of particles size. The deposition rate of particles with the different diameter scope in the different part of upper respiratory tract was summarized. The geometrical model based images technology promises to provide more real results of airflow field and particle deposition in the URT.

  17. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  18. Solar wind-magnetosphere interaction as simulated by a 3D, EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, O.; Nishikawa, Ken-Ichi; Neubert, T.

    1993-01-01

    The results of simulating the solar wind-magnetosphere interaction with a three dimensional, electromagnetic (EM) particle code are presented. Hitherto such global simulations were done with magnetohydrodynamic (MHD) codes while lower dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. The kinetic model combines macroscopic and microscopic tasks. It relies only on the Maxwell curl equations and the Lorentz equation for particles. The preliminary results are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn to dusk asymmetries.

  19. Solar wind-magnetosphere interaction as simulated by a 3-D EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, Oscar; Neubert, Torsten; Nishikawa, Ken-Ichi

    1992-01-01

    We present here our first results of simulating the solar wind-magnetosphere interaction with a new three-dimensional electromagnetic particle code. Hitherto such global simulations were done with MHD codes while lower-dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. Our kinetic model attempts to combine the macroscopic and microscopic tasks. It relies only on the Maxwell curl equation and the Lorentz equation for particles, which are ideally suited for computers. The preliminary results shown here are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn-dusk asymmetries.

  20. Soot particle size modelling in 3D simulations of diesel engine combustion

    NASA Astrophysics Data System (ADS)

    Fraioli, V.; Beatrice, C.; Lazzaro, M.

    2011-12-01

    The present work is focused on multi-dimensional simulations of combustion in diesel engines. The primary objective was to test, in a diesel engine framework, a soot particle size model to represent the carbon particle formation and calculate the corresponding size distribution function. Simulations are performed by means of a parallel version of the KIVA3V numerical code, modified to adopt detailed kinetics reaction mechanisms. A skeletal reaction scheme for n-heptane autoignition has been extended, to include PAH kinetics and carbonaceous particle formation and consumption rates: the full reaction set is made up of 82 gas species and 50 species accounting for the particles, thus the complete reaction scheme comprises 132 species and 2206 reaction steps. Four different engine operative conditions, varying engine speed and load, are taken into account and experimentally tested on a single cylinder diesel engine fuelling pure n-heptane. Computed particle size distribution functions are compared with corresponding measurements at the exhaust, performed by a differential mobility spectrometer. A satisfying agreement between computed and measured combustion profiles is obtained in all the conditions. A reasonable aerosol evolution can be obtained, yet in all the cases the model exhibits the tendency to overestimate the number of particles within the range 5-160 nm. Moreover calculations predict a nucleation mode not detected by the available instrument. According to the simulations, the total number and size of the nascent particles would not depend on the operative conditions, while the features of the larger aggregates distinctly vary with the engine functioning.

  1. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  2. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  3. Particle sedimentation in curved tubes: A 3D simulation and optimization for treatment of vestibular vertigo

    NASA Astrophysics Data System (ADS)

    White, Brian; Squires, Todd M.; Hain, Timothy C.; Stone, Howard A.

    2003-11-01

    Benign paroxysmal positional vertigo (BPPV) is a mechanical disorder of the vestibular system where micron-size crystals abnormally drift into the semicircular canals of the inner ear that sense angular motion of the head. Sedimentation of these crystals causes sensation of motion after true head motion has stopped: vertigo results. The usual clinical treatment is through a series of head maneuvers designed to move the particles into a less sensitive region of the canal system. We present a three-dimensional model to simulate treatment of BPPV by determining the complete hydrodynamic motion of the particles through the course of a therapeutic maneuver while using a realistic representation of the actual geometry. Analyses of clinical maneuvers show the parameter range for which they are effective, and indicate inefficiencies in current practice. In addition, an optimization process determines the most effective head maneuver, which significantly differs from those currently in practice.

  4. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons

  5. Particle entry through sash in the magnetopause with a dawndard IMF as simulated by a 3-D EM particle code

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X.; Lembege, B.; Nishikawa, K.

    2003-12-01

    We report a new progress in the long-term effort to represent the global interaction of the solar wind with the Earth's magnetosphere using a three-dimensional electromagnetic particle code with the improved resolutions using the HPF Tristan code. After a quasi-steady state is established with an unmagnetized solar wind we gradually switch on a northward interplanetary magnetic field (IMF), which causes a magnetic reconnection at the nightside cusps and the magnetosphere to be depolarized. In the case that the northward IMF is switched gradually to dawnward, there is no signature of reconnection in the near-Earth magnetotail as in the case with the southward turning. On the contrary analysis of magnetic fields in the magnetopause confirms a signature of magnetic reconnection at both the dawnside and duskside. And the plasma sheet in the near-Earth magnetotail clearly thins as in the case of southward turning. Arrival of dawnward IMF to the magnetopause creates a reconnection groove which cause particle entry into the deep region of the magnetosphere via field lines that go near the magnetopause. This deep connection is more fully recognized tailward of Earth. The flank weak-field fan joins onto the plasma sheet and the current sheet to form a geometrical feature called the cross-tail S that structurally integrates the magnetopause and the tail interior. This structure contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process heats the magnetosheath plasma to plasma sheet temperatures. These phenomena have been found by Cluster observations. Further investigation with Cluster observations will provide new insights for unsolved problems such as hot flow anomalies (HFAs), substorms, and storm-substorm relationship. 3-D movies with sash structure will be presented at the meeting.

  6. 3-D Full-kinetic Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Particle Behaviour

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Wang, X.; Lembege, B.; Markidis, S.; Lapenta, G.; Horanyi, M.

    2015-12-01

    We present three-dimensional full-kinetic electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the full-kinetic nature of iPic3D allows to self-consistently investigate space charge effects, and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general mechanism of the interaction of both a horizontal and vertical dipole model embedded just below the lunar surface focussing on the ion and electron kinetic behaviour of the system. It is shown that the configurations are largely dominated by electron motion, because the LMA scale size is small with respect to the gyro-radius of the solar wind ions. The formation of mini-magnetospheres is an electrostatic effect. Additionally, we discuss typical particle trajectories as well as complete particle distribution functions covering thermal and suprathermal energies, within the interaction region and on viable spacecraft altitudes. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs.This research has received funding from the European Commission's FP7 Program with the grant agreement EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2013091928 (SuperMUC). This research was supported by the Swedish National Space Board

  7. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    NASA Technical Reports Server (NTRS)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  8. Self consistent particles dynamics in/out of the cusp region by using back tracking technics; a global 3D PIC simulation approach

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.

    2013-12-01

    Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere

  9. 3D View of Mars Particle

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a 3D representation of the pits seen in the first Atomic Force Microscope, or AFM, images sent back from NASA's Phoenix Mars Lander. Red represents the highest point and purple represents the lowest point.

    The particle in the upper left corner shown at the highest magnification ever seen from another world is a rounded particle about one micrometer, or one millionth of a meter, across. It is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  11. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  12. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  13. Fractal and fractional calculus to model hydrological processes with application to particle-based 2D and 3D landslide simulation

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco; Di Cintio, Pierfrancesco

    2015-04-01

    We integrate existing soil infiltration modeling with particle based methods in order to simulate two and three-dimensional setups of triggered landslides. Commonly, the infiltration models are based on continuum schemes (e.g. Eulerian approach) by means of which it is possible to define the field of the pore pressure within a soil. By contrast, the particle based methods follow a Lagrangian scheme that allows one to identify the particle trajectories and their dynamical properties. In this work, in order to simulate the triggering mechanism, we apply the classical, fractal and fractional Richards equations and the Mohr-Coulomb failure criterion, adapted to the molecular dynamics technique. In our scheme the (local) positive pore pressure is simply implemented as a perturbation of the rest state of each grain. Therefore, the pore pressure function can be interpreted as a time-space dependent scalar field acting on each particle. To initialize the system we generate, using a molecular dynamics based algorithm, a mechanically stable disk (2D) or sphere (3D) packing simulating the consolidated soil. In this way, we can built the micro and macro pore structure related to different infiltration time scales. The inter-particle interactions are modeled with a Lennard-Jones like potential. The particle positions are updated in time, after and during a rainfall, with standard molecular dynamics. We analyze the sensitivity of the model with respect to the variation of some parameters such as hydraulic conductivity, cohesion, slope and friction angle, soil depth and fractional order of the generalized infiltration model. In addition, we consider both regular and random particle configurations. The results of our simulations are found to be in agreement with real landslides. In particular, the mean velocity patterns of the simulated landslides appear extremely similar to the observed ones. Moreover, it is possible to apply the method of the inverse surface displacement

  14. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  15. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  16. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  17. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    NASA Technical Reports Server (NTRS)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  18. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    NASA Astrophysics Data System (ADS)

    Kajzer, A.; Pozorski, J.; Szewc, K.

    2014-08-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  19. High-temperature Processing of Solids through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-01

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ~few× 10-8 L ⊙. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  20. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  1. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  2. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  3. Crashworthiness simulations with DYNA3D

    SciTech Connect

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  4. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  5. DRACO development for 3D simulations

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad; Moses, Gregory

    2006-10-01

    The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.

  6. Elastically deformable 3D organs for haptic surgical simulation.

    PubMed

    Webster, Roger; Haluck, Randy; Ravenscroft, Rob; Mohler, Betty; Crouthamel, Eric; Frack, Tyson; Terlecki, Steve; Sheaffer, Jeremy

    2002-01-01

    This paper describes a technique for incorporating real-time elastically deformable 3D organs in haptic surgical simulators. Our system is a physically based particle model utilizing a mass-springs-damper connectivity with an implicit predictor to speed up calculations during each time step. The solution involves repeated application of Newton's 2ndd Law of motion: F = ma using an implicit solver for numerically solving the differential equations.

  7. Resolution improvement by 3D particle averaging in localization microscopy

    PubMed Central

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P.J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-01-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on three-dimensional super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision. PMID:25866640

  8. 3D flare particle model for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  9. Optimizing Stellarators for Energetic Particle Confinement using BEAMS3D

    NASA Astrophysics Data System (ADS)

    Bolgert, Peter; Drevlak, Michael; Lazerson, Sam; Gates, David; White, Roscoe

    2015-11-01

    Energetic particle (EP) loss has been called the ``Achilles heel of stellarators,'' (Helander, Rep. Prog. Phys. 77 087001 (2014)) and there is a great need for magnetic configurations with improved EP confinement. In this study we utilize a newly developed capability of the stellarator optimization code STELLOPT: the ability to optimize EP confinement via an interface with guiding center code BEAMS3D (McMillan et al., Plasma Phys. Control. Fusion 56, 095019 (2014)). Using this new tool, optimizations of the W7-X experiment and ARIES-CS reactor are performed where the EP loss fraction is one of many target functions to be minimized. In W7-X, we simulate the experimental NBI system using realistic beam geometry and beam deposition physics. The goal is to find configurations with improved neutral beam deposition and energetic particle confinement. These calculations are compared to previous studies of W7-X NBI deposition. In ARIES-CS, we launch 3.5 MeV alpha particles from a near-axis flux surface using a uniform grid in toroidal and poloidal angle. As these particles are born from D-T reactions, we consider an isotropic distribution in velocity space. This research is supported by DoE Contract Number DE-AC02-09CH11466.

  10. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  11. Optofluidic fabrication for 3D-shaped particles

    PubMed Central

    Paulsen, Kevin S.; Di Carlo, Dino; Chung, Aram J.

    2015-01-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated. PMID:25904062

  12. 3D Simulations of the Beehive Proplyd

    NASA Astrophysics Data System (ADS)

    Feitosa, J. A.; Vasconcelos, M. J.; Cerqueira, A. H.

    2014-10-01

    Some star formation regions, like the Orion nebula, have stars of different masses, from massive stars, responsible for strong ionizing winds and HII regions, to low-mass stars, which spend a long time in the protostellar phase, and are frequently associated with protostellar disks and jets. Massive O or B stars emit a great deal of UV radiation, able to dissociate the hydrogen molecule (FUV radiation, energies between 6-13 eV), to ionize the atomic hydrogen (EUV radiation, energies greater than 13.6 eV) and heat the gas. Around these stars, a large and hot (10^{4}K) region is formed, known as HII region. T-Tauri stars inside HII regions produce a type of young stellar object, a proplyd, described with accuracy in O'Dell et al. (1993). Proplyds exhibit a cometary shape from which we can distinguish a central low-mass star with an accretion disk, an ionization front, a photodissociation region and, sometimes, an external bow shock and a protostellar jet. Its morphological characteristics depends on the distance between the low-mass star and the source of the ionizing radiation. The Beehive, a giant proplyd in Orion Nebula, has attracted attention due to its exotic system of rings coaxial to the HH540 jet's axis. Bally et al. (2005) suggested that the rings are perturbations due to the crossing of the ionization front by the jet. In this work, we test this hypothesis making 3D hydrodynamic numerical simulations over an adaptive grid, using the Yguazú-A code (Raga et al., 2000), properly adapted for the Beehive conditions. Our results show that the jet causes a perturbation in the ionization front of the proplyd, but is necessary to adjust carefully some parameters of the jet like its velocity and ejection frequency in order to have the results matching the observations.

  13. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  14. Modeling and simulation of charge collection properties for 3D-trench electrode detector

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Chen, Jianwei; Li, Zheng; Yan, Shaoan

    2015-10-01

    3D-trench electrode detectors were simulated in this paper. Charge collection of 3D-trench electrode detector was simulated using the full 3D device simulation. The induced current and collected charge caused by drifting carriers, generated by a minimum ionizing particle (MIP) incident through the detector, have been modeled and calculated. The results indicate that the total collected charge in irradiated detector change with particle incident position and radiation fluence. In addition, we have estimated the average total collected charge generated by a MIP incident in 3D-trench electrode detector.

  15. Ultrafine particle emissions from desktop 3D printers

    NASA Astrophysics Data System (ADS)

    Stephens, Brent; Azimi, Parham; El Orch, Zeineb; Ramos, Tiffanie

    2013-11-01

    The development of low-cost desktop versions of three-dimensional (3D) printers has made these devices widely accessible for rapid prototyping and small-scale manufacturing in home and office settings. Many desktop 3D printers rely on heated thermoplastic extrusion and deposition, which is a process that has been shown to have significant aerosol emissions in industrial environments. However, we are not aware of any data on particle emissions from commercially available desktop 3D printers. Therefore, we report on measurements of size-resolved and total ultrafine particle (UFP) concentrations resulting from the operation of two types of commercially available desktop 3D printers inside a commercial office space. We also estimate size-resolved (11.5 nm-116 nm) and total UFP (<100 nm) emission rates and compare them to emission rates from other desktop devices and indoor activities known to emit fine and ultrafine particles. Estimates of emission rates of total UFPs were large, ranging from ˜2.0 × 1010 # min-1 for a 3D printer utilizing a polylactic acid (PLA) feedstock to ˜1.9 × 1011 # min-1 for the same type of 3D printer utilizing a higher temperature acrylonitrile butadiene styrene (ABS) thermoplastic feedstock. Because most of these devices are currently sold as standalone devices without any exhaust ventilation or filtration accessories, results herein suggest caution should be used when operating in inadequately ventilated or unfiltered indoor environments. Additionally, these results suggest that more controlled experiments should be conducted to more fundamentally evaluate particle emissions from a wider arrange of desktop 3D printers.

  16. Light shaping along 3D curves and particle manipulation

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2015-03-01

    We present a non-iterative holographic technique for efficient and versatile laser beam shaping along arbitrary 3D curves. Light beams with intensity shaped for several 3D curves: Tilted ring, Viviani's curve, Archimedean spiral, and trefoil-knotted curve have been experimentally generated and applied for optical trapping of micrometer-sized dielectric particles. The high intensity gradients and independent phase control prescribed along the curve make this kind of laser trap attractive for multiple particle manipulation and allow for forward and backward motion to the light source. Indeed, different configurations of tractor beam traps are experimentally demonstrated. This technique can also be applied for laser micro-machining.

  17. 3D Convection-pulsation Simulations with the HERACLES Code

    NASA Astrophysics Data System (ADS)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  18. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Bachmair, F.; Bäni, L.; Bergonzo, P.; Caylar, B.; Forcolin, G.; Haughton, I.; Hits, D.; Kagan, H.; Kass, R.; Li, L.; Oh, A.; Phan, S.; Pomorski, M.; Smith, D. S.; Tyzhnevyi, V.; Wallny, R.; Whitehead, D.

    2015-06-01

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time.

  19. 3D macrosegregation simulation with anisotropic remeshing

    NASA Astrophysics Data System (ADS)

    Gouttebroze, Sylvain; Bellet, Michel; Combeau, Hervé

    2007-05-01

    The article presents a three-dimensional coupled numerical solution of momentum, mass, energy and solute conservation equations, for binary alloy solidification. The interdendritic flow in the mushy zone is assumed to obey the Darcy's law. Microsegregation is governed by the lever rule, assuming local equilibrium at phase interfaces. The resulting energy and solute advection-diffusion equations are solved using the Streamline-Upwind/Petrov-Galerkin (SUPG) finite element method. A SUPG-PSPG velocity-pressure formulation is applied for the momentum equation. The full algorithm was implemented in the 3D code THERCAST, together with an anisotropic remeshing method. Two applications have been considered: a small ingot of Pb-48wt%Sn alloy and a large steel ingot. The numerical results of these two cases are presented with the evolution of temperature, liquid velocity, and solute concentration fields during solidification. To cite this article: S. Gouttebroze et al., C. R. Mecanique 335 (2007).

  20. Enhancing Simulation of Sand Behavior through 3D Subdivision Techniques

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2011-12-01

    is a planetary rover interacting with our sand simulation. Sand that is actively interacting with a rover wheel will be represented as an individual particle whereas sand that is further under the surface will be represented by a 3D region that represents several particles. As a particle region moves closer to the surface, it subdivides into smaller regions until individual sand particles are left. Our technique uses a variation of a 3D Voronoi decomposition in order to generate regions of sand. However, in our iteration, sand on the surface will be subdivided as particles whereas sand deeper into the earth will be subdivided into subsequently larger regions. By doing this, we can represent many more particles of sand than through traditional means. In addition, we have the added benefit of being able to parallelize the interaction between active particles through the use of the GPU. As such, not only are we able to represent vast amounts of sand, but we can also utilize more individual particles at the interaction source. An enhanced sand model through the use of subdivision techniques and GPUs has great potential for earth science research. Our collaborations with JPL have helped to further refine our simulation framework. As a result, we feel this work could also benefit other earth science fields, such as understanding sinkholes and debris flows.

  1. 3D simulation for falling papers

    NASA Astrophysics Data System (ADS)

    Aoki, Takayuki

    2001-12-01

    The combination of IDO (Interpolated Differential Operator) scheme, Cut Cell technique, and overlapping grid method make it possible to simulate the falling process of papers. We have the result of the falling with fluttering trajectory for a certain initial angle of the paper, and the fluttering mechanism becomes clear. It is shown that the simulation is applicable to the phenomena of falling leaves with complex shape.

  2. 3D visualization of port simulation.

    SciTech Connect

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.

    1999-06-14

    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  3. Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors

    NASA Astrophysics Data System (ADS)

    Grönlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael

    2008-02-01

    Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensing electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases.

  4. 3-D PARTICLE TRANSPORT WITHIN THE HUMAN UPPER RESPIRATORY TRACT

    EPA Science Inventory

    In this study trajectories of inhaled particulate matter (PM) were simulated within a three-dimensional (3-D) computer model of the human upper respiratory tract (URT). The airways were described by computer-reconstructed images of a silicone rubber cast of the human head, throat...

  5. Particle Acceleration at Reconnecting 3D Null Points

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Browning, P.; Gordovskyy, M.; Dalla, S.

    2012-12-01

    Hard X-ray observations from the RHESSI spacecraft indicate that a significant fraction of solar flare energy release is in non-thermal energetic particles. A plausible acceleration mechanism for these are the strong electric fields associated with reconnection, a process that can be particularly efficient when particles become unmagnetised near to null points. This mechanism has been well studied in 2D, at X-points within reconnecting current sheets; however, 3D reconnection models show significant qualitative differences and it is not known whether these new models are efficient for particle acceleration. We place test particles in analytic model fields (eg. Craig and Fabling 1996) and numerical solutions to the the resistive magnetohydrodynamic (MHD) equations near reconnecting 3D nulls. We compare the behaviour of these test particles with previous results for test particle acceleration in ideal MHD models (Dalla and Browning 2005). We find that the fan model is very efficient due to an increasing "guide field" that stabilises particles against ejection from the current sheet. However, the spine model, which was the most promising in the ideal case, gives weak acceleration as the reconnection electric field is localised to a narrow cylinder about the spine axis.

  6. Using 3D Multi-Fluid Simulations to Investigate the Periodicity of the Auroral Brightness at Ganymede and its Dependence on Precipitating Particle Temperatures

    NASA Astrophysics Data System (ADS)

    Payan, A. P.; Paty, C. S.; Retherford, K. D.; Bonfond, B.

    2011-12-01

    The electrodynamic interaction of Ganymede's mini-magnetosphere with Jupiter's co-rotating magnetospheric plasma has been shown to give rise to strong current systems closing through the moon and its ionosphere as well as through its magnetopause and magnetotail current sheet. This interaction is strongly evidenced by the presence of aurorae at Ganymede and Ganymede's bright auroral footprint in Jupiter's ionosphere. This footprint is located equatorward of the main auroral emissions, at the magnetic longitude of the field line threading Ganymede. The brightness of Ganymede's auroral footprint at Jupiter along with its latitudinal position have been shown to depend on the position of Ganymede relative to the Jovian plasma sheet and on the variations of the current flowing in the Jovian current sheet. Previous studies based on ultraviolet images obtained with the Hubble Space Telescope (HST) have demonstrated that the size of the auroral footprint was not limited to that of the moon alone. Rather, it mapped to a region corresponding to Ganymede's magnetosphere (Grodent et al., 2009). It was recently shown that Ganymede's auroral footprint brightness is characterized by three timescales of variations: a long 5-hour periodic variation, a non-systematic 10-40-minute variation, and a short 100-second quasi-periodic variation (Grodent et al., 2009). As for Ganymede's aurora, observations with the HST revealed longitudinally non-uniform oxygen emissions, with the brightest emissions confined to the geomagnetic latitudes defining the boundaries of the polar caps (Feldman et al., 2000). The goal of the present study is to examine the relationship between the longest and the shortest timescale periodicities of Ganymede's auroral footprint brightness and local processes occurring at Ganymede, using a 3D multi-fluid model. The model allows characterization of the interaction between Ganymede's magnetosphere and the local Jovian plasma environment by tracking the energies and

  7. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform. PMID:26737091

  8. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  9. General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3-D particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lembège, Bertrand; Horányi, Mihály; Markidis, Stefano; Lapenta, Giovanni

    2015-08-01

    We present a general model of the solar wind interaction with a dipolar lunar crustal magnetic anomaly (LMA) using three-dimensional full-kinetic and electromagnetic simulations. We confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface, forming a so-called "minimagnetosphere," as suggested by spacecraft observations and theory. We show that the LMA configuration is driven by electron motion because its scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of back-streaming ions, the deflection of magnetized electrons via the E × B drift motion, and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the processes are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Understanding the detailed physics of the solar wind interaction with LMAs, including magnetic shielding, particle dynamics and surface charging is vital to evaluate its implications for lunar exploration.

