Science.gov

Sample records for 3d particle-in-cell pic

  1. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  2. 3D Particle-In-Cell (PIC) simulations of plasma sheath formation above lunar craters

    NASA Astrophysics Data System (ADS)

    Likhanskii, A.; Poppe, A. R.; Piquette, M.; Amyx, K.; Messmer, P.; Horanyi, M.

    2010-12-01

    Comprehensive investigation of plasma sheath formation and consequent dust levitation on lunar surface is important for interpretation of results of future lunar missions (such as LADEE and ARTEMIS). Until recently, most of such studies were done in experimental laboratories at reduced scales. Due to the complexity and nonlinearity of the problem, only simplified theories, describing this effect, were developed. However, recent progress in high-performance kinetic plasma simulations allowed tackling the problem of plasma sheath formation numerically. In this poster we will present the simulation results of plasma sheath formation above the lunar craters in presence of solar wind and photoelectron emission. These results were obtained using 3D Particle-In-Cell (PIC) code VORPAL. In the simulations we considered plasma sheath formation for normal, 45 and 90 degree incidence solar wind. Sample distribution of electric field in plasma sheath is shown in Figure 1. In the second part of the poster, we will present results of simulations of the LASP (Laboratory for Atmospheric and Space Physics at University of Colorado) experiments on study of plasma sheath formation above hemispherical isolated dimple. Figure 1. Electric field distribution in the plasma sheath above the lunar crater

  3. Earth's Magnetosphere 3D Simulation by Coupling Particle-In-Cell and Magnetohydrodynamics Models: Parametric Study

    NASA Astrophysics Data System (ADS)

    Baraka, S. M.; Ben-Jaffel, L. B.

    2014-12-01

    We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere

  4. A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn

    2008-10-01

    A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.

  5. Comparison of quasi-3D and full-3D laser wakefield PIC simulations using azimuthal mode decomposition

    NASA Astrophysics Data System (ADS)

    Dalichaouch, Thamine; Yu, Peicheng; Davidson, Asher; Mori, Warren; Vieira, Jorge; Fonseca, Ricardo

    2015-11-01

    Laser wakefield acceleration (LWFA) has attracted a lot of interest as a possible compact particle accelerator. However, 3D simulations of plasma-based accelerators are computationally intensive, sometimes taking millions of core hours on today's computers. A quasi-3D particle-In-cell (PIC) approach has been developed to take advantage of azimuthal symmetry in LWFA (and PWFA) simulations by using a particle-in-cell description in r-z and a Fourier description in φ. Quasi-3D simulations of LWFA are computationally more efficient and faster than Full-3D simulations because only first few azimuthal harmonics are needed to capture the physics of the problem. We have developed a cylindrical mode decomposition diagnostic for 3D Cartesian geometry simulations to analyze the agreement between full-3D and quasi-3D PIC simulations of laser and beam-plasma interactions. The diagnostic interpolates field data from Full-3D PIC simulations onto an irregular cylindrical grid (r , φ , z). A Fourier decomposition is then performed on the interpolated 3D simulation data along the azimuthal direction. This diagnostic has the added advantage of separating out the wakefields from the laser field. Preliminary results for this diagnostic of LWFA and PWFA simulations with symmetric and nearly symmetric spot sizes as well as of laser-plasma interactions using lasers with orbital angular momentum (higher order Laguerre-Gaussian modes) will be presented.

  6. 3D PIC Modeling of Microcavity Discharge

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  7. 3D implicit PIC simulations of solar wind - moon interactions

    NASA Astrophysics Data System (ADS)

    Deca, J.; Markidis, S.; Divin, A.; Lapenta, G.; Vapirev, A.

    2012-04-01

    We present three-dimensional Particle-in-Cell simulations of an unmagnetized insulating Moon-sized body immersed in the solar wind. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, 2009]. Multiscale kinetic physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind - body interaction studies. Particles are injected at the inflow side of the computational domain and absorbed at all others. A bow shock is not formed upstream of the body, but the obstacle generates faint dispersive waves propagating parallel to the magnetic field lines, in agreement with numerical simulations done in MHD approach. Polarization electric field is generated in the wake. In addition, plasma flows filling the wake tend to excite streaming instabilities, which lead to bipolar signatures in the parallel electric field. Our future work includes updating the physical model to include photoionization and re-emission at the object's surface.

  8. MHD-Epic: Embedded Particle-in-Cell Simulations of Reconnection in Global 3D Extended MHD Simulations

    NASA Astrophysics Data System (ADS)

    Daldorff, L. K. S.; Toth, G.; Borovikov, D.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    With the new modeling capability in the Space Weather Modeling Framework (SWMF) of embedding an implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamics model (Daldorff et al. 2014, JCP, 268, 236) we are ready to locally handle the full physics of the reconnection and its implications on the full system where globally, away from the reconnection region, a magnetohydrodynamic description is satisfactory. As magnetic reconnection is one of the main drivers in magnetospheric and heliospheric plasma dynamics, the self-consistent description of the electron dynamics in the coupled MHD-EPIC model is well suited for investigating the nature of these systems. We will compare the new embedded MHD-EPIC model with pure MHD and Hall MHD simulations of the Earth's magnetosphere.

  9. Fully 3D Particle-in-Cell Simulation of Double Post-Hole Convolute on PTS Facility

    NASA Astrophysics Data System (ADS)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Institute of Fluid Physics Collaboration; Institute of Applied Physics; Computational Mathematics Collaboration

    2015-11-01

    In order to get better understand of energy transforming and converging process during High Energy Density Physics (HEDP) experiments, fully 3D particle-in-cell (PIC) simulation code NEPTUNE3D was used to provide numerical approach towards parameters which could hardly be acquired through diagnostics. Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) on the primary test stand (PTS) facility was chosen to perform a series of fully 3D PIC simulations, calculating ability of codes were tested and preliminary simulation results about DPHC on PTS facility were discussed. Taking advantages of 3D simulation codes and large-scale parallel computation, massive data (~ 250GB) could be acquired in less than 5 hours and clear process of current transforming and electron emission in DPHC were demonstrated with the help of visualization tools. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated to be 0.46% ~ 0.48% by comparisons between output magnetic field profiles with or without electron emission. Project supported by the National Natural Science Foundation of China (Grant No. 11205145, 11305015, 11475155).

  10. Grid dependent noise and entropy growth in anisotropic 3d particle-in-cell simulation of high intensity beams

    NASA Astrophysics Data System (ADS)

    Hofmann, I.; Boine-Frankenheim, O.

    2014-12-01

    The numerical noise inherent to particle-in-cell (PIC) simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994)]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial "collisions" caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.

  11. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    SciTech Connect

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.

  12. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC

    SciTech Connect

    Birdsall, C.K. . Dept. of Electrical Engineering and Computer Sciences)

    1991-04-01

    Many-particle (meaning 100's) charged-particle plasma simulations using spatial meshes for the electromagnetic field solutions, particle-in-cell (PIC) merged with Monte Carlo collision (MCC) calculations, are coming into wide use for application to partially ionized gases. This paper emphasizes the development of PIC computer experiments since the 1950's starting with one-dimensional (1-D) charged-sheet models, the addition of the mesh, and fast direct Poisson equation solvers for 2-D and 3-D. The finite-size particle-in-mesh (finite {Delta}{chi}, {Delta}t) theory of Langdon is presented in part to display the effects of too small {lambda}{sub D}/{Delta}{chi}, even for Maxwellian velocity distributions, as a caution, for example, when some ions are cooled to background gas temperatures by charge exchange. Early work on adding collisions to 1-D charge-sheet models by Burger and Shanny et al. are presented, with many of the elements of current Monte Carlo codes. Bounded plasma modeling is presented with electrode charges and external R, L, C, and V(t), I(t) sources now in use on fast desktop computers as real-time computer experiments, complementing analytic modeling and laboratory experiments. This paper reports that the addition of Monte Carlo collisions (usually done with irregular timesteps) to PIC (usually done with uniform {Delta}t's) is displayed as a developing art, relying on experimental total cross sections and approximate analytical differential cross sections to produce changes in charged-particle speed and direction due to collisions with neutrals, so far including elastic, excitation, ionization, charge exchange, and attachment processes.

  13. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  14. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons

  15. Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids

    SciTech Connect

    Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.

    1998-01-01

    New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.

  16. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  17. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  18. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  19. Analysis of the beam halo in negative ion sources by using 3D3V PIC code.

    PubMed

    Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006

  20. Particle-in-Cell (PIC) simulation of CW industrial heating magnetron.

    PubMed

    Andreev, Andrey D; Hendricks, Kyle J

    2010-01-01

    Modern CW industrial heating magnetrons are capable for producing as high as 300 kW of continuous-wave microwave power at frequencies around 900 MHz and are sold commercially [Wynn et al., 2004]. However, to utilize these magnetrons in some specific research and scientific applications being of interest for the Air Force, the necessary adaptation and redesign are required. It means that the detailed knowledge of principles of their operation and full understanding of how the changes of the design parameters affect their operational characteristics are necessary. We have developed and tested computer model of a 10-vane high-power strapped magnetron, which geometrical dimensions and design parameters are close to those of the California Tube Laboratory's commercially produced CWM-75/100L tube. The computer model is built by using the 3-D Improved Concurrent Electromagnetic Particle-in-Cell (ICEPIC) code. Simulations of the strapped magnetron operation are performed and the following operational characteristics are obtained during the simulation: frequency and mode of magnetron oscillations, output microwave power and efficiency of magnetron operation, anode current and anode-cathode voltage dynamics. The developed computer model of a non-relativistic high-power strapped magnetron may be used by the industrial magnetron community for designing following generations of the CW industrial heating high-power magnetrons. PMID:21721323

  1. 3-D Particl-in-Cell Simulations of Transport Driven Currents

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Dawson, J. M.

    1997-11-01

    In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Although bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents, the corresponding transport theory does not accurately predict the transport of particles and heat in present-day tokamak experiments. Furthermore, in our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. Because the preferential loss mechanism assumes the conservation of toroidal angular momentum, we have extended these simulations to three dimensions to study the effects of toroidal assymetries. A parallel, 3-D electromagnetic PIC code running on the IBM SP, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations, and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present these results at the meeting.

  2. Self-consistent Nonlinear Analysis and 3D Particle-In-Cell Simulation of a W-band Gyro-TWT

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Luo, Yong; Xu, Yong; Yan, Ran

    2014-10-01

    The self-consistent nonlinear analysis and CST 3D particle-in-cell (PIC) simulation of a W-band gyrotron traveling wave tube (gyro-TWT) are presented in this paper. Both the simulation results of the two codes are excellent agreement with each other. The gyro-TWT loaded with periodic lossy dielectric in the circuit for suppressing potential spurious oscillations. It is driven by a 70kV, 10A gyrating electron beam with velocity ratio of 1.0. PIC simulation results are: the maximum peak output power of 198kW, statured gain of 62.3dB and efficiency of 28.3% at 92.5GHz. Only the operating mode TE 01 is observed in the CST 3D simulation and the potential competing backward wave oscillations are effectively suppressed. The CST simulation also predicts that the device works stably under the condition of the beam current lower than 14A and B 0 /B g lower than 1.05. The simulated bandwidth with peak power greater than 100kW is 6.8GHz without axial velocity spread, and 4.1GHz with 6% axial velocity spread.

  3. Progress in 3D Particle-In-Cell Modeling of Space-Charge-Dominated Ion Beams for Heavy-Ion Fusion

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Callahan, D. A.; Grote, D. P.; Langdon, A. B.; Lund, S. M.; Haber, I.

    1996-11-01

    The ion beam in an induction accelerator for HIF is a non-neutral plasma, and is effectively simulated using familiar particle-in-cell (PIC) techniques, with the addition of a description of the accelerating and confining elements. The WARP code incorporates electrostatic 3D and r,z PIC models; a number of techniques are used in the 3D package, WARP3d, to increase accuracy and efficiency. These include solution of Poisson's equation with subgrid-scale resolution of internal boundary placement, a bent-system model using ``warped'' coordinates, and parallel processing. In this paper we describe recent applications to HIF experiments, including a high-current electrostatic-quadrupole injector at LBNL, and bending and recirculation experiments at LLNL. We also describe new computational techniques being studied, including higher-order integrators and subcycling methods aimed at allowing larger timesteps, and a ``fat-slice'' model which affords efficient examination of collective modes that transfer thermal energy between degrees of freedom.

  4. Study on Low-Frequency Oscillations in a Gyrotron Using a 3D CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2010-11-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. 2D Particle-in-cell simulations quasi-statically model the development of oscillations of the space charge in the adiabatic trap, but the physics of the electron dynamics in the adiabatic trap is only partially understood. Therefore, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a high average power gyrotron. As the CFDTD method exhibits a second order accuracy, complicated structures, such as a magnetron injection gun, can be well described. Employing a highly parallelized computation, the model can be simulated in time domain more realistically.

  5. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  6. DEMOCRITUS: An adaptive particle in cell (PIC) code for object-plasma interactions

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni

    2011-06-01

    A new method for the simulation of plasma materials interactions is presented. The method is based on the particle in cell technique for the description of the plasma and on the immersed boundary method for the description of the interactions between materials and plasma particles. A technique to adapt the local number of particles and grid adaptation are used to reduce the truncation error and the noise of the simulations, to increase the accuracy per unit cost. In the present work, the computational method is verified against known results. Finally, the simulation method is applied to a number of specific examples of practical scientific and engineering interest.

  7. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  8. Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling

    NASA Astrophysics Data System (ADS)

    Serafini, David B.; McCorquodale, Peter; Colella, Phillip

    2005-01-01

    We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the load

  9. 3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2011-10-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.

  10. Particle-In-Cell (PIC) simulation of long-anode magnetron

    NASA Astrophysics Data System (ADS)

    Verma, Rajendra Kumar; Maurya, Shivendra; Singh, Vindhyavasini Prasad

    2016-03-01

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was `Virtual Prototyped' using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were - hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.

  11. 3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh; Song, Heather

    2015-11-01

    Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.

  12. Performance of the UCAN2 Gyrokinetic Particle In Cell (PIC) Code on Two Massively Parallel Mainframes with Intel ``Sandy Bridge'' Processors

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul

    2013-10-01

    The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.

  13. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    NASA Astrophysics Data System (ADS)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  14. Parallel 3-D particle-in-cell modelling of charged ultrarelativistic beam dynamics

    NASA Astrophysics Data System (ADS)

    Boronina, Marina A.; Vshivkov, Vitaly A.

    2015-12-01

    > ) in supercolliders. We use the 3-D set of Maxwell's equations for the electromagnetic fields, and the Vlasov equation for the distribution function of the beam particles. The model incorporates automatically the longitudinal effects, which can play a significant role in the cases of super-high densities. We present numerical results for the dynamics of two focused ultrarelativistic beams with a size ratio 10:1:100. The results demonstrate high efficiency of the proposed computational methods and algorithms, which are applicable to a variety of problems in relativistic plasma physics.

  15. 2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU

    NASA Astrophysics Data System (ADS)

    Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre

    2012-10-01

    A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.

  16. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  17. Particle acceleration in 3D single current sheets formed in the solar corona and heliosphere: PIC approach

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Siversky, T.

    2015-09-01

    Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir

  18. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  19. Simulations of magnetic reconnection with Parsek2D-MLMD, a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle in Cell (PIC) code

    NASA Astrophysics Data System (ADS)

    Innocenti, M.; Beck, A.; Lapenta, G.; Markidis, S.

    2012-12-01

    The kinetic simulation of intrinsically multi scale processes such as magnetic reconnection events with realistic mass ratios is a daunting task for explicit Particle In Cell (PIC) codes, which require to use resolutions of the order of the electron Debye length even when simulating dramatically bigger domains. As an example, a simulation of reconnection in the magnetotail, with domain sizes of the order of 20 di x 10 di (˜ 7.2 106 m x 3.6 106 m, with di being the ion skin depth) and a resolution of λD,e= 687 m, with λD,e the electron Debye length, requires the astounding number of 10500 x 5240 cells. Higher grid spacings can be used if the simulation is performed with an implicit PIC code, which substitutes a much less strict accuracy constraint to the stability constraint of explicit PIC codes. The same reconnection problem as before can be simulated, with an implicit PIC code resolving the scale of interest of de /2 instead of the electron Debye length (de is the electron skin depth), with the much more manageable number of 1920 x 958 cells. However, an even smaller number of cells can be used if, instead of using the same, high resolution on the entire domain, the domain to simulate is divided into subdomains each resolved with a grid spacing related to the physical scale of interest in the specific subdomain. In the case of reconnection, the division which immediately springs to mind is between electron diffusion region, ion diffusion region and outer region, where resolutions respectively of the order of fractions of the electron skin depth, of the ion skin depth and bigger can be used. We present here a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle In Cell (PIC) code, Parsek2D-MLMD, able to perform simulations of magnetic reconnection where the expensive high resolutions are used only when needed, while the rest of the domain is simulated with grid spacings chosen according to the local scales of interest. The major difference

  20. The characterization and optimization of NIO1 ion source extraction aperture using a 3D particle-in-cell code

    NASA Astrophysics Data System (ADS)

    Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.; Ippolito, N.