  10. 3D MHD Simulations of Spheromak Compression

    NASA Astrophysics Data System (ADS)

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team

    2015-11-01

    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  11. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  12. Two-photon single particle tracking in 3D

    NASA Astrophysics Data System (ADS)

    So, Peter T. C.; Ragan, Timothy; Gratton, Enrico; Carerro, Jenny; Voss, Edward

    1997-05-01

    Transport processes are important in biology and medicine. Examples include virus docking and infection, endocytosis of extracellular protein and phagocytosis of antigenic material. Trafficking driven by molecular motors inside a complex 3D environment is a shared common theme. The complex sequence of these events are difficult to resolve with conventional techniques where the action of many cells are asynchronously averaged. Single particle tracking (SPT) was developed by Ghosh and Webb to address this problem and has proven to be a powerful technique in understanding membrane- protein interaction. Since the traditional SPT method uses wide field illumination and area detectors, it is limited to the study of 2D systems. In this presentation, we report the development of a 3D single particle tracking technique using two-photon excitation. Using a real-time feedback system, we can dynamically position the sub-femtoliter two-photon excitation volume to follow the fluorescent particle under transport by maximizing the detected fluorescent intensity. Further, fluorescence spectroscopy can be performed in real time along the particle trajectory to monitor the underlying biochemical signals driving this transport process. The first application of this instrument will focus on the study of antigen endocytosis process of macrophages.

  13. Development of 3D beam-beam simulation for the Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  14. Design of 3D simulation engine for oilfield safety training

    NASA Astrophysics Data System (ADS)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  15. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  16. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  17. 3d visualization of atomistic simulations on every desktop

    NASA Astrophysics Data System (ADS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  18. 3-D laser radar simulation for autonomous spacecraft landing

    NASA Technical Reports Server (NTRS)

    Reiley, Michael F.; Carmer, Dwayne C.; Pont, W. F.

    1991-01-01

    A sophisticated 3D laser radar sensor simulation, developed and applied to the task of autonomous hazard detection and avoidance, is presented. This simulation includes a backward ray trace to sensor subpixels, incoherent subpixel integration, range dependent noise, sensor point spread function effects, digitization noise, and AM-CW modulation. Specific sensor parameters, spacecraft lander trajectory, and terrain type have been selected to generate simulated sensor data.

  19. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  20. 3D two-fluid simulations of turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin M.

    The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the

  1. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  2. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  3. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  4. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh

    2014-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  5. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  6. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals.

  7. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals. PMID:21503074

  8. Comparative visual analysis of 3D urban wind simulations

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  9. Computer simulation on reconstruction of 3-D flame temperature distribution

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yung, K. L.; Wu, Z.; Li, T.

    To measure non-symmetric unsteady three dimensional temperature distribution in flame by simple, economic, fast and accurate means, and to apply a priori information to the measurement both sufficiently and efficiently, we conducted computer simulations. Simulation results proved that finite series-expansion reconstruction method is more suitable for measurement of temperature distribution in flame than transform method which is widely used in medical scanning and nondestructive testing. By comparing errors of simulations with different numbers of views, different domain shapes, different numbers of projections per view, different angles of views and different grid shapes, etc., we find that circle domain, triangular grid and sufficient number of projections per view, can improve the accuracy in the reconstruction of 3-D temperature distribution with limited views. With six views, errors caused by reconstruction computation are reduced, they are smaller than those caused by measurement. Therefore, a comparatively better means of measuring 3-D temperature distribution in flame with limited projection views by emission tomography is achieved. Experimental results also showed that the method we used was appropriate for measurement of 3-D temperature distribution with limited number of views [1].

  10. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  11. DREAM3D simulations of inner-belt dynamics

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  12. Simulation of human ischemic stroke in realistic 3D geometry

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Duarte, Max; Descombes, Stéphane; Dronne, Marie-Aimée; Massot, Marc; Louvet, Violaine

    2013-06-01

    In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parallelization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial

  13. i3Drive, a 3D interactive driving simulator.

    PubMed

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  14. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  15. 3D simulation of the Cluster-Cluster Aggregation model

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  16. 3D Simulation of External Flooding Events for the RISMC Pathway

    SciTech Connect

    Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad; Smith, Curtis; Lin, Linyu

    2015-09-01

    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.

  17. Simulation of AIMS measurements using rigorous mask 3D modeling

    NASA Astrophysics Data System (ADS)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  18. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  19. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution.

  20. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution. PMID:26193484

  1. 3D measurement of the position of gold particles via evanescent digital holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Satake, Shin-ichi; Unno, Noriyuki; Nakata, Shuichiro; Taniguchi, Jun

    2016-08-01

    A new technique based on digital holography and evanescent waves was developed for 3D measurements of the position of gold nanoparticles in water. In this technique, an intensity profile is taken from a holographic image of a gold particle. To detect the position of the gold particle with high accuracy, its holographic image is recorded on a nanosized step made of MEXFLON, which has a refractive index close to that of water, and the position of the particle is reconstructed by means of digital holography. The height of the nanosized step was measured by using a profilometer and the digitally reconstructed height of the glass substrate had good agreement with the measured value. Furthermore, this method can be used to accurately track the 3D position of a gold particle in water.

  2. Numerical simulation of vortex breakdown via 3-D Euler equations

    NASA Astrophysics Data System (ADS)

    Le, T. H.; Mege, P.; Morchoisne, Y.

    1990-06-01

    The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.

  3. Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator?

    NASA Astrophysics Data System (ADS)

    Guo, J.-N.; Büchner, J.; Otto, A.; Santos, J.; Marsch, E.; Gan, W.-Q.

    2010-04-01

    Aims: We study the particle acceleration at a magnetic null point in the solar corona, considering self-consistent magnetic fields, plasma flows and the corresponding convective electric fields. Methods: We calculate the electromagnetic fields by 3-D magnetohydrodynamic (MHD) simulations and expose charged particles to these fields within a full-orbit relativistic test-particle approach. In the 3-D MHD simulation part, the initial magnetic field configuration is set to be a potential field obtained by extrapolation from an analytic quadrupolar photospheric magnetic field with a typically observed magnitude. The configuration is chosen so that the resulting coronal magnetic field contains a null. Driven by photospheric plasma motion, the MHD simulation reveals the coronal plasma motion and the self-consistent electric and magnetic fields. In a subsequent test particle experiment the particle energies and orbits (determined by the forces exerted by the convective electric field and the magnetic field around the null) are calculated in time. Results: Test particle calculations show that protons can be accelerated up to 30 keV near the null if the local plasma flow velocity is of the order of 1000 km s-1 (in solar active regions). The final parallel velocity is much higher than the perpendicular velocity so that accelerated particles escape from the null along the magnetic field lines. Stronger convection electric field during big flare explosions can accelerate protons up to 2 MeV and electrons to 3 keV. Higher initial velocities can help most protons to be strongly accelerated, but a few protons also run the risk to be decelerated. Conclusions: Through its convective electric field and due to magnetic nonuniform drifts and de-magnetization process, the 3-D null can act as an effective accelerator for protons but not for electrons. Protons are more easily de-magnetized and accelerated than electrons because of their larger Larmor radii. Notice that macroscopic MHD

  4. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  5. Simulating Granular Materials Using a 3D Voronoi Subdivision Tree

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2015-12-01

    Our world is full of many different types of granular materials. This includes materials such as silt, sand, and gravel and have various sizes and properties. It is of interest to simulate and visualize granular media as it can provide additional analysis and insight into geologic events such as landslides or debris flows. Unfortunately, this can be a computationally complex problem due to the large amount of physical interaction between granular materials. To help alleviate this problem, we have developed a method to represent granular media using a technique called a 3D Voronoi Subdivision Tree. The idea behind our method is to take a convex terrain volume and use a subdivision tree to build smaller, granular subpieces contained within the volume. We use a 3D Voronoi subdivision technique to create smaller granular convex cells and then store them in the tree. The tree is dynamic and adaptive as it only represents individual granular media when they are needed. In addition, as each of the granular subpieces are created, we can also store attributes of that granular material in the tree node. This ensures a diversity of granular materials contained within the volume. In order to maintain performance during simulation, we can dynamically replace parts of the granular volume with smaller granular subpieces just by traversing the tree. In essence, this allows for many different granular materials to be represented within the volume while reducing computational complexity. As such, this helps with simulation performance so that focus can be placed on simulation analysis. We feel our method is helpful for simulating geologic events with granular materials and will assist geoscientists in understanding them.

  6. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  7. Code System to Simulate 3D Tracer Dispersion in Atmosphere.

    2002-01-25

    Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less

  8. GBS: Global 3D simulation of tokamak edge region

    NASA Astrophysics Data System (ADS)

    Zhu, Ben; Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    A 3D two-fluid global code, namely Global Braginskii Solver (GBS), is being developed to explore the physics of turbulent transport, confinement, self-consistent profile formation, pedestal scaling and related phenomena in the edge region of tokamaks. Aimed at solving drift-reduced Braginskii equations [1] in complex magnetic geometry, the GBS is used for turbulence simulation in SOL region. In the recent upgrade, the simulation domain is expanded into close flux region with twist-shift boundary conditions. Hence, the new GBS code is able to explore global transport physics in an annular full-torus domain from the top of the pedestal into the far SOL. We are in the process of identifying and analyzing the linear and nonlinear instabilities in the system using the new GBS code. Preliminary results will be presented and compared with other codes if possible.[4pt] [1] A. Zeiler, J. F. Drake and B. Rogers, Phys. Plasmas 4, 2134 (1997)

  9. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    NASA Technical Reports Server (NTRS)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  10. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chau, C.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Costa, S.; Cumalat, J.; Dabrowski, A.; D`Alessandro, R.; de Boer, W.; Dehning, B.; Dobos, D.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gan, K. K.; Gastal, M.; Goffe, M.; Goldstein, J.; Golubev, A.; Gonella, L.; Gorišek, A.; Graber, L.; Grigoriev, E.; Grosse-Knetter, J.; Gui, B.; Guthoff, M.; Haughton, I.; Hidas, D.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Maazouzi, C.; Mandic, I.; Mathieu, C.; McFadden, N.; McGoldrick, G.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Oh, A.; Olivero, P.; Parrini, G.; Passeri, D.; Pauluzzi, M.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Riley, G.; Roe, S.; Sapinski, M.; Scaringella, M.; Schnetzer, S.; Schreiner, T.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Sfyrla, A.; Shimchuk, G.; Smith, D. S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weilhammer, P.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2016-07-01

    In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.

  11. Optimizing prostate needle biopsy through 3D simulation

    NASA Astrophysics Data System (ADS)

    Zeng, Jianchao; Kaplan, Charles; Xuan, Jian Hua; Sesterhenn, Isabell A.; Lynch, John H.; Freedman, Matthew T.; Mun, Seong K.

    1998-06-01

    Prostate needle biopsy is used for the detection of prostate cancer. The protocol of needle biopsy that is currently routinely used in the clinical environment is the systematic sextant technique, which defines six symmetric locations on the prostate surface for needle insertion. However, this protocol has been developed based on the long-term observation and experience of urologists. Little quantitative or scientific evidence supports the use of this biopsy technique. In this research, we aim at developing a statistically optimized new prostate needle biopsy protocol to improve the quality of diagnosis of prostate cancer. This new protocol will be developed by using a three-dimensional (3-D) computer- based probability map of prostate cancer. For this purpose, we have developed a computer-based 3-D visualization and simulation system with prostate models constructed from the digitized prostate specimens, in which the process of prostate needle biopsy can be simulated automatically by the computer. In this paper, we first develop an interactive biopsy simulation mode in the system, and evaluate the performance of the automatic biopsy simulation with the sextant biopsy protocol by comparing the results by the urologist using the interactive simulation mode with respect to 53 prostate models. This is required to confirm that the automatic simulation is accurate and reliable enough for the simulation with respect to a large number of prostate models. Then we compare the performance of the existing protocols using the automatic biopsy simulation system with respect to 107 prostate models, which will statistically identify if one protocol is better than another. Since the estimation of tumor volume is extremely important in determining the significance of a tumor and in deciding appropriate treatment methods, we further investigate correlation between the tumor volume and the positive core volume with 89 prostate models. This is done in order to develop a method to

  12. Dual wavelength digital holography for 3D particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Grare, S.; Coëtmellec, S.,; Allano, D.; Grehan, G.; Brunel, M.; Lebrun, D.

    2015-02-01

    A multi-exposure digital in-line hologram of a moving particle field is recorded by two different wavelengths and at different times. As a result, during the reconstruction step, each hologram can be independently and accurately reconstructed for each wavelength. This procedure enables avoiding the superimposition of particles images that may be close to each other in multi-exposure holography. The feasibility is demonstrated by using a standard particle sizing reticle and shows the potential of this method for particle velocity measurement.

  13. Study, simulation and design of a 3D clinostat

    NASA Astrophysics Data System (ADS)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  14. Unsteady 3D flow simulations in cranial arterial tree

    NASA Astrophysics Data System (ADS)

    Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George

    2008-11-01

    High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.

  15. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  16. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  17. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  18. Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices

    SciTech Connect

    Wang Jianguo; Chen Zaigao; Wang Yue; Zhang Dianhui; Qiao Hailiang; Fu Meiyan; Yuan Yuan; Liu Chunliang; Li Yongdong; Wang Hongguang

    2010-07-15

    This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.

  19. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  20. 3D MHD disruptions simulations of tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua

    2008-11-01

    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  1. Validation of 3D simulations of reverse osmosis membrane biofouling.

    PubMed

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated).

  2. Validation of 3D simulations of reverse osmosis membrane biofouling.

    PubMed

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated). PMID:20205206

  3. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  4. PAB3D Simulations for the CAWAPI F-16XL

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Abdol-Hamid, K. S.; Massey, Steven J.

    2007-01-01

    Numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-! model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0deg to 20deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The ASM results are closer to the flight data than the k-! model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-! predictions.

  5. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  6. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  7. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  8. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  9. Virtual environment display for a 3D audio room simulation

    NASA Astrophysics Data System (ADS)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  10. 3D MHD simulations of radial wire arrays

    NASA Astrophysics Data System (ADS)

    Jennings, C.; Ampleford, D.; Ciardi, A.; Chittenden, J.; Bland, S.; Niasse, N.

    2008-04-01

    We present 3D resistive MHD simulations evaluating multi-MA radial wire arrays as a potential compact, high intensity source for inertial confinement fusion and laboratory astrophysics. A radial wire array consists of wires running radially outwards from a central electrode, and was first investigated at the 1 MA level on the MAGPIE generator at Imperial College. Originally used as a method of producing magnetic tower laboratory jets relevant to astrophysics[1], they have also shown potential as a high power x-ray source. Able to produce x-ray pulses with a rise time and peak power comparable to cylindrical wire arrays, radial arrays occupy a smaller volume and may consequently be able to access higher power densities. We discuss simulation results reproducing radial array experiments performed on the MAGPIE facility as a means of benchmarking our model. This model is then used to evaluate radial wire arrays in the multi-MA regime for planned experiments on the Saturn generator of Sandia National Laboratories. [1] A. Ciardi et al, Phys. Plasmas 14, 056501 (2007)

  11. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  12. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    SciTech Connect

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  13. 3D Simulations of methane convective storms on Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2005-08-01

    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  14. 3D SPH numerical simulation of the wave generated by the Vajont rockslide

    NASA Astrophysics Data System (ADS)

    Vacondio, R.; Mignosa, P.; Pagani, S.

    2013-09-01

    A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.

  15. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  16. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  17. 20 and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  18. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  19. 3D FEA simulation of segmented reinforcement variable stiffness composites

    NASA Astrophysics Data System (ADS)

    Henry, C. P.; McKnight, G. P.; Enke, A.; Bortolin, R.; Joshi, S.

    2008-03-01

    Reconfigurable and morphing structures may provide significant improvement in overall platform performance through optimization over broad operating conditions. The realization of this concept requires structures, which can accommodate the large deformations necessary with modest weight and strength penalties. Other studies suggest morphing structures need new materials to realize the benefits that morphing may provide. To help meet this need, we have developed novel composite materials based on specially designed segmented reinforcement and shape memory polymer matrices that provide unique combinations of deformation and stiffness properties. To tailor and optimize the design and fabrication of these materials for particular structural applications, one must understand the envelope of morphing material properties as a function of microstructural architecture and constituent properties. Here we extend our previous simulations of these materials by using 3D models to predict stiffness and deformation properties in variable stiffness segmented composite materials. To understand the effect of various geometry tradeoffs and constituent properties on the elastic stiffness in both the high and low stiffness states, we have performed a trade study using a commercial FEA analysis package. The modulus tensor is constructed and deformation properties are computed from representative volume elements (RVE) in which all (6) basic loading conditions are applied. Our test matrix consisted of four composite RVE geometries modeled using combinations of 5 SMP and 3 reinforcement elastic moduli. Effective composite stiffness and deformation results confirm earlier evidence of the essential performance tradeoffs of reduced stiffness for increasing reversible strain accommodation with especially heavy dependencies on matrix modulus and microstructural architecture. Furthermore, our results show these laminar materials are generally orthotropic and indicate that previous calculations of

  20. Properties of lower-hybrid range wave activity at reconnection jet edge: 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Divin, Andrey; Khotyaintsev, Yuri; Vaivads, Andris; Andre, Mats; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    Reconnection fronts are areas of intense currents and enhanced wave activity, since magnetic flux and plasma are piled up there when the accelerated flow encounters denser ambient current sheet. Observations and numerical simulations show that the fronts generate a variety of waves ranging from MHD frequencies up to lower hybrid frequency and above. In the present study we use 2D and 3D Particle-in-Cell (PIC) simulations to investigate the properties of the lower hybrid range waves developing at hot reconnected plasma - current sheet interface. Calculations are performed using implicit parallel code iPIC3D starting from conventional Harris current sheet. Initial evolution of the jet is simulated using 2D approach to save computational time, but 3D calculations are implemented at later stages in order to observe instability linear stage, saturation and transition to turbulence. Properties of the linear stage match closely theoretical predictions for the lower hybrid drift instability. During saturation, the mode produces intense electric fields (several Alfvén in electric fields normalized unit) that can provide an additional mechanism of electron heating at reconnection jet fronts.

  1. 3-D turbulent particle dispersion submodel development. Quarterly progress report No. 2, 15 July--15 October 1991

    SciTech Connect

    Smith, P.J.

    1991-12-31

    The lack of a mathematical description of the interactions of fluid turbulence with other physics-chemical processes is a major obstacle in modeling many industrial program. Turbulent two-phase flow is a phenomenon that is of significant practical importance to coal combustion as well as other disciplines. The interactions of fluid turbulence with the particulate phase has yet to be accurately and efficiently modeled for these industrial applications. On 15 May 1991 work was initiated to cover four major tasks toward the development of a computational submodel for turbulent particle dispersion that would be applicable to coal combustion simulations. Those four tasks are: 1. A critical evaluation of the 2-D Lagrangian particle dispersion submodel, 2. Development of a 3-D submodel for turbulent particle dispersion, 3. Evaluation of the 3-D submodel for turbulent particle dispersion, 4. Exploration of extensions of the Lagrangian dispersion theory to other applications including chemistry-turbulence interactions.

  2. 3-D turbulent particle dispersion submodel development. Quarterly progress report No. 1, 5 April--5 July 1991

    SciTech Connect

    Smith, P.J.

    1991-12-31

    The lack of a mathematical description of the interactions of fluid turbulence with other physics-chemical processes is a major obstacle in modeling many industrial program. Turbulent two-phase flow is a phenomenon that is of significant practical importance to coal combustion as well as other disciplines. The interactions of fluid turbulence with the particulate phase has yet to be accurately and efficiently modeled for these industrial applications. On 15 May 1991 work was initiated to cover four major tasks toward the development of a computational submodel for turbulent particle dispersion that would be applicable to coal combustion simulations. Those four tasks are: 1. A critical evaluation of the 2-D Lagrangian particle dispersion submodel, 2. Development of a 3-D submodel for turbulent particle dispersion, 3. Evaluation of the 3-D submodel for turbulent particle dispersion, 4.Exploration of extensions of the Lagrangian dispersion theory to other applications including chemistry-turbulence interactions.

  3. 3D reconstruction and particle acceleration properties of Coronal Shock Waves During Powerful Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Vourlidas, Angelos; Tylka, Allan J.; Pinto, Rui; Rouillard, Alexis; Tirole, Margot

    2016-07-01

    Identifying the physical mechanisms that produce the most energetic particles is a long-standing observational and theoretical challenge in astrophysics. Strong pressure waves have been proposed as efficient accelerators both in the solar and astrophysical contexts via various mechanisms such as diffusive-shock/shock-drift acceleration and betatron effects. In diffusive-shock acceleration, the efficacy of the process relies on shock waves being super-critical or moving several times faster than the characteristic speed of the medium they propagate through (a high Alfven Mach number) and on the orientation of the magnetic field upstream of the shock front. High-cadence, multipoint imaging using the NASA STEREO, SOHO and SDO spacecrafts now permits the 3-D reconstruction of pressure waves formed during the eruption of coronal mass ejections. Using these unprecedented capabilities, some recent studies have provided new insights on the timing and longitudinal extent of solar energetic particles, including the first derivations of the time-dependent 3-dimensional distribution of the expansion speed and Mach numbers of coronal shock waves. We will review these recent developments by focusing on particle events that occurred between 2011 and 2015. These new techniques also provide the opportunity to investigate the enigmatic long-duration gamma ray events.

  4. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron tomography in combination with electron energy-loss spectroscopy (EELS) experiments and simulations was used to unravel the interplay between structure and plasmonic properties of a silver nanocuboid dimer. The precise 3D geometry of the particles fabricated by means of electron beam lithography was reconstructed through electron tomography, and the full three-dimensional information was used as an input for simulations of energy-loss spectra and plasmon resonance maps. Excellent agreement between experiment and theory was found throughout, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic nanostructures. PMID:26495933

  5. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    SciTech Connect

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-22

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  6. 3D quantification of brain microvessels exposed to heavy particle radiation

    NASA Astrophysics Data System (ADS)

    Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.

    2009-09-01

    Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.

  7. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  8. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  9. Characterizing heterogeneity among virus particles by stochastic 3D signal reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Gong, Yunye; Wang, Qiu; Zheng, Yili; Doerschuk, Peter C.

    2015-09-01

    In single-particle cryo electron microscopy, many electron microscope images each of a single instance of a biological particle such as a virus or a ribosome are measured and the 3-D electron scattering intensity of the particle is reconstructed by computation. Because each instance of the particle is imaged separately, it should be possible to characterize the heterogeneity of the different instances of the particle as well as a nominal reconstruction of the particle. In this paper, such an algorithm is described and demonstrated on the bacteriophage Hong Kong 97. The algorithm is a statistical maximum likelihood estimator computed by an expectation maximization algorithm implemented in Matlab software.