    2016-02-01

    The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported.

  1. The characterization and optimization of NIO1 ion source extraction aperture using a 3D particle-in-cell code.

    PubMed

    Taccogna, F; Minelli, P; Cavenago, M; Veltri, P; Ippolito, N

    2016-02-01

    The geometry of a single aperture in the extraction grid plays a relevant role for the optimization of negative ion transport and extraction probability in a hybrid negative ion source. For this reason, a three-dimensional particle-in-cell/Monte Carlo collision model of the extraction region around the single aperture including part of the source and part of the acceleration (up to the extraction grid (EG) middle) regions has been developed for the new aperture design prepared for negative ion optimization 1 source. Results have shown that the dimension of the flat and chamfered parts and the slope of the latter in front of the source region maximize the product of production rate and extraction probability (allowing the best EG field penetration) of surface-produced negative ions. The negative ion density in the plane yz has been reported. PMID:26932027

  2. Porting the 3D Gyrokinetic Particle-in-cell Code GTC to the CRAY/NEC SX-6 Vector Architecture: Perspectives and Challenges

    SciTech Connect

    S. Ethier; Z. Lin

    2003-09-15

    Several years of optimization on the super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the CRAY/NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. Early performance results are shown and compared to the same test done on the IBM SP Power 3 and Power 4 machines.

  3. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-01

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  4. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  5. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  6. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  7. Self consistent particles dynamics in/out of the cusp region by using back tracking technics; a global 3D PIC simulation approach

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.

    2013-12-01

    Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere

  8. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm

    NASA Astrophysics Data System (ADS)

    Lehe, Rémi; Kirchen, Manuel; Andriyash, Igor A.; Godfrey, Brendan B.; Vay, Jean-Luc

    2016-06-01

    We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.

  9. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  10. 3D-PIC simulation of an inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian

    2015-09-01

    Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  11. Multiple platform application of 3D CAD PIC simulations in pulsed power

    SciTech Connect

    Peratt, A.L.; Mostrom, M.A.

    1995-12-31

    With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk is to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.

  12. Electron field emission Particle-In-Cell (PIC) coupled with MCNPX simulation of a CNT-based flat-panel x-ray source

    NASA Astrophysics Data System (ADS)

    Grant, Edwin J.; Posada, Chrystian M.; Castaño, Carlos H.; Lee, Hyoung K.

    2011-03-01

    A novel x-ray source based on carbon nanotubes (CNTs) field emitters is being developed as an alternative for medical imaging diagnostic technologies. The design is based on an array of millions of micro sized x-ray sources similar to the way pixels are arranged in flat panel displays. The trajectory and focusing characteristics of the field emitted electrons, as well as the x-ray generation characteristics of each one of the proposed micro-sized x-ray tubes are simulated. The electron field emission is simulated using the OOPIC PRO particle-in-cell code. The x-ray generation is analyzed with the MCNPX Monte Carlo code. MCNPX is used to optimize both the bremsstrahlung radiation energy spectra and to verify the angular distribution for 0.25-12 μm thick molybdenum, rhodium and tungsten targets. Also, different extracting, accelerating and focusing voltages, as well as different focusing structures and geometries of the micro cells are simulated using the OOPIC Pro particle-in-cell code. The electron trajectories, beam spot sizes, I-V curves, bremsstrahlung radiation energy spectra, and angular distribution are all analyzed for a given cell. The simulation results show that micro x-ray cells can be used to generate suitable electron currents using CNT field emitters and strike a thin tungsten target to produce an adequate bremsstrahlung spectrum. The shape and trajectory of the electron beam was modified using focusing structures in the microcell. Further modifications to the electron beam are possible and can help design a better x-ray transmission source.

  13. Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations

    SciTech Connect

    Fubiani, G. Boeuf, J. P.

    2014-07-15

    Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.

  14. Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Mori, W. B.; Winjum, B. J.

    2014-10-01

    We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.

  15. 3D PiC code simulations for a laboratory experimental investigation of Auroral Kilometric Radiation mechanisms

    NASA Astrophysics Data System (ADS)

    Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-12-01

    Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.

  16. Conformal Electromagnetic Particle in Cell: A Review

    SciTech Connect

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  17. Extended Magnetohydrodynamics with Embedded Particle-in-Cell (XMHD-EPIC) Simulations of Magnetospheric Reconnection

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni

    2016-04-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.

  18. Fully implicit particle-in-cell algorithm.

    NASA Astrophysics Data System (ADS)

    Kim, Hyung; Chacon, Luis

    2005-10-01

    Most current particle-in-cell (PIC) algorithms employ an explicit approach. Explicit PIC approaches are not only time-step limited for numerical stability, but also grid-intensive due to the so-called finite-grid instability.ootnotetextC. Birdsall and A. Langdon, Plasma physics via computer simulation, McGraw-Hill, New York, 1985 As a result, explicit PIC methods are very hardware-intensive, and become prohibitive for system scale simulations even with modern supercomputers. To avoid such stringent time-step and grid-size requirements, the implicit moment method PIC approach (IM-PIC) was developed.ootnotetextJ. Brackbill and D. Forslund, J. Comput. Phys. 46, 271 (1982). IM-PIC advances the required moments (density, current) using Chapman-Enskop-based fluid equations, and then advances the particles with such moments. While being able to employ much larger time steps and grid spacings than explicit PIC methods, IM-PIC is limited in that the time-advanced moments and the particle moments are inconsistent, resulting in lack of energy conservation. To remedy this, we propose here a fully implicit, fully nonlinear PIC approach (FI-PIC) where the particles and the moments are converged simultaneously using Newton-Krylov techniques. This guarantees the consistency of moments and particles upon convergence. We will demonstrate the feasibility of the concept using a purely electrostatic Vlasov-Poisson model, and will show its effectiveness with several fully kinetic examples.

  19. Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC

    NASA Astrophysics Data System (ADS)

    Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin

    2015-04-01

    We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify

  20. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  1. Wavelet-based Poisson Solver for use in Particle-In-CellSimulations

    SciTech Connect

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-05-13

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.

  2. Global particle-in-cell simulations of Alfvenic modes

    SciTech Connect

    Mishchenko, A.; Koenies, A.; Hatzky, R.

    2008-11-01

    Global linear gyro-kinetic particle-in-cell (PIC) simulations of electromagnetic modes in pinch and tokamak geometries are reported. The Toroidal Alfven Eigenmode and the Kinetic Ballooning Mode have been simulated. All plasma species have been treated kinetically (i.e. no hybrid fluid-kinetic or reduced-kinetic model has been applied). The main intention of the paper is to demonstrate that the global Alfven modes can be treated with the gyro-kinetic PIC method.

  3. MHD-EPIC: Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.

  4. Contemporary particle-in-cell approach to laser-plasma modelling

    NASA Astrophysics Data System (ADS)

    Arber, T. D.; Bennett, K.; Brady, C. S.; Lawrence-Douglas, A.; Ramsay, M. G.; Sircombe, N. J.; Gillies, P.; Evans, R. G.; Schmitz, H.; Bell, A. R.; Ridgers, C. P.

    2015-11-01

    Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions. Early electromagnetic codes used the Yee staggered grid for field variables combined with a leapfrog EM-field update and the Boris algorithm for particle pushing. The general properties of such schemes are well documented. Modern PIC codes tend to add to these high-order shape functions for particles, Poisson preserving field updates, collisions, ionisation, a hybrid scheme for solid density and high-field QED effects. In addition to these physics packages, the increase in computing power now allows simulations with real mass ratios, full 3D dynamics and multi-speckle interaction. This paper presents a review of the core algorithms used in current laser-plasma specific PIC codes. Also reported are estimates of self-heating rates, convergence of collisional routines and test of ionisation models which are not readily available elsewhere. Having reviewed the status of PIC algorithms we present a summary of recent applications of such codes in laser-plasma physics, concentrating on SRS, short-pulse laser-solid interactions, fast-electron transport, and QED effects.

  5. Particle-In-Cell simulation of laser irradiated two-component microspheres in 2 and 3 dimensions

    NASA Astrophysics Data System (ADS)

    Pauw, Viktoria; Ostermayr, Tobias M.; Bamberg, Karl-Ulrich; Böhl, Patrick; Deutschmann, Fabian; Kiefer, Daniel; Klier, Constantin; Moschüring, Nils; Ruhl, Hartmut

    2016-09-01

    We examine proton acceleration from spherical carbon-hydrogen targets irradiated by a relativistic laser pulse. Particle-In-Cell (PIC) simulations are carried out in 2 and 3 dimensions (2D and 3D) to compare fast proton spectra. We find very different final kinetic energies in 2D and 3D simulations. We show that they are caused by the different Coulomb fields in 2D and 3D. We propose a correction scheme for the proton energies to test this hypothesis. In the case of sub-focus diameter targets comparison of corrected 2D energies with 3D results show good agreement. This demonstrates that caution is required when modeling experiments with simulations of reduced dimensionality.

  6. Magnetospheric Simulations With the Three-Dimensional Magnetohydrodynamics With Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.

    2015-12-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and

  7. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  8. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    SciTech Connect

    Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.

    2015-09-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  9. Particle Acceleration in 3D Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2015-12-01

    Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.

  10. 3D Global PIC simulation of Alfvenic transition layers at the cusp outer boundary during IMF rotations from north to south

    NASA Astrophysics Data System (ADS)

    Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.

    2013-12-01

    Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven

  11. Numerical experiments on unstructured PIC stability.

    SciTech Connect

    Day, David Minot

    2011-04-01

    Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.

  12. Adaptable Particle-in-Cell Algorithms for Graphical Processing Units

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor; Singh, Tajendra

    2010-11-01

    Emerging computer architectures consist of an increasing number of shared memory computing cores in a chip, often with vector (SIMD) co-processors. Future exascale high performance systems will consist of a hierarchy of such nodes, which will require different algorithms at different levels. Since no one knows exactly how the future will evolve, we have begun development of an adaptable Particle-in-Cell (PIC) code, whose parameters can match different hardware configurations. The data structures reflect three levels of parallelism, contiguous vectors and non-contiguous blocks of vectors, which can share memory, and groups of blocks which do not. Particles are kept ordered at each time step, and the size of a sorting cell is an adjustable parameter. We have implemented a simple 2D electrostatic skeleton code whose inner loop (containing 6 subroutines) runs entirely on the NVIDIA Tesla C1060. We obtained speedups of about 16-25 compared to a 2.66 GHz Intel i7 (Nehalem), depending on the plasma temperature, with an asymptotic limit of 40 for a frozen plasma. We expect speedups of about 70 for an 2D electromagnetic code and about 100 for a 3D electromagnetic code, which have higher computational intensities (more flops/memory access).

  13. Concurrent Algorithm For Particle-In-Cell Simulations

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Decyk, Viktor K.

    1990-01-01

    Separate decompositions used for particle-motion and field calculations. General Concurrent Particle-in-Cell (GCPIC) algorithm used to implement motions of individual plasma particles (ions and electrons) under influence of particle-in-cell (PIC) computer codes on concurrent processors. Simulates motions of individual plasma particles under influence of electromagnetic fields generated by particles themselves. Performed to study variety of nonlinear problems in plasma physics, including magnetic and inertial fusion, plasmas in outer space, propagation of electron and ion beams, free-electron lasers, and particle accelerators.

  14. Three dimensional particle-in-cell simulations of electron beams created via reflection of intense laser light from a water target

    NASA Astrophysics Data System (ADS)

    Ngirmang, Gregory K.; Orban, Chris; Feister, Scott; Morrison, John T.; Frische, Kyle D.; Chowdhury, Enam A.; Roquemore, W. M.

    2016-04-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory using the Large Scale Plasma (LSP) PIC code. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. The laser-energy-to-ejected-electron-energy conversion efficiency observed in 2D(3v) simulations were comparable to the conversion efficiencies seen in the 3D simulations, but the angular distribution of ejected electrons in the 2D(3v) simulations displayed interesting differences with the 3D simulations' angular distribution; the observed differences between the 2D(3v) and 3D simulations were more noticeable for the simulations with higher intensity laser pulses. An analytic plane-wave model is discussed which provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3v) simulations. We also performed a 3D simulation with circularly polarized light and found a significantly higher conversion efficiency and peak electron energy, which is promising for future experiments.

  15. Global gyrokinetic particle-in-cell simulations of internal kink instabilities

    SciTech Connect

    Mishchenko, Alexey; Zocco, Alessandro

    2012-12-15

    Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.

  16. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren

    2011-10-01

    Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.

  17. Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.

    2016-02-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  18. Particle-in-cell simulations of whistler turbulence: A review (Invited)

    NASA Astrophysics Data System (ADS)

    Gary, S. P.; Chang, O.; Hughes, R. S.; Wang, J.

    2013-12-01

    Measurements of broadband magnetic fluctuations in the solar wind at wavelengths shorter than the ion inertial length indicate that the primary constituent of such turbulence is kinetic Alfven waves at frequencies well below the proton cyclotron frequency. Nevertheless, it is possible that much higher frequency whistler fluctuations also contribute to this short-wavelength turbulence. To better understand such potential contributions to solar wind turbulence, we have carried out a series of three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence in a collisionless, homogeneous, magnetized plasma [Chang et al., 2011, 2013; Gary et al., 2012]. We here review the properties of these simulations, which address turbulence driven by both an initial ensemble of whistler waves and by the whistler anisotropy instability. Our results include the consequences due to both forward and inverse cascades, to variations in the amplitudes of the initial fluctuations and to variations in βe. We describe the magnetic fluctuation spectral properties as well as dissipation on the electrons, which are heated primarily in directions parallel and antiparallel to the background magnetic field. Magnetic fluctuation energy spectra exhibit a break to steeper slopes which scales as the inverse electron inertial length. The simulation results are consistent with the interpretation that the forward cascade is due to nonlinear three-wave interactions. Chang, O., S. P. Gary, and J. Wang (2011), Whistler turbulence forward cascade: Three-dimensional particle-in-cell simulations, Geophys. Res. Lett., 38, L22102. Chang, O., S. P. Gary, and J. Wang (2013), Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations, J. Geophys. Res., 118, 2824. Gary, S. P., O. Chang, and J. Wang (2012), Forward cascade of whistler turbulence: Three-dimensional particle-in-cell simulations, Ap. J., 755, 142.

  19. Propagation of numerical noise in particle-in-cell tracking

    NASA Astrophysics Data System (ADS)

    Kesting, Frederik; Franchetti, Giuliano

    2015-11-01

    Particle-in-cell (PIC) is the most used algorithm to perform self-consistent tracking of intense charged particle beams. It is based on depositing macroparticles on a grid, and subsequently solving on it the Poisson equation. It is well known that PIC algorithms occupy intrinsic limitations as they introduce numerical noise. Although not significant for short-term tracking, this becomes important in simulations for circular machines over millions of turns as it may induce artificial diffusion of the beam. In this work, we present a modeling of numerical noise induced by PIC algorithms, and discuss its influence on particle dynamics. The combined effect of particle tracking and noise created by PIC algorithms leads to correlated or decorrelated numerical noise. For decorrelated numerical noise we derive a scaling law for the simulation parameters, allowing an estimate of artificial emittance growth. Lastly, the effect of correlated numerical noise is discussed, and a mitigation strategy is proposed.

  20. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs. PMID:24785022

  1. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  2. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    SciTech Connect

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Fukano, A.

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  3. 3D PIC Simulation of the Magnetosphere during IMF Rotation from North to South: Signatures of Substorm Triggering in the Magnetotail

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Cao. D/ S/; Lembege, B.

    2008-01-01

    Three dimensional PIC simulations are performed in order to analyse the dynamics of the magnetotail as the interplanetary magnetic field (IMF) rotates from northward to southward direction. This dynamics reveals to be quite different within meridian/equatorial planes over two successive phases of this rotation. First, as IMF rotates from North to Dawn-Dusk direction, the X-Point (magnetic reconnection) evidenced in the magnetotail (meridian plane) is moving earthward (from x=-35 Re to x=-17.5 ) distance at which it stabilizes. This motion is coupled with the formation of "Crosstail-S" patterns (within the plane perpendicular to the Sun-Earth mine) through the neutral sheet in the nearby magnetotail. Second, as IMF rotates from dawn-dusk to South, the minimum B field region is expanding within the equatorial plane and forms a ring. This two-steps dynamics is analyzed in strong association with the cross field magnetotail current Jy, in order to recover the signatures of substorms triggering.

  4. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  5. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    SciTech Connect

    Fubiani, G.; Boeuf, J. P.

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  6. Two- and three-dimensional particle-in-cell simulations of ExB discharges

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander; Raitses, Yevgeny; Smolyakov, Andrei

    2015-09-01

    The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. Work funded by AFOSR and ARPA-E.

  7. Two- and three-dimensional particle-in-cell simulations of ExB discharges

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Kaganovich, Igor D.; Khrabrov, Alexander V.; Raitses, Yevgeny; Smolyakov, Andrei

    2015-11-01

    The Large-Scale Plasma (LSP) Particle-In-Cell with Monte-Carlo Collisions (PIC-MCC) code has been used to simulate several crossed-field (ExB) discharges in two and three dimensions. Two-dimensional (2D) simulations of a cold-cathode electric discharge with power-electronics applications and a Penning discharge will be presented. Three-dimensional (3D) simulation results of a cylindrical Hall thruster with scaled plasma parameters will also be shown and compared to experiment [Ellison2012]. To enable the 2D and 3D ExB discharge simulations, several improvements to the LSP code were made, including implementation of a new electrostatic field solver, external-circuit model and models for particle injection and secondary-electron emission. To ensure the correctness of the collision models used (and particularly important for the cold-cathode-discharge simulations), validation and code benchmarking was done with the LSP and EDIPIC codes in 1D for a glow discharge. Results and conclusions will be presented. L. Ellison, Y. Raitses and N. J. Fisch, ``Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster,'' Physics of Plasmas 19, 013503 (2012). Research supported by the U.S. Air Force Office of Scientific Research.

  8. Accelerating particle-in-cell simulations using multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2015-11-01

    Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.

  9. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    SciTech Connect

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-12-15

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  10. Classical radiation reaction in particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.

  11. PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED ACCELERATOR LIBRARY.

    SciTech Connect

    D'IMPERIO, N.L.; LUCCIO, A.U.; MALITSKY, N.

    2006-06-26

    The paper presents the integration of the SIMBAD space charge module in the UAL framework. SIMBAD is a Particle-in-Cell (PIC) code. Its 3-D Parallel approach features an optimized load balancing scheme based on a genetic algorithm. The UAL framework enhances the SIMBAD standalone version with the interactive ROOT-based analysis environment and an open catalog of accelerator algorithms. The composite package addresses complex high intensity beam dynamics and has been developed as part of the FAIR SIS 100 project.

  12. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  13. PIC simulation of high efficiency and high power 14 vane industrial magnetron

    NASA Astrophysics Data System (ADS)

    Vyas, Sandeep; Maurya, Shivendra; Singh, V. V. P.

    2016-03-01

    This paper presents a 3D Particle in cell (PIC) simulation of a CW 2.450±0.050 GHz 10 kW industrial magnetron. The electromagnetic and PIC simulation of magnetron has been carried out using CST microwave studio andCST particle studio. A virtual prototype of 14 vane magnetron has been simulated on computer. The cold frequency of magnetron is found 2.495 GHz. The unloaded quality factor and circuit efficiency are found 1970 and 92% from electromagnetic simulation. The output power is achieved 12.4 KW for anode voltage 12.7 kV and magnetic field 2900 Gauss. The anode current is found anode current 1.22 A. The total efficiency is 78.76 %.

  14. Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code

    NASA Astrophysics Data System (ADS)

    Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio

    2012-12-01

    We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.

  15. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Wang, Jianguo; Chen, Zaigao; Cheng, Guoxin; Wang, Pan

    2016-08-01

    To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional (3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of the time step. Particles are emitted from conformal boundaries with the charge conserving emission scheme and moved by using the relativistic Newton-Lorentz force equation. The symplectic formulas of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are given for truncating the open boundaries, numerical results show that the maximum relative error of truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of conformal signals' injection are given, numerical results show that the algorithms can give the right mode patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms, a magnetically insulated line oscillator is simulated, and the results are compared to those provided by using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order symplectic integration method can suppress the numerical Cherenkov radiation.

  16. Particle-In-Cell Simulation and Experimental Characterization of a Cylindrical Cusped Field Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Manente, Marco; Pavarin, Daniele; Cappelli, Mark

    2014-10-01

    This work aims to provide new insight into the physical mechanisms occurring in the discharge channel and acceleration region of a cusped field plasma thruster through a combined experimental and computational approach. Simulations are performed using the 3D particle-in-cell code F3MPIC, comprised of a PIC core coupled with a finite element electrostatic field solver over an unstructured mesh of tetrahedra. The cusped field structure is also included to resolve magnetized particle dynamics. We perform simulations with two ionization schemes: one where constant particle source rates are assigned to certain regions, and a more rigorous approach based on Monte Carlo collision events. The simulation results reveal correlations between the particle density distributions, electrostatic potential, and magnetic field topology inside the thruster discharge channel that are confirmed through experiments. Laser induced fluorescence measurements have resolved xenon ion velocities at several points near the thruster exit plane. Faraday and floating emissive probe measurements indicate this velocity field is correlated with the measured ion beam current profile and electrostatic potential field. This work sponsored by the U.S.A.F. Office of Scientific Research, with Dr. Mitat Birkan as program manager. F3MPIC developed under the European Union FP7 HPH.com project. C.V.Y. acknowledges the DOE NNSA SSGF fellowship under Contract DE-FC52-08NA28752.

  17. GPU acceleration of particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Meiser, Dominic

    2015-11-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).

  18. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    SciTech Connect

    Chacon, Luis

    2015-07-16

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ωpeΔt >> 1, and Δx >> λD. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

  19. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin

    2016-03-01

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

  20. Particle-In-Cell simulations of high pressure plasmas using graphics processing units

    NASA Astrophysics Data System (ADS)

    Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter

    2009-10-01

    Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.

  1. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGESBeta

    Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-06-07

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  2. On the numerical dispersion and the spectral fidelity of the Particle-In-Cell method

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Meyers, M. D.; Zeng, Y.; Yi, S.; Albright, B. J.

    2015-11-01

    The Particle-In-Cell (PIC) method is widely used in plasma modeling. However, the PIC method exhibits grid type numerical instabilities, including the finite grid instability and the numerical Cherenkov instability that can render unphysical simulation results or disrupt the simulation. A faithful numerical dispersion of the electromagnetic PIC algorithm is obtained and analyzed to obtain the insight about the numerical instabilities inherent in such a computation model. Using this dispersion, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. Compared with the gridless model, we show that the lack of spectral fidelity relative to the real system due to the aliasing effect is a major cause of the numerical instabilities in the PIC model. Work supported by the U.S. Department of Energy through the LDRD program at Los Alamos National Laboratory.

  3. On the use of particle-in-cell methods for the study of magnetically-confined fusion plasmas

    SciTech Connect

    Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)

    1991-06-12

    The applicability of electrostatic particle-in-cell (PIC) methods for the simulation of magnetically-confined fusion plasmas is investigated. The aspects of the PIC methodology which allow one to accurately model the representative charge separations found in hot fusion plasmas with far fewer simulation particles are discussed. The number of simulation particles required to resolve the collective effects of interest (such as the ambipolar potential) above the statistical fluctuations is also analyzed. 8 refs., 1 fig.

  4. Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model

    NASA Astrophysics Data System (ADS)

    Daldorff, Lars K. S.; Tóth, Gábor; Gombosi, Tamas I.; Lapenta, Giovanni; Amaya, Jorge; Markidis, Stefano; Brackbill, Jeremiah U.

    2014-07-01

    Computational models based on a fluid description of the plasma, such as magnetohydrodynamic (MHD) and extended magnetohydrodynamic (XMHD) codes are highly efficient, but they miss the kinetic effects due to the assumptions of small gyro radius, charge neutrality, and Maxwellian thermal velocity distribution. Kinetic codes can properly take into account the kinetic effects, but they are orders of magnitude more expensive than the fluid codes due to the increased degrees of freedom. If the fluid description is acceptable in a large fraction of the computational domain, it makes sense to confine the kinetic model to the regions where kinetic effects are important. This coupled approach can be much more efficient than a pure kinetic model. The speed up is approximately the volume ratio of the full domain relative to the kinetic regions assuming that the kinetic code uses a uniform grid. This idea has been advocated by [1] but their coupling was limited to one dimension and they employed drastically different grid resolutions in the fluid and kinetic models. We describe a fully two-dimensional two-way coupling of a Hall MHD model BATS-R-US with an implicit Particle-in-Cell (PIC) model iPIC3D. The coupling can be performed with identical grid resolutions and time steps. We call this coupled computational plasma model MHD-EPIC (MHD with Embedded PIC regions). Our verification tests show that MHD-EPIC works accurately and robustly. We show a two-dimensional magnetosphere simulation as an illustration of the potential future applications of MHD-EPIC.

  5. Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields

    SciTech Connect

    Strozzi, D. J.; Tabak, M.; Larson, D. J.; Divol, L.; Kemp, A. J.; Bellei, C.; Marinak, M. M.; Key, M. H.

    2012-07-15

    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell (PIC) code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum and a divergent angle spectrum (average velocity-space polar angle of 52 Degree-Sign ). Transport simulations with the PIC-based divergence do not ignite for >1 MJ of fast-electron energy, for a modest (70 {mu}m) standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields {approx}50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields will likely be more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.

  6. Discontinuous Galerkin particle-in-cell simulation of longitudinal plasma wave damping and comparison to the Landau approximation and the exact solution of the dispersion relation

    SciTech Connect

    Foust, F. R.; Bell, T. F.; Spasojevic, M.; Inan, U. S.

    2011-06-15

    We present results showing the measured Landau damping rate using a high-order discontinuous Galerkin particle-in-cell (DG-PIC) [G. B. Jacobs and J. S. Hesthaven, J. Comput. Phys. 214, 96 (2006)] method. We show that typical damping rates measured in particle-in-cell (PIC) simulations can differ significantly from the linearized Landau damping coefficient and propose a simple numerical method to solve the plasma dispersion function exactly for moderate to high damping rates. Simulation results show a high degree of agreement between the high-order PIC results and this calculated theoretical damping rate.

  7. Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas

    SciTech Connect

    Shadwick, B. A.; Schroeder, C. B.

    2009-01-22

    The connection between macro-particle shape functions and non-physical phase-space 'heating' in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phase-space structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.

  8. Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas

    SciTech Connect

    Shadwick, B.A.; Schroeder, C.B.

    2008-08-01

    The connection between macro-particle shape functions and non-physical phase-space"heating" in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phasespace structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.

  9. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    SciTech Connect

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  10. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály

    2014-05-01

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centred just below the lunar surface under various solar wind and plasma conditions and focus on the kinetic effects. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie supercomputer). This research was supported by the Swedish National Space Board, Grant No. 136/11. JD has received support through the HPC-Europa2 visitor programme (project HPC08SSG85) and

  11. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  12. 3-D Dynamic Behavior of Generalized Polar Wind

    NASA Astrophysics Data System (ADS)

    Barakat, A. R.; Schunk, R. W.; Demars, H. G.

    2003-12-01

    The dynamic behavior of the high-latitude plasma during a representative geomagnetic storm is investigated using a 3-D macroscopic particle-in-cell (mac-PIC) model. In this study, we simulate the behavior of a large number ( ˜100 to 1000) of plasma-filled geomagnetic flux tubes. Each flux tube extends from 1200 km to several Earth radii, includes ˜106 simulation particles, and is followed for ˜12 hours. The lower boundary conditions of the model are provided by a 3-D fluid-like model that extends down to 100 km. Several physical mechanisms are included such as wave-particle interactions, ion-ion collisions, low-altitude ion energization, and magnetospheric particles. The computing-intensive nature of the model requires the utilization of parallel programming techniques. We use a cluster of five nodes, with two (1.6 GHz) processors each, that is available at Utah State University, with the intention of transferring the code to a bigger facility in the future. A 3-D picture is assembled from the temporal evolution of the individual flux tubes by keeping track of their locations. This 3-D picture facilitates comparison with observations, such as radar and satellite measurements. The model and its preliminary results are presented.

  13. Accuracy Analysis of the PIC Method

    NASA Astrophysics Data System (ADS)

    Verboncoeur, J. P.; Cartwright, K. L.

    2000-10-01

    The discretization errors for many steps of the classical Particle-in-Cell (PIC) model have been well-studied (C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, NY (1985).) (R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, NY (1981).). In this work, the errors in the interpolation algorithms, which provide the connection between continuum particles and discrete fields, are described in greater detail. In addition, the coupling of errors between steps in the method is derived. The analysis is carried out for both electrostatic and electromagnetic PIC models, and the results are demonstrated using a bounded one-dimensional electrostatic PIC code (J. P. Verboncoeur et al., J. Comput. Phys. 104, 321-328 (1993).), as well as a bounded two-dimensional electromagnetic PIC code (J. P. Verboncoeur et al., Comp. Phys. Comm. 87, 199-211 (1995).).

  14. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    SciTech Connect

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan; Barnes, Daniel C

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ωpeΔt >>1, and Δx >> λD), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylov (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.

  15. Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions

    SciTech Connect

    Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.

    2014-12-15

    Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.

  16. The use of electromagnetic particle-in-cell codes in accelerator applications

    SciTech Connect

    Eppley, K.

    1988-12-01

    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs.

  17. Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions

    NASA Astrophysics Data System (ADS)

    Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.

    2014-12-01

    Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.

  18. Fully implicit, energy-conserving electromagnetic particle-in-cell simulations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Chen, Guangye

    2015-11-01

    We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.

  19. Exploration of Strongly Coupled Plasma Dynamics and Equilibrium Using the Particle-in-Cell Methodology

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Genoni, T. C.; Mehlhorn, T. A.; Campbell, R. B.

    2008-03-01

    Particle-based numerical simulations are required to study the dynamics and evolution of inhomogeneous nonequilibrium multispecies strongly coupled plasmas. Molecular dynamics (MD) and particle-in-cell (PIC) techniques and been compared previously [K. Y. Sanbonmatsu, et al., J. Phys. IV (France) 10, Pr5-259 (2000)], with the PIC methodology demonstrating the capability of improved accuracy over the MD simulations at high resolution. However, the PIC simulations were significantly slower, limiting their utility. Here we explore several schemes to improve the computational speed of such calculations including non-iterative, implicit EM field solvers and subgrid models. The simulations are compared directly with the results of Sanbonmatsu, et al., and a new theoretical analysis of the hypernetted chain model where all inter-species correlations are retained [V. Schwarz, et al., Contrib. Plasma Phys. 47, 324 (2007)].

  20. Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav

    2016-04-01

    In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)

  1. ASPEN: A Fully Kinetic, Reduced-Description Particle-in-Cell Model for Modeling Parametric Instabilities

    NASA Astrophysics Data System (ADS)

    Vu, H. X.; Bezzerides, B.; Dubois, D. F.

    1998-11-01

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal WKB envelopes in order to model low-frequency and high-frequency parametric instabilities. Because temporal WKB approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. Although RPIC is fully three dimensional, it has been implemented in only two dimensions on a CRAY-T3D with 512 processors and on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. Given the current computers available to the authors, one and two dimensional simulations are feasible to, and have been, performed. Three dimensional simulations are much more expensive, and are not feasible at this time. However, with rapidly advancing computer technologies, three dimensional simulations may be feasible in the near future. We believe this code is the first PIC code capable of simulating the interaction between low-frequency and high-frequency parametric instabilites in multiple dimensions. Test simulations of stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and Langmuir decay instability (LDI), are presented.

  2. Transport of 3D space charge dominated beams

    NASA Astrophysics Data System (ADS)

    Lü, Jian-Qin

    2013-10-01

    In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code.

  3. PIC code KARAT simulation of different types of polarization radiation generated by relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.

    2012-05-01

    Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.

  4. Electrostatic PIC with adaptive Cartesian mesh

    NASA Astrophysics Data System (ADS)

    Kolobov, Vladimir; Arslanbekov, Robert

    2016-05-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  5. Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence

    SciTech Connect

    Nevins, W M; Dimits, A; Hammett, G

    2005-05-24

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with flux-tube continuum codes vs. the global particle-in-cell (PIC) code GTC yielded different results despite similar plasma parameters. Differences between the simulations results were attributed to insufficient phase-space resolution and novel physics associated with toroidicity and/or global simulations. We have reproduced the results of the global PIC code using the flux-tube PIC code PG3EQ, thereby eliminating global effects as the cause of the discrepancy. We show that the late-time decay of ETG turbulence and the steady-state heat transport observed in these PIC simulations results from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and the previous GTC simulations have nothing to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work we develop three diagnostics which can help to determine if a particular PIC simulation has become dominated by discrete particle noise.

  6. Electromagnetic ''particle-in-cell'' plasma simulation

    SciTech Connect

    Langdon, A.B.

    1985-04-22

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs.

  7. PIC simulations of whistler wave generation using plasma conditions from the RAM-SCB model

    NASA Astrophysics Data System (ADS)

    Yu, Yiqun; Zhao, Lei; Peng, Bo; Delzanno, Gian Luca; Jordanova, Vania; Markidis, Stefano

    2014-10-01

    Wave-particle interactions play an important role in the Earth's inner magnetospheric dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy and are unstable to whistler wave excitation. By using plasma parameters from RAM-SCB, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We find that with an electron temperature anisotropy of 4, electron density of 6 cm-3, and parallel temperature of 1 keV on the dayside around L ~ 5 . 5 , whistler waves are rapidly excited and propagate along the background magnetic field. Comparisons with linear theory show good agreement. The electron velocity distribution is significantly changed after wave generation, with smaller anisotropy due to the pitch-angle scattering. Furthermore, test particles are tracked in the whistler wave environment and the pitch-angle diffusion coefficient is extracted. The coefficient generally agrees with quasi-linear theory prediction with slight deviation even when the wave amplitude is as large as 5 % of the background magnetic field.