  10. Phenomenological modelling and simulation of cell clusters in 3D cultures.

    PubMed

    González-Valverde, I; Semino, C; García-Aznar, J M

    2016-10-01

    Cell clustering and aggregation are fundamental processes in the development of several tissues and the progression of many diseases. The formation of these aggregates also has a direct impact on the oxygen concentration in their surroundings due to cellular respiration and poor oxygen diffusion through clusters. In this work, we propose a mathematical model that is capable of simulating cell cluster formation in 3D cultures through combining a particle-based and a finite element approach to recreate complex experimental conditions. Cells are modelled considering cell proliferation, cell death and cell-cell mechanical interactions. Additionally, the oxygen concentration profile is calculated through finite element analysis using a reaction-diffusion model that considers cell oxygen consumption and diffusion through the extracellular matrix and the cell clusters. In our model, the local oxygen concentration in the medium determines both cell proliferation and cell death. Numerical predictions are also compared with experimental data from the literature. The simulation results indicate that our model can predict cell clustering, cluster growth and oxygen distribution in 3D cultures. We conclude that the initial cell distribution, cell death and cell proliferation dynamics determine the size and density of clusters. Moreover, these phenomena are directly affected by the oxygen transport in the 3D culture. PMID:27615191

  11. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.

    PubMed

    Cole, Brendan C; Marcus, Guy G; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A

    2016-01-01

    Experimental methods are presented for measuring the rotational and translational motion of anisotropic particles in turbulent fluid flows. 3D printing technology is used to fabricate particles with slender arms connected at a common center. Shapes explored are crosses (two perpendicular rods), jacks (three perpendicular rods), triads (three rods in triangular planar symmetry), and tetrads (four arms in tetrahedral symmetry). Methods for producing on the order of 10,000 fluorescently dyed particles are described. Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four synchronized videos of their motion in a turbulent flow between oscillating grids with Rλ = 91. In this relatively low-Reynolds number flow, the advected particles are small enough that they approximate ellipsoidal tracer particles. We present results of time-resolved 3D trajectories of position and orientation of the particles as well as measurements of their rotation rates. PMID:27404898

  12. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    SciTech Connect

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang, S.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O'Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  13. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations

    NASA Astrophysics Data System (ADS)

    Subbotin, D. A.; Shprits, Y. Y.; Ni, B.

    2011-12-01

    Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.

  14. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  15. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures.

    PubMed

    White, Diana; Coombe, Dennis; Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  16. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    PubMed Central

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  17. 3-D SIMULATIONS OF AIRWAYS WITHIN HUMAN LUNGS

    EPA Science Inventory

    Information regarding the deposition patterns of inhaled particles has important application to the fields of toxicology and medicine. The former concerns the risk assessment of inhaled air pollutants (inhalation toxicology); the latter concerns the targeted delivery of inhaled ...

  18. 3D stress field simulation for Greater Munich, Germany

    NASA Astrophysics Data System (ADS)

    Ziegler, Moritz; Heidbach, Oliver; Reinecker, John; Przybycin, Anna Maria; Scheck-Wenderoth, Magdalena

    2016-04-01

    Geotechnical applications such as tunneling, storage of waste, wellbore planning, or reservoir engineering requires detailed 3D information on the rock properties and behavior of the continuum. One of the key parameters is the contemporary crustal in-situ stress state. However, generally the availability of stress data on reservoir scale is scarce or no data exists at all. Furthermore, stress data is often limited to the orientation of the maximum horizontal stress. Hence, geomechanical-numerical modelling provides an approximation of a continuous description of the 3D in-situ stress state. We present a model workflow that shows (1) how to calibrate a regional scale model of Greater Munich with stress orientations and magnitudes mainly from borehole data and (2) how to derive from the regional model boundary conditions for a local high-resolution model of a geothermal reservoir site. This approach using two models is an alternative to the required trade-off between resolution, computational cost and a sufficient number of calibration data which is otherwise inevitable for a single model. The incorporated 3D geological models contain the topography from a digital elevation model and 6 stratigraphic units with different elasto-plastic rock properties. The local model mimics the area of a planned reservoir and its resolution is significantly higher than in the regional model and down to 10 m near the planned borehole trajectories using 21×106 tetrahedron finite elements with linear approximation functions. The uncertainties of the calibrated regional model are large since no information on the magnitude of the maximum horizontal stress is available. Even in the entire Greater Munich area only two reliable leak-off tests that deliver the magnitude of the minimum horizontal stress could be used. These uncertainties are transferred also to the local model. Hence we also show how to quantify for the workflow in general the systematic uncertainties and discuss

  19. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  20. Simulation Environment for the Evaluation of 3D Coronary Tree Reconstruction Algorithms in Rotational Angiography

    PubMed Central

    Yang, Guanyu; Bousse, Alexandre; Toumoulin, Christine; Shu, Huazhong

    2007-01-01

    We present a preliminary version of a simulation environment to evaluate the 3D reconstruction algorithms of the coronary arteries in rotational angiography. It includes the construction of a 3D dynamic model of the coronary tree from patient data, the modeling of the rotational angiography acquisition system to simulate different acquisition and gating strategies and the calculation of radiographic projections of the 3D model of coronary tree throughout several cardiac cycles. PMID:18003001

  1. Bidirectional inward migration of particles lagging behind a Poiseuille flow in a rectangular microchannel for 3D particle focusing

    NASA Astrophysics Data System (ADS)

    Kim, Young Won; Yoo, Jung Yul

    2015-02-01

    Electrophoretic mobility of particles dispersed in an electrolyte solution induces the particles to lag behind a Poiseuille flow in a rectangular microchannel, which causes bidirectional inward migration of particles to the central axis of the channel. As a result, in the present theoretical and experimental study, three-dimensional (3D) particle focusing is clearly realized in such a manner that the particles are aligned in a single file along the axis of the channel as they are transported downstream. Theoretical prediction on the particle migration time provides an excellent assessment of the experimental results. The method proposed in the present study has potential for development of low-cost rapid manufacturing process of sheathless monolayer microchips for 3D particle focusing.

  2. 3D kinetic simulations of the global interaction between the solar wind and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Maneva, Yana; Deca, Jan; Lapenta, Giovanni

    2015-04-01

    We performed three dimensional simulations of the interaction between the solar wind and the magnetosphere, using the self-consistent fully kinetic code iPic3D. The main objective of our simulations is to link the global interaction phenomena to the local turbulence and reconnection processes in the magnetosphere. Other numerical approaches have been used before to study this problem, including MHD, hybrid and Vlasov codes. However, only particle-in-cell codes offer the possibility to study the kinetic effects of the diffusion regions of the Earth environment that drive the energy transfer from the solar wind to the magnetosphere. Previous attempts to perform such kinds of simulations were limited to unphysical thermal velocities of the ion and electron species, small simulation boxes or cell sizes that do not capture the local kinetic effects at the magnetopause. Using the implicit moment Particle-in-Cell approach we performed simulations that can capture these small scale effects and, at the same time, allow to study large scale phenomena such as the bow shock and the development of the magnetotail. We expect that these results will be used to maximize the impact of future space missions, such as THOR, MMS and BepiColombo, by improving our understanding of the planetary environment, from the conditions observed in the solar wind to the turbulence and reconnection processes downstream of the bow shock.

  3. Simple 3-D stimulus for motion parallax and its simulation.

    PubMed

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces. PMID:23964382

  4. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  5. GATOR: A 3-D time-dependent simulation code for helix TWTs

    SciTech Connect

    Zaidman, E.G.; Freund, H.P.

    1996-12-31

    A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.

  6. 3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh; Song, Heather

    2015-11-01

    Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.

  7. SIERRA - A 3-D device simulator for reliability modeling

    NASA Astrophysics Data System (ADS)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  8. 3-D MHD disk wind simulations of protostellar jets

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.

    2016-01-01

    We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.

  9. Vectors in Use in a 3D Juggling Game Simulation

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Latsi, Maria

    2006-01-01

    The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as objects, as a…

  10. RoboCup 3D Soccer Simulation Server: A Progressing Testbed for AI Researchers

    NASA Astrophysics Data System (ADS)

    Darab, Mohammad Ali Darvish; Ebrahimi, Mosalam

    RoboCup 3D Soccer Simulation is a growing domain that makes a wide variety of AI and Multi-Agent researches possible. The RoboCup 3D Soccer Simulation Server is a Multi-Agent environment that supports 22 independent agents to play a soccer match within a real-time and complex environment. Many researchers from all over the world have been using this simulator to pursue their researches in a wide variety of areas such as multiagent learning, cooperative actions and multiagent planning. This paper illustrates the current organization of RoboCup 3D Soccer Simulation Server.

  11. Nondestructive optical testing of 3D disperse systems with micro- and nano-particles

    NASA Astrophysics Data System (ADS)

    Bezrukova, Alexandra G.

    2005-04-01

    Nondestructive testing and analysis of three-dimensional (3D) disperse systems (DS) with micro- and nano-particles of different nature by complex of optical compatible methods can provide further progress in on-line control of water and air. The simultaneous analysis of 3D-DS by refractometry, absorbency, fluorescence and by different types of light scattering can help to elaborate the sensing elements for specific impurity control. In our research we have investigated by complex of optical methods different 3D-DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, etc., and mixtures -- proteins with nucleic acids, liposomes and viruses, liquid crystals with surfactants, mixtures of clay with bacterial cells, samples of natural and water-supply waters, etc. This experience suggests that the set of optical parameters of so called second class is unique for each 3D-DS. In another words each DS can be characterized by n-dimensional vector in n-dimensional space of optical parameters. Mixtures can be considered as polycomponent and polymodal 3D-DS (such as natural water and air). Due to the fusion of various optical data it is possible to indicate by information statistical theory the inverse physical problem on the presence of impurities in mixtures (viruses, bacteria, oil, metallic particles, etc.), and in this case polymodality of particle size distribution is not an obstacle. Bank of optical data for 3D-DS is the base for analysis by information-statistical method.

  12. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  13. ROAR: A 3-D tethered rocket simulation code

    SciTech Connect

    York, A.R. II; Ludwigsen, J.S.

    1992-04-01

    A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

  14. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  15. 3-D simulations of magnetic reconnection in high-energy-density laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2012-10-01

    Magnetic reconnection has recently been observed and studied in high-energy-density, laser-produced plasmas, in a regime characterized by extremely high magnetic fields, high plasma beta and strong, supersonic plasma inflow. These experiments are interesting both for obtaining fundamental data on reconnection, and may also be relevant for inertial fusion, as this magnetic reconnection geometry, with multiple, colliding, magnetized plasma bubbles occurs naturally inside ICF hohlraums. Previous 2-d particle-in-cell reconnection simulations, with parameters and geometry relevant to the experiments, identified key ingredients for obtaining the very fast reconnection rates, namely two-fluid reconnection mediated by collisionless effects (the Hall current and electron pressure tensor), and strong flux pile-up of the inflowing magnetic field [1]. We present results from extending the previous simulations to 3-d, and discuss 3-d effects in the experiments, including instabilities in the reconnection layer, the topological skeleton of null-null lines, and field-generation from the Biermann battery effect. [4pt] [1] W. Fox, A. Bhattacharjee, and K. Germaschewski, PRL 106, 215003 (2011).

  16. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  17. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  18. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  19. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  20. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including

  1. Linking continuum mechanics and 3D discrete dislocation simulations

    SciTech Connect

    El-Azab, A. A.; Fivel, M.

    1998-10-18

    A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.

  2. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    SciTech Connect

    Antonova, T.; Thomas, H. M.; Morfill, G. E.; Annaratone, B. M.

    2008-09-07

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm{sup 3}) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  3. 3D Plasma Clusters: Analysis of dynamical evolution and individual particle interaction

    NASA Astrophysics Data System (ADS)

    Antonova, T.; Annaratone, B. M.; Thomas, H. M.; Morfill, G. E.

    2008-09-01

    3D plasma clusters (up to 100 particles) have been built inside small (32 mm3) plasma volume in gravity. It has been estimated that the external confinement has a negligible influence on the processes inside the clusters. At such conditions the analysis of dynamical evolution and individual particle interactions have shown that the binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part. The tendency of the systems to approach the state with minimum energy by rearranging particles inside has been detected. The measured 63 particles' cluster vibrations are in close agreement with vibrations of a drop with surface tension. This indicates that even a 63 particle cluster already exhibits properties normally associated with the cooperative regime.

  4. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Cole, Brendan

    2014-11-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 μm. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow. This research is supported by NSF Grant DMR-1208990.

  5. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Kramel, Stefan; Cole, Brendan

    2015-03-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.

  6. Development of a 3D to 1D Particle Transport Model to Predict Deposition in the Lungs

    NASA Astrophysics Data System (ADS)

    Oakes, Jessica M.; Grandmont, Celine; Shadden, Shawn C.; Vignon-Clementel, Irene E.

    2014-11-01

    Aerosolized particles are commonly used for therapeutic drug delivery as they can be delivered to the body systemically or be used to treat lung diseases. Recent advances in computational resources have allowed for sophisticated pulmonary simulations, however it is currently impossible to solve for airflow and particle transport for all length and time scales of the lung. Instead, multi-scale methods must be used. In our recent work, where computational methods were employed to solve for airflow and particle transport in the rat airways (Oakes et al. (2014), Annals of Biomedical Engineering 42, 899), the number of particles to exit downstream of the 3D domain was determined. In this current work, the time-dependent Lagrangian description of particles was used to numerically solve a 1D convection-diffusion model (trumpet model, Taulbee and Yu (1975), Journal of Applied Physiology, 38, 77) parameterized specifically for the lung. The expansion of the airway dimensions was determined based on data collected from our aerosol exposure experiments (Oakes et al. (2014), Journal of Applied Physiology, 116, 1561). This 3D-1D framework enables us to predict the fate of particles in the whole lung. This work was supported by the Whitaker Foundation at the IIE, a INRIA Associated Team Postdoc Grant, and a UC Presidential Fellowship.

  7. 3-D imaging of particle tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2010-05-01

    It has been suggested that 3 to 5% of total lung cancer deaths in the UK may be associated with elevated radon concentration. Radon gas levels can be assessed using CR-39 plastic detectors which are often assessed by 2-D image analysis of surface images. 3-D analysis has the potential to provide information relating to the angle at which alpha particles impinge on the detector. In this study we used a "LEXT" OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan) to image tracks on five CR-39 detectors. We were able to identify several patterns of single and coalescing tracks from 3-D visualisation. Thus this method may provide a means of detailed 3-D analysis of Solid State Nuclear Track Detectors.

  8. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  9. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  10. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    PubMed

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  11. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    PubMed

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. PMID:26042625

  12. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  13. Ultra-high-speed 3D astigmatic particle tracking velocimetry: application to particle-laden supersonic impinging jets

    NASA Astrophysics Data System (ADS)

    Buchmann, N. A.; Cierpka, C.; Kähler, C. J.; Soria, J.

    2014-11-01

    The paper demonstrates ultra-high-speed three-component, three-dimensional (3C3D) velocity measurements of micron-sized particles suspended in a supersonic impinging jet flow. Understanding the dynamics of individual particles in such flows is important for the design of particle impactors for drug delivery or cold gas dynamic spray processing. The underexpanded jet flow is produced via a converging nozzle, and micron-sized particles ( d p = 110 μm) are introduced into the gas flow. The supersonic jet impinges onto a flat surface, and the particle impact velocity and particle impact angle are studied for a range of flow conditions and impingement distances. The imaging system consists of an ultra-high-speed digital camera (Shimadzu HPV-1) capable of recording rates of up to 1 Mfps. Astigmatism particle tracking velocimetry (APTV) is used to measure the 3D particle position (Cierpka et al., Meas Sci Technol 21(045401):13, 2010) by coding the particle depth location in the 2D images by adding a cylindrical lens to the high-speed imaging system. Based on the reconstructed 3D particle positions, the particle trajectories are obtained via a higher-order tracking scheme that takes advantage of the high temporal resolution to increase robustness and accuracy of the measurement. It is shown that the particle velocity and impingement angle are affected by the gas flow in a manner depending on the nozzle pressure ratio and stand-off distance where higher pressure ratios and stand-off distances lead to higher impact velocities and larger impact angles.

  14. 3D numerical simulations of volcanic plume and tephra dispersal: Reconstruction of the 2014 Kelud eruption

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Iguchi, M.; Maeno, F.; Nakada, S.; Hashimoto, A.; Shimbori, T.; Ishii, K.

    2014-12-01

    The heights and expansion rate of eruption cloud and the dispersal pattern of tephra particles are key observable data for understanding the dynamics of volcanic plume. In general, when the volcanic plume rises in a stationary environment, the plume height and expansion rate of the umbrella cloud increases as the eruption intensity (i.e., the magma discharge rate) increases. On the other hand, when the plume is distorted by the atmospheric wind, it is difficult to quantify the relationship between the eruption conditions and the observable data. Therefore, we aim to develop a three-dimensional numerical model of volcanic plume and directly reproduce the plume dynamics and the tephra dispersal. We performed a numerical simulation of the 2014 eruption at Mount Kelud, Java, Indonesia, which formed a large volcanic plume and umbrella cloud in the wind field. We employ a 3D numerical model which is designed to simulate the injection of tephra particles and volcanic gas from a circular vent into the stratified atmosphere, using a combination of a pseudo-gas model for fluid motion and a Lagrangian model for particle motion (Suzuki and Koyaguchi, 2013 EPS). Using the estimated total mass (3.9—6.4×1011 kg) and the eruption duration (2.5 - 3 hours), the average mass discharge rate is estimated to be 3.6—7.1×107 kg/s. In this study, the magma discharge rate is set to be 5×107 kg/s. The weather data based on the radiosonde observation in Surabaya is applied to the atmospheric condition. The simulation results indicate that the top of plume reaches to nearly 30 km and the umbrella cloud radially spreads at the height of 17—20 km high. These simulated heights are consistent with the observations (e.g., NASA Earth Observatory). The particles are transported by the gravity current of the umbrella cloud. Between the umbrella cloud and the ground, the particles separated from the cloud are drifted by the easterly wind. Therefore, the dispersal axis of the main fall deposits

  15. 3D monolithically stacked CMOS Active Pixel Sensors for particle position and direction measurements

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Passeri, D.; Morozzi, A.; Magalotti, D.; Piperku, L.

    2015-01-01

    In this work we propose a 3D monolithically stacked, multi-layer detectors based on CMOS Active Pixel Sensors (APS) layers which allows at the same time accurate estimation of the impact point and of the incidence angle an ionizing particle. The whole system features two fully-functional CMOS APS matrix detectors, including both sensing area and control/signal elaboration circuitry, stacked in a monolithic device by means of Through Silicon Via (TSV) connections thanks to the capabilities of the CMOS vertical scale integration (3D-IC) 130 nm Chartered/Tezzaron technology. In order to evaluate the suitability of the two layer monolithic active pixel sensor system to reconstruct particle tracks, tests with proton beams have been carried out at the INFN LABEC laboratories in Florence (Italy) with 3 MeV proton beam.

  16. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  17. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  18. 3D simulations of multipacting in the 56 MHz SRF cavity

    SciTech Connect

    Wu Q.; Belomestnykh, S.; Ge, L.; Ko, K.; Li, Z.; Ng, C.; Xiao, L.

    2012-05-20

    The 56 MHz SRF Quarter-Wave Resonator (QWR) is designed for RHIC as a storage cavity to improve the collider performance. 2D multipacting simulation has been done for the cavity alone. Ripples were added to the outer body of the cavity for multipacting suppression based on the simulation findings. During operation, there will be four higher order mode (HOM) couplers. All of these components will be exposed to high RF fields. In this paper we compare 2D and 3D codes simulation results for multipacting in the cavity. We also report 3D simulation results for multipacting simulation at the couplers.

  19. Characterization of an SRF gun: a 3D full wave simulation

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-03-28

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  20. Measurements of 3D relative locations of particles by Fourier Interferometry Imaging (FII).

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Grehan, Gérard

    2011-06-20

    In a large number of physical systems formed of discrete particles, a key parameter is the relative distance between the objects, as for example in studies of spray evaporation or droplets micro-explosion. This paper is devoted to the presentation of an approach where the relative 3D location of particles in the control volume is accurately extracted from the interference patterns recorded at two different angles. No reference beam is used and only ten (2 + 8) 2D-FFT have to be computed. PMID:21716513

  1. LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.

  2. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  3. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  4. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.

    PubMed

    Gallo, Diego; Gülan, Utku; Di Stefano, Antonietta; Ponzini, Raffaele; Lüthi, Beat; Holzner, Markus; Morbiducci, Umberto

    2014-09-22

    Parallel to the massive use of image-based computational hemodynamics to study the complex flow establishing in the human aorta, the need for suitable experimental techniques and ad hoc cases for the validation and benchmarking of numerical codes has grown more and more. Here we present a study where the 3D pulsatile flow in an anatomically realistic phantom of human ascending aorta is investigated both experimentally and computationally. The experimental study uses 3D particle tracking velocimetry (PTV) to characterize the flow field in vitro, while finite volume method is applied to numerically solve the governing equations of motion in the same domain, under the same conditions. Our findings show that there is an excellent agreement between computational and measured flow fields during the forward flow phase, while the agreement is poorer during the reverse flow phase. In conclusion, here we demonstrate that 3D PTV is very suitable for a detailed study of complex unsteady flows as in aorta and for validating computational models of aortic hemodynamics. In a future step, it will be possible to take advantage from the ability of 3D PTV to evaluate velocity fluctuations and, for this reason, to gain further knowledge on the process of transition to turbulence occurring in the thoracic aorta.

  5. Comparison between 2.5D and 3D simulations of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; van der Holst, B.; Poedts, S.

    2007-07-01

    Context: The shocks and magnetic clouds related to Coronal Mass Ejections (CMEs) in the solar corona and interplanetary space (IP) play an important role in the study of space weather. In order to study the evolution of these IP shocks, numerical simulations of a simplified CME model were performed. Aims: In an earlier study, the effect of the background wind on the evolution of interplanetary shock waves was investigated, where the computations were carried out under the assumption of axial symmetry. The assumption of axial symmetry might be a good approach for the solar corona under conditions of solar minimum, but for the study of CMEs this assumption is definitely no longer valid as CMEs possess clearly a fully three dimensional (3D) structure. From this perspective, the previous simulations were repeated, but now in a three dimensional set-up in order to point out the differences between the 2.5D and 3D simulations and to check the quality and reliability of the 2.5D simulations. Methods: The computations were performed in the framework of ideal magnetohydrodynamics (MHD) and to advance the ideal MHD equations in time a parallel finite volume code with explicit upwind solver was used. The shock waves are generated in a similar way in both the 3D and 2.5D simulations, namely by a simple density-blob model. The 3D and 2.5D simulations are all performed with the same numerical methods and on comparable grids, such that the differences between the simulations are purely due to the dimensionality of the problem, and/or the initial parameters for the CME generation. Results: Three different axisymmetric simulations of CME propagation are compared with the fully three dimensional computation. The 2.5D simulations differ from each other in the parameters used for CME initiation. In a first simulation, the same initial parameters as for the 3D case were taken, in a second simulation the initial amount of mass in the 2.5D and 3D CME was the same, and in a third

  6. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  7. Multi-scale 3D simulation of lightning and thunderstorm electrodynamics

    NASA Astrophysics Data System (ADS)

    Kabirzadeh, R.; Lehtinen, N. G.; Liang, C.; Cohen, M.; Inan, U.