  8. Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

    SciTech Connect

    Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.

    2011-03-15

    A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

  9. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.

  10. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  11. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    SciTech Connect

    Zhou, Zhuwen; Kong, Bo; Luo, Yuee; Chen, Deliang; Wang, Yuansheng

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, the IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.

  12. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  13. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  14. Particle-in-Cell Modeling of Laser-Plasma Interactions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Wen, H.; Maximov, A. V.; Yan, R.; Li, J.; Ren, C.; Myatt, J. F.

    2014-10-01

    In the direct-drive method of inertial confinement fusion, the laser-plasma interactions (LPI's) near quarter-critical density are very important for laser absorption and fast-electron generation. Three-dimensional simulations with the particle-in-cell (PIC) code OSIRIS have allowed us to study different parametric instabilities including two-plasmon decay, stimulated Raman scattering, and stimulated Brillouin scattering. These instabilities may coexist and interact in the region near quarter-critical density. The spectra of forward-going and backward-going scattered light and fast electrons in two-dimensional and three-dimensional PIC simulations have been studied. Characteristics of LPI driven by a plane-wave laser and by an incoherent laser beam are compared. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  16. Particle-In-Cell modeling of Fast Ignition experiments on the Titan Laser

    NASA Astrophysics Data System (ADS)

    Link, Anthony; Akli, K. U.; Beg, F.; Chen, C. D.; Davies, J. R.; Freeman, R. R.; Kemp, G. E.; Li, K.; McLean, H. S.; Morace, A.; Patel, P. K.; Schumacher, D. W.; Sorokovikova, A. V.; Stephens, R.; Streeter, M. J. V.; Wertepny, D.; Westhover, B.

    2012-10-01

    We report on particle-in-cell-modeling (PIC) of fast ignition experiments conducted on the Titan laser. The Titan laser was used to irradiate multilayer planar targets at intensities greater than 10^20 Wcm-2 to diagnose the laser to electron coupling, electron beam divergence, and energy spectrum of the hot electrons at relativistic intensities. Hot electron beam properties were inferred through buried fluors, escaping electrons and bremsstrahlung measurements. The PIC simulations of the experiment were conducted in two stages: a high resolution laser plasma interaction (LPI) simulation using measured on shot laser parameters but with a subscale target; and a lower resolution transport simulation containing the full scale multilayer target. The transport simulation utilized the electron source based on the output of the LPI simulation and included necessary models to simulate the experimental diagnostics. Comparison of the predicted electron source properties and the experimental data will be presented.

  17. Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum

    SciTech Connect

    Charles, C. Hawkins, R.; Boswell, R. W.

    2015-03-02

    The effect of a pressure gradient (∼133 Pa–0.133 Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56 MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018 m long plasma cavity and the total simulation time is 1 ms. Ion heating and acceleration up to a drift velocity about 2000 m s{sup −1} are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.

  18. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy. PMID:12512712

  19. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac

  20. Applicability of the particle-in-cell method for the through calculation of jet flows in a wide interval of gas Pressures

    NASA Astrophysics Data System (ADS)

    Kol'tsov, S. N.; Gall, L. N.; Gall, N. R.

    2016-03-01

    Applicability limits of the particle-in-cell (PIC) method for the calculation of jet gasdynamic flows under conditions of pressure variations by four or five orders of magnitude are studied. Three approaches permitting one to determine real limits of the model adequacy from the side of low pressures are considered. Based on the analysis of the results, it is shown that the PIC method adequately operates in the pressure range of 5-105 Pa in spite of the fact that, formally, the PIC method can operate also at lower pressures.

  1. Two-dimensional particle-in-cell simulations of transport in a magnetized electronegative plasma

    SciTech Connect

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.

    2010-11-15

    Particle transport in a uniformly magnetized electronegative plasma is studied in two-dimensional (2D) geometry with insulating (dielectric) boundaries. A 2D particle-in-cell (PIC) code is employed, with the results compared to analytic one-dimensional models that approximate the end losses as volume losses. A modified oxygen reaction set is used to scale to the low densities used in PIC codes and also to approximately model other gases. The principal study is the limiting of the transverse electron flow due to strong electron magnetization. The plasma in the PIC calculation is maintained by axial currents that vary across the transverse dimension. For a cosine current profile nearly uniform electron temperature is obtained, which at the B-fields studied (600-1200 G) give a small but significant fraction (0.25 or less) of electron to negative ion transverse loss. For a more transverse-confined current, and approximating the higher mass and attachment reaction rate of iodine, the fraction of electron to negative ion transverse loss can be made very small. The models which have been constructed reasonably approximate the PIC results and indicate that the cross-field transport is nearly classical.

  2. Numerical simulation of quantum systems using the Particle-In-Cell method

    NASA Astrophysics Data System (ADS)

    Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas

    2014-10-01

    The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.

  3. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  4. PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri

    2016-03-01

    The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.

  5. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT

  6. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT

  7. Particle-In-Cell simulations on spacecraft charging mitigation by plasma injection

    NASA Astrophysics Data System (ADS)

    Usui, Hideyuki; Imasato, Koujirou; Kuninaka, Hitoshi

    By performing three-dimensional Particle-In-Cell simulations, we have been investigating the time-dependent process of spacecraft charging mitigation by plasma injection. We particularly focus on the differential charging occurring between solar panel and spacecraft conducting part of spacecraft in the polar environment. In the presence of aurora electron beam, the absolute charging of spacecraft becomes the order of KeV as the worst case and the differential charging between the conducting surface of the spacecraft and the dielectric material on the solar panel can become several hundreds volts. To mitigate the charging, active plasma release from a plasma contactor onboard the spacecraft is proposed as one of the effective methods. In order to understand the charging mitigation process we started to examine the transient plasma process in terms of electron/ion flux to the spacecraft surface and the corresponding potential variation by performing 3D PIC simulations. In the simulation space, we set a spacecraft consisting of conducting body and dielectric film on the solar panels. This spacecraft system is immersed in isothermal magnetized plasma environment. We assume the aurora beam energy is around 100 eV. We started a simulation with no plasma emission from the body in order for the spacecraft to achieve a floating potential. Then, we start emitting plasma from the spacecraft surface from one side of the spacecraft. Due to the aurora current, the conducting part of the spacecraft was negatively charged around -50 V while the dielectric surface of the solar panel is about -30 V because of ion flux impinging at the ram side. In this case, approximately 20V differential charging occurs at the dielectric surface. In such a situation, we started emitting electrons from the spacecraft surface. Because of negative charge emission, the spacecraft potential increases and approaches to the plasma potential. This implies the absolute charging of spacecraft has been

  8. A Radiation Transport Coupled Particle-In-Cell Model for Hg-Ar Discharges

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.

    2000-10-01

    We simulate a radial slice of the fluorescent lamp discharge in the positive column with a radiation transport coupled particle-in-cell (RT-PIC) code. In this model, the radiative and meta stable excited states of Hg-Ar mixture and their collisions as well as radiation transport are simulated by the fluid equations. The motions of electrons and ions and collisions with neutral or excited states are simulated by the conventional particle-in-cell method. We consider radiation transport of excited states using the Holstein equation[1] including the time varying nonuniform background gas density. The background gas density is calculated from the temperature profile by solving the heat transfer equation. The motion of charged particles are simulated by using the 1-D cylindrical particle-in-cell code, XPDC1[2]. Separate time scales are used for the charged particles, the excited states, and the neutral gas, respectively, and parallel processing can be used for the expensive calculation including radiation transport. This work was supported in part by General Electric Company contract GE-20000181. [1] T. Holstein, Phys. Rev. 72, 1213 (1947). [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104(2), 321, (1993).

  9. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    NASA Astrophysics Data System (ADS)

    Bao, Rong; Wang, Hongguang; Li, Yongdong; Liu, Chunliang

    2016-07-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  10. Self-consistent particle-in-cell modelling of short pulse absorption and transport for high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.

    2016-03-01

    In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.

  11. A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 ; Yu, Zhi

    2013-10-15

    Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.

  12. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations

    SciTech Connect

    Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.

    2008-09-08

    Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.

  13. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations

    SciTech Connect

    Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.

    2009-01-22

    Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.

  14. Numerical stability of pseudo-spectral PIC code generalizations

    NASA Astrophysics Data System (ADS)

    Godfrey, Brendan B.; Vay, Jean-Luc

    2014-10-01

    Laser Plasma Accelerator (LPA) particle-in-cell (PIC) simulations are computationally demanding, because they require beam transport over times and distances long compared with the natural scales of the acceleration mechanism and because they are prone to numerical instabilities. To provide greater flexibility in LPA PIC simulations, we have generalized the Pseudo-Spectral Time Domain (PSTD) algorithm to accommodate arbitrary order spatial derivative approximations and substantially longer time steps. Here, we show that, by extending approaches developed by us for other PIC algorithms, numerical Cherenkov instabilities can be suppressed for the generalized PSTD algorithm. We also illustrate the relationships between the generalized PSTD and other PIC algorithms, such as Finite Difference Time Domain (FDTD) and Pseudo-Spectral Analytical Time Domain (PSATD) algorithms. Background information can be found at http://hifweb.lbl.gov/public/BLAST/Godfrey/. Work supported in part by DOE under Contract DE-AC02-05CH11231.

  15. 3D kinetic simulations of the global interaction between the solar wind and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Maneva, Yana; Deca, Jan; Lapenta, Giovanni

    2015-04-01

    We performed three dimensional simulations of the interaction between the solar wind and the magnetosphere, using the self-consistent fully kinetic code iPic3D. The main objective of our simulations is to link the global interaction phenomena to the local turbulence and reconnection processes in the magnetosphere. Other numerical approaches have been used before to study this problem, including MHD, hybrid and Vlasov codes. However, only particle-in-cell codes offer the possibility to study the kinetic effects of the diffusion regions of the Earth environment that drive the energy transfer from the solar wind to the magnetosphere. Previous attempts to perform such kinds of simulations were limited to unphysical thermal velocities of the ion and electron species, small simulation boxes or cell sizes that do not capture the local kinetic effects at the magnetopause. Using the implicit moment Particle-in-Cell approach we performed simulations that can capture these small scale effects and, at the same time, allow to study large scale phenomena such as the bow shock and the development of the magnetotail. We expect that these results will be used to maximize the impact of future space missions, such as THOR, MMS and BepiColombo, by improving our understanding of the planetary environment, from the conditions observed in the solar wind to the turbulence and reconnection processes downstream of the bow shock.

  16. Modeling Laser Wake Field Acceleration with the Quasi-Static PIC Code QuickPIC

    SciTech Connect

    Vieira, J.; Antonsen, T. Jr.; Cooley, J.; Silva, L. O.

    2006-11-27

    We use the Quasi-static Particle-In-Cell code QuickPIC to model laser wake field acceleration, in both uniform and parabolic plasma channels within current state of the art experimental laser and plasma parameters. QuickPIC uses the quasi-static approximation, which allows the separation of the plasma and laser evolution, as they respond in different time scales. The laser is evolved with a larger time step, that correctly resolves distances of the order of the Rayleigh length, according to the ponderomotive guiding center approximation, while the plasma response is calculated through a quasi-static field solver for each transverse 2d slice. We have performed simulations that show very good agreement between QuickPIC and three dimensional simulations using the full PIC code OSIRIS. We have scanned laser intensities from those for which linear plasma waves are excited to those for which the plasma response is highly nonlinear. For these simulations, QuickPIC was 2-3 orders of magnitude faster than OSIRIS.

  17. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  18. On energy and momentum conservation in particle-in-cell plasma simulation

    NASA Astrophysics Data System (ADS)

    Brackbill, J. U.

    2016-07-01

    Particle-in-cell (PIC) plasma simulations are a productive and valued tool for the study of nonlinear plasma phenomena, yet there are basic questions about the simulation methods themselves that remain unanswered. Here we study energy and momentum conservation by PIC. We employ both analysis and simulations of one-dimensional, electrostatic plasmas to understand why PIC simulations are either energy or momentum conserving but not both, what role a numerical stability plays in non-conservation, and how errors in conservation scale with the numerical parameters. Conserving both momentum and energy make it possible to model problems such as Jeans'-type equilibria. Avoiding numerical instability is useful, but so is being able to identify when its effect on the results may be important. Designing simulations to achieve the best possible accuracy with the least expenditure of effort requires results on the scaling of error with the numerical parameters. Our results identify the central role of Gauss' law in conservation of both momentum and energy, and the significant differences in numerical stability and error scaling between energy-conserving and momentum-conserving simulations.

  19. Estimation of direct laser acceleration in laser wakefield accelerators using particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Shaw, J. L.; Lemos, N.; Marsh, K. A.; Tsung, F. S.; Mori, W. B.; Joshi, C.

    2016-03-01

    Many current laser wakefield acceleration (LWFA) experiments are carried out in a regime where the laser pulse length is on the order of or longer than the wake wavelength and where ionization injection is employed to inject electrons into the wake. In these experiments, the electrons can gain a significant amount of energy from the direct laser acceleration (DLA) mechanism as well as the usual LWFA mechanism. Particle-in-cell (PIC) codes are frequently used to discern the relative contribution of these two mechanisms. However, if the longitudinal resolution used in the PIC simulations is inadequate, it can produce numerical heating that can overestimate the transverse motion, which is important in determining the energy gain due to DLA. We have therefore carried out a systematic study of this LWFA regime by varying the longitudinal resolution of PIC simulations and then examining the energy gain characteristics of both the highest-energy electrons and the bulk electrons. By calculating the contribution of DLA to the final energies of the electrons produced from the LWFA, we find that even at the highest longitudinal resolutions, DLA contributes a significant portion of the energy gained by the highest-energy electrons and also contributes to accelerating the bulk of the charge in the electron beam produced by the LWFA.

  20. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  1. Performance of particle in cell methods on highly concurrent computational architectures

    SciTech Connect

    M.F.Adams; S. Ethier; N. Wichmann

    2009-09-23

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson’s equation or more generally Maxwell’s equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  2. Kinetic properties of the particle-in-cell simulation of a Lorentz plasma

    NASA Astrophysics Data System (ADS)

    Lin-Liu, Y. R.; Lin, T. Y.; Chen, S. H.

    2010-11-01

    The phenomenon of numerical thermalization in the standard particle-in-cell (PIC) simulation of Vlasov plasmas has been extensively studied at the early stage of its development [1] and was considered well understood. However, it was recently reported [2] that the well-established scaling law for the thermalization time could be compromised by the presence of an additional stochastic force acting on the particles, which is used to simulate collisional processes in a weakly ionized gas. In the present work, we are interested in the problem of electron-ion collisions in a fully ionized plasma. We investigate the thermal relaxation phenomenon in the PIC simulation of a Lorentz plasma in one dimension [3]. The pitch-angle scattering of the electrons by the stationary ion background is modeled by a Monte-Carlo algorithm. The numerical results obtained indicate that the thermal relaxation time is proportional to ND (the number of particles per Debye length), and not ND^2 as in the standard PIC simulations. Our results appear to complement those found by the previous study [2]. [4pt] [1] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985). [0pt] [2] M. M. Turner, Phys. of Plasmas 13, 033506 (2006). [0pt] [3] R. Shanny, J. M. Dawson, and J. M. Greene, Phys. of Fluids 10, 1281 (1967).

  3. Three-dimensional particle-in-cell simulations of laser channeling in fast ignition

    SciTech Connect

    Li, G.; Yan, R.; Ren, C.; Tonge, J.; Mori, W. B.

    2011-04-15

    Three-dimensional particle-in-cell simulations with an underdense plasma length up to 540 {mu}m are presented to show that laser channeling in 3D is qualitatively similar to that shown in previous 2D simulations [Li et al., Phys. Rev. Lett. 100, 125002 (2008)], but quantitative differences exist. Due to a larger laser ponderomotive force resulting from self-focusing and easier channel formation in 3D, the channeling speed in 3D is larger compared to 2D. Laser hosing and channel bending are also observed in 3D. Decoupling of the laser and plasma is observed when the electrons are heated to relativistic temperatures during the channeling process.

  4. A 3d particle simulation code for heavy ion fusion accelerator studies

    SciTech Connect

    Friedman, A.; Bangerter, R.O.; Callahan, D.A.; Grote, D.P.; Langdon, A.B. ); Haber, I. )

    1990-06-08

    We describe WARP, a new particle-in-cell code being developed and optimized for ion beam studies in true geometry. We seek to model transport around bends, axial compression with strong focusing, multiple beamlet interaction, and other inherently 3d processes that affect emittance growth. Constraints imposed by memory and running time are severe. Thus, we employ only two 3d field arrays ({rho} and {phi}), and difference {phi} directly on each particle to get E, rather than interpolating E from three meshes; use of a single 3d array is feasible. A new method for PIC simulation of bent beams follows the beam particles in a family of rotated laboratory frames, thus straightening'' the bends. We are also incorporating an envelope calculation, an (r, z) model, and 1d (axial) model within WARP. The BASIS development and run-time system is used, providing a powerful interactive environment in which the user has access to all variables in the code database. 10 refs., 3 figs.

  5. Relativistic Laser Pulse Intensification with 3D Printed Micro-Tube Plasma Target

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang; Snyder, Joseph; Pukhov, Alexander; Akli, Kramer

    2015-11-01

    The potential and applications of laser-plasma interactions (LPI) are restricted by the parameter space of existing lasers and targets. Advancing the laser intensity to the extreme regime is motivated by the production of energetic particle beams and by the quest to explore the exotic regimes of light-matter interaction. Target density and dimensions can always be varied to optimize the outcome. Here, we propose to create another degree of freedom in the parameter space of LPI using recent advances in 3D printing of materials. Fine structures at nm scale with high repetition and accuracy can nowadays be manufactured, allowing for a full precise control of the target. We demonstrate, via particle-in-cell (PIC) simulations, that 3D-printed micro-tube plasma (MTP) targets yield an intensity enhancement factor of 2-5. The novel MTP targets not only act as a plasma optical device to reach the 1023W/cm2 threshold based on today's intensities, but can also boost the generation of secondary particle and radiation sources. This work demonstrates that the combination of high contrast high power lasers and nano-3D printing techniques opens new paths in the intensity frontier and LPI micro-engineering.

  6. Hierarchical agglomerative sub-clustering technique for particles management in PIC simulations

    NASA Astrophysics Data System (ADS)

    Grasso, Giacomo; Frignani, Michele; Rocchi, Federico; Sumini, Marco

    2010-08-01

    The effectiveness of Particle-In-Cell (PIC) codes lies mainly in the robustness of the methods implemented, under the fundamental assumption that a sufficient number of pseudo-particles is concerned for a correct representation of the system. The consequent drawback is the huge increase of computational time required to run a simulation, to what concerns the particles charge assignment to the grid and the motion of the former through the latter. Moreover the coupling of such methods with Monte-Carlo-Collisional (MCC) modules causes another expensive computational cost to simulate particle multiple collisions with background gas and domain boundaries. Particles management techniques are therefore often introduced in PIC-MCC codes in order to improve the distribution of pseudo-particles in the simulation domain: as a matter of facts, the aim at managing the number of samples according to the importance of the considered region is a main question for codes simulating a local phenomenon in a larger domain or a strongly collisional system (e.g.: a ionizing plasma, where the number of particles increases exponentially). A clustering procedure based on the distribution function sampling applied to the 5D phase space (2D in space, 3D in velocity) is here proposed, representing the leading criterion for particles merging and splitting procedures guaranteeing the second order charge moments conservation. Applied to the study of the electrical breakdown in the early discharge phase of a Plasma Focus device, this technique is shown to increase performances of both PIC kernel and MCC module preserving the solution of the electric field and increasing samples representativeness in stochastic calculations (with respect to more traditional merging and splitting procedures).

  7. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  8. Macroparticle merging algorithm for PIC

    NASA Astrophysics Data System (ADS)

    Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.

    2014-10-01

    With the development of large supercomputers (>1000000 cores), the complexity of the problems we are able to simulate with particle-in-cell (PIC) codes has increased substantially. However, localized density spikes can introduce load imbalance where a small fraction of cores is occupied, while the others remain idle. An additional challenge lies in self-consistent modeling of QED effects at ultra-high laser intensities (I > 1023 W/cm2), where the number of pairs produced sometimes grows exponentially and may reach beyond the maximum number of particles that each processor can handle. We can overcome this by resampling the 6D phase space: the macroparticles can be merged into fewer particles with higher particle weights. Existing merging scheme preserves the total charge, but not the particle distribution. Here we present a novel particle-merging algorithm that preserves the energy, momentum and charge locally and thereby minimizes the potential influence to the relevant physics. Through examples of classical plasma physics and more extreme scenarios, we show that the physics is not altered but we obtain an immense increase in performance.

  9. PIC simulations of Whistler Wave Generation and Electron Scattering Initialized by Plasma Conditions from the RAM-SCB Model

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Delzanno, G. L.; Jordanova, V.; Zhao, L.; Peng, B.; Markidis, S.

    2014-12-01

    Wave-particle interactions play an important role in influencing the Earth's inner magnetosphere dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy, implying that it is unstable to whistler wave excitation. By using plasma parameters from RAM-SCB results, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We found that with an electron temperature anisotropy of 4, electron density of 6 cm-3 , and parallel temperature T|| of 1keV on the dayside around L of 5.5, whistler waves are rapidly excited and propagate along the background magnetic field line. Comparisons with linear theory show good agreements on the wave mode and frequency at which the whistler waves are excited, as well as on the linear growth rate of the maximum wave mode. The electron velocity distribution is significantly changed after the wave generation, towards a smaller anisotropy due to the pitch-angle scattering transport process. Furthermore, test particles are tracked in the whistler wave environment developed during the linear growth phase (with an amplitude of 0.05 B0) to examine the pitch angle diffusion. The diffusion coefficient is calculated and found to be one to two orders of magnitude smaller than the quasi-linear theory, which implies that the quasi-linear theory may predict a much faster loss of the radiation belts. In addition, in contrast to the quasi-linear theory that shows monotonic dependence on the electron pitch angle, the coefficient calculated from iPIC simulations are rather insensitive to the pitch angle.

  10. A GeneralizedWeight-Based Particle-In-Cell Simulation Scheme

    SciTech Connect

    W.W. Lee, T.G. Jenkins and S. Ethier

    2010-02-02

    A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution (δf) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using δf in the linear stage stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.

  11. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  12. Radial-to-orbital motion transition in cylindrical Langmuir probes studied with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Tejero-del-Caz, A.; Fernández Palop, J. I.; Díaz-Cabrera, J. M.; Ballesteros, J.

    2016-02-01

    A particle-in-cell (PIC) simulation of the plasma sheath around a cylindrical Langmuir probe has been developed to evaluate the ion current collected by the probe. The simulation includes the positive ion thermal motion and has been optimized by solely describing the positive ion motion. A transition from the prediction of the radial model to the orbital-motion-limited model is observed. The transition is explained as an effect of the positive ion thermal motion and the radial model is recovered when the positive ion to electron temperature ratio is decreased. The behaviour of this transition strongly depends on the dimensionless probe radius.

  13. Improving performance of multi-dimensional Particle-In-Cell codes for modelling of medium pressure plasma

    NASA Astrophysics Data System (ADS)

    Pekárek, Z.; Lahuta, M.; Hrach, R.

    2007-04-01

    In this contribution we estimate the performance of various Poisson equation solvers applied to the Particle-In-Cell plasma models. The solvers determine the practical usability of complex PIC models, especially in three dimensions. The performance is measured on 2D models with grids of various sizes, the methods studied are SOR, conjugate gradients, LU decomposition, FACR and multigrid methods. The results confirm the efficiency of the direct methods tested, namely the LU decomposition method and FACR. The advantages of using LU decomposition as a part of the multigrid method on larger grids are discussed as well.

  14. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  15. Scaled-down particle-in-cell simulation of cathode plasma expansion in magnetically insulated coaxial diode

    NASA Astrophysics Data System (ADS)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Cai, Dan

    2016-03-01

    The expansion of cathode plasma in magnetically insulated coaxial diode (MICD) is investigated in theory and particle-in-cell (PIC) simulation. The temperature and density of the cathode plasma are about several eV and 1013-1016 cm-3, respectively, and its expansion velocity is of the level of few cm/μs. Through hydrodynamic theory analysis, expressions of expansion velocities in axial and radial directions are obtained. The characteristics of cathode plasma expansion have been simulated through scaled-down PIC models. Simulation results indicate that the expansion velocity is dominated by the ratio of plasma density other than the static electric field. The electric field counteracts the plasma expansion reverse of it. The axial guiding magnetic field only reduces the radial transport coefficients by a correction factor, but not the axial ones. Both the outward and inward radial expansions of a MICD are suppressed by the much stronger guiding magnetic field and even cease.

  16. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Interaction Mechanisms Under Varying Solar Wind Conditions.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály

    2015-04-01

    We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of backstreaming ions, the deflection of magnetized electrons via the ExB-drift motion and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the latter mechanisms are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The

  17. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Ion and Electron Dynamics Under Varying Solar Wind Conditions.

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Lapenta, G.; Lembege, B.; Markidis, S.; Horanyi, M.

    2014-12-01

    We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. The dominant LMA interaction mechanism is also highly dependent on the solar wind and IMF conditions. Driven by strong pressure anisotropies, the mini-magnetosphere is also unstable over time, leading to only temporal shielding of the surface underneath. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2011050747 (Curie) and 2013091928 (SuperMUC). This research was supported

  18. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    SciTech Connect

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  19. Particle in cell simulations of tearing modes in reversed-field-pinch-like plasma

    SciTech Connect

    Svidzinski, Vladmir; Li, Hui; Albright, Brian

    2008-01-01

    Particle in cell (PIC) simulations of tearing modes in two-dimensional plane geometry in a force free reversed field pinch (RFP) like plasma equilibrium are performed to study possible kinetic effects on these modes in RFPs. Linear tearing modes are compared in the PIC and two fluid models. The results showed that the growth rates and the profiles of magnetic field components in the two models are very similar, indicating that the kinetic effects on the tearing modes are weak such that the two fluid approximation is rather accurate for modeling these instabilities in RFPs. During the nonlinear evolution of the tearing mode in this geometry small scale secondary instabilities located near the internal layer of the primary tearing instability are excited. These secondary instabilities appear to be driven by the nonlinearly induced local pressure gradient in the regions of unfavorable curvature of the nonlinearly evolved magnetic field. They could also appear in a realistic RFP geometry and play a role during sawtooth crashes in these machines.

  20. An energy- and charge-conserving, nonlinearly implicit, electromagnetic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis; Knoll, Dana; Daughton, William; CoCoMans (LANL) Team

    2013-10-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension. The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations. An implicit, orbit-averaged central finite difference scheme is applied to both the Darwin field equations and the particle orbit equations to produce a discrete system that remains exactly charge-and energy-conserving. Furthermore, the canonical momentum in any ignorable direction is exactly conserved per particle by appropriate interpolations of the magnetic field. A fluid preconditioner targeting the stiffest electron waves has been developed to accelerate the linear GMRES solver of JFNK. We present 1D numerical experiments (e.g. the Weibel instability, kinetic Alfven wave ion-ion streaming instability, etc.) to demonstrate the accuracy and efficiency of the implicit Darwin PIC algorithm, and the performance of the fluid preconditioner.

  1. Novel methods in the Particle-In-Cell accelerator Code-Framework Warp

    SciTech Connect

    Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.

    2012-12-26

    The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.

  2. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  3. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2015-12-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.

  4. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    SciTech Connect

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2014-08-15

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  5. Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations

    NASA Astrophysics Data System (ADS)

    Bottino, A.; Sonnendrücker, E.

    2015-10-01

    > The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.

  6. Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin

    2016-07-01

    A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm‑3) with a dense plasma (initial density of ~ 1021 cm‑3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)

  7. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    SciTech Connect

    Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.

    2015-08-15

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)

  8. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Told, D.; Kilian, P.; Büchner, J.; Jenko, F.

    2015-08-01

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bg). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg ≳ 5). Kinetic PIC simulations using guide fields bg ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg ≲ 3).

  9. Metadata, PICS and Quality.

    ERIC Educational Resources Information Center

    Armstrong, C. J.

    1997-01-01

    Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)

  10. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  11. The Convergence of Particle-in-Cell Schemes for Cosmological Dark Matter Simulations

    NASA Astrophysics Data System (ADS)

    Myers, Andrew; Colella, Phillip; Van Straalen, Brian

    2016-01-01

    Particle methods are a ubiquitous tool for solving the Vlasov-Poisson equation in comoving coordinates, which is used to model the gravitational evolution of dark matter (DM) in an expanding universe. However, these methods are known to produce poor results on idealized test problems, particularly at late times, after the particle trajectories have crossed. To investigate this, we have performed a series of one- and two-dimensional “Zel’dovich pancake” calculations using the popular particle-in-cell (PIC) method. We find that PIC can indeed converge on these problems provided that the following modifications are made. The first modification is to regularize the singular initial distribution function by introducing a small but finite artificial velocity dispersion. This process is analogous to artificial viscosity in compressible gas dynamics, and, as with artificial viscosity, the amount of regularization can be tailored so that its effect outside of a well-defined region—in this case, the high-density caustics—is small. The second modification is the introduction of a particle remapping procedure that periodically reexpresses the DM distribution function using a new set of particles. We describe a remapping algorithm that is third-order accurate and adaptive in phase space. This procedure prevents the accumulation of numerical errors in integrating the particle trajectories from growing large enough to significantly degrade the solution. Once both of these changes are made, PIC converges at second order on the Zel’dovich pancake problem, even at late times, after many caustics have formed. Furthermore, the resulting scheme does not suffer from the unphysical, small-scale “clumping” phenomenon known to occur on the pancake problem when the perturbation wavevector is not aligned with one of the Cartesian coordinate axes.

  12. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  13. The Implicit Hyprid/PIC Code AMTHEM.

    SciTech Connect

    Mason, R. J.

    2002-01-01

    Recent inventions in pulse power switching, fast laser-driven thermonuclear ignition, and short pulse radiography have demanded a dramatic increase in the capabilities of plasma simulation tools. Multifluid, multi-component, fluid and kinetic models are needed for plasmas spanning thousands of Debye lengths and thousands of plasma periods. Such plasmas manifest both dense and tenuous regions, including or excluding magnetic fields and collisional resistivity. The problems of interest can dwell in a transition regime with limits traditionally treated by resistive MHD and and/or collisional particle-in-cell (PIC) methods. The ANTHEM implicit hybrid simulation model is under development to meet these challenges. This presentation will outline its past and current features, and review results typical of short-pulse laser applications.

  14. Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method

    SciTech Connect

    Austin, T. M.; Smithe, D. N.; Ranjbar, V.

    2009-11-26

    Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.

  15. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  16. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  17. Particle-in-Cell Calculationsof the Electron Cloud in the ILCPositron Damping Ring Wigglers

    SciTech Connect

    Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.

    2007-07-01

    The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed.

  18. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2016-01-01

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 109, degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani’s theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  19. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    SciTech Connect

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  20. The study of the Poincare-Lighthill-Kuo method by using the particle-in-cell simulation method in a dusty plasma

    SciTech Connect

    Zhang, Jie; Yang, Yang; Xu, Yan-Xia; Qi, Xin E-mail: duanws@nwnu.edu.cn; Duan, Wen-shan E-mail: duanws@nwnu.edu.cn; Yang, Lei

    2014-10-15

    The application scope of the Poincare-Lighthill-Kuo (PLK) method is suggested by using the Particle-in-cell (PIC) numerical method to study head-on collision of two solitary waves. Comparisons between the numerical results from PIC simulations and the analytical ones from the PLK method indicate that the both are in good agreement with each other. The dependence of the phase shifts after the head-on collision on both amplitudes of two solitary waves is given from our PIC method. It is found that the phase shifts depended on the amplitude of both waves. The maximum amplitude during the colliding process is approximately equal to the sum of both amplitudes for the small amplitude solitary waves.

  1. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    . [1] Ashour-Abdalla, Maha, et al. "Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events." Nature Physics 7.4 (2011): 360-365. [2] Markidis, Stefano, and Giovanni Lapenta. "Multi-scale simulations of plasma with iPIC3D." Mathematics and Computers in Simulation 80.7 (2010): 1509-1519. [3] Baumann, G., Troels Haugbølle, and Å. Nordlund. "Kinetic Modeling of Particle Acceleration in a Solar Null-point Reconnection Region." The Astrophysical Journal 771.2 (2013): 93. [4] Daldorff, L. K. S., et al. "Coupling the BATS-R-US global MHD code with the implicit particle-in-cell code iPIC3D." Bulletin of the American Physical Society 58 (2013).

  2. PIC Simulation for ICF Plasma Sputter Coater

    NASA Astrophysics Data System (ADS)

    Wu, W.; Huang, H.; Parks, P. B.; Chan, V. S.; Walton, C. C.; Wilks, S. C.