    2014-12-01

    Despite centuries studying thunderstorm electrodynamics, our understanding of these phenomena remains limited. The difficulty lies partly in the large number of processes and their mutual dependency and the wide range of temporal and the spatial scales involved. In this study we combine two numerical models to move toward a simulation that addresses these broad scales. First, we use a 3D numerical model to calculate the large scale quasi-electrostatic (QES) fields and charge distributions built up by updrafts in the thundercloud. This model self-consistently accounts for the conductivities, particle densities, large scale currents and charging mechanisms inside a thundercloud in the atmosphere. Second, we use a time-domain fractal lightning (TDFL) model developed that takes into account both the thermodynamics and electrodynamics of leader development and the return stroke on small time and spatial scales (Liang et al. 2014). The QES model simulates slow thunderstorm charging dynamics, and then passes the state to the TDFL model when a flash is ready to trigger. Using this combined simulation, we explain some recently observed patterns of lightning inside a thunderstorm and within a flash (e.g. Zoghzoghy et al. 2013, 2014). We attempt to constrain properties of the thundercloud like the size and shape of the charge pockets removed from the thundercloud, the flash rate and updraft currents, the relative occurrence rate of different types of lightning, and the cloud charge distribution structure effects on the lightning type.

  8. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  9. 3D printing enables separation of orthogonal functions within a hydrogel particle.

    PubMed

    Raman, Ritu; Clay, Nicholas E; Sen, Sanjeet; Melhem, Molly; Qin, Ellen; Kong, Hyunjoon; Bashir, Rashid

    2016-06-01

    Multifunctional particles with distinct physiochemical phases are required by a variety of applications in biomedical engineering, such as diagnostic imaging and targeted drug delivery. This motivates the development of a repeatable, efficient, and customizable approach to manufacturing particles with spatially segregated bioactive moieties. This study demonstrates a stereolithographic 3D printing approach for designing and fabricating large arrays of biphasic poly (ethylene glycol) diacrylate (PEGDA) gel particles. The fabrication parameters governing the physical and biochemical properties of multi-layered particles are thoroughly investigated, yielding a readily tunable approach to manufacturing customizable arrays of multifunctional particles. The advantage in spatially organizing functional epitopes is examined by loading superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA) in separate layers of biphasic PEGDA gel particles and examining SPION-induced magnetic resonance (MR) contrast and BSA-release kinetics. Particles with spatial segregation of functional moieties have demonstrably higher MR contrast and BSA release. Overall, this study will contribute significant knowledge to the preparation of multifunctional particles for use as biomedical tools. PMID:27215416

  10. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  11. 3D printing enables separation of orthogonal functions within a hydrogel particle.

    PubMed

    Raman, Ritu; Clay, Nicholas E; Sen, Sanjeet; Melhem, Molly; Qin, Ellen; Kong, Hyunjoon; Bashir, Rashid

    2016-06-01

    Multifunctional particles with distinct physiochemical phases are required by a variety of applications in biomedical engineering, such as diagnostic imaging and targeted drug delivery. This motivates the development of a repeatable, efficient, and customizable approach to manufacturing particles with spatially segregated bioactive moieties. This study demonstrates a stereolithographic 3D printing approach for designing and fabricating large arrays of biphasic poly (ethylene glycol) diacrylate (PEGDA) gel particles. The fabrication parameters governing the physical and biochemical properties of multi-layered particles are thoroughly investigated, yielding a readily tunable approach to manufacturing customizable arrays of multifunctional particles. The advantage in spatially organizing functional epitopes is examined by loading superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA) in separate layers of biphasic PEGDA gel particles and examining SPION-induced magnetic resonance (MR) contrast and BSA-release kinetics. Particles with spatial segregation of functional moieties have demonstrably higher MR contrast and BSA release. Overall, this study will contribute significant knowledge to the preparation of multifunctional particles for use as biomedical tools.

  12. Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.

    2016-11-01

    An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.

  13. Simulation of bacteria transport processes in a river with Flow3D

    NASA Astrophysics Data System (ADS)

    Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter

    2014-05-01

    Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.

  14. Single particle 3D reconstruction for 2D crystal images of membrane proteins.

    PubMed

    Scherer, Sebastian; Arheit, Marcel; Kowal, Julia; Zeng, Xiangyan; Stahlberg, Henning

    2014-03-01

    In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.

  15. Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology

    PubMed Central

    El-Hamidi, Hamid; Celli, Jonathan P.

    2014-01-01

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  16. Simulation of a new 3D imaging sensor for identifying difficult military targets

    NASA Astrophysics Data System (ADS)

    Harvey, Christophe; Wood, Jonathan; Randall, Peter; Watson, Graham; Smith, Gordon

    2008-04-01

    This paper reports the successful application of automatic target recognition and identification (ATR/I) algorithms to simulated 3D imagery of 'difficult' military targets. QinetiQ and Selex S&AS are engaged in a joint programme to build a new 3D laser imaging sensor for UK MOD. The sensor is a 3D flash system giving an image containing range and intensity information suitable for targeting operations from fast jet platforms, and is currently being integrated with an ATR/I suite for demonstration and testing. The sensor has been extensively modelled and a set of high fidelity simulated imagery has been generated using the CAMEO-SIM scene generation software tool. These include a variety of different scenarios (varying range, platform altitude, target orientation and environments), and some 'difficult' targets such as concealed military vehicles. The ATR/I algorithms have been tested on this image set and their performance compared to 2D passive imagery from the airborne trials using a Wescam MX-15 infrared sensor and real-time ATR/I suite. This paper outlines the principles behind the sensor model and the methodology of 3D scene simulation. An overview of the 3D ATR/I programme and algorithms is presented, and the relative performance of the ATR/I against the simulated image set is reported. Comparisons are made to the performance of typical 2D sensors, confirming the benefits of 3D imaging for targeting applications.

  17. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  18. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming

  19. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  20. Waveform Simulations For TAIGER Data Sets From Taiwan 3D Reference Velocity And Moho Boundary Models

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Chen, H.; Zhao, L.

    2008-12-01

    Studying seismic waveform variations in space and time is an important issue to investigate structural heterogeneities and ground motion responses for seismic hazard mitigation. The available 3D reference velocity models from transmission tomography studies are mainly limited by depth resolution, refraction arrival picks without explicit considering later phases and the spatial distribution of earthquakes and stations. Seismic data collected from the TAIGER (TAiwan Integrated GEodynamics Research) project can provide a valuable opportunity for studying deep crust structures. Evaluation of 3D reference models and update their shallow velocity structure is presented through travel-time and waveforms studies. Even though a well-defined multi-scaled reference velocity model of Taiwan is being debated, existing models are still important to study the structural heterogeneities and path effects through parallel computation of 4th-order staggered grid FD 3D waveform simulation. Simulation utilizes both far-field point and finite-dimensional moment tensor sources to investigate effects on Moho reflections and lateral velocity variations. Constraints on Moho reference boundary obtained from receiver function studies is discussed and compared with data collected from TAIGER project. For controlled source experiments, synthetic simulations show clear and focused Moho reflections in the 3-C data. Simultaneous 3D simulation of all available seismic records provides unique constraints on reference velocity model known so far. The waveform simulation will provide a fundamental research platform for future full 3D waveform inversion.

  1. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Kleshcheva, S. M.; Perov, D. V.

    2016-02-01

    The magnetic properties of 3D nanocomposites representing Mn-Zn, Ni-Zn, Co-Zn, La-Co-Zn, and Nd-Co-Zn spinel ferrite particles embedded in the interspherical spaces of opal matrices are studied. Experimental data are obtained in the temperature interval 2-300 K by measuring the magnetization at a static magnetic field strength of up to 50 kOe and the ac magnetic susceptibility at an alternating magnetic field amplitude of 4 kOe and a frequency of 80 Hz.

  2. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  3. 3D imaging of particle-scale rotational motion in cyclically driven granular flows

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang

    Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.

  4. Characteristic wavefield in an experimental rock sample inferred from a 3D FDM simulation

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, N.; Furumura, T.; Maeda, T.

    2014-12-01

    We investigate the origin of wave packets in elastic waves propagate through a rock sample based on a 3D finite difference method (FDM) simulation. Though direct waves of the transmitted waves have been applied to estimate the internal structure of a rock sample, later part of the waveforms did not utilized because their origin were unclear. Understanding the reflection and conversion effect in a rock sample would help to retrieve more information from whole waveform as with the analysis in natural fields. We numerically simulated the elastic wave propagation in a medium model which covers a cylindrical shape of a rock sample. The model was discretized into 1024 x 1024 x 2048 grid points with an interval of 54 micrometer in horizontal direction and 60 micrometer in vertical direction. The density, P wave velocity, and S wave velocity of the each grid point are assumed to be proportional to the X-ray absorption coefficient derived from the micro focus X-ray CT images of a Westery granite sample. We applied a single point force on the boundary of the model sample which mimics realistic transducer movement. The wave propagation movie obtained from the numerical simulation shows very complicated wavefield in a rock sample. Because a rock sample is small and closed, once waves are radiated, they were trapped in the sample by repeating reflection and conversion. Many reflected waves which followed by the converted waves were generated at the sample side surface as well as the upper and lower end. The phase with the largest amplitude propagate along the curved boundary was detected as Rayleigh wave from the particle motions on the sample side surface. Additionally, the surface waves were observed not only in the horizontal section but also in the vertical section. Our simulation indicated that the later phases of the transmitted waves are highly affected by the sample boundary. In order to extract accurate interior information from the transmitted waves, elimination

  5. An orthognathic simulation system integrating teeth, jaw and face data using 3D cephalometry.

    PubMed

    Noguchi, N; Tsuji, M; Shigematsu, M; Goto, M

    2007-07-01

    A method for simulating the movement of teeth, jaw and face caused by orthognathic surgery is proposed, characterized by the use of 3D cephalometric data for 3D simulation. Computed tomography data are not required. The teeth and facial data are obtained by a laser scanner and the data for the patient's mandible are reconstructed and integrated according to 3D cephalometry using a projection-matching technique. The mandibular form is simulated by transforming a generic model to match the patient's cephalometric data. This system permits analysis of bone movement at each individual part, while also helping in the choice of optimal osteotomy design considering the influences on facial soft-tissue form.

  6. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics

  7. A 3D Vector/Scalar Visualization and Particle Tracking Package

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively placemore » injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.« less

  8. A 3D Vector/Scalar Visualization and Particle Tracking Package

    SciTech Connect

    Freitag, Lori; Disz, Terry; Papka, Mike; Heath, Daniel; Diachin, Darin; Herzog, Jim; Ryan, and Bob

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively place injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.

  9. Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects

    NASA Astrophysics Data System (ADS)

    Dai, Y. Y.; Ng, M. Z.; Anantha, P.; Lin, Y. D.; Li, Z. G.; Gan, C. L.; Tan, C. S.

    2016-06-01

    An enhanced copper paste, formulated by copper micro- and nano-particles mixture, is reported to prevent paste cracking and obtain an improved packing density. The particle mixture of two different sizes enables reduction in porosity of the micro-paste and resolves the cracking issue in the nano-paste. In-situ temperature and resistance measurements indicate that the mixed paste has a lower densification temperature. Electrical study also shows a ˜12× lower sheet resistance of 0.27 Ω/sq. In addition, scanning electron microscope image analysis confirms a ˜50% lower porosity, which is consistent with the thermal and electrical results. The 3:1 (micro:nano, wt. %) mixed paste is found to have the strongest synergistic effect. This phenomenon is discussed further. Consequently, the mixed paste is a promising material for potential low temperature 3D interconnects fabrication.

  10. Stem dependence on stiffness in 3D RNA simulation using SimRNA

    NASA Astrophysics Data System (ADS)

    Dawson, Wayne; Boniecki, Michal; Bujnicki, Janusz

    2015-03-01

    SimRNA is a recently developed de novo 3D structure prediction program in our laboratory that uses the Monte Carlo method to search the conformation space of RNA using knowledge based energy functions. In developing the 3D model, we have also be exploring the larger physical questions about what generates differences in Kuhn length (a measure of stiffness) in biopolymers. In previoius work, this was shown to depend on the stem length and to be a function of the length and Young's modulus. A complete theoretical model was of the entropy changes due to the freezing out of degrees of freedom was developed base on this model. In this study, we find that this is further supported in the development of the 3D statitstical potentials for actual 3D simulations of RNA.

  11. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  12. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  13. Methods for obtaining 3D training images for multiple-point statistics simulations: a comparative study

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Comunian, A.; Mariethoz, G.; Kelly, B. F.

    2013-12-01

    In recent years, multiple-point statistics (MPS) has been used in several studies for characterizing facies heterogeneity in geological formations. MPS uses a conceptual representation of the expected facies distribution, called a Training image (TI), to generate patterns of facies heterogeneity. In two-dimensional (2D) simulations the TI can be a hand-drawn image, an analogue outcrop image, or derived from geological reconstructions using a combination of geological analogues and geophysical data. However, obtaining suitable TI in three-dimensions (3D) from geological analogues or geophysical data is harder and has limited the use of MPS for simulating facies heterogeneity in 3D. There have been attempts to generate 3D training images using object-based simulation (OBS). However, determining suitable values for the large number of parameters required by OBS is often challenging. In this study, we compare two approaches for generating three-dimensional training images to model a valley filling sequence deposited by meandering rivers. The first approach is based on deriving statistical information from two-dimensional TIs. The 3D domain is simulated with a sequence of 2D MPS simulation steps, performed along different directions on slices of the 3D domain. At each 2D simulation step, the facies simulated at the previous steps that lie on the current 2D slice are used as conditioning data. The second approach uses hand-drawn two-dimensional TIs and produces complex patterns resembling the geological structures by applying rotation and affinity transformations in the facies simulation. The two techniques are compared using transition probabilities, facies proportions, and connectivity metrics. In the presentation we discuss the benefits of each approach for generating three-dimensional facies models.

  14. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  15. From micro-scale 3D simulations to macro-scale model of periodic porous media

    NASA Astrophysics Data System (ADS)

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca

    2015-04-01

    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  16. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  17. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  18. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  19. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGESBeta

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  20. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  1. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars. PMID:25615301

  2. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations

    PubMed Central

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-01-01

    Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins. PMID:25271078

  3. 3-D Simulation of Sustain Discharge with Auxiliary Pulse in an AC-PDP

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Ishii, Keiji; Motoyama, Yasushi; Murakami, Yukio; Tachibana, Kunihide

    2004-09-01

    In order to improve the discharge characteristics of a surface discharge type alternating current plasma display panel (AC-PDP) with addressing and sustaining electrodes, voltage control of the addressing electrode of the cell by applying auxiliary pulses has been widely investigated. As the detailed mechanisms are not well understood, we used 3-D multi-fluid computer simulation to examine the mechanism for improving the efficiency of generating excited particles for emission of vacuum ultraviolet (VUV) rays. As a result, it was pointed out that the discharge volume was increased due to the influence of the high address voltage, and the electrons which spread in the cell space have sufficient energy to excite Xe atoms. When the voltage of the auxiliary pulse was high, the generation efficiency of Xe was improved about 40% compared with the case when the voltage was low, because the quantity of Xe^* generated increased sharply even though the power consumption increased. This result is the same as that already reported(Y. Shintani et al., J. Phys. D, Appl. Phys. 36, 2928(2003).), and so accurately reflects the actual phenomenon.

  4. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    PubMed

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  5. 3D numerical simulation analysis of passive drag near free surface in swimming

    NASA Astrophysics Data System (ADS)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  6. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  7. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish

    NASA Astrophysics Data System (ADS)

    Xin, ZhiQiang; Wu, ChuiJie

    2012-02-01

    Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.

  8. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  9. 3D structure determination of protein using TEM single particle analysis.

    PubMed

    Sato, Chikara; Mio, Kazuhiro; Kawata, Masaaki; Ogura, Toshihiko

    2014-11-01

    Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease

  10. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].

    PubMed

    Mashiko, Toshihiro; Yang, Qiang; Kaneko, Naoki; Konno, Takehiko; Yamaguchi, Takashi; Watanabe, Eiju

    2015-01-01

    We have been performing pre-surgical simulations using custom-built patient-specific 3D-models. Here we report the advantageous use of 3D-models for simulating microvascular decompression(MVD)for hemifacial spasms. Seven cases of MVD surgery were performed. Two types of 3D-printers were used to fabricate the 3D-models:one using plaster as the modeling material(Z Printer®450, 3D systems, Rock Hill, SC, USA)and the other using acrylonitrile butadiene styrene(ABS)(UP! Plus 3D printer®, Beijing Tiertime Technology, Beijing). We tested three types of models. Type 1 was a plaster model of the brainstem, cerebellum, facial nerve, and the artery compressing the root exit zone of the facial nerve. Part of the cerebellum was digitally trimmed off to observe "the compressing point" from the same angle as that used during actual surgery. Type 2 was a modified Type 1 in which part of the skull was opened digitally to mimic a craniectomy. Type 3 was a combined model in which the cerebellum and the artery of the Type 2 model were replaced by a soft retractable cerebellum and an elastic artery. The cerebellum was made from polyurethane and cast from a plaster prototype. To fabricate elastic arteries, liquid silicone was painted onto the surface of an ABS artery and the inner ABS model was dissolved away using solvent. In all cases, the 3D-models were very useful. Although each type has advantages, the Type-3 model was judged extremely useful for training junior surgeons in microsurgical approaches.

  11. Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations

    NASA Astrophysics Data System (ADS)

    Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.

    2010-06-01

    Context. The poorly-ionized interior of the protoplanetary disk or “dead zone” is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims: Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods: We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results: The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the “butterfly pattern” seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual α between 10-4 and 10-3. The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions: The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible.

  12. Finite-element simulation of flanging in the deform 3D software package

    NASA Astrophysics Data System (ADS)

    Vostrov, V. N.; Kononov, P. V.

    2016-05-01

    The results of a finite element simulation of the rolling of cylindrical workpieces using the DEFORM 3D software package are presented. The curve of the limiting plasticity of L63 brass that corresponds to various schemes of the state of stress in a workpiece is plotted. The deformation paths of the characteristic regions in a rolled part are calculated.

  13. Building Chondrites: SPH Simulations of a Jet Flow in a 3D Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, N.; Bourdon, B.; Fitoussi, C.

    2016-08-01

    We present SPH simulations of jet flows in 3D discs to investigate the transport of refractory material toward the outer cold disc regions. Dust grains are captured by the disc at distances up to 40 AU, with dust aggregates mimicking chondrites.

  14. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  15. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  16. Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav S.

    2013-01-01

    The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…

  17. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  18. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  19. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  20. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  1. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  2. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  3. Single-Particle Cryo-EM and 3D Reconstruction of Hybrid Nanoparticles with Electron-Dense Components.

    PubMed

    Yu, Guimei; Yan, Rui; Zhang, Chuan; Mao, Chengde; Jiang, Wen

    2015-10-01

    Single-particle cryo-electron microscopy (cryo-EM), accompanied with 3D reconstruction, is a broadly applicable tool for the structural characterization of macromolecules and nanoparticles. Recently, the cryo-EM field has pushed the limits of this technique to higher resolutions and samples of smaller molecular mass, however, some samples still present hurdles to this technique. Hybrid particles with electron-dense components, which have been studied using single-particle cryo-EM yet with limited success in 3D reconstruction due to the interference caused by electron-dense elements, constitute one group of such challenging samples. To process such hybrid particles, a masking method is developed in this work to adaptively remove pixels arising from electron-dense portions in individual projection images while maintaining maximal biomass signals for subsequent 2D alignment, 3D reconstruction, and iterative refinements. As demonstrated by the success in 3D reconstruction of an octahedron DNA/gold hybrid particle, which has been previously published without a 3D reconstruction, the devised strategy that combines adaptive masking and standard single-particle 3D reconstruction approach has overcome the hurdle of electron-dense elements interference, and is generally applicable to cryo-EM structural characterization of most, if not all, hybrid nanomaterials with electron-dense components.

  4. Polyribosomes are molecular 3D nanoprinters that orchestrate the assembly of vault particles.

    PubMed

    Mrazek, Jan; Toso, Daniel; Ryazantsev, Sergey; Zhang, Xing; Zhou, Z Hong; Fernandez, Beatriz Campo; Kickhoefer, Valerie A; Rome, Leonard H

    2014-11-25

    Ribosomes are molecular machines that function in polyribosome complexes to translate genetic information, guide the synthesis of polypeptides, and modulate the folding of nascent proteins. Here, we report a surprising function for polyribosomes as a result of a systematic examination of the assembly of a large ribonucleoprotein complex, the vault particle. Structural and functional evidence points to a model of vault assembly whereby the polyribosome acts like a 3D nanoprinter to direct the ordered translation and assembly of the multi-subunit vault homopolymer, a process which we refer to as polyribosome templating. Structure-based mutagenesis and cell-free in vitro expression studies further demonstrated the critical importance of the polyribosome in vault assembly. Polyribosome templating prevents chaos by ensuring efficiency and order in the production of large homopolymeric protein structures in the crowded cellular environment and might explain the origin of many polyribosome-associated molecular assemblies inside the cell.

  5. Ion counting from explicit-solvent simulations and 3D-RISM.

    PubMed

    Giambaşu, George M; Luchko, Tyler; Herschlag, Daniel; York, Darrin M; Case, David A

    2014-02-18

    The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20-25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na(+) binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability.

  6. Ion Counting from Explicit-Solvent Simulations and 3D-RISM

    PubMed Central

    Giambaşu, George M.; Luchko, Tyler; Herschlag, Daniel; York, Darrin M.; Case, David A.

    2014-01-01

    The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20–25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na+ binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability. PMID:24559991

  7. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  8. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations

    SciTech Connect

    Vescovi, D.; Berzi, D.; Richard, P.

    2014-05-15

    We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.

  9. Development of a 3D-printed external ventricular drain placement simulator: technical note.

    PubMed

    Tai, Bruce L; Rooney, Deborah; Stephenson, Francesca; Liao, Peng-Siang; Sagher, Oren; Shih, Albert J; Savastano, Luis E

    2015-10-01

    In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.

  10. XML-based 3D model visualization and simulation framework for dynamic models

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Fishwick, Paul A.

    2002-07-01

    Relatively recent advances in computer technology enable us to create three-dimensional (3D) dynamic models and simulate them within a 3D web environment. The use of such models is especially valuable when teaching simulation, and the concepts behind dynamic models, since the models are made more accessible to the students. Students tend to enjoy a construction process in which they are able to employ their own cultural and aesthetic forms. The challenge is to create a language that allows for a grammar for modeling, while simultaneously permitting arbitrary presentation styles. For further flexibility, we need an effective way to represent and simulate dynamic models that can be shared by modelers over the Internet. We present an Extensible Markup Language (XML)-based framework that will guide a modeler in creating personalized 3D models, visualizing its dynamic behaviors, and simulating the created models. A model author will use XML files to represent geometries and topology of a dynamic model. Model Fusion Engine, written in Extensible Stylesheet Language Transformation (XSLT), expedites the modeling process by automating the creation of dynamic models with the user-defined XML files. Modelers can also link simulation programs with a created model to analyze the characteristics of the model. The advantages of this system lie in the education of modeling and simulating dynamic models, and in the exploitation of visualizing the dynamic model behaviors.

  11. Development of a 3D-printed external ventricular drain placement simulator: technical note.

    PubMed

    Tai, Bruce L; Rooney, Deborah; Stephenson, Francesca; Liao, Peng-Siang; Sagher, Oren; Shih, Albert J; Savastano, Luis E

    2015-10-01

    In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement. PMID:26115472

  12. 3D Plasma Equilibrium and Stability with Hot Particle Anisotropic Pressure

    SciTech Connect

    Cooper, W. A.; Graves, J. P.; Hirshman, S. P.; Merkel, P.; Kisslinger, J.; Wobig, H. F. G.; Watanabe, K. Y.; Narushima, Y.

    2008-11-01

    The anisotropic pressure free-boundary three-dimsnsional (3D) equilibrium code ANI-MEC with nested magnetic flux surfaces has been developed as an extension of the VMEC2000 code. The preconditioning algorithm included is exploited to allow the computation of equilibrium states with radial force balance error improvements exceeding 4 orders of magnitude compared with the non-conditioned results. Large off-axis energetic particle deposition has been applied in a 2-field period quasiaxisymmetric stellarator reactor at <{beta}>{approx_equal}4.5% to test the limitations of the code. The hot particle pressures are roughly uniform around the flux surfaces when p{sub parallel}>p{sub perpendicular}. The fast particle perpendicular pressures localise in the region of deposition for p{sub perpendicular}>p{sub parallel}, while the energetic particle parallel pressures concentrate on the low-field side. Two anisotropic pressure models for global fluid stability implemented in the TERPSICHORE code have been applied to the LHD Heliotron for a sequence of equilibria with fixed <{beta}{sub dia}>{approx_equal}5%(<{beta}{sub th}>{approx_equal}3.5%) varying the fast particle temperature ratio T{sub parallel}/T{sub perpendicular}. Global magnetohydrodynamic modes are quasi-stable according to the model with rigid hot particle layers, while they become stabilised according to the fully interacting energetic particle model with increasing T{sub parallel}/T{sub perpendicular}. As T{sub parallel}/T{sub perpendicular} approaches 3, however, the n = 1 mode family becomes unstable. A transition from a nearly stable quasi-external ballooning-interchange structure to a weakly unstable internal kink mode takes place. The investigation of beam-driven fusion in a Heliotron system is broached. A background plasma with cold ions and warm electrons at <{beta}{sub ith}>{approx_equal}1% is examined with fixed T{sub parallel}/T{sub perpendicular} = 10 in which the hot particle contribution to <{beta

  13. 3D Plasma Equilibrium and Stability with Hot Particle Anisotropic Pressure

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Hirshman, S. P.; Merkel, P.; Kisslinger, J.; Wobig, H. F. G.; Watanabe, K. Y.; Narushima, Y.

    2008-11-01

    The anisotropic pressure free-boundary three-dimsnsional (3D) equilibrium code ANI-MEC with nested magnetic flux surfaces has been developed as an extension of the VMEC2000 code. The preconditioning algorithm included is exploited to allow the computation of equilibrium states with radial force balance error improvements exceeding 4 orders of magnitude compared with the non-conditioned results. Large off-axis energetic particle deposition has been applied in a 2-field period quasiaxisymmetric stellarator reactor at <β>≃4.5% to test the limitations of the code. The hot particle pressures are roughly uniform around the flux surfaces when p∥>p⊥. The fast particle perpendicular pressures localise in the region of deposition for p⊥>p∥, while the energetic particle parallel pressures concentrate on the low-field side. Two anisotropic pressure models for global fluid stability implemented in the TERPSICHORE code have been applied to the LHD Heliotron for a sequence of equilibria with fixed <βdia>≃5%(<βth>≃3.5%) varying the fast particle temperature ratio T∥/T⊥. Global magnetohydrodynamic modes are quasi-stable according to the model with rigid hot particle layers, while they become stabilised according to the fully interacting energetic particle model with increasing T∥/T⊥. As T∥/T⊥ approaches 3, however, the n = 1 mode family becomes unstable. A transition from a nearly stable quasi-external ballooning-interchange structure to a weakly unstable internal kink mode takes place. The investigation of beam-driven fusion in a Heliotron system is broached. A background plasma with cold ions and warm electrons at <βith>≃1% is examined with fixed T∥/T⊥ = 10 in which the hot particle contribution to <β> is increased. An equilibrium limit is reached when the hot parallel component <β∥h> exceeds 6.1%. The rigid model predicts stability, while the fully interacting model shows stabilisation for <β∥h greater than 3%.

  14. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared.

  15. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449

  16. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

    PubMed

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

    2015-03-20

    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics.

  17. Parallel 3-D Electromagnetic Particle Code Using High Performance FORTRAN: Parallel TRISTAN

    NASA Astrophysics Data System (ADS)

    Cai, D.; Li, Y.; Nishikawa, K.-I.; et al.

    A three-dimensional full electromagnetic particle-in-cell (PIC ) code, TRISTAN (Tridimensional Stanford) code, has been parallelized using High Performance Fortran (HPF) as a RPM (Real Parallel Machine). In the parallelized HPF code, the simulation domain is decomposed in one-dimension, and both the particle and field data located in each domain that we call the sub-domain are distributed on each processor. Both the particle and field data on a sub-domain are needed by the neighbor sub-domains and thus communications between the sub-domains are inevitable. Our simulation results using HPF exhibit the promising applicability of the HPF communications to a large scale scientific computing such as solar wind-magnetosphere interactions.

  18. Multidimensional multiphysics simulation of TRISO particle fuel

    NASA Astrophysics Data System (ADS)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Pastore, G.

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite element nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellent comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. The code's ability to use the same algorithms and models to solve problems of varying dimensionality from 1D through 3D is demonstrated. The code provides rapid solutions of 1D spherically symmetric and 2D axially symmetric models, and its scalable parallel processing capability allows for solutions of large, complex 3D models. Additionally, the flexibility to easily include new physical and material models and straightforward ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.

  19. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  20. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  1. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  2. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  3. 2D and 3D simulations of damage in 5-grain copper gas gun samples

    SciTech Connect

    Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F

    2010-12-16

    2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

  4. SU-E-T-380: Particle Microdosimetry Study Based On 3D-Cylindrical Silicon Radiaton Detectors

    SciTech Connect

    Guardiola, C; Carabe-Fernandez, A; Gomez, F; Pellegrini, G; Fleta, C; Quirion, D; Lozano, M

    2014-06-01

    Purpose: A new design of a solid-state-microdetector based on silicon 3D microfabrication and its performance to characterise Lineal energy, Specific Energy, dose, LET and other microdosimetric variables required for modelling particle relative biological effectiveness (RBE) is presented. Methods: A microdosimeter formed by a matrix of independent sensors with well-defined micrometric cylindrical shape and with a volume similar to those of cellular dimensions is used to measure microdosimetric variables. Each sensor measures the radiation deposited energy which, divided by the mean cord length of the sensors, provides us with the Linear Energy (y) of the radiation as well as its energy distribution, and frequencymean. Starting from the these distributions in different points of a proton beam, we generate biophysical data (e.g. Linear Energy Transfer (LET), Specific Energy (z), etc…) needed for relative biological effectiveness (RBE) calculations radiation effect models used in particle radiotherapy treatment planning. In addition, a Tissue Equivalent Proportional Counter (TEPC) will be used as baseline to calibrate the “y” magnitude of the microdosimeter unit-cells. Results: The experimental measurements will soon be carried out at the Perelman Center for Advanced Medicine (University of Pennsylvania), which provides proton beam for clinical research proposals. The results of distributions measured of the microdosimetric variables from the first tests developed in the proton facility will be presented and compared with Monte Carlo simulations using the Geant4 code. Conclusion: The use of 3D microdosimeters such as the one presented here will enhance the accuracy of RBE calculations normally affected by the inherent uncertainty of monte carlo simulations due to the approximation of material composition and energy dependent physical laws involved in such calculations. The effect of such approximations will be quatified by comparison with absolute measurement of

  5. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds.

    PubMed

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2016-01-01

    We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were strongly favored by our participants for intuitiveness and efficiency.

  6. Single particle cryo-electron microscopy and 3-D reconstruction of viruses.

    PubMed

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.

  7. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  8. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  9. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    PubMed

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-01

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  10. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  11. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  12. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    NASA Astrophysics Data System (ADS)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  13. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  14. Determination of key parameters of SEU occurrence using 3-D full cell SRAM simulations

    SciTech Connect

    Roche, P.; Palau, J.M.; Bruguier, G.; Tavernier, C.; Ecoffet, R.; Gasiot, J.

    1999-12-01

    A 3-D entire SRAM cell, based on a 0.35-{micro}m current CMOS technology, is simulated in this work with a DEVICE simulator. The transient current, resulting from a heavy ion strike in the most sensitive region of the cell, is studied as a function of the LET value, the cell layout and the ion penetration depth. A definition of the critical charge is proposed and two new methods are presented to compute this basic amount of charge only using SPICE simulations. Numerical applications are performed with two different generations of submicron CMOS technologies, including the determination of the sensitive thicknesses.

  15. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    SciTech Connect

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  16. A cut cell method for the 3D simulation of Crookes radiometer

    SciTech Connect

    Dechriste, Guillaume; Mieussens, Luc

    2014-12-09

    Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.

  17. Random Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations.

  18. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  19. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    PubMed Central

    Ploeger, Lennert S.; Beliën, Jeroen A.M.; Poulin, Neal M.; Grizzle, William; van Diest, Paul J.

    2004-01-01

    Background: Confocal Laser Scanning Microscopy (CLSM) provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV) of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable. PMID:15371645

  20. Nonlinear Evolution of a 3D Inertial Alfvén Wave and Its Implication in Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Yadav, Nitin; Sharma, R. P.

    2016-03-01

    A simulation based on a pseudo-spectral method has been performed in order to study particle acceleration. A model for the acceleration of charged particles by field localization is developed for the low-β plasma. For this purpose, a fractional diffusion approach has been employed. The nonlinear interaction between a 3D inertial Alfvén wave and a slow magnetosonic wave has been examined, and the dynamical equations of these two waves in the presence of ponderomotive nonlinearity have been solved numerically. The nonlinear evolution of the inertial Alfvén wave in the presence of slow magnetosonic wave undergoes a filamentation instability and results in field intensity localization. The results obtained show the localization and power spectrum of inertial Alfvén wave due to nonlinear coupling. The scaling obtained after the first break point of the magnetic power spectrum has been used to calculate the formation of the thermal tail of energetic particles in the solar corona.

  1. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  2. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  3. Co-located haptic and 3D graphic interface for medical simulations.

    PubMed

    Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian

    2013-01-01

    We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.

  4. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  5. SEM simulation for 2D and 3D inspection metrology and defect review

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer

    2014-03-01

    Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.

  6. Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling

    NASA Astrophysics Data System (ADS)

    Serafini, David B.; McCorquodale, Peter; Colella, Phillip

    2005-01-01

    We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the load

  7. Numerical Simulation of 3D particulate flow by Coupling Multi-Fluid Model with Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Guo, Liancheng; Morita, Koji; Tagami, Hirotaka; Tobita, Yoshiharu

    2014-06-01

    The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In CDAs, the motions and interactions of solid particles, such as refrozen fuels, disrupted pellets, etc., not only dominate fundamental behaviors of multiphase flows, but also drastically influence the process of CDAs. The fast reactor safety analysis code, SIMMER-IV, which is a 3D, multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model, was successfully applied to a series of CDA assessments. However, strong interactions among solid particles as well as particle characteristics in multiphase flows with rich solid particles were not taken into consideration for fluid-dynamics models of SIMMER-IV. In this article, a hybrid method for multiphase flow analysis is developed by coupling the discrete element method (DEM) with the multi-fluid model of SIMMER-IV. In the coupling algorithm, motions of liquid and gas phases are solved by a time-factorization (time-splitting) method. For the solid phases, contacts among particles and interactions with fluid phases are considered through DEM. Numerical simulations of dam-break behavior with rich solid particles show reasonable agreements with corresponding experimental results. It is expected that SIMMER-IV coupled with DEM could provide a promising and useful computational tool for complicated multiphase-flow phenomena with high concentration of solid particles.

  8. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  9. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    NASA Astrophysics Data System (ADS)

    Hua, Weihong; Yang, Zining; Wang, Hongyan

    2012-01-01

    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  10. Optimisation of trench isolated bipolar transistors on SOI substrates by 3D electro-thermal simulations

    NASA Astrophysics Data System (ADS)

    Nigrin, S.; Armstrong, G. A.; Kranti, A.

    2007-09-01

    This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area.

  11. 3D Immersive Patient Simulators and Their Impact on Learning Success: A Thematic Review

    PubMed Central

    Wahba, Roger; Chang, De-Hua; Plum, Patrick; Hölscher, Arnulf H; Stippel, Dirk L

    2015-01-01

    Background Immersive patient simulators (IPSs) combine the simulation of virtual patients with a three-dimensional (3D) environment and, thus, allow an illusionary immersion into a synthetic world, similar to computer games. Playful learning in a 3D environment is motivating and allows repetitive training and internalization of medical workflows (ie, procedural knowledge) without compromising real patients. The impact of this innovative educational concept on learning success requires review of feasibility and validity. Objective It was the aim of this paper to conduct a survey of all immersive patient simulators currently available. In addition, we address the question of whether the use of these simulators has an impact on knowledge gain by summarizing the existing validation studies. Methods A systematic literature search via PubMed was performed using predefined inclusion criteria (ie, virtual worlds, focus on education of medical students, validation testing) to identify all available simulators. Validation testing was defined as the primary end point. Results There are currently 13 immersive patient simulators available. Of these, 9 are Web-based simulators and represent feasibility studies. None of these simulators are used routinely for student education. The workstation-based simulators are commercially driven and show a higher quality in terms of graphical quality and/or data content. Out of the studies, 1 showed a positive correlation between simulated content and real content (ie, content validity). There was a positive correlation between the outcome of simulator training and alternative training methods (ie, concordance validity), and a positive coherence between measured outcome and future professional attitude and performance (ie, predictive validity). Conclusions IPSs can promote learning and consolidation of procedural knowledge. The use of immersive patient simulators is still marginal, and technical and educational approaches are heterogeneous

  12. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  13. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    NASA Astrophysics Data System (ADS)

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul

    2016-04-01

    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  14. Simulation and testing of a multichannel system for 3D sound localization

    NASA Astrophysics Data System (ADS)

    Matthews, Edward Albert

    Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.

  15. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahdi Esmaily; Vignon-Clementel, Irene E.; Figliola, Richard; Marsden, Alison L.; Modeling Of Congenital Hearts Alliance (Mocha) Investigators

    2013-07-01

    Implementation of boundary conditions in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. The use of elaborate closed-loop lumped parameter network (LPN) models of the heart and the circulatory system as boundary conditions for computational fluid dynamics (CFD) simulations can provide valuable global dynamic information, particularly for patient specific simulations. In this paper, the necessary formulation for coupling an arbitrary LPN to a finite element Navier-Stokes solver is presented. A circuit analogy closed-loop LPN is solved numerically, and pressure and flow information is iteratively passed between the 0D and 3D domains at interface boundaries, resulting in a time-implicit scheme. For Neumann boundaries, an implicit method, regardless of the LPN, is presented to achieve the desired stability and convergence properties. Numerical procedures for passing flow and pressure information between the 0D and 3D domains are described, and implicit, semi-implicit, and explicit quasi-Newton formulations are compared. The issue of divergence in the presence of backflow is addressed via a stabilized boundary formulation. The requirements for coupling Dirichlet boundary conditions are also discussed and this approach is compared in detail to that of the Neumann coupled boundaries. Having the option to select between Dirichlet and Neumann coupled boundary conditions increases the flexibility of current framework by allowing a wide range of components to be used at the 3D-0D interface.

  16. Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

    NASA Astrophysics Data System (ADS)

    Sigala, R.; Smerieri, A.; Schüz, A.; Camorani, P.; Erokhin, V.

    2013-10-01

    Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

  17. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  18. Understanding fiber mixture by simulation in 3D Polarized Light Imaging.

    PubMed

    Dohmen, Melanie; Menzel, Miriam; Wiese, Hendrik; Reckfort, Julia; Hanke, Frederike; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-05-01

    3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the

  19. The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations

    NASA Astrophysics Data System (ADS)

    Ellul, C.; Adjrad, M.; Groves, P.

    2016-10-01

    There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.

  20. MHD Simulations of Spherical Tori and Compact Stellarators Using M3D

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Park, W.; Tang, X.; Fu, G. Y.; Sugiyama, L.

    1999-11-01

    The M3D++ unstructured mesh version of the M3D code is being applied to low aspect ratio spherical torus disruption simulations. In addition to spherical tokamaks (ST), similar to NSTX, we also study spherical pinches (SP). It is possible to produce SP equilibria with 1 > q > 1/2, and toroidal current decreasing to zero at the wall. These SP equilibria have reverse magnetic shear except in a narrow layer near the wall. The equilibria are free of the global m=1 modes that plague low q pinches such as RFPs. However there can be unstable (m,n) = (2,3) modes. The M3D++ code has been extended to have the capability of using a 3D mesh in configuration space, suitable for stellarator equilibrium, stability, and nonlinear studies, including resistive effects. Equilibria can be initialized with VMEC output or generated from initial data. Applications to compact stellarator configurations such as the PPPL quasi axisymmetric design will be presented.

  1. Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars

    NASA Astrophysics Data System (ADS)

    Alvan, L.; Strugarek, A.; Brun, A. S.; Mathis, S.; Garcia, R. A.

    2015-09-01

    Context. The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. Aims: The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. Methods: We use a method of frequency filtering that reveals the path of individual gravity waves of different frequencies in the radiative zone. Results: We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g-modes). We also show that the energy carried by waves is distributed in different planes in the sphere, depending on their azimuthal wave number. Conclusions: We are able to isolate individual IGWs from a complex spectrum and to study their propagation in space and time. In particular, we highlight in this paper the necessity of studying the propagation of waves in 3D spherical geometry, since the distribution of their energy is not equipartitioned in the sphere.

  2. Battery Particle Simulation

    SciTech Connect

    2014-09-15

    Two simulations show the differences between a battery being drained at a slower rate, over a full hour, versus a faster rate, only six minutes (a tenth of an hour). In both cases battery particles go from being fully charged (green) to fully drained (red), but there are significant differences in the patterns of discharge based on the rate.

  3. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  4. Monitoring an eruption fissure in 3D: video recording, particle image velocimetry and dynamics

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2015-04-01

    The processes during an eruption are very complex. To get a better understanding several parameters are measured. One of the measured parameters is the velocity of particles and patterns, as ash and emitted magma, and of the volcano itself. The resulting velocity field provides insights into the dynamics of a vent. Here we test our algorithm for 3 dimensional velocity fields on videos of the second fissure eruption of Bárdarbunga 2014. There we acquired videos from lava fountains of the main fissure with 2 high speed cameras with small angles between the cameras. Additionally we test the algorithm on videos from the geyser Strokkur, where we had 3 cameras and larger angles between the cameras. The velocity is calculated by a correlation in the Fourier space of contiguous images. Considering that we only have the velocity field of the surface smaller angles result in a better resolution of the existing velocity field in the near field. For general movements also larger angles can be useful, e.g. to get the direction, height and velocity of eruption clouds. In summary, it can be stated that 3D velocimetry can be used for several application and with different setup due to the application.

  5. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  6. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  7. Performance of dental students versus prosthodontics residents on a 3D immersive haptic simulator.

    PubMed

    Eve, Elizabeth J; Koo, Samuel; Alshihri, Abdulmonem A; Cormier, Jeremy; Kozhenikov, Maria; Donoff, R Bruce; Karimbux, Nadeem Y

    2014-04-01

    This study evaluated the performance of dental students versus prosthodontics residents on a simulated caries removal exercise using a newly designed, 3D immersive haptic simulator. The intent of this study was to provide an initial assessment of the simulator's construct validity, which in the context of this experiment was defined as its ability to detect a statistically significant performance difference between novice dental students (n=12) and experienced prosthodontics residents (n=14). Both groups received equivalent calibration training on the simulator and repeated the same caries removal exercise three times. Novice and experienced subjects' average performance differed significantly on the caries removal exercise with respect to the percentage of carious lesion removed and volume of surrounding sound tooth structure removed (p<0.05). Experienced subjects removed a greater portion of the carious lesion, but also a greater volume of the surrounding tooth structure. Efficiency, defined as percentage of carious lesion removed over drilling time, improved significantly over the course of the experiment for both novice and experienced subjects (p<0.001). Within the limitations of this study, experienced subjects removed a greater portion of carious lesion on a 3D immersive haptic simulator. These results are a first step in establishing the validity of this device. PMID:24706694

  8. Performance of dental students versus prosthodontics residents on a 3D immersive haptic simulator.

    PubMed

    Eve, Elizabeth J; Koo, Samuel; Alshihri, Abdulmonem A; Cormier, Jeremy; Kozhenikov, Maria; Donoff, R Bruce; Karimbux, Nadeem Y

    2014-04-01

    This study evaluated the performance of dental students versus prosthodontics residents on a simulated caries removal exercise using a newly designed, 3D immersive haptic simulator. The intent of this study was to provide an initial assessment of the simulator's construct validity, which in the context of this experiment was defined as its ability to detect a statistically significant performance difference between novice dental students (n=12) and experienced prosthodontics residents (n=14). Both groups received equivalent calibration training on the simulator and repeated the same caries removal exercise three times. Novice and experienced subjects' average performance differed significantly on the caries removal exercise with respect to the percentage of carious lesion removed and volume of surrounding sound tooth structure removed (p<0.05). Experienced subjects removed a greater portion of the carious lesion, but also a greater volume of the surrounding tooth structure. Efficiency, defined as percentage of carious lesion removed over drilling time, improved significantly over the course of the experiment for both novice and experienced subjects (p<0.001). Within the limitations of this study, experienced subjects removed a greater portion of carious lesion on a 3D immersive haptic simulator. These results are a first step in establishing the validity of this device.