    2010-11-01

    To satisfy mesh spacing constraint δ/λDebye<=1 particle In Cell (PIC) simulations at 25x reduced cathode currents levels are used to numerically model the distribution of currents, electrostatic potentials and particle kinetics in a Type II ``unbalanced'' cylindrically symmetric magnetron discharge used for Be sputter coating of ICF capsules. Simulation indicates a strong magnetic field confinement of the plasma in the closed field lines region adjacent to cathode, and accompanying cross-field line plasma diffusion into the open-field line region connected to wall/anode. A narrow Charles-Langmuir sheath and a pre-sheath that is ˜10x wider due to the existence of the B-field are observed. The effects of varying boundary conditions, e.g., the separation between the anode/cathode, the anode bias voltage, etc., are studied, which is expected to aid experimentalists in turning these ``knobs'' for better coating qualities. We also show that the etch rate due to sputtering of Be targets predicted by the results of our PIC simulations, after rescaling to experimental conditions, agrees with experiments.

  3. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  4. 3D instabilities connected with reconnection in full 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni

    2013-10-01

    Kinetic reconnection is characterized by a distinct behavior of electrons and ions with regions of strong relative speeds between the species. Electrons can flow at great speed relative to ions and can be characterized by a strong non-gyrotropy and anisotropy. When studied in full three dilensions, these electron peculiar properties can drive numerous instabilities that have been investigated by the suggested speaker and his collaborators in a number of recent published papers. Two regions have received most attention: 1) the separatrices where instabilities are caused by the electron flow and the electron phase space features, 2) the downstream fronts where an interchange instability leads to strong energy exchanges and secondary reconnection. In both situations the ions are demagnitezed but the electrons are not and their behaviour is rich in full kinetic processes. At the separatrices, two types of instabilities have been observed. The electron phase space is characterized by multiple populations at relative drifts (electron beams) and the whole electron species is drifting with respect to the ions. This condition is subject to different streaming instabilities. Additionally, the separatrices are regions of intense density and flow shear, with free energy available to drive Kelvin-Helmholtz-type instabilities. In the downstream fronts of reconnection, a density gradient develops in conditions where the acceleration is directed unfavourably for stability, leading to ballooning and interchange-type instabilities. Both cases are of great importance for the upcoming Magnetospheric Multiscale Mission that is bent on finding and analyzing the regions where the electron scale physics is dominant. The processes discussed above can provide key information for the operation of the mission and the interpretation of its results. Collaboration between the University of Colorado NASA-MMSIDS team (M. Goldman, D. Newman, L. Anderson, S. Erikson) and the KULeuven Swiff team (swiff.eu: S. Markidis, A. Divin, A. Vapirev).

  5. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects

    NASA Astrophysics Data System (ADS)

    Singh, Gursharn; Chaturvedi, S.

    2011-06-01

    We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due to the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of ˜2 cm/μs reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to ˜40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.

  6. Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.

    2014-06-01

    Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.

  7. Wave-Particle Interactions with Whistlers: Comparison Between Particle-in-Cell and Quasi-Linear Simulations

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Zimbardo, G.

    2015-12-01

    We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle particle-in-cell (PIC) simulations with a quasi-linear diffusion code. In the PIC approach, the waves are self-consistently generated by the temperature anisotropy instability that quickly saturates and relaxes the system toward marginal stability. We show that the quasi-linear diffusion and PIC results have significant quantitative mismatch in regions of energy/pitch angle where the resonance condition is not satisfied. Moreover, for pitch angles close to the loss cone the diffusion code overestimates the scattering, particularly at low energies. This suggests that higher-order nonlinear theories should be taken in consideration in order to capture non-resonant interactions, resonance broadening, and to account for scattering at angles close to 90 degree. Finally, we show that pitch angle diffusion is enhanced during the linear wave growth phase, and it rapidly saturates well before a single bounce period. We discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuse is bounded, and to the well-known problem of 90 degree diffusion barrier.

  8. 2D Numerical Model And Self-Consistent Particle-In-Cell Simulations Of Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce

    2012-10-01

    Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.

  9. [PIC Program Evaluation Forms.

    ERIC Educational Resources Information Center

    Short, N. J.

    These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…

  10. What Makes a PIC Tick?

    ERIC Educational Resources Information Center

    Montgomery, H. Wynn

    1988-01-01

    The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)

  11. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    SciTech Connect

    PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.

  12. An Integrated Radiation Transport Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.

    2000-10-01

    The study of radiation transport is important to understand the basic physics and to calculate the efficiency in a lamp discharge or laser induced plasma. Many models neglect radiation transport effects in evolving the steady state. In this study, we established a basic model to calculate radiation transport, including the effects of nonuniform ground state density and atomic collisions in one dimensional cylindrical and planar geometries. We coupled radiation transport with the self-consistent kinetic particle-in-cell codes, XPDP1 and XPDC1[1]. We treat electrons and ions with a particle-in-cell method, and the neutral ground and excited states with a fluid model to calculate radiation transport and atomic collisions. The steady state result of this model compares well with the solution of Holstein equation[2]. [1] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104, 321 (1993). [2] T. Holstein, Phys. Rev. 72, 1213 (1947).

  13. 3D and r,z particle simulations of heavy ion fusion beams

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Grote, D. P.; Callahan, D. A.; Langdon, A. B.; Haber, I.

    1992-08-01

    The space-charge-dominated beams in a heavy ion beam driven inertial fusion (HIF) accelerator must be focused onto small (few mm) spots at the fusion target, and so preservation of a small emittance is crucial. The nonlinear beam self-fields can lead to emittance growth; thus, a self-consistent field description is necessary. We have developed a multi-dimensional time-dependent discrete particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3d package combines features of an accelerator code and a particle-in-cell (PIC) plasma simulation. Novel techniques allow it to follow beams through many accelerator elements over long distances and around bends. We have used the code to understand the emittance growth observed in the MBE4 experiment at Lawrence Berkeley Laboratory (LBL) under conditions of aggressive drift-compression. We are currently applying it to LBL's planned ILSE experiments, and (most recently) to an ESQ injector option being evaluated for ILSE. The code's r, z package is being used to study the axial confinement afforded by the shaped ends of the accelerating pulses, and to study longitudinal instability induced by induction module impedance.

  14. Characterization of an SRF gun: a 3D full wave simulation

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-03-28

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  15. Three-dimensional plasma particle-in-cell calculations of ion thruster backflow contamination

    SciTech Connect

    Roy, R.I.S.; Hastings, D.E.; Taylor, S.

    1996-10-01

    A fully three-dimensional hybrid plasma particle-in-cell model for multi-computer environments was developed to assess the spacecraft backflow contamination of an ion thruster. Results of plume backflow are presented for a 13-cm xenon ion thruster operating with a current level of 0.4 A on a model spacecraft. The computational domain was over 40 m{sup 3} in volume, and used over 35 million particles representing charge-exchange (CEX) xenon ions produced in the plume. Results obtained on a massively parallel 256-node Cray T3D clearly show the plasma density enhancement around the spacecraft due to the CEX ions. Three-dimensional results are compared with the results of a two-dimensional axisymmetric model to explore the three-dimensionality of the backstreaming flowfield. 15 refs., 14 figs., 1 tab.

  16. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank

    2016-07-01

    Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.

  17. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Ellegaard, O.; Nedelea, T.; Schou, J.; Urbassek, H. M.

    2002-09-01

    The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density profiles n( x, t), velocity distributions of ions u( x, t), distribution functions for velocities F( vx) of ions or electrons as well as the time dependence of kinetic energy Ekin( t) for both type of particles. We found a significant increase in the velocities of the ions at the expense of field potential energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface.

  18. Particle-in-Cell Simulation of a Micro ECR Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ueno, Keisuke; Mori, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2015-09-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have developed a new type of electromagnetic micro plasma thruster using electron cyclotron resonance (ECR) discharges. The microthruster consists of a microwave antenna and a quartz microplasma chamber 4.15 mm in inner diameter surrounded by two permanent magnet rings. The plasma is generated by 4-GHz microwaves of < 10 W with a propellant gas of Xe, where the ions are accelerated through divergent magnetic fields and the resulting ambipolar electric fields generated. To investigate plasma characteristics of the thruster, we simulated the plasma density, electrostatic potential, and ion velocity in the exhaust area by the particle-in-cell (PIC) method with a Monte Carlo calculation for particle collisions, where the electrostatic field and the ion velocity were obtained by solving the Poisson equation and the equation of motion, respectively. The numerical results showed that the ions generated in the plasma are well confined by the applied magnetic fields and diffuse out of the discharge tube, then being accelerated by a potential drop of ~7 V through divergent magnetic fields from < 1000 to > 3000 m/s (< 0 . 7 to > 6 eV) in the axial direction.

  19. Numerical Uncertainty Estimation for Stochastic Particle-in-Cell Simulations Applied to Verification and Validation

    NASA Astrophysics Data System (ADS)

    Cartwright, Keith

    2015-09-01

    Numerical error estimation is a key component in verification, validation, and uncertainty quantification. For ParticleIn-Cell (PIC) plasma simulations, error estimation is complicated due to the presence of stochastic noise and multiple convergence parameters (grid size, time step, macro particle weight). In this talk, we will discuss recent developments for the Stochastic Richardson Extrapolation Based Error Quantification method (StREEQ). This method at its core is a multi-regression technique, where nine regression models and multiple bootstrap samples propagate uncertainties due to the fit and the stochasticity of the underlying data for an appropriate error model with unknown convergence rates. Recently, automation of the convergence parameter domain selection has been implemented; this enables efficient error estimation for large data sets, including analysis of multiple quantities of interest and time dependent data. This method is demonstrated for verification of both steady and time-periodic electron diodes, as well as validation of radiation generated plasma in an end-radiated cylinder. In collaboration with Gregg Radtke, Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Particle-In-Cell Modeling for MegaJoule Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Link, Anthony

    2015-11-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations are by far the most detailed and computationally intensive DPF simulations run to date. They incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50 + cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. An anode shape scan as well as a scan in stored energy/charging voltage has been performed. A comparison of MJ performance for different drivers will be presented. Validation assessments are being performed, comparing against experimental measurements of neutron yield, neutron anisotropy and plasma density. Prepared by LLNL under Contract DE-AC52-07NA27344. This work supported by the U.S. Department of Energy's National Nuclear Security Administration. Computing support for this work came from the LLNL

  1. Comparing the O+ and H+ Escape Fluxes from Fluid and Particle-in-Cell Solutions of the Polar Wind

    NASA Astrophysics Data System (ADS)

    Eccles, J. V.; Schunk, R. W.; Barakat, A. R.

    2015-12-01

    There are different theoretical descriptions of the terrestrial polar wind. Fluid models of mass, momentum, and energy equations can be used to solve the field-aligned flow of H+ and O+ ions from the ionosphere into the earth's magnetosphere. Particle-in-cell (PIC) codes, which include kinetic processes, have also treated polar wind flow between an active ionospheric boundary condition and the outflow boundary into the magnetosphere. In study, we compare the O+ and H+ escape fluxes from the USU Ionosphere-Plasmasphere Model (IPM) [Schunk et al., 2003] with the escape fluxes from the macroscopic PIC solution of the Generalized Polar Wind (GPW) Model of Barakat and Schunk [2006]. The IPM model results at 1500km are used to supply the time-varying boundary conditions to the GPW model. The escape flux comparisons will be made at the 2.5 Re, which is a typical boundary condition radius for fluxes into MHD magnetosphere models. Classical fluid codes generate escape fluxes driven by the pressure gradients in the ionosphere, while the PIC code has additional energization processes for the polar wind fluxes. Differencing the two escape flux solutions at 2.5 Re will quantify the importance of the additional energization processes within the PIC GPW model. We will make the comparisons of escape fluxes using the model results of 4 different storm periods: an idealized storm period, April 5-8, 2000, 2002 September 27 to October 4, and 2002 October 22-29. These storm periods were chosen for the collaborative studies of the Outflow Measuring Modeling, and Merging GEM focus group. Barakat, A. R. and R. W. Schunk (2006), A three-dimensional model of the generalized polar wind, J. Geophys. Res., 111, A12314, doi:10.1029/2006JA011662. Schunk, R. W., J. V. Eccles, J. J. Sojka, D. C. Thompson, and L. Zhu (2003), Assimilation Ionosphere Model (AIM), Final report, Space Environment Corporation, Providence, Utah.

  2. Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter

    2016-04-01

    This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used

  3. Three-dimensional particle-in-cell modeling of terahertz gyrotrons with cylindrical and planar configurations of the interaction space

    SciTech Connect

    Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Zheleznov, I. V.; Zotova, I. V.

    2013-04-15

    We perform 3D particle-in-cell simulations of terahertz gyrotrons with two different configurations of the interaction space. For a gyrotron with conventional cylindrical configuration of the interaction cavity, we demonstrate reasonable agreement between simulations and experimental results, including output frequency, structure of the higher-order operating mode (TE{sub 17,4}), output power, and ohmic losses. For a novel planar gyrotron scheme with transverse energy extraction, a possibility of further increasing the oversized factor with the single-mode operation regime retained is shown. Frequency detuning by mechanical variation of the gap between waveguide plates is also demonstrated.

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. Numerical studies and optimization of magnetron with diffraction output (MDO) using particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Majzoobi, Alireza

    The first magnetron as a vacuum-tube device, capable of generating microwaves, was invented in 1913. This thesis research focuses on numerical simulation-based analysis of magnetron performance. The particle-in-cell (PIC) based MAGIC software tool has been utilized to study the A6 and the Rising-Sun magnetron structures, and to obtain the optimized geometry for optimizing the device performance. The A6 magnetron is the more traditional structure and has been studied more often. The Rising-Sun geometry, consists of two alternating groups of short and long vanes in angular orientation, and was created to achieve mode stability. The effect of endcaps, changes in lengths of the cathode, the location of cathodes with respect to the anode block, and use of transparent cathodes have been probed to gauge the performance of the A6 magnetron with diffraction output. The simulations have been carried out with different types of endcaps. The results of this thesis research demonstrate peak output power in excess of 1GW, with efficiencies on the order of 66% for magnetic (B)-fields in the range of 0.4T - 0.42T. In addition, particle-in-cell simulations have been performed to provide a numerical evaluation of the efficiency, output power and leakage currents for a 12-cavitiy, Rising-Sun magnetron with diffraction output with transparent cathodes. The results demonstrate peak output power in excess of 2GW, with efficiencies on the order of 68% for B-fields in the 0.42T - 0.46T range. While slightly better performance for longer cathode length has been recorded. The results show the efficiency in excess of 70% and peak output power on the order of 2.1GW for an 18 cm cathode length at 0.45T magnetic field and 400 kV applied voltage. All results of this thesis conform to the definite advantage of having endcaps. Furthermore, the role of secondary electron emission (SEE) on the output performance of the12-cavity, 12-cathodes Rising-Sun magnetron has been probed. The results indicate

  6. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming

  7. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  8. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    SciTech Connect

    Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.

  9. A simulation of a capacitively coupled oxygen discharge using the oopd1 particle-in-cell Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lieberman, M. A.; Wang, Ying; Verboncoeur, J. P.

    2009-10-01

    The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to simulate a capacitively coupled discharge in oxygen. oopd1 is a one-dimensional object-oriented PIC-MC code [1] in which the model system has one spatial dimension and three velocity components. It contains models for planar, cylindrical, and spherical geometries and replaces the XPDx1 series [2], which is not object-oriented. The revised oxygen model includes, in addition to electrons, the oxygen molecule in ground state, the oxygen atom in ground state, the negative ion O^-, and the positive ions O^+ and O2^+. The cross sections for the collisions among the oxygen species have been significantly revised from earlier work using the xpdp1 code [3]. Here we explore the electron energy distribution function (EEDF), the ion energy distribution function (IEDF) and the density profiles for various pressures and driving frequencies. In particular we investigate the influence of the O^+ ion on the IEDF, we explore the influence of multiple driving frequencies, and we do comparisons to the previous xpdx1 codes. [1] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Physics 104 (1993) 321 [2] V. Vahedi and M. Surendra, Comp. Phys. Comm. 87 (1995) 179

  10. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Hakim, Ammar H.; Bhattacharjee, A.; Germaschewski, K.

    2015-01-01

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.

  11. Three-dimensional particle-in-cell simulations of 300 GHz reflex klystrons

    SciTech Connect

    Jeon, S. G.; Jin, Y. S.; Kim, J. I.; Kim, G. J.; Shon, C. H.

    2007-03-01

    Three-dimensional (3D) particle-in-cell simulations of 300 GHz reflex klystrons are presented. 300 GHz electromagnetic wave generation in a resonant cavity is analyzed by using a 3D simulation model in which all the geometric parameters (such as the grid thickness, repeller shape, beam radius, etc.) are described. When an electron beam of an energy of 1.0 keV and a net current of 8.9 mA is used, the maximum electronic efficiency of energy transfer is observed when the gap transit angle is 0.7{pi} rad, and the efficiency saturates when the beam current is over 10 mA. Space charge forces produce a shift in the optimum repeller voltage. It is also shown that the effect of the beam temperature is not critical, even though the bunching wavelength of the electron beam is several times smaller than that in conventional vacuum electron devices. Our simulation results show that a microfabricated 300 GHz reflex klystron can directly generate electromagnetic waves with output power levels of several tens of milliwatts.

  12. Local Diagnosis of Reconnection in 3D

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.; Roytershteyn, V.