  9. 3D simulation and analytical model of chemical heating during silicon wet etching in microchannels

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-02-01

    We investigate chemical heating of a Silicon-on-Glass (SOG) chip during a highly exothermic reaction of silicon etching in potassium hydroxide (KOH) solution in a microchannel of 100-micron width inside a 1x1 cm SOG chip. Two modeling approaches have been developed, implemented and compared. (1) A detailed 3D model is based on unsteady Navier-Stokes equations, heat and mass transfer equations of a laminar flow of viscous incompressible fluid in microchannel, coupled to the heat transfer equation in the solid chip. 3D simulation results predicted temperature distributions for different KOH flow rates and silicon etching areas. Microchannels of a small diameter do not heat the chip due to the insufficient chemical heating of the cold fluid, whereas large-area etching (large channel diameter and/or length) leads to local overheating that may have negative effects on the device performance and durability. (2) A simplified analytical model solves a thermal balance equation describing the heating by chemical reactions inside the microchannel and energy loss by free convection of air around the chip. Analytical results compare well with the 3D simulations of a single straight microchannel, therefore the analytical model is suitable for quick estimation of process parameters. For complex microstructures, this simplified approach may be used as the first approximation.

  10. Full Core 3-D Simulation of a Partial MOX LWR Core

    SciTech Connect

    S. Bays; W. Skerjanc; M. Pope

    2009-05-01

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  11. Interactive 3D Visualization of Humboldt Bay Bridge Earthquake Simulation With High Definition Stereo Output

    NASA Astrophysics Data System (ADS)

    Ang, P. B.; Nayak, A.; Yan, J.; Elgamal, A.

    2006-12-01

    This visualization project involves the study of the Humboldt Bay Middle Channel Bridge, a Pacific Earthquake Engineering Research (PEER) testbed site, subjected to an earthquake simulated by the Department of Structural Engineering, UCSD. The numerical simulation and data generation was carried out using the OpenSees finite element analysis platform, and GiD was employed for the mesh generation in preprocessing. In collaboration with the Scripps Visualization Center, the data was transformed into a virtual 3D world that a viewer could rotate around, zoom into, pan about, step through each timestep or examine in true stereo. The data consists of the static mesh of the bridge-foundation-ground elements, material indices for each type of element, the displacement amount of each element nodes over time, and the shear stress levels for each ground element over time. The Coin3D C++ Open Inventor API was used to parse the data and to render the bridge system in full 3D at 1130 individual time steps to show how the bridge structure and the surrounding soil elements interact during the full course of an earthquake. The results can be viewed interactively while using the program, saved as images and processed into animated movies, in resolutions as high as High Definition (1920x1080), or in stereo modes such as red-blue anaglyph.

  12. Surface processes on the asteroid deduced from the external 3D shapes and surface features of Itokawa particles

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Matsumoto, T.

    2015-10-01

    Particles on the surface of S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (e.g., [1,2]). They are not only the first samples recovered from an asteroid, but also the second extraterrestrial regolith to have been sampled, the first being the Moon by Apollo and Luna missions. The analysis of tiny sample particles (20-200 μm) shows that the Itokawa surface material is consistent with LL chondrites suffered by space weathering as expected and brought an end to the origin of meteorites (e.g., [2-4]). In addition, the examination of Itokawa particles allow studies of surface processes on the asteroid because regolith particles can be regarded as an interface with the space environment, where the impacts of small objects and irradiation by the solar wind and galactic cosmic rays should have been recorded. External 3D shapes and surface features of Itokawa regolith particles were examined. Two kinds of surface modification, formation of space-weathering rims mainly by solar wind implantation and surface abrasion by grain migration, were recognized. Spectral change of the asteroid proceeded by formation of space-weathering rims and refreshment of the regolith surfaces. External 3D shapes and surface morphologies of the regolith particles can provide information about formation and evolution history of regolith particles in relation to asteroidal surface processes. 3D shapes of Itokawa regolith particles were obtained using microtomography [3]. The surface nanomiromorpholgy of Itokawa particles were also observed using FE-SEM [5]. However, the number of particles was limited and genial feature on the surface morphology has not been understood. In this study, the surface morphology of Itokawa regolith particles was systematically investigated together with their 3D structures.

  13. Multi-Cell Simulations of Development and Disease Using the CompuCell3D Simulation Environment

    PubMed Central

    Swat, Maciej H.; Hester, Susan D.; Heiland, Randy W.; Zaitlen, Benjamin L.; Glazier, James A.

    2009-01-01

    Mathematical modeling and computer simulation have become crucial to biological fields from genomics to ecology. However, multi-cell, tissue-level simulations of development and disease have lagged behind other areas because they are mathematically more complex and lack easy-to-use software tools that allow building and running in-silico experiments without requiring in-depth knowledge of programming. This tutorial introduces Glazier-Graner-Hogeweg (GGH) multi-cell simulations and CompuCell3D, a simulation framework that allows users to build, test and run GGH simulations. PMID:19399437

  14. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  15. Stabilization procedures for near-wall full Reynolds stress closures in complex 3-D CFD simulations

    SciTech Connect

    Kunz, R.F.; Siebert, B.W.

    1996-06-01

    Near-wall full Reynolds stress models (FRSMs) were implemented in an implicit, incompressible full Navier-Stokes algorithm. The method was applied to flow in a 3-D duct with significant curvature induced secondary motions as well as 2-D and 3-D turbine cascade flows. FRSM computation of such flows, provides several numerical challenges germane to the very highly clustered near-wall meshes required, and to the incorporation of FRSMs themselves. Several stabilization procedures have been deployed within the scheme, which enable convergent solutions to large scale flow simulations of engineering interest. This paper summarizes the numerical strategies employed. it is shown that near-wall FRSM convergence rates commensurate with those of two-equation models are obtained.

  16. 3D Simulations of Solar Observations in Radio, Millimeter and Submillimeter Wavelengths.

    NASA Astrophysics Data System (ADS)

    de La Luz, V. H.; Lara, A.; Mendoza, E.

    2007-05-01

    In this work we present 3D simulations of solar radio emission at different frequencies (1.4, 3.9, 17, 34, 43, 110GHz and 12GHz), in the centimeter - submilimeter wavelength range. We build a 3D, spherically symetric, solar model and solve the clasical equation of radiative transfer using quiet Sun temperature and electron density models. We compare our results with observations from Nobeyama Radio Heliograph and SMT submillimeter telescope at CASILEO. The 3.9 and 43 GHz images will be useful to calibrate the observations of new millimeter telescope (RT5) which is being constructed at "Sierra Negra" Volcano, in the state of Puebla, Mexico, at an altitude of 4,600 m. This project is a collaboration between Universidad Nacional Autonoma de Mexico (UNAM) and Instituto Nacional de Astrofisica Optica y Electronica (INAOE).

  17. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  18. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  19. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents. PMID:26530842

  20. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  1. Lightning strike simulation using coaxial line technique and 3D linear injection current analysis

    NASA Astrophysics Data System (ADS)

    Flourens, F.; Gauthier, D.; Serafin, D.

    1989-09-01

    The GORFFD code for determining aircraft responses to either a lightning event or to simulated current injection is based on the finite-difference solution of Maxwell's equation, and allows the simulation of complex, 3D metallic and dielectric composite structures. A transfer method is used to analyze the EM environment associated with in-flight measurements. Attention is given to a linear-analysis numerical model in which the lightning channel is simulated as a thin wire that is driven by a current source. Surface E-fields and current mappings are produced for the Transall transport and Mirage fighter aircraft. An experimental method has been devised for verification of these lightning-strike simulations.

  2. Unsteady Analysis of Particle Transport and Deposition in the Human Lung: A Hybrid 3D/0D Model

    NASA Astrophysics Data System (ADS)

    Haworth, Daniel C.; Kunz, Robert F.; Leemhuis, Laura S.; Banks, Syreeta S.; Kriete, Andres

    2003-11-01

    Three-dimensional CFD meshes including up the sixteenth generation of branching in a human tracheo-bronchial tree have been generated from surface data extracted using novel high-resolution bio-medical imaging and rendering methods. A zero-dimensional model for the deeper generations has been coupled with the three-dimensional model at each of the truncated branches. The 0D model imposes a time-varying volume to simulate realistic breathing cycles; it also includes a simple model for particle deposition. The resulting hybrid 3D/0D model has been exercised to compute the transport and deposition rates of particles of different sizes through full breathing cycles. Results are compared to earlier steady-flow CFD results, to results obtained using one-dimensional functional models of the human lung, and to experimental and modeling results for idealized branching-duct configurations. The aim of the research is to develop a virtual human respiratory system that can be used to address issues in pulmonary health in

  3. Simulating 3-D lung dynamics using a programmable graphics processing unit.

    PubMed

    Santhanam, Anand P; Hamza-Lup, Felix G; Rolland, Jannick P

    2007-09-01

    Medical simulations of lung dynamics promise to be effective tools for teaching and training clinical and surgical procedures related to lungs. Their effectiveness may be greatly enhanced when visualized in an augmented reality (AR) environment. However, the computational requirements of AR environments limit the availability of the central processing unit (CPU) for the lung dynamics simulation for different breathing conditions. In this paper, we present a method for computing lung deformations in real time by taking advantage of the programmable graphics processing unit (GPU). This will save the CPU time for other AR-associated tasks such as tracking, communication, and interaction management. An approach for the simulations of the three-dimensional (3-D) lung dynamics using Green's formulation in the case of upright position is taken into consideration. We extend this approach to other orientations as well as the subsequent changes in breathing. Specifically, the proposed extension presents a computational optimization and its implementation in a GPU. Results show that the computational requirements for simulating the deformation of a 3-D lung model are significantly reduced for point-based rendering.

  4. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011

  5. Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1[S

    PubMed Central

    Yu, Yadong; Kuang, Yu-Lin; Lei, Dongsheng; Zhai, Xiaobo; Zhang, Meng; Krauss, Ronald M.; Ren, Gang

    2016-01-01

    Human VLDLs assembled in the liver and secreted into the circulation supply energy to peripheral tissues. VLDL lipolysis yields atherogenic LDLs and VLDL remnants that strongly correlate with CVD. Although the composition of VLDL particles has been well-characterized, their 3D structure is elusive because of their variations in size, heterogeneity in composition, structural flexibility, and mobility in solution. Here, we employed cryo-electron microscopy and individual-particle electron tomography to study the 3D structure of individual VLDL particles (without averaging) at both below and above their lipid phase transition temperatures. The 3D reconstructions of VLDL and VLDL bound to antibodies revealed an unexpected polyhedral shape, in contrast to the generally accepted model of a spherical emulsion-like particle. The smaller curvature of surface lipids compared with HDL may also reduce surface hydrophobicity, resulting in lower binding affinity to the hydrophobic distal end of the N-terminal β-barrel domain of cholesteryl ester transfer protein (CETP) compared with HDL. The directional binding of CETP to HDL and VLDL may explain the function of CETP in transferring TGs and cholesteryl esters between these particles. This first visualization of the 3D structure of VLDL could improve our understanding of the role of VLDL in atherogenesis. PMID:27538822

  6. Radiation in Particle Simulations

    SciTech Connect

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  7. ShrinkWrap: 3D model abstraction for remote sensing simulation

    SciTech Connect

    Pope, Paul A

    2009-01-01

    Remote sensing simulations often require the use of 3D models of objects of interest. There are a multitude of these models available from various commercial sources. There are image processing, computational, database storage, and . data access advantages to having a regularized, encapsulating, triangular mesh representing the surface of a 3D object model. However, this is usually not how these models are stored. They can have too much detail in some areas, and not enough detail in others. They can have a mix of planar geometric primitives (triangles, quadrilaterals, n-sided polygons) representing not only the surface of the model, but also interior features. And the exterior mesh is usually not regularized nor encapsulating. This paper presents a method called SHRlNKWRAP which can be used to process 3D object models to achieve output models having the aforementioned desirable traits. The method works by collapsing an encapsulating sphere, which has a regularized triangular mesh on its surface, onto the surface of the model. A GUI has been developed to make it easy to leverage this capability. The SHRlNKWRAP processing chain and use of the GUI are described and illustrated.

  8. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  9. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  10. Toward realistic radiofrequency ablation of hepatic tumors 3D simulation and planning

    NASA Astrophysics Data System (ADS)

    Villard, Caroline; Soler, Luc; Gangi, Afshin; Mutter, Didier; Marescaux, Jacques

    2004-05-01

    Radiofrequency ablation (RFA) has become an increasingly used technique in the treatment of patients with unresectable hepatic tumors. Evaluation of vascular architecture, post-RFA tissue necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator and treatment planning tool, that simulates the necrosis of the treated area, and proposes an optimal placement for the needle, has been developed. From enhanced spiral CT scans with 2 mm cuts, 3D reconstructions of patients with liver metastases are automatically generated. Virtual needles can be added to the 3D scene, together with their corresponding zones of necrosis that are displayed as a meshed spheroids representing the 60° C isosurface. The simulator takes into account the cooling effect of local vessels greater than 3mm in diameter, making necrosis shapes more realistic. Using a voxel-based algorithm, RFA spheroids are deformed following the shape of the vessels, extended by an additional cooled area. This operation is performed in real-time, allowing updates while needle is adjusted. This allows to observe whether the considered needle placement strategy would burn the whole cancerous zone or not. Planned needle positioning can also be automatically generated by the software to produce complete destruction of the tumor with a 1 cm margin, with maximum respect of the healthy liver and of all major extrahepatic and intrahepatic structures to avoid. If he wishes, the radiologist can select on the skin an insertion window for the needle, focusing the research of the trajectory.

  11. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  12. 3D CFD simulations of trailing suction hopper dredger plume mixing: comparison with field measurements.

    PubMed

    de Wit, Lynyrd; Talmon, A M; van Rhee, C

    2014-11-15

    A 3D computational fluid dynamics (CFD) model is used to simulate mixing of an overflow plume within 400 m from a trailing suction hopper dredger (TSHD). The simulations are compared with new field measurements. It is the first time simulations of overflow dredging plumes are compared in such detail to field measurements this close to a TSHD. Seven cases with a large variety in overflow flux and plume characteristics are used. Measured maximum suspended sediment concentrations (SSC) vary between 30 and 500 mg/l and fluxes vary between 0.7% and 20% of the total overflow flux; the CFD model has, subject to the limitations of the field data, been shown to reproduce this in a satisfactory way. The model gives better understanding of important near field processes, which helps to assess the frequency, duration and intensity of stresses like turbidity and sedimentation needed to find the environmental impact of dredging projects.

  13. Jupiter Magnetotail Interaction with a Variable Solar Wind: A 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.

    2015-12-01

    Jupiter's magnetosphere is the largest object within the heliosphere. Voyager 2 detected its influence at Saturn's orbit, 4.3 AU away. It takes considerable time, therefore, for the solar wind to propagate such lengths down the tail. This propagation time is much greater than typical periods between changes in direction of the interplanetary magnetic field (IMF). We expect these variable magnetic fields to create a jumbled structure in Jupiter's magnetotail, resulting in magnetic reconnection and other magnetic processes. We simulate the global interaction of the solar wind with Jupiter's magnetosphere using a 3D magnetohydrodynamics (MHD) code. Delamere & Bagenal (2010) argue that the interaction is largely viscous, so we simulate the jovian magnetosphere as a region where the momentum equation has an added loss term. We also use in situ data gathered by the Ulysses spacecraft near Jupiter's orbit for solar wind input. Here, we report on the simulated dynamics in Jupiter's tail region.

  14. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  15. 3D Hydrodynamical Simulations of Evolved Stars and Observations of Stellar Surfaces

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Freytag, B.

    2015-08-01

    Evolved stars are among the largest and brightest stars and they are ideal targets for the new generation of sensitive, high resolution instrumentation that provides spectrophotometric, interferometric, astrometric, and imaging observables. The interpretation of the complex stellar surface images requires numerical simulations of stellar convection that take into account multi-dimensional time-dependent radiation hydrodynamics with realistic input physics. We show how the evolved star simulations are obtained using the radiative hydrodynamics code CO5BOLD and how the accurate observables are computed with the post-processing radiative transfer code OPTIM3D. The synergy between observations and theoretical work is supported by a proper and quantitative analysis using these simulations, and by strong constraints from the observational side.

  16. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  17. Study of the internal magnetic field of Mercury through 3D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Leclercq, Ludivine; Marcel Chanteur, Gerard; Modolo, Ronan; Leblanc, Francois; Schmidt, Carl; Langlais, Benoît; Thebault, Erwan

    2016-10-01

    In 1974, Mariner 10 discovered the intrinsic magnetic field of Mercury which interacts with the solar wind, leading to the formation of a magnetosphere. In spite of the recent MESSENGER observations, this magnetosphere remains quite unknown, especially in the Southern hemisphere. In order to improve our understanding of the Hermean magnetosphere, and to prepare the Bepi-Colombo mission (ESA/JAXA), we simulated the magnetized environment of Mercury using the model named LatHyS (LATMOS Hybrid Simulation). LatHyS is a 3D parallel multi-species hybrid code which has been applied to Mars, Titan and Ganymede, which has recently be improved by the implementation of a multi-grid method allowing to refine the spatial resolution near the planetary object (40 km in the case of Mercury). In order to investigate the Hermean environment, several hybrid simulations have been performed considering different internal field models, and results are compared with MESSENGER observations.

  18. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  19. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  20. Three-dimensional direct particle simulation on the Connection Machine

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1991-01-01

    This paper presents the algorithms necessary for an efficient data parallel implementation of a 3D particle simulation. In particular, a general master/slave algorithm and a fast sorting algorithm are described and the use of these algorithms in a particle simulation is outlined. A particle simulation using these algorithms has been implemented on a 32768 processor Connection Machine that is capable of simulating over 30 million particles at an average rate of 2.4-microsec/particle/step. Results are presented from the simulation of flow over an Aeroassisted Flight Experiment geometry at 100 km altitude.

  1. Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee

    2012-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.

  2. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  3. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockhard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  4. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  5. Research on scene organization of process simulation in port 3D GIS

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Jiang, Wenping

    2009-10-01

    At present, the application of three-dimensional GIS becomes more and more widespread gradually, but due to the defect of representing time, four-dimensional GIS based on spatial-temporal expression is facilitated to emerge and progress. Combined with developing the 3D dynamic demonstration of Tianjin center fishing port, this paper researches the mass data and animated simulation of building process and provides an approach that the data is dealt with in the way just as 2D map does such as classification and partition to get clarified data. At the same time, a scene integration method is proposed by dividing a large-scale 3D scene to several sub-scenes with a number of levels and various covering areas. And through editing and synthesizing the commentary, time axis and flight routes, the dynamic simulation and automatic demonstration are achieved. Based on the study above, a system of simulating and illustrating the port building process is designed and implemented.

  6. Measurement of particle trajectories, dynamics, surface adhesion and detachment in near-wall shear flows using 3D velocimetry

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Schmidt, Brian; Lawrence, Michael; Breuer, Kenneth

    2007-11-01

    Three-dimensional total internal reflection velocimetry (3D-TIRV) is used to measure the trajectories of fluorescent tracer particles within 200 nm of a wall. Diffusion and shear-induced motion can result in mean velocity measurement errors, and by taking measurements using different particle sizes and sampling times, we quantify these effects and compare with theory. We also use 3D-TIRV to observe and characterize the adhesion, surface rolling and release dynamics of particles that can adhere to the surface through the action of biological binding proteins. Particles coated with P-Selectin are allowed to adhere to and detach from a PSGL-1-coated microchannel surface, modeling the interaction between leukocytes (white blood cells) and blood vessels, respectively. Binding affinities, bond strengths and hydrodynamic interactions are inferred from the trajectory data.

  7. 3D Simulation of an Audible Ultrasonic Electrolarynx Using Difference Waves

    PubMed Central

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper. PMID:25401965

  8. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    SciTech Connect

    White, D; Rieben, R; Wallin, B

    2006-09-20

    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  9. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  10. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  11. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGESBeta

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  12. Modeling of Localized Neutral Particle Sources in 3D Edge Plasmas

    SciTech Connect

    Umansky, M V; Rognlien, T D; Fenstermacher, M E; Borchardt, M; Mutzke, A; Riemann, J; Schneider, R; Owen, L W

    2002-05-23

    A new edge plasma code BoRiS [1] has a fully 3D fluid plasma model. We supplement BoRiS with a 3D fluid neutral model including equations for parallel momentum and collisional perpendicular diffusion. This makes BoRiS an integrated plasma-neutral model suitable for a variety of applications. We present modeling results for a localized gas source in the geometry of the NCSX stellarator.

  13. TOPAS Tool for Particle Simulation

    SciTech Connect

    Perl, Joseph

    2013-05-30

    TOPAS lets users simulate the passage of subatomic particles moving through any kind of radiation therapy treatment system, can import a patient geometry, can record dose and other quantities, has advanced graphics, and is fully four-dimensional (3D plus time) to handle the most challenging time-dependent aspects of modern cancer treatments.TOPAS unlocks the power of the most accurate particle transport simulation technique, the Monte Carlo (MC) method, while removing the painstaking coding work such methods used to require. Research physicists can use TOPAS to improve delivery systems towards safer and more effective radiation therapy treatments, easily setting up and running complex simulations that previously used to take months of preparation. Clinical physicists can use TOPAS to increase accuracy while reducing side effects, simulating patient-specific treatment plans at the touch of a button. TOPAS is designed as a “user code” layered on top of the Geant4 Simulation Toolkit. TOPAS includes the standard Geant4 toolkit, plus additional code to make Geant4 easier to control and to extend Geant4 functionality. TOPAS aims to make proton simulation both “reliable” and “repeatable.” “Reliable” means both accurate physics and a high likelihood to simulate precisely what the user intended to simulate, reducing issues of wrong units, wrong materials, wrong scoring locations, etc. “Repeatable” means not just getting the same result from one simulation to another, but being able to easily restore a previously used setup and reducing sources of error when a setup is passed from one user to another. TOPAS control system incorporates key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes In control files. TOPAS has been used to model proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry treatment heads

  14. TOPAS Tool for Particle Simulation

    2013-05-30

    TOPAS lets users simulate the passage of subatomic particles moving through any kind of radiation therapy treatment system, can import a patient geometry, can record dose and other quantities, has advanced graphics, and is fully four-dimensional (3D plus time) to handle the most challenging time-dependent aspects of modern cancer treatments.TOPAS unlocks the power of the most accurate particle transport simulation technique, the Monte Carlo (MC) method, while removing the painstaking coding work such methods usedmore » to require. Research physicists can use TOPAS to improve delivery systems towards safer and more effective radiation therapy treatments, easily setting up and running complex simulations that previously used to take months of preparation. Clinical physicists can use TOPAS to increase accuracy while reducing side effects, simulating patient-specific treatment plans at the touch of a button. TOPAS is designed as a “user code” layered on top of the Geant4 Simulation Toolkit. TOPAS includes the standard Geant4 toolkit, plus additional code to make Geant4 easier to control and to extend Geant4 functionality. TOPAS aims to make proton simulation both “reliable” and “repeatable.” “Reliable” means both accurate physics and a high likelihood to simulate precisely what the user intended to simulate, reducing issues of wrong units, wrong materials, wrong scoring locations, etc. “Repeatable” means not just getting the same result from one simulation to another, but being able to easily restore a previously used setup and reducing sources of error when a setup is passed from one user to another. TOPAS control system incorporates key lessons from safety management, proactively removing possible sources of user error such as line-ordering mistakes In control files. TOPAS has been used to model proton therapy treatment examples including the UCSF eye treatment head, the MGH stereotactic alignment in radiosurgery treatment head and the MGH gantry

  15. Simulated square kilometre array maps from Galactic 3D-emission models

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2009-11-01

    Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths

  16. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  17. Terascale direct numerical simulations of turbulent combustion using S3D.

    SciTech Connect

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer

    2008-08-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  18. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  19. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    NASA Astrophysics Data System (ADS)

    Mustafa, Ibrahim

    1998-12-01

    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  20. Simulation of MRI-Guided Transurethral Conformal 3-D Ultrasound Therapy of the Prostate

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2007-05-01

    The capability of MRI to measure spatial heating patterns during therapy delivery with ultrasound makes adaptive thermal therapy possible. Active feedback provided by MR thermometry enables on-line adjustment of the treatment to compensate for tissue/perfusion changes during heating. The feasibility of performing 3-D conformal thermal therapy of the entire prostate gland with a multi-element transurethral ultrasound heating applicator was considered in this study. The major challenge was using MR temperature feedback to adjust simultaneously the device's rate of rotation and the power and frequency of multiple independent ultrasound transducers, to shape the region of thermal damage to the prostate gland in all spatial dimensions while sparing surrounding tissues from damage. The 3-D Bioheat Transfer Equation was used to model the ultrasound therapy using manually segmented MRI prostate geometries from 20 prostate cancer patients. Average prostate dimensions (±SD) were: length: 37.8±7.2 mm, width: 47.1±5.5 mm, height: 28.9±5.7 mm. Typical treatments of the entire prostate volume take less than 30 min. Results from various treatment strategies were compared by calculating the percentage volume of under- and over-treated tissue and the potential thermal damage incurred by important adjacent anatomical structures using "dose-effect" curves. Visualization tools were developed to investigate patient-specific prostate and periprostatic anatomy, as well as the simulated coagulated volumes in 3-D, enabling evaluation of individual patient outcomes. These simulations also enabled the investigation of the number and size of transducer segments required for accurate treatment delivery. In general, the under-treated fraction can be maintained below 1% of the prostate volume, but the over-treated fraction can range up to 15%, emphasizing the importance of accurate location of sensitive adjacent structures.

  1. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  2. 3D face recognition using simulated annealing and the surface interpenetration measure.

    PubMed

    Queirolo, Chauã C; Silva, Luciano; Bellon, Olga R P; Segundo, Maurício Pamplona

    2010-02-01

    This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature. PMID:20075453

  3. Comparing TID simulations using 3-D ray tracing and mirror reflection

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.

    2016-04-01

    Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.

  4. ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-26

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  5. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-11-22

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  6. Reconstructing 3D CAD models for simulation using imaging-based reverse engineering

    NASA Astrophysics Data System (ADS)

    Voisin, Sophie; Page, David; Koschan, Andreas; Abidi, Mongi

    2006-05-01

    The purpose of this research is to investigate imaging-based methods to reconstruct 3D CAD models of real-world objects. The methodology uses structured lighting technologies such as coded-pattern projection and laser-based triangulation to sample 3D points on the surfaces of objects and then to reconstruct these surfaces from the dense point samples. This reverse engineering (RE) research presents reconstruction results for a military tire that is important to tire-soil simulations. The limitations of this approach are the current level of accuracy that imaging-based systems offer relative to more traditional CMM modeling systems. The benefit however is the potential for denser point samples and increased scanning speeds of objects, and with time, the imaging technologies should continue to improve to compete with CMM accuracy. This approach to RE should lead to high fidelity models of manufactured and prototyped components for comparison to the original CAD models and for simulation analysis. We focus this paper on the data collection and view registration problems within the RE pipeline.

  7. Fast Wave Trains Associated with Solar Eruptions: Insights from 3D Thermodynamic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Downs, C.; Liu, W.; Torok, T.; Linker, J.; Mikic, Z.; Ofman, L.

    2015-12-01

    EUV imaging observations during the SDO/AIA era have provided new insights into a variety of wave phenomena occurring in the low solar corona. One example is the observation of quasi-periodic, fast-propagating wave trains that are associated with solar eruptions, including flares and CMEs. While there has been considerable progress in understanding such waves from both an observational and theoretical perspective, it remains a challenge to pin down their physical origin. In this work, we detail our results from a case-study 3D thermodynamic MHD simulation of a coronal mass ejection where quasi-periodic wave trains are generated during the simulated eruption. We find a direct correlation between the onset of non-steady reconnection in the flare current sheet and the generation of quasi-periodic wave train signatures when patchy, collimated downflows interact with the flare arcade. Via forward modeling of SDO/AIA observables, we explore how the appearance of the wave trains is affected by line-of-sight integration and the multi-thermal nature of the coronal medium. We also examine how the wave trains themselves are channeled by natural waveguides formed in 3D by the non-uniform background magnetic field. While the physical association of the reconnection dynamics to the generation of quasi-periodic wave trains appears to be a compelling result, unanswered questions posed from recent observations as well as future prospects will be discussed.

  8. Gyrokinetic particle simulation model

    SciTech Connect

    Lee, W.W.

    1986-07-01

    A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.

  9. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  10. Investigating the guiding of streamers in nitrogen/oxygen mixtures with 3D simulations

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Nijdam, Sander; Takahashi, Eiichi; Ebert, Ute

    2014-10-01

    Recent experiments by S. Nijdam and E. Takahashi have demonstrated that streamers can be guided by weak pre-ionization in nitrogen/oxygen mixtures, as long as there is not too much oxygen (less than 1%). The pre-ionization was created by a laser beam, and was orders of magnitude lower than the density in a streamer channel. Here, we will study the guiding of streamers with 3D numerical simulations. First, we present simulations that can be compared with the experiments and confirm that the laser pre-ionization does not introduce space charge effects by itself. Then we investigate topics as: the conditions under which guiding can occur; how photoionization reduces the guiding at higher oxygen concentrations and whether guided streamers keep their propagation direction outside the pre-ionization. JT was supported by STW Project 10755, SN by the FY2012 Researcher Exchange Program between JSPS and NWO, and ET by JSPS KAKENHI Grant Number 24560249.

  11. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    PubMed

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao

    2006-04-01

    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  12. 3D simulation of the image formation in soft x-ray microscopes.

    PubMed

    Selin, Mårten; Fogelqvist, Emelie; Holmberg, Anders; Guttmann, Peter; Vogt, Ulrich; Hertz, Hans M

    2014-12-15

    In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data. Here we present a wave-propagation model operating in 3D for simulating the image formation of thick objects in partially coherent soft x-ray microscopes. The model is compared with present simulation methods as well as with experiments. The results show that our model predicts the image formation of transmission soft x-ray microscopes more accurately than previous models.

  13. 3D simulations and modeling of new low capacitance silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Li, Yu Yun; Li, Zheng

    2016-09-01

    With signal to noise ratio (S/N) being a key parameter of a high performance detector, reducing the detector noise has been one of the main tasks in detector development. A new low capacitance silicon pixel detector is proposed, which is based on a new electrode geometry with reduced effective electrode area while keeping the sensitive volume unchanged. Detector electrical characteristics including electrostatic potential, electric field, full depletion voltage, and capacitance have been simulated in detail using a 3D TCAD tool. From these simulations and calculations, we confirm that the new detector structure has a much reduced capacitance (by a factor of 3) as compared to the traditional pixel detectors with the same sensitive volume. This reduction in detector capacitance can certainly improve the detector signal to noise ratio. However, the full depletion voltage for the new structure is larger than that of the traditional one due to the small electrode effect.

  14. Interpreting Irradiance Distributions Using High-Resolution 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Peck, Courtney; Rast, Mark; Criscuoli, Serena; Uitenbroek, Han; Rempel, Matthias D.

    2016-05-01

    We present initial results of studies aimed at understanding the impact of the unresolved magnetic field distribution on solar spectral irradiance. Using high-resolution 3D MHD simulations (from MURaM code) and spectral synthesis (with the RH code), we examine the emergent spectra of two atmospheres with similar mean field strengths but differing imposed-field conditions at wavelengths spanning from visible to infrared. Comparing the contrast against the magnetic field strength for the two magnetic simulations, we find differences in the distributions of contrasts versus field strength. We repeat the analysis after convolving the images with the PSF of a typical solar telescope (1-meter) and discuss the potential implications for irradiance modeling and future steps.

  15. Radiation in Particle Simulations

    SciTech Connect

    More, R M; Graziani, F R; Glosli, J; Surh, M

    2009-06-15

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known (section 3). The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion (section 4). The third method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions (section 5). The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc.(section 6). This approach is inspired by the Virial expansion method of equilibrium statistical mechanics.

  16. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  17. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  18. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  19. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  20. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  1. Simulation of excimer laser micromachined 3D surface using a CAD solid modeling package

    NASA Astrophysics Data System (ADS)

    Hume, Richard G.; Iovenitti, Pio G.; Hayes, Jason P.; Harvey, Erol C.

    2002-11-01

    This paper describes the research on the development of a visualisation tool to generate 3D solid models of structures produced by micromachining using an excimer laser system. Currently, the development of part programs to achieve a desired microstructure is by a trial and error approach. This simulation tool assists designers and excimer machine programmers to produce microstructures using the excimer laser. Users can develop their microstructures and part programs with the assistance of digital prototypes rather than designing products using expensive laser micromachining equipment. The methods to simulate micromachining using the solid modelling package, SolidWorks, are described, and simulation and actual machined examples are reported. A basic knowledge of the solid modelling package is required to develop the simulations, and complex models take time to prepare, however, the development time can be minimised by working from previous simulations. The models developed can be parameterised so that families of designs can be investigated for little additional effort to optimise the design before committing to laser micromachining.

  2. Multidimensional Multiphysics Simulation of TRISO Particle Fuel

    SciTech Connect

    J. D. Hales; R. L. Williamson; S. R. Novascone; D. M. Perez; B. W. Spencer; G. Pastore

    2013-11-01

    Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical and material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.

  3. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  4. The dark side of photovoltaic — 3D simulation of glare assessing risk and discomfort

    SciTech Connect

    Rose, Thomas; Wollert, Alexander

    2015-04-15

    Photovoltaic (PV) systems form an important force in the implementation of renewable energies, but as we all know, the force has always its dark side. Besides efficiency considerations and discussions about architectures of power distribution networks, the increasing numbers of installations of PV systems for implementing renewable energies have secondary effects. PV systems can generate glare due to optical reflections and hence might be a serious concern. On the one hand, glare could affect safety, e.g. regarding traffic. On the other hand, glare is a constant source of discomfort in vicinities of PV systems. Hence, assessment of glare is decisive for the success of renewable energies near municipalities and traffic zones for the success of solar power. Several courts decided on the change of PV systems and even on their de-installation because of glare effects. Thus, location-based assessments are required to limit potential reflections and to avoid risks for public infrastructure or discomfort of residents. The question arises on how to calculate reflections accurately according to the environment's topography. Our approach is founded in a 3D-based simulation methodology to calculate and visualize reflections based on the geometry of the environment of PV systems. This computational model is implemented by an interactive tool for simulation and visualization. Hence, project planners receive flexible assistance for adjusting the parameters of solar panels amid the planning process and in particular before the installation of a PV system. - Highlights: • Solar panels cause glare that impacts neighborhoods and traffic infrastructures. • Glare might cause disability and discomfort. • 3D environment for the calculation of glare • Interactive tool to simulate and visualize reflections • Impact assessment of solar power plant farms.

  5. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  6. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  7. A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Janutolo, Michele; Barla, Giovanni

    2012-07-01

    For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon-Turin Base Tunnel are discussed.

  8. 3D Simulations of the Quiet Sun Radio Emission at Millimeter and Submillimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    De La Luz, V.; Lara, A.; Mendoza, E.; Shimojo, M.

    2008-07-01

    We present 2D projections of 3D simulations of the quiet-sun radio-emission, at different frequencies on the centimeter- submillimeter wavelength range (specifically at 1.4, 3.9, 17, 34, 43, 110, 212 and 250 GHz). We have built a 3D, spherically symmetric, solar model and solved the classical equation of radiative transfer using quiet-sun temperature and electronic density models. We compare our results with Nobeyama Radio Heliograph observations at 17 GHz. The 3.9 and 43 GHz images will be useful to calibrate the observations of the new 5 meter millimeter telescope (RT5) which is going to be installed at "Sierra Negra" Volcano, in the state of Puebla, México, at an altitude of 4,600 m. over the sea level. This project is a collaboration between Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE) and Universidad Nacional Autónoma de México (UNAM).

  9. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  10. 3D simulation of integrated multi-coil ICP source with azimuthal modes

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2015-09-01

    Integrated multi-coil (IMC) planar ICP source with azimuthal motion is presented. Scaling ICP sources to larger substrate size is always complicated due to many technical issues and is challenged by the plasma chemistry. The source described in this work has capability of azimuthally moving plasma and has potential for large area and high density plasma applications. Hence, this system does not have an ideal axial symmetry, the 3D model approach has to be used to assess its transient performance. Moreover, reactor walls are imposing stronger boundary conditions on distribution of the radicals in ``off-axis reactive plasma.'' Intrinsic asymmetry of source and plasma were investigated by 3D fluid model developed under Plasma Module framework and supported by COMSOL Multiphysics solvers. Operation modes have potential to control plasma distribution, reaction chemistry and increase/modulate radicals' production. Simulation confirmed assumption that plasma distribution may essentially change in different gas. Under specific conditions integrated multi-coil ICP source is producing pulsed plasma. Temporal, spatial and population plasma characteristics were investigated in an inert carrier gas (Ar) and reactive plasma consisting of several gases (Ar, H2, CO and CH4).

  11. Lattice Boltzmann Simulation of a Flow over a 3D Cube in a wind Tunnel

    NASA Astrophysics Data System (ADS)

    Shock, Richard; Chen, Hudong; Yakhot, Victor

    2001-06-01

    It is argued that even a simplified version of the Boltzmann equation in a relaxation time approximation is equivalent to the hydrodynamic equations, involving infinite number of non-linear terms. Used for turbulence modelling, where the relaxation time and mean -free path are both space and field dependent, this equation is equivalent to the classic Navier-Stokes + turbulent model representations, provided the gradients are small. If, however, the non-equilibrium effects are strong, all higher non-linearities cannot be neglected. Thus, the Boltmann approximation can be extremely usefull for description of strongly non-equilibrium and time - dependent flows. This fact has been demonstrated on a wide variety of flows of both academic and industrial interest ranging from a simple 2D channel flow to 3D flows over various production cars. In this talk the quality of the approach is demonstrated on a simulation of the flow over a 3D cube in a wind tunnel. The predicted parameters of this strongly unsteady flow are compared with experimental data. The agreement is very good.

  12. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  13. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  14. TiO2 particles on a 3D network of single-walled nanotubes for NH3 gas sensors.

    PubMed

    Jo, Yong Deok; Lee, Sooken; Seo, Jeongeun; Lee, Soobum; Ann, Doyeon; Lee, Haiwon

    2014-12-01

    Ammonia (NH3) gas is one of the gases which causes damage to environment such as acidification and climate change. In this study, a gas sensor based on the three-dimensional (3D) network of single-walled nanotubes (SWNTs) was fabricated for the detection of NH3 gas in dry air. The sensor showed enhanced performance due to the fast gas diffusion rate and weak interactions between the carbon nanotubes and the substrate. Metal oxide particles were introduced to enhance the performance of the gas sensor. Atomic layer deposition (ALD) was employed to deposit the metal oxide in the complex structure, and good control over thickness was achieved. The hybrid gas sensor consisting of the 3D network of SWNTs with anatase TiO2 particles showed stable, repeatable, and enhanced gas sensor performance. The phase of TiO2 particles was characterized by Raman and the morphology of the TiO2 particles on the 3D network of SWNTs was analyzed by transmission electron microscope.

  15. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the

  16. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    PubMed

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  17. 3D design and electric simulation of a silicon drift detector using a spiral biasing adapter

    NASA Astrophysics Data System (ADS)

    Li, Yu-yun; Xiong, Bo; Li, Zheng

    2016-09-01

    The detector system of combining a spiral biasing adapter (SBA) with a silicon drift detector (SBA-SDD) is largely different from the traditional silicon drift detector (SDD), including the spiral SDD. It has a spiral biasing adapter of the same design as a traditional spiral SDD and an SDD with concentric rings having the same radius. Compared with the traditional spiral SDD, the SBA-SDD separates the spiral's functions of biasing adapter and the p-n junction definition. In this paper, the SBA-SDD is simulated using a Sentaurus TCAD tool, which is a full 3D device simulation tool. The simulated electric characteristics include electric potential, electric field, electron concentration, and single event effect. Because of the special design of the SBA-SDD, the SBA can generate an optimum drift electric field in the SDD, comparable with the conventional spiral SDD, while the SDD can be designed with concentric rings to reduce surface area. Also the current and heat generated in the SBA are separated from the SDD. To study the single event response, we simulated the induced current caused by incident heavy ions (20 and 50 μm penetration length) with different linear energy transfer (LET). The SBA-SDD can be used just like a conventional SDD, such as X-ray detector for energy spectroscopy and imaging, etc.

  18. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  19. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  20. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  1. Comparison of experimental data and 3D simulations of ion beam neutralization from the neutralized transport experiment

    SciTech Connect

    Thoma, C.; Welch, D.R.; Yu, S.S.; Henestroza, E.; Roy, P.K.; Eylon, S.; Gilson, E.P.

    2004-09-22

    The Neutralized Transport Experiment (NTX) at Lawrence Berkeley National Laboratory has been designed to study the final focus and neutralization of high perveance ion beams for applications in heavy ion fusion (HIF) and high energy density physics (HEDP) experiments. Pre-formed plasmas in the last meter before the target of the scaled experiment provide a source of electrons which neutralize the ion current and prevent the space-charge induced spreading of the beam spot. NTX physics issues are discussed and experimental data is analyzed and compared with 3D particle-in-cell simulations. Along with detailed target images, 4D phase-space data of the NTX at the entrance of the neutralization region has been acquired. This data is used to provide a more accurate beam distribution with which to initialize the simulation. Previous treatments have used various idealized beam distributions which lack the detailed features of the experimental ion beam images. Simulation results are compared with NTX experimental measurements for 250 keV K{sup +} ion beams with dimensionless perveance of 1-7 x 10{sup -4}. In both simulation and experiment, the deduced beam charge neutralization is close to the predicted maximum value.

  2. Stochastic Multi-Scale Reconstruction of 3D Microstructure Consisting of Polycrystalline Grains and Second-Phase Particles from 2D Micrographs

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Kirubanandham, Antony; Chawla, Nikhilesh; Jiao, Yang

    2016-03-01

    An accurate knowledge of the 3D polycrystalline microstructure of a material is crucial to its property prediction, performance optimization, and design. Here, we present a multi-scale computational scheme that allows one to stochastically reconstruct the 3D microstructure of a highly heterogeneous polycrystalline material with large variation in grain size, morphology, and spatial distribution, as well as the distribution of second-phase particles, from single-2D electron back-scattered diffraction (EBSD) micrograph. Specifically, the two-point correlation functions S 2 are employed to statistically characterize grain morphology, orientation, and spatial distribution and are incorporated into the simulated annealing procedure for microstructure reconstruction. During the reconstruction, the original polycrystalline microstructure is coarsened such that the large grains are reconstructed first and the smaller ones are generated later. The second-phase particles are then inserted into the reconstructed polycrystalline material based on the pair-correlation function g 2 sampled from the 2D back-scattered electron micrograph. The utility of our multi-scale scheme is demonstrated by successfully reconstructing a highly heterogeneous polycrystalline Sn-rich solder joint with Cu6Sn5 intermetallic particles. The accuracy of our reconstruction is ascertained by comparing the virtual microstructure with the actual 3D structure of the joint obtained via serial sectioning techniques.

  3. Nondestructive testing of 3D disperse systems with micro- and nano-particles: N-dimensional space of optical parameters

    NASA Astrophysics Data System (ADS)

    Bezrukova, Alexandra G.

    2006-04-01

    The simultaneous analysis of 3D disperse systems (DS) with micro- and nano- particles by refractometry, absorbency, fluorescence and by different types of light scattering, can help to elaborate the sensing elements for specffic impurity control. Our research has investigated by complex of optical methods different 3D DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, samples of natural and water-supply waters, etc. This experience suggests that each 3D DS can be charactensed by N-dimensional vector in N-dimensional space of optical parameters. Due to the fusion of various optical data it is possible to solve the inverse physical problem on the presence of impurity in mixtures of 3D DS by information statistical theory methods. It is important that in this case polymodality of particle size distribution is not an obstacle.

  4. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    NASA Astrophysics Data System (ADS)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  5. 3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM

    SciTech Connect

    Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.

    2015-07-01

    Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.

  6. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  7. Simulation of a 3D unsteady flow in an axial turbine stage

    NASA Astrophysics Data System (ADS)

    Straka, Petr

    2012-04-01

    The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  8. 3D Myocardial Contraction Imaging Based on Dynamic Grid Interpolation: Theory and Simulation Analysis

    NASA Astrophysics Data System (ADS)

    Bu, Shuhui; Shiina, Tsuyoshi; Yamakawa, Makoto; Takizawa, Hotaka

    Accurate assessment of local myocardial contraction is important for diagnosis of ischemic heart disease, because decreases of myocardial motion often appear in the early stages of the disease. Three-dimensional (3-D) assessment of the stiffness distribution is required for accurate diagnosis of ischemic heart disease. Since myocardium motion occurs radially within the left ventricle wall and the ultrasound beam propagates axially, conventional approaches, such as tissue Doppler imaging and strain-rate imaging techniques, cannot provide us with enough quantitative information about local myocardial contraction. In order to resolve this problem, we propose a novel myocardial contraction imaging system which utilizes the weighted phase gradient method, the extended combined autocorrelation method, and the dynamic grid interpolation (DGI) method. From the simulation results, we conclude that the strain image's accuracy and contrast have been improved by the proposed method.

  9. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism

    NASA Astrophysics Data System (ADS)

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa; Stošić, Borko; Milošević, Milorad V.

    2016-10-01

    Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame - with speedup of over 100× compared to best available CPU implementations of the theory on a 2563 grid.

  10. 3-D simulations of limiter stabilization of high-beta external kink-tearing modes

    SciTech Connect

    Lee, J.K.; Ohyabu, N.