    2014-12-01

    We demonstrate (I,II) an approach to find reconnection sites in 3D where there is no flux function for guidance, and where local observational signatures for the ``violation of frozen flux'' are under developed, if not non-existent. We use 2D and 3D PIC simulations of asymmetric guide field reconnection to test our observational hierarchy of single spacecraft kinetic diagnostics - all possible with present state of the art instrumentation. The proliferation of turbulent, electron inertial scale layers in the realistic 3D case demonstrates that electron demagnetization, while necessary, is not sufficient to identify reconnection sites. An excellent local, observable, single spacecraft proxy is demonstrated for the size of the theoretical frozen flux violation. Since even frozen flux violations need not imply reconnection is at hand, a new calibrated dimensionless method is used to determine the importance of such violations. This measure is available in 2D and 3D to help differentiate reconnection layers from weaker frozen flux violating layers. We discuss the possibility that this technique can be implemented on MMS. A technique to highlight flow geometries conducive to reconnection in 3D simulations is also suggested, that may also be implementable with the MMS flotilla. We use local analysis with multiple necessary, but theoretically independent electron kinetic conditions to help reduce the probability of misidentification of any given layer as a reconnection site. Since these local conditions are all necessary for the site, but none is known to be sufficient, the multiple tests help to greatly reduce false positive identifications. The selectivity of the results of this approach using PIC simulations of 3D asymmetric guide field reconnection will be shown using varying numbers of simultaneous conditions. Scudder, J.D., H. Karimabadi, W. Daughton and V. Roytershteyn I, II, submitted Phys. Plasma., 2014

  13. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    SciTech Connect

    Gibbons, M.R.

    1995-06-01

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.

  14. Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Rose, Laura P.

    This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield

  15. A split control variate scheme for PIC simulations with collisions

    NASA Astrophysics Data System (ADS)

    Sonnendrücker, Eric; Wacher, Abigail; Hatzky, Roman; Kleiber, Ralf

    2015-08-01

    When the distribution function of plasma particles stays close to some analytically known function, statistical noise inherent to Monte Carlo simulations can be greatly reduced by introducing this function as a control variate in the computation of the velocity moments. Such a method, even though it can be naturally applied to nonlinear simulations, has originally emerged from linearised simulations and is usually called the δf particle-in-cell (PIC) method. In the past, the method has been extended to also handle collisions. This resulted in a two weight scheme which is known to produce a pronounced weight growth problem which rapidly makes it inefficient as a control variate method for variance reduction. In this work we analyse the weight growth problem within a simple example, which allows us to overcome its pathological behaviour. We also introduce a new split algorithm based on switching the control variate for PIC simulations with collisions. A key element of our algorithm is a new weight smoothing operator which enables us to obtain a significant noise reduction both in the presence of collisions and in the deep nonlinear phase of PIC simulations.

  16. Oblique electron fire hose instability: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.; Decyk, Victor K.; Schriver, David

    2014-01-01

    Nonlinear properties of the oblique resonant electron fire hose instability are investigated using two-dimensional particle-in-cell simulations in the Darwin approximation for weak initial growth rates. The weak electron fire hose instability has a self-destructive nonlinear behavior; it destabilizes a nonpropagating branch which only exists for a sufficiently strong temperature anisotropy. The nonlinear evolution leads to generation of nonpropagating waves which in turn scatter electrons and reduce their temperature anisotropy. As the temperature anisotropy is being reduced, the nonpropagating branch disappears and the generated standing waves are transformed to propagating whistler waves which are rapidly damped. Consequently, the oblique electron fire hose efficiently reduces the electron temperature anisotropy.

  17. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. Three-Dimensional Particle-in-Cell Simulations of Laser WakefieldExperiments

    SciTech Connect

    Tsung, F.S.; Antonsen, T.; Bruhwiler, D.L.; Cary, J.R.; Decyk,V.K.; Esarey, E.; Geddes, C.G.R.; Huang, C.; Hakim, A.; Katsouleas, T.; Lu, W.; Messmer, P.; Mori, W.B.; Tzoufras, M.; Vieira, J.

    2007-06-01

    Plasma accelerator methods offer the potential to reduce thesize of moderate and high energy accelerators by factors of 1000. In thepast few years great advances have been made in the production of lowemittance, high quality (i.e., monoenergetic) electron beams withenergies between .1 and 1 GeV using ultra-fast (<50 femtoseconds),high power (>10TW) lasers. The most noticeable of these advances werethe experimental results presented in the "Dream Beam" issue of Natureand in a recent issues of Physical Review Letters, Nature, and NaturePhysics. The experimental progress have been made due to advances inlasers, diagnostics, plasma sources, and the knowledge of how to controlof this highly nonlinear acceleration process. And this experimentalprogress has occurred simultaneously with and been in part due toadvances in modeling capabilities. Using a hierarchy of particlein-cell(PIC) codes OSIRIS, VORPAL, and QuickPIC, we have performed numerous fullscale 3D simulations using parameters quoted from the Nature and NaturePhysics articles. Our simulations have predicted results, providedagreement between simulations and experiments (within the shot-to-shotvariations of the experiments), and provided insight into the complicatedphysics of the experiments. Most importantly, as our confidence in thefidelity of our methods increases we can now guide the planning of newexperiments, and probe parameters that are not yet available. Therebyproviding a "road map" for generating high quality, high-charge 10 to 100GeV electron beams for use in high-energy physics and lightsources.

  19. Particle-in-cell Simulations with Charge-Conserving Current Deposition on Graphic Processing Units

    NASA Astrophysics Data System (ADS)

    Kong, Xianglong; Huang, Michael; Ren, Chuang; Decyk, Viktor

    2010-11-01

    We present an implementation of a fully relativistic, electromagnetic PIC code, with charge-conserving current deposition, on graphics processing units (GPUs) with NVIDIA's massively multithreaded computing architecture CUDA. A particle-based computation thread assignment was used in the current deposition scheme and write conflicts among the threads were resolved by a thread racing technique. A parallel particle sorting scheme was also developed and used. The implementation took advantage of fast on-chip shared memory. The 2D implementation achieved a one particle-step process time of 2.28 ns for cold plasma runs and 8.53 ns for extremely relativistic plasma runs on a GTX 280 graphic card, which were respectively 90 and 29 times faster than a single threaded state-of-art CPU code. A comparable speedup was also achieved for the 3D implementation.

  20. Colliding Two Shocks: 1-D full Particle-in-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Hada, T.; Matsukiyo, Shuichi; Mazelle, Christian

    2016-07-01

    Shock-shock interactions occur on various places in space and the interaction can produce high energy particles. A coronal mass ejection driven shock can collide with the Earth's bow shock [Hietala et al., 2011]. This study reported that ions are accelerated by the first Fermi acceleration between the two shocks before the collision. An electron acceleration through an interplanetary shock-Earth's bow shock interaction was also reported [Terasawa et al., 1997]. Shock-shock interactions can occur in astrophysical phenomena as well as in the heliosphere. For example, a young supernova shock can collide with the wind termination shock of a massive star if they are close to each other [Bykov et al., 2013]. Although hybrid simulations (ions and electrons treated as super-particles and mass-less fluid, respectively) were carried out to understand the kinetic nature of a shock-shock interaction [Cargill et al., 1986], hybrid simulations cannot resolve electron dynamics and non-thermal electrons. We, therefore, use one-dimensional full particle-in-cell (PIC) simulations to investigate a shock-shock interaction in which two shocks collide head-on. In a case of quasi-perpendicular shocks, electrons are accelerated by the mirror reflection between the two shocks before the collision (Fermi acceleration). On the other hand, because ions cannot go back upstream, the electron acceleration mechanism does not occur for ions. In a case of quasi-parallel shocks, ions can go back upstream and are accelerated at the shocks. The accelerated ions have great effect on the shock structure.

  1. Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Melzani, Mickaël; Walder, Rolf; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M.

    2014-10-01

    Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs), a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low β ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma restmass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows are dominated by thermal agitation instead of bulk kinetic energy. (ii) At high inflow electron magnetization (σe ≥ 80), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far lower than the inflow E × B bulk velocity. (iv) Island centers are magnetically isolated from the rest of the flow and can present a density depletion at their center. (v) The reconnection rates are slightly higher than in non-relativistic studies. They are best normalized by the inflow relativistic Alfvén speed projected in the outflow direction, which then leads to rates in a close range (0.14-0.25), thus allowing for an easy estimation of the reconnection electric field.

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Particle-in-cell simulations for fast ignition

    NASA Astrophysics Data System (ADS)

    Ren, C.; Tonge, J.; Li, G.; Fiuza, F.; Fonseca, R. A.; May, J.; Mori, W. B.; Silva, L. O.; Wang, T. L.; Yan, R.

    2008-07-01

    The hole-boring scheme in fast ignition is studied via largee-scale, two-dimensional particle-in-cell simulations in two steps. First, laser channeling in millimeter-scale underdense plasmas is simulated. The results show a highly nonlinear and dynamic process involving longitudinal plasma buildup, laser hosing, channel bifurcation and self-correction, and electron heating to relativistic temperatures. The channeling speed is much less than the linear group velocity of the laser. Low-intensity channeling pulses are preferred to minimize the required laser energy. The channel is also shown to significantly increase the transmission of an ignition pulse. In the second step, the interactions of the ignition pulse and a hundred-critical-density plasma are simulated to study hot electron generation and transport. The results show that at ultra-high intensities, I > 5 × 1019W/cm2, most of the electrons transporting energy through 50μm of 100 times critical density plasma are in a relatively low energy range. The fraction of laser power that transits the dense plasma and is deposited into a dense core increases with laser intensity. Overall these results show the promise of using ultra-high-intensity ignition pulses in the hole-boring scheme.

  4. Particle-in-cell Simulation of Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Iza, Felipe

    2005-10-01

    Ion kinetics in the sheath and pre-sheath of planar and cylindrical probes has been studied by means of 1-dimensional (1d3v) particle-in-cell Monte Carlo collision simulations. Collisionless and collisional regimes are considered and simulation results (floating potentials and the ion saturation currents) are compared with available theories. As pressure increases, the ion velocity at the sheath edge decreases below the Bohm velocity (uB). For planar probes, this velocity is ˜ uB(1+5λDe/λi) where λDe is the Debye length at the sheath edge and λi the ion mean free path. Although ionization can be neglected in the sheath region, it plays a key role in determining the voltage across the presheath. For planar probes and Maxwellian electrons, this voltage increases rapidly for electron temperatures below ˜2eV. For cylindrical probes, however, the voltage across the presheath can be drastically reduced by the geometrical increase of current density as ions approach the probe. At low pressure, simulation results lie between the Laframboise and the ABR theories. As pressure increases, however, collisions and ionization in the presheath becomes critical in determining the ion flux to the probe at a given bias voltage.

  5. Second order gyrokinetic theory for particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-01

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.

  6. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  7. PIC Simulations of Hypersonic Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration

  8. PIC simulation of electrodeless plasma thruster with rotating electric field

    NASA Astrophysics Data System (ADS)

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-01

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  9. Bounded PIC-MCC simulation of an electgronegative RF discharge

    SciTech Connect

    Vahedi, V.; Lieberman, M.A.; Birdsall, C.K.

    1992-12-01

    The authors have developed a Monte Carlo Collision (MCC) scheme, as an addition to the Particle-in-Cell (PIC) method, to study oxygen RF discharges. The presence of negative ions and their effect on the plasma is being investigated at various pressures and input powers. Simulation results show that for low input powers, the negative ion density can be an order of magnitude higher than the electron density. This high concentration of negative ions affects the ambipolar diffusion conditions which can lead to lower ion loss rates and higher ion densities than in electropositive discharges. In this model, electrons, O{sub 2}{sup +}, O{sup {minus}}, and O are evolved as particles. These models can be used to model other processing discharges.

  10. PIC simulation of electrodeless plasma thruster with rotating electric field

    SciTech Connect

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  11. Progress on a particle-in-cell model of a W-band klystron

    NASA Astrophysics Data System (ADS)

    Mardahl, Peter J.; Verboncoeur, John P.; Birdsall, C. K.

    1999-11-01

    Design and initial implementation of an extension from two to three dimensions (x-y-z and r-θ-z) is described for the XOOPIC( J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, ``An object-oriented electromagnetic PIC code.'' Computer Physics Communications 87) (1995) 199-211. code. The klystron ( G. Caryotakis, E. Jongewaard, G. Schietrum, A. Vlieks, R.L. Kustom, N.C. Luhmann, M.I. Petelin, ``W-Band Micro-fabricated Modular Klystrons.'' --Private communication) of interest is to operate at 91GHz, with a 125kW peak power, 120kV, 2.5A, 1us pulse, and 0.8mm drift tube diameter. This klystron uses periodic permanent magnetic focussing to contain the beam within the drift tube. Initially, the device will be modelled in 2d, and this will be extended to a 3d model. A 3d model is preferred because the drift tube is circular, while the cavities are rectangular. The circular drift tube will be modelled using stair-stepped boundaries.

  12. Particle-in-cell modeling of Dual Segmented Langmuir Probe on PROBA2

    NASA Astrophysics Data System (ADS)

    Imtiaz, Nadia; Marchand, Richard

    2015-11-01

    We model the current characteristics of the Dual Segmented Langmuir Probe (DSLP), which is a part of the scientific payload of the ESA satellite PROBA2. It is used for the directional measurement of plasma parameters in the ionosphere at an altitude of approximately 725 km. The DSLP consists of two independent segmented Langmuir probes. Each probe is partitioned into eight collectors: seven electrically insulated spherical segments and a Guard electrode (the rest of the sphere and a small post). The current characteristics of the DSLP are computed by using the 3D particle-in-cell code PTetra. The model is electrostatic and it accounts for a uniform background magnetic field. The computed characteristics of different probe segments exhibit significant variation which depends on their orientation with respect to the ram direction. The floating potential and ion current branch of the I-V curves of each segment illustrate the directional sensitivity of the DSLP. It is found that the magnetic field also affects the electron current branch of the I-V curves of certain segments on the DSLP. The I-V curves computed with and without the ambient magnetic field are then used to estimate the electron temperature. This study will be helpful to understand the floating potential and electron temperature anisotropies measured by the DSLP.

  13. Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method

    NASA Astrophysics Data System (ADS)

    Kusoglu Sarikaya, C.; Rafatov, I.; Kudryavtsev, A. A.

    2016-06-01

    The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the code is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.

  14. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  15. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  16. PlasmaPIC: A tool for modeling low-temperature plasma discharges

    NASA Astrophysics Data System (ADS)

    Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian

    2015-09-01

    PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  17. FLIP MHD - A particle-in-cell method for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Brackbill, J. U.

    1991-01-01

    The fluid-implicit-particle, or 'FLIP' method presently extended to 2D and 3D MHD flow incorporates a Lagrangian field representation and yields a grid magnetic Reynolds number of up to 16 while preserving contact continuities that retain the Galilean invariance of the MHD flow equations. Analytical arguments and numerical examples demonstrate the conservation of mass, momentum, magnetic flux, and energy; 2D calculation results for the illustrative cases of contact discontinuity convection, Rayleigh-Taylor unstable flow.

  18. Particle in Cell Simulations of the Pulsar Y-Point -- Nature of the Accelerating Electric Field

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail

    2016-06-01

    Over the last decade, satellite observations have yielded a wealth of data on pulsed high-energy emission from pulsars. Several different models have been advanced to fit this data, all of which “paint” the emitting region onto a different portion of the magnetosphere.In the last few years, particle in cell simulations of pulsar magnetospheres have reached the point where they are able to self-consistently model particle acceleration and dissipation. One of the key findings of these simulations is that the region of the current sheet in and around the Y-point provides the highest rate of dissipation of Poynting flux (Belyaev 2015a). On the basis of this physical evidence, it is quite plausible that this region should be associated with the pulsed high energy emission from pulsars. We present high resolution PIC simulations of an axisymmetric pulsar magnetosphere, which are run using PICsar (Belyaev 2015b). These simulations focus on the particle dynamics and electric fields in and around the Y-point region. We run two types of simulations -- first, a force-free magnetosphere and second, a magnetosphere with a gap between the return current layer and the outflowing plasma in the polar wind zone. The latter setup is motivated by studies of pair production with general relativity (Philippov et al. 2015, Belyaev & Parfrey (in preparation)). In both cases, we find that the Y-point and the current sheet in its direct vicinity act like an “electric particle filter” outwardly accelerating particles of one sign of charge while returning the other sign of charge back to the pulsar. We argue that this is a natural behavior of the plasma as it tries to adjust to a solution that is as close to force-free as possible. As a consequence, a large E dot J develops in the vicinity of the Y-point leading to dissipation of Poynting flux. Our work is relevant for explaining the plasma physical mechanisms underlying pulsed high energy emission from pulsars.