    1984-03-01

    The effects of finite-size poloidal limiters, toroidal limiters, and general mushroom limiters are examined for high-beta finite-resistivity tokamak plamas in free boundary. Even for a linear stability analysis, a 3-D simulation is necessary, in which many poloidal and toroidal modes are coupled because of the limiter constraint and finite-beta. When the plasma pressure and resistivity are small, a poloidal limiter is effective in reducing the growth rate with a small limiter-size, while a toroidal limiter requires a large size for a comparable effect. As the plasma pressure or resistivity increases, a toroidal limiter becomes more effective in reducing the growth rate than a poloidal limiter of the same size. A small optimized mushroom limiter might have a stabilizing effect similar to a conducting shell.

  11. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    SciTech Connect

    Martinez, E.; Monasterio, P.R.; Marian, J.

    2011-02-20

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  12. Aref's chaotic orbits tracked by a general ellipsoid using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Shui, Pei; Popinet, Stéphane; Govindarajan, Rama; Valluri, Prashant

    2015-11-01

    The motion of an ellipsoidal solid in an ideal fluid has been shown to be chaotic (Aref, 1993) under the limit of non-integrability of Kirchhoff's equations (Kozlov & Oniscenko, 1982). On the other hand, the particle could stop moving when the damping viscous force is strong enough. We present numerical evidence using our in-house immersed solid solver for 3D chaotic motion of a general ellipsoidal solid and suggest criteria for triggering such motion. Our immersed solid solver functions under the framework of the Gerris flow package of Popinet et al. (2003). This solver, the Gerris Immersed Solid Solver (GISS), resolves 6 degree-of-freedom motion of immersed solids with arbitrary geometry and number. We validate our results against the solution of Kirchhoff's equations. The study also shows that the translational/ rotational energy ratio plays the key role on the motion pattern, while the particle geometry and density ratio between the solid and fluid also have some influence on the chaotic behaviour. Along with several other benchmark cases for viscous flows, we propose prediction of chaotic Aref's orbits as a key benchmark test case for immersed boundary/solid solvers.

  13. 3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Macciò, A. V.; Romeo, A. D.; Silk, J.

    2014-04-01

    We investigate the interplay between jets from active galactic nuclei (AGNs) and the surrounding interstellar medium (ISM) through full 3D, high-resolution, adaptive mesh refinement simulations performed with the FLASH code. We follow the jet-ISM system for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behaviour. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of the order of a few per cent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (<1 per cent) of the total ISM volume. Finally, we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion on to the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin-Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.

  14. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  15. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  16. Study of Ion Beam Forming Process in Electric Thruster Using 3D FEM Simulation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Jin, Xiaolin; Hu, Quan; Li, Bin; Yang, Zhonghai

    2015-11-01

    There are two algorithms to simulate the process of ion beam forming in electric thruster. The one is electrostatic steady state algorithm. Firstly, an assumptive surface, which is enough far from the accelerator grids, launches the ion beam. Then the current density is calculated by theory formula. Secondly these particles are advanced one by one according to the equations of the motions of ions until they are out of the computational region. Thirdly, the electrostatic potential is recalculated and updated by solving Poisson Equation. At the end, the convergence is tested to determine whether the calculation should continue. The entire process will be repeated until the convergence is reached. Another one is time-depended PIC algorithm. In a global time step, we assumed that some new particles would be produced in the simulation domain and its distribution of position and velocity were certain. All of the particles that are still in the system will be advanced every local time steps. Typically, we set the local time step low enough so that the particle needs to be advanced about five times to move the distance of the edge of the element in which the particle is located.

  17. Simulation of instrumental intensities in the Tokyo Metropolitan area using a 3D attenuation structure model.

    NASA Astrophysics Data System (ADS)

    Panayotopoulos, Y.; Hirata, N.; Sakai, S.; Nakagawa, S.; Kasahara, K.

    2015-12-01

    In recent years the development of dense seismic networks in Japan has enabled high quality observations of instrumental intensities. However, the distribution of intensities of historical earthquakes can only be retrieved by the damage reports on historical documents. Their epicenter and magnitude can be roughly estimated from the intensity distribution, assuming that seismic intensity decays with distance. This approximation is not always accurate, since the amplitude of short period ground motion decays with focal distance and is affected by the 3D attenuation structure along the path and in addition displays frequency dependence. In order to estimate the location and size of a large historical earthquake, we need to accurately simulate the seismic intensity distribution, accounting for non linear attenuation of seismic waves along the path. The instrumental seismic intensities inside the Kanto basin observed at the Tokyo Metropolitan Seismic Observation network (MeSO-net) and Hi-net stations display unusual distribution patterns, with peak intensities observed several km away from the epicenter rather than at the stations closer to it. In order to understand the source of this intensity distribution, we estimated the theoretical instrumental intensities using a 3D attenuation structure and compare it to the observed intensity distribution. We first estimated a 3D attenuation structure using the spectral decay of seismic waves, by fitting the observed seismic wave spectrum to a theoretical spectrum using an ω2 model. The obtained model suggests Qs values of 50˜100 inside the Kanto basin and low Qs values < 300 in the area where the Philippine Sea plate meets the upper part of the Pacific plate. We then use an ω2 model in order to estimate the source acceleration spectrum of several earthquakes occurring below the Kanto basin at depths ranging 30~80 km. Our simulation shows that earthquakes occurring on the Pacific plate pass through the low Qs area inside the

  18. Synthesis of micro-sized shell-isolated 3D plasmonic superstructures for in situ single-particle SERS monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhao, Jingjing; Ji, Ji; Liu, Baohong

    2016-04-01

    A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis.A single-particle SERS system enabling real-time and in situ observation of Au-catalyzed reactions has been developed. Both the catalytic activity and the SERS effect are coupled into a single bi-functional 3D superstructure comprising Au nanosatellites self-assembled onto a shell-insulated Ag microflower core, which eliminates the interference from photocatalysis. Electronic supplementary information (ESI) available: Details of the synthesis and characterization of the Ag@SiO2@Au superstructures (SEM and TEM images, UV/vis and SERS spectra). See DOI: 10.1039/c6nr00278a

  19. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGESBeta

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  20. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  1. Study on 3-D simulation of flow and turbidity in an oxbow lake in tidal compartment

    NASA Astrophysics Data System (ADS)

    Yokoyama, H.; Momonoe, H.; Hamamoto, S.

    2010-12-01

    We aimed to make flow and turbidity simulation model for an oxbow lake in tidal compartment. The oxbow has two bottle-necks and inflow river from urban district. Bed topography of the oxbow is former meandering channel of large-basin river. Therefore characteristic of flow and water quality is complex. First, field observation was conducted to clarify the characteristics of flow and water quality in the oxbow. From observation results, flow and resuspension phenomena in the oxbow were affected by wind and tide, and the balance of the two factors changed longitudinally. Next, we built 3-D simulation model of flow which took account of the field observation results. In order to investigate effective water quality improvement, we set some test cases: condition of wind, inflow river were changed. From the simulation results, tide was the most important factor, however at the upper part of the oxbow, where the tidal power seemed to be weaker, flow and turbidity were clearly affected by the wind.

  2. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-02-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  3. Simulation of water temperature in two reservoirs with Delft3d

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Zhou, L. Y.

    2016-08-01

    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  4. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    NASA Astrophysics Data System (ADS)

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.

    2015-01-01

    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  5. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  6. 3D Numerical Simulation of a New Model for Coronal Jets

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Antiochos, S.; DeVore, C. R.; Patsourakos, S.

    2008-09-01

    Recent solar observations with STEREO and HINODE have revealed evidence of twisting motions during the evolution of coronal jets. Furthermore, the observations indicate that some jets achieve near-Alfvenic velocities. Most models of jet are not capable of explaining these new observational features. In addition, the impulsiveness of jets, manifested as a brief, violent energy release phase in contrast to a slow, quasi-static energy storage phase storage, is an issue not easily addressed. We will present the results of 3D numerical simulations of our model for coronal jets. The simulations were performed with our state-of-art adaptive mesh MHD solver ARMS. The basic idea of the model is that a jet is due to the release of magnetic twist when a closed field region undergoes interchange reconnection with surrounding open field. The fast reconnection between open and closed field results in the generation of nonlinear Alfven waves that propagate along the open field, accelerating plasma upward. We will show how the new stereoscopically-observed features of jets can be explained by the results of our numerical simulations

  7. Arbitrary tip orientation in STM simulations: 3D WKB theory and application to W(110)

    NASA Astrophysics Data System (ADS)

    Mándi, Gábor; Nagy, Norbert; Palotás, Krisztián

    2013-11-01

    We extend the orbital-dependent electron tunnelling model implemented within the three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB) atom-superposition approach for simulating scanning tunnelling microscopy (STM) by including arbitrary tip orientations. The orientation of the tip is characterized by a local coordinate system centred on the tip apex atom obtained by a rotation with respect to the sample coordinate system. The rotation is described by the Euler angles. Applying our method, we highlight the role of the real-space shape of the electron orbitals involved in the tunnelling, and analyse the convergence and the orbital contributions of the tunnelling current above the W(110) surface depending on the orientation of a model tungsten tip. We also simulate STM images at constant-current condition, and find that their quality depends very much on the tip orientation. Some orientations result in protrusions on the images that do not occur above W atoms. The presence of such apparent atom positions makes it difficult to identify the exact position of surface atoms. It is suggested that this tip orientation effect should be considered in the evaluation of experimental STM images on other surfaces as well. The presented computationally efficient tunnelling model could prove to be useful for obtaining more information on the local tip geometry and orientation by comparing STM experiments to a large number of simulations with systematically varied tip orientations.

  8. Arbitrary tip orientation in STM simulations: 3D WKB theory and application to W(110).

    PubMed

    Mándi, Gábor; Nagy, Norbert; Palotás, Krisztián

    2013-11-01

    We extend the orbital-dependent electron tunnelling model implemented within the three-dimensional (3D) Wentzel-Kramers-Brillouin (WKB) atom-superposition approach for simulating scanning tunnelling microscopy (STM) by including arbitrary tip orientations. The orientation of the tip is characterized by a local coordinate system centred on the tip apex atom obtained by a rotation with respect to the sample coordinate system. The rotation is described by the Euler angles. Applying our method, we highlight the role of the real-space shape of the electron orbitals involved in the tunnelling, and analyse the convergence and the orbital contributions of the tunnelling current above the W(110) surface depending on the orientation of a model tungsten tip. We also simulate STM images at constant-current condition, and find that their quality depends very much on the tip orientation. Some orientations result in protrusions on the images that do not occur above W atoms. The presence of such apparent atom positions makes it difficult to identify the exact position of surface atoms. It is suggested that this tip orientation effect should be considered in the evaluation of experimental STM images on other surfaces as well. The presented computationally efficient tunnelling model could prove to be useful for obtaining more information on the local tip geometry and orientation by comparing STM experiments to a large number of simulations with systematically varied tip orientations.

  9. Flux Emergence In The Solar Photosphere - Diagnostics Based On 3-D Rradiation-MHD Simulations

    NASA Astrophysics Data System (ADS)

    Yelles Chaouche, L.; Cheung, M.; Lagg, A.; Solanki, S.

    2006-08-01

    We investigate flux tube emergence in the solar photosphere using a diagnostic procedure based on analyzing Stokes signals from different spectral lines calculated in 3-D radiation-MHD simulations. The simulations include the effects of radiative transport and partial ionization and cover layers both above and below the solar surface. The simulations consider the emergence of a twisted magnetic flux tube through the solar surface. We consider different stages in the emergence process, starting from the early appearance of the flux tube at the solar surface, and following the emergence process until the emerged flux looks similar to a normal bipolar region. At every stage we compute line profiles by numerically solving the Unno-Rachkovsky equations at every horizontal grid point. Then, following observational practice, we apply Milne-Eddington-type inversions to the synthetic spectra in order to retrieve different atmospheric parameters. We include the influence of spatial smearing on the deduced atmospheric parameters to identify signatures of different stages of flux emergence in the solar photosphere.

  10. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  11. Comparison of simulated and experimental 3D laser images using a GmAPD array: application to long range detection

    NASA Astrophysics Data System (ADS)

    Coyac, Antoine; Riviere, Nicolas; Hespel, Laurent; Briottet, Xavier

    2016-05-01

    In this paper, we show the feasibility and the benefit to use a Geiger-mode Avalanche Photo-Diode (GmAPD) array for long range detection, up to several kilometers. A simulation of a Geiger detection sensor is described, which is a part of our end-to-end laser simulator, to generate simulated 3D laser images from synthetic scenes. Resulting 3D point clouds have been compared to experimental acquisitions, performed with our GmAPD 3D camera on similar scenarios. An operational case of long range detection is presented: a copper cable outstretched above the ground, 1 kilometer away the experimental system and with a horizontal line-of-sight (LOS). The detection of such a small object from long distance observation strongly suggests that GmAPD focal plane arrays could be easily used for real-time 3D mapping or surveillance applications from airborne platforms, with good spatial and temporal resolutions.

  12. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells.

    PubMed

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  13. Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.- K.; Johnson, D.

    1998-01-01

    stratiform regions; (3) the cloud (upward-downward) mass fluxes in convective and stratiform regions; (4) characteristics of clouds (such as cloud size, updraft intensity and cloud lifetime) and the comparison of clouds with Radar observations. Differences and similarities in organization of convection between simulated 2D and 3D cloud systems. Preliminary results indicated that there is major differences between 2D and 3D simulated stratiform rainfall amount and convective updraft and downdraft mass fluxes.

  14. Broadband Near-Field Ground Motion Simulations in 3D Scattering Media

    NASA Astrophysics Data System (ADS)

    Imperatori, Walter; Mai, Martin

    2013-04-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broadband ground-motion calculations, either considering scattering as a semi-stochastic or pure stochastic process. In this study, we simulate broadband (0-10 Hz) ground motions using a 3D finite-difference wave propagation solver using several 3D media characterized by Von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wave-field at short and intermediate distances from the source in terms of ground motion parameters. We also examine other relevant scattering-related phenomena, such as the loss of radiation pattern and the directivity breakdown. We first simulate broadband ground motions for a point-source characterized by a classic omega-squared spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both sub-shear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for PGV calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggest that Von Karman correlation functions with correlation length between several hundred meters and few kilometers, Hurst exponent around 0.3 and standard deviation in the 5-10% range

  15. 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis

    PubMed Central

    Shirinifard, Abbas; Gens, J. Scott; Zaitlen, Benjamin L.; Popławski, Nikodem J.; Swat, Maciej; Glazier, James A.

    2009-01-01

    We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors. PMID:19834621

  16. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  17. Interactive methods for exploring particle simulation data

    SciTech Connect

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  18. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  19. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  20. 3D PIC Simulations of Collisionless Shocks at Lunar Magnetic Anomalies and Their Role in Forming Lunar Swirls

    NASA Astrophysics Data System (ADS)

    Bamford, R. A.; Alves, E. P.; Cruz, F.; Kellett, B. J.; Fonseca, R. A.; Silva, L. O.; Trines, R. M. G. M.; Halekas, J. S.; Kramer, G.; Harnett, E.; Cairns, R. A.; Bingham, R.

    2016-10-01

    Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the “lunar swirls” and “dark lanes.” Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.

  1. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Veranda, M.; Bonfiglio, D.; Cappello, S.; Chacón, L.; Escande, D. F.

    2013-07-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (IP above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values.

  2. Dual-wavelength digital holography for 3D particle image velocimetry: experimental validation.

    PubMed

    Grare, S; Allano, D; Coëtmellec, S; Perret, G; Corbin, F; Brunel, M; Gréhan, G; Lebrun, D

    2016-01-20

    A multi-exposure digital in-line hologram of a particle field is recorded by two successive pulses of different wavelengths. During the reconstruction step, each recording can be independently analyzed by selecting a given wavelength. This procedure enables avoiding the superimposition of particle images that may be close to each other.

  3. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  4. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  5. Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.

    PubMed

    Kim, Kyung Sang; Son, Young Don; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul

    2014-01-01

    Scatter correction is very important in 3-D PET reconstruction due to a large scatter contribution in measurements. Currently, one of the most popular methods is the so-called single scatter simulation (SSS), which considers single Compton scattering contributions from many randomly distributed scatter points. The SSS enables a fast calculation of scattering with a relatively high accuracy; however, the accuracy of SSS is dependent on the accuracy of tail fitting to find a correct scaling factor, which is often difficult in low photon count measurements. To overcome this drawback as well as to improve accuracy of scatter estimation by incorporating multiple scattering contribution, we propose a multiple scatter simulation (MSS) based on a simplified Monte Carlo (MC) simulation that considers photon migration and interactions due to photoelectric absorption and Compton scattering. Unlike the SSS, the MSS calculates a scaling factor by comparing simulated prompt data with the measured data in the whole volume, which enables a more robust estimation of a scaling factor. Even though the proposed MSS is based on MC, a significant acceleration of the computational time is possible by using a virtual detector array with a larger pitch by exploiting that the scatter distribution varies slowly in spatial domain. Furthermore, our MSS implementation is nicely fit to a parallel implementation using graphic processor unit (GPU). In particular, we exploit a hybrid CPU-GPU technique using the open multiprocessing and the compute unified device architecture, which results in 128.3 times faster than using a single CPU. Overall, the computational time of MSS is 9.4 s for a high-resolution research tomograph (HRRT) system. The performance of the proposed MSS is validated through actual experiments using an HRRT.

  6. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.

    PubMed

    Cheng, Peng; Jhiang, Sissy M; Menq, Chia-Hsiang

    2013-11-01

    This paper presents a real-time visual sensing system, which is created to achieve high-speed three-dimensional (3D) motion tracking of microscopic spherical particles in aqueous solutions with nanometer resolution. The system comprises a complementary metal-oxide-semiconductor (CMOS) camera, a field programmable gate array (FPGA), and real-time image processing programs. The CMOS camera has high photosensitivity and superior SNR. It acquires images of 128×120 pixels at a frame rate of up to 10,000 frames per second (fps) under the white light illumination from a standard 100 W halogen lamp. The real-time image stream is downloaded from the camera directly to the FPGA, wherein a 3D particle-tracking algorithm is implemented to calculate the 3D positions of the target particle in real time. Two important objectives, i.e., real-time estimation of the 3D position matches the maximum frame rate of the camera and the timing of the output data stream of the system is precisely controlled, are achieved. Two sets of experiments were conducted to demonstrate the performance of the system. First, the visual sensing system was used to track the motion of a 2 μm polystyrene bead, whose motion was controlled by a three-axis piezo motion stage. The ability to track long-range motion with nanometer resolution in all three axes is demonstrated. Second, it was used to measure the Brownian motion of the 2 μm polystyrene bead, which was stabilized in aqueous solution by a laser trapping system. PMID:24216655

  7. A Real-time, 3D Musculoskeletal Model for Dynamic Simulation of Arm Movements

    PubMed Central

    Chadwick, Edward K.; Blana, Dimitra; van den Bogert, Antonie J.; Kirsch, Robert F.

    2010-01-01

    Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically requires real-time, “patient-in-the-loop” experimentation. A real-time, three-dimensional, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out non-invasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a three degree-of-freedom gleno-humeral joint as well as elbow flexion/extension and pronation/supination, and contains 22 muscles of the shoulder and elbow divided into multiple elements. The model is able to run in real time on modest desktop hardware and demonstrates that a large-scale, 3D model can be made to run in real time. This is a prerequisite for a real-time, whole arm model that will form part of a dynamic arm simulator for use in the development, testing and user training of neural prosthesis systems. PMID:19272926

  8. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    NASA Astrophysics Data System (ADS)

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  9. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  10. An accurate and efficient 3-D micromagnetic simulation of metal evaporated tape

    NASA Astrophysics Data System (ADS)

    Jones, M.; Miles, J. J.

    1997-07-01

    Metal evaporated tape (MET) has a complex column-like structure in which magnetic domains are arranged randomly. In order to accurately simulate the behaviour of MET it is important to capture these aspects of the material in a high-resolution 3-D micromagnetic model. The scale of this problem prohibits the use of traditional scalar computers and leads us to develop algorithms for a vector processor architecture. We demonstrate that despite the materials highly non-uniform structure, it is possible to develop fast vector algorithms for the computation of the magnetostatic interaction field. We do this by splitting the field calculation into near and far components. The near field component is calculated exactly using an efficient vector algorithm, whereas the far field is calculated approximately using a novel fast Fourier transform (FFT) technique. Results are presented which demonstrate that, in practice, the algorithms require sub-O( N log( N)) computation time. In addition results of highly realistic simulation of hysteresis in MET are presented.

  11. 3D-Simulation Of Concentration Distributions Inside Large-Scale Circulating Fluidized Bed Combustors

    NASA Astrophysics Data System (ADS)

    Wischnewski, R.; Ratschow, L.; Hartge, E. U.; Werthe, J.

    With increasing size of modern CFB combustors the lateral mixing of fuels and secondary air gains more and more importance. Strong concentration gradients, which result from improper lateral mixing, can lead to operational problems, high flue gas emissions and lower boiler efficiencies. A 3D-model for the simulation of local gas and solids concentrations inside industrial-sized CFB boilers has been developed. The model is based on a macroscopic approach and considers all major mechanisms during fuel spreading and subsequent combustion of char and volatiles. Typical characteristics of modern boilers like staged combustion, a smaller cross-sectional area in the lower section of the combustion chamber and the co-combustion of additional fuels with coal can be considered. The 252 MWth combustor of Stadtwerke Duisburg AG is used for the validation of the model. A comprehensive picture of the local conditions inside the combustion chamber is achieved by the combination of local gas measurements and the three-dimensional simulation of concentration distributions.

  12. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  13. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    NASA Astrophysics Data System (ADS)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  14. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  15. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  16. What Breaks Magnetic Field Lines in 3D Simulations of Low β Plasmas?

    NASA Astrophysics Data System (ADS)

    Swisdak, M. M.; Che, H.; Drake, J. F.

    2010-12-01

    During magnetic reconnection field lines must break and reconnect to release energy, but specifically how this happens has been unclear. Ion-electron drag arising from turbulence (anomalous resistivity) and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory lend support to the anomalous resistivity idea, but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report 3D computer simulations showing that neither of these mechanisms works in low-β plasmas. Instead, when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that abruptly increases the transverse momentum transport (anomalous viscosity) and leads to an increase in the rate of reconnection. The filamentation is due to an instability that feeds on the gradient of the reconnection current and for which we derive the linear dispersion relation. We also show computer simulations of the instability and discuss the conditions under which it should appear.

  17. Comparison of two different surfaces for 3d model abstraction in support of remote sensing simulations

    SciTech Connect

    Pope, Paul A; Ranken, Doug M

    2010-01-01

    A method for abstracting a 3D model by shrinking a triangular mesh, defined upon a best fitting ellipsoid surrounding the model, onto the model's surface has been previously described. This ''shrinkwrap'' process enables a semi-regular mesh to be defined upon an object's surface. This creates a useful data structure for conducting remote sensing simulations and image processing. However, using a best fitting ellipsoid having a graticule-based tessellation to seed the shrinkwrap process suffers from a mesh which is too dense at the poles. To achieve a more regular mesh, the use of a best fitting, subdivided icosahedron was tested. By subdividing each of the twenty facets of the