  19. Challenges of PIC Simulations at High Laser Intensity

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel

    2015-11-01

    New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  20. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    SciTech Connect

    Thuc Bui

    2007-12-06

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  1. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  2. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    NASA Astrophysics Data System (ADS)

    Ribière, M.; Cessenat, O.; d'Almeida, T.; de Gaufridy de Dortan, F.; Maulois, M.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-03-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 1010 cm-3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  3. The Multi Level Multi Domain (MLMD) method: a semi-implicit adaptive algorithm for Particle In Cell plasma simulations

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni

    2013-10-01

    Particle in Cell (PIC) simulations of plasmas are not bound anymore by the stability constraints of explicit algorithms. Semi implicit and fully implicit methods allow to use larger grid spacings and time steps. Adaptive Mesh Refinement (AMR) techniques permit to locally change the simulation resolution. The code proposed in Innocenti et al., 2013 and Beck et al., 2013 is however the first to combine the advantages of both. The use of the Implicit Moment Method allows to taylor the resolution used in each level to the physical scales of interest and to use high Refinement Factors (RF) between the levels. The Multi Level Multi Domain (MLMD) structure, where all levels are simulated as complete domains, conjugates algorithmic and practical advantages. The different levels evolve according to the local dynamics and achieve optimal level interlocking. Also, the capabilities of the Object Oriented programming model are fully exploited. The MLMD algorithm is demonstrated with magnetic reconnection and collisionless shocks simulations with very high RFs between the levels. Notable computational gains are achieved with respect to simulations performed on the entire domain with the higher resolution. Beck A. et al. (2013). submitted. Innocenti M. E. et al. (2013). JCP, 238(0):115-140.

  4. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  5. Boltzmann electron PIC simulation of the E-sail effect

    NASA Astrophysics Data System (ADS)

    Janhunen, P.

    2015-12-01

    The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.

  6. 3-D Full-kinetic Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Particle Behaviour

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Wang, X.; Lembege, B.; Markidis, S.; Lapenta, G.; Horanyi, M.

    2015-12-01

    We present three-dimensional full-kinetic electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the full-kinetic nature of iPic3D allows to self-consistently investigate space charge effects, and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general mechanism of the interaction of both a horizontal and vertical dipole model embedded just below the lunar surface focussing on the ion and electron kinetic behaviour of the system. It is shown that the configurations are largely dominated by electron motion, because the LMA scale size is small with respect to the gyro-radius of the solar wind ions. The formation of mini-magnetospheres is an electrostatic effect. Additionally, we discuss typical particle trajectories as well as complete particle distribution functions covering thermal and suprathermal energies, within the interaction region and on viable spacecraft altitudes. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs.This research has received funding from the European Commission's FP7 Program with the grant agreement EHEROES (project 284461, www.eheroes.eu). The simulations were conducted on the computational resources provided by the PRACE Tier-0 project 2013091928 (SuperMUC). This research was supported by the Swedish National Space Board

  7. Dissipation mechanism in 3D magnetic reconnection

    SciTech Connect

    Fujimoto, Keizo

    2011-11-15

    Dissipation processes responsible for fast magnetic reconnection in collisionless plasmas are investigated using 3D electromagnetic particle-in-cell simulations. The present study revisits the two simulation runs performed in the previous study (Fujimoto, Phys. Plasmas 16, 042103 (2009)); one with small system size in the current density direction, and the other with larger system size. In the case with small system size, the reconnection processes are almost the same as those in 2D reconnection, while in the other case a kink mode evolves along the current density and deforms the current sheet structure drastically. Although fast reconnection is achieved in both the cases, the dissipation mechanism is very different between them. In the case without kink mode, the electrons transit the electron diffusion region without thermalization, so that the magnetic dissipation is supported by the inertia resistivity alone. On the other hand, in the kinked current sheet, the electrons are not only accelerated in bulk, but they are also partly scattered and thermalized by the kink mode, which results in the anomalous resistivity in addition to the inertia resistivity. It is demonstrated that in 3D reconnection the thickness of the electron current sheet becomes larger than the local electron inertia length, consistent with the theoretical prediction in Fujimoto and Sydora (Phys. Plasmas 16, 112309 (2009)).

  8. Wave-particle interactions with parallel whistler waves: Nonlinear and time-dependent effects revealed by particle-in-cell simulations

    SciTech Connect

    Camporeale, Enrico; Zimbardo, Gaetano

    2015-09-15

    We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.

  9. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  10. Improved Field Emission Algorithms for Modeling Field Emission Devices Using a Conformal Finite-Difference Time-Domain Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.

    2013-10-01

    This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.

  11. Wave-particle interactions with parallel whistler waves: Nonlinear and time-dependent effects revealed by particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Camporeale, Enrico; Zimbardo, Gaetano

    2015-09-01

    We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.

  12. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Lehe, R.; Vincenti, H.; Godfrey, B. B.; Haber, I.; Lee, P.

    2016-09-01

    Numerical simulations have been critical in the recent rapid developments of plasma-based acceleration concepts. Among the various available numerical techniques, the particle-in-cell (PIC) approach is the method of choice for self-consistent simulations from first principles. The fundamentals of the PIC method were established decades ago, but improvements or variations are continuously being proposed. We report on several recent advances in PIC-related algorithms that are of interest for application to plasma-based accelerators, including (a) detailed analysis of the numerical Cherenkov instability and its remediation for the modeling of plasma accelerators in laboratory and Lorentz boosted frames, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, and (c) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of perfectly matched layers in high-order and pseudo-spectral solvers.

  13. A Hybrid PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan G.; Moore, Christopher H.; Boerner, Jeremiah J.

    2014-10-01

    Triggered vacuum spark gaps (TVSGs) can be used as high voltage, high current switches with a fast switching time and a variable operating voltage, such as in pulsed power applications and crowbar circuits that protect against overvoltage conditions. Hybrid particle-in-cell (PIC) and direct simulation Monte Carlo (DSMC) methods can be used to simulate breakdown in TVSGs. In this talk, we present results of a one-dimensional hybrid PIC/DSMC model and show that changing the density and velocity of injected neutral particles (which can be related to the surface temperature) significantly changes both the time to breakdown and the existence of a short-lived starvation mode in the current waveform. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Enhanced quasi-static PIC simulation with pipelining algorithm for e-cloud instability

    NASA Astrophysics Data System (ADS)

    Feng, Bing; Huang, Chengkun; Decyk, Viktor; Mori, Warren; Muggli, Patric; Katsouleas, Tom

    2008-11-01

    Simulating the electron cloud effect on a beam that circulates thousands of turns in circular machines is highly computationally demanding. A novel algorithm, the pipelining algorithm is applied to the fully parallelized quasi-static particle-in-cell code QuickPIC to overcome the limit of the maximum number of processors can be used for each time step. The pipelining algorithm divides the processors into subgroups and each subgroup focuses on different partition of the beam and performs the calculation in series. With this novel algorithm, the accuracy of the simulation is preserved; the speed of the simulation is improved by one order of magnitude with more than 10^2 processors are used. The long term simulation results of the CERN-LHC and the Main Injector at FNAL from the QuickPIC with pipelining algorithm are presented. This work is supported by SiDAC and US Department of Energy

  15. MP-Pic simulation of CFB riser with EMMS-based drag model

    SciTech Connect

    Li, F.; Song, F.; Benyahia, S.; Wang, W.; Li, J.

    2012-01-01

    MP-PIC (multi-phase particle in cell) method combined with the EMMS (energy minimization multi- scale) drag force model was implemented with the open source program MFIX to simulate the gas–solid flows in CFB (circulatingfluidizedbed) risers. Calculated solid flux by the EMMS drag agrees well with the experimental value; while the traditional homogeneous drag over-predicts this value. EMMS drag force model can also predict the macro-and meso-scale structures. Quantitative comparison of the results by the EMMS drag force model and the experimental measurements show high accuracy of the model. The effects of the number of particles per parcel and wall conditions on the simulation results have also been investigated in the paper. This work proved that MP-PIC combined with the EMMS drag model can successfully simulate the fluidized flows in CFB risers and it serves as a candidate to realize real-time simulation of industrial processes in the future.

  16. Hybrid-PIC Algorithms for Simulation of Large-Scale Plasma Jet Accelerators

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten; Welch, Dale

    2009-11-01

    Merging coaxial plasma jets are envisioned for use in magneto-inertial fusion schemes as the source of an imploding plasma liner. An experimental program at HyperV is considering the generation of large plasma jets (length scales on the order of centimeters) at high densities (10^16-10^17 cm-3) in long coaxial accelerators. We describe the Hybrid particle-in-cell (PIC) methods implemented in the code LSP for this parameter regime and present simulation results of the HyperV accelerator. A radiation transport algorithm has also been implemented into LSP so that the effect of radiation cooling on the jet mach number can be included self-consistently into the Hybrid PIC formalism.

  17. MPI implementation of a generalized implicit algorithm for multi-dimensional PIC simulations

    NASA Astrophysics Data System (ADS)

    Petrov, George; Davis, Jack

    2012-10-01

    The implicit 2D3V particle-in-cell (PIC) code developed to study the interaction of short pulse lasers with matter [G. M. Petrov and J. Davis, Computer Phys. Comm. 179, 868 (2008); Phys. Plasmas 18, 073102 (2011)] has been parallelized using MPI (Message Passing Interface). Performance evaluation has been made on a Linux cluster for two typical regimes of PIC operation: ``particle dominated,'' for which the bulk of the computation time is spent on pushing particles, and ``field dominated,'' for which computing the fields is prevalent. The MPI implementation of the code offers a significant numerical speedup, particularly in the ``particle dominated'' regime, which will allow extension to three dimensions and implementation of atomic physics.

  18. User-configurable MAGIC for electromagnetic PIC calculations

    NASA Astrophysics Data System (ADS)

    Goplen, Bruce; Ludeking, Larry; Smith, David; Warren, Gary

    1995-05-01

    MAGIC is a user-configurable code that solves Maxwell's equations together with Lorentz particle motion. A variety of 2D, finite-difference electromagnetic algorithms and 3D particle-in-cell algorithms may be combined in problem-specific ways to provide fast, accurate, steady-state and transient calculations for many research and design needs. Default configurations provide good speed and accuracy for most applications, and a library of templates offers optimized algorithm configurations for specific devices. A programmable processor named POSTER provides advanced post-analysis of the field and particle solutions. Coordinate systems, boundary conditions, geometry, and materials are specified by the user, and grid generation can be manual, user-assisted, or fully automatic. MAGIC has a fully 3D counterpart called SOS. Programs exist to connect these analysis tools to parametric and CAD input from an integrated design environment.

  19. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  20. QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration

    NASA Astrophysics Data System (ADS)

    Huang, C.; Decyk, V. K.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M., Jr.; Feng, B.; Katsouleas, T.; Vieira, J.; Silva, L. O.

    2006-09-01

    A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-incell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computation time by 2 to 3 orders of magnitude without loss of accuracy for highly nonlinear problems of interest. The code is fully parallelizable with different domain decompositions for the 2D and 3D pieces of the code. The code also has dynamic load balancing. We present the basic algorithms and design of QuickPIC, as well as comparison between the new algorithm and conventional fully explicit models (OSIRIS). Direction for future work is also presented including a software pipeline technique to further scale QuickPIC to 10,000+ processors.

  1. PIC Algorithm with Multiple Poisson Equation Solves During One Time Step

    NASA Astrophysics Data System (ADS)

    Ren, Junxue; Godar, Trenton; Menart, James; Mahalingam, Sudhakar; Choi, Yongjun; Loverich, John; Stoltz, Peter H.

    2015-09-01

    In order to reduce the overall computational time of a PIC (particle-in-cell) computer simulation, an attempt was made to utilize larger time step sizes by implementing multiple solutions of Poisson's equation within one time step. The hope was this would make the PIC simulation stable at larger time steps than an explicit technique can use, and using larger time steps would reduce the overall computational time, even though the computational time per time step would increase. A three-dimensional PIC code that tracks electrons and ions throughout a three-dimensional Cartesian computational domain is used to perform this study. The results of altering the number of times Poisson's equation is solved during a single time step are presented. Also, the size of the time that can be used and still maintain a stable solution is surveyed. The results indicate that using multiple Poisson solves during one time step provides some ability to use larger time steps in PIC simulations, but the increase in time step size is not significant and the overall simulation run time is not reduced

  2. Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC

    SciTech Connect

    Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC

    2006-01-25

    For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.

  3. PIC Detector for Piano Chords

    NASA Astrophysics Data System (ADS)

    Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel

    2010-12-01

    In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.

  4. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  5. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  6. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  7. Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yu; Sun, Peng; Jiang, Wei; Zhou, Jie; Xie, Bai-Song

    2015-06-01

    An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorithm (DIPIC) and energy conservation scheme are applied together and the grid heating can be eliminated in most cases. A tensor-susceptibility Poisson equation is constructed. Its discrete form is made up by a hybrid scheme in one-dimensional (1D) and two-dimensional (2D) cylindrical systems. A semi-coarsening multigrid method is used to solve the discrete system. The algorithm is applied to simulate the cylindrical magnetized target fusion (MTF) pre-ionization process and get qualitatively correct results. The potential application of the algorithm is discussed briefly. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275007, 11105057, 11175023, and 11275039). One of the author (Wang H Y) is supported by Program for Liaoning Excellent Talents in University (Grant No. LJQ2012098).

  8. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  9. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    NASA Astrophysics Data System (ADS)

    Lu, W.; Tzoufras, M.; Joshi, C.; Tsung, F. S.; Mori, W. B.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2007-06-01

    The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a 30fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×1018cm-3 to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  10. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  11. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  12. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  13. Proton velocity ring-driven instabilities in the inner magnetosphere: Linear theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-01-01

    Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.

  14. Particle-in-cell simulation for different magnetic mirror effects on the plasma distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Chen, Peng-Bo; Zhao, Yin-Jian; Yu, Da-Ren

    2015-08-01

    Magnetic mirror used as an efficient tool to confine plasma has been widely adopted in many different areas especially in recent cusped field thrusters. In order to check the influence of magnetic mirror effect on the plasma distribution in a cusped field thruster, three different radii of the discharge channel (6 mm, 4 mm, and 2 mm) in a cusped field thruster are investigated by using Particle-in-Cell Plus Monte Carlo (PIC-MCC) simulated method, under the condition of a fixed axial length of the discharge channel and the same operating parameters. It is found that magnetic cusps inside the small radius discharge channel cannot confine electrons very well. Thus, the electric field is hard to establish. With the reduction of the discharge channel’s diameter, more electrons will escape from cusps to the centerline area near the anode due to a lower magnetic mirror ratio. Meanwhile, the leak width of the cusped magnetic field will increase at the cusp. By increasing the magnetic field strength in a small radius model of a cusped field thruster, the negative effect caused by the weak magnetic mirror effect can be partially compensated. Therefore, according to engineering design, the increase of magnetic field strength can contribute to obtaining a good performance, when the radial distance between the magnets and the inner surface of the discharge channel is relatively big. Project supported by the National Natural Science Foundation of China (Grant No. 51006028) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).

  15. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  16. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    SciTech Connect

    Nishioka, S. Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  17. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  19. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes

    SciTech Connect

    Chen, M.; Cormier-Michel, E.; Geddes, C.G.R.; Bruhwiler, D.L.; Yu, L.L.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.

    2013-03-01

    Methods for the calculation of laser tunneling ionization in explicit particle-in-cell codes used for modeling laser–plasma interactions are compared and validated against theoretical predictions. Improved accuracy is obtained by using the direct current form for the ionization rate. Multi level ionization in a single time step and energy conservation have been considered during the ionization process. The effects of grid resolution and number of macro-particles per cell are examined. Implementation of the ionization algorithm in two different particle-in-cell codes is compared for the case of ionization-based electron injection in a laser–plasma accelerator.

  20. Onset of Reconnection in the near Magnetotail: PIC Simulations

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Birn, Joachim; Daughton, William; Hesse, Michael; Schindler, Karl

    2014-01-01

    Using 2.5-dimensional particle-in-cell (PIC) simulations of magnetotail dynamics, we investigate the onset of reconnection in two-dimensional tail configurations with finite Bz. Reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. We found a clear distinction between stable and unstable cases, dependent on deformation amplitude and ion/electron mass ratio. The threshold appears consistent with electron tearing. The evolution prior to onset, as well as the evolution of stable cases, are largely independent of the mass ratio, governed by integral flux tube entropy conservation as imposed in MHD (magnetohydrodynamics). This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. The onset time and other onset properties depend on the mass ratio, consistent with expectations for electron tearing. At onset,we found electron anisotropies T?/ T? (bottom tail divided by parallel tail) equals 1.1-1.3, raising growth rates and wavenumbers. Our simulations have provided a quantitative onset criterion that is easily evaluated in MHD simulations, provided the spatial resolution is sufficient. The evolution prior to onset and after the formation of a neutral line does not depend on the electron physics, which should permit an approximation by MHD simulations with appropriate dissipation terms.

  1. Ion Density Holes observed by Cluster satellite: Electromagnetic PIC Simulation

    NASA Astrophysics Data System (ADS)

    Hong, J.; Lee, E.; Min, K. W.; Parks, G. K.

    2010-12-01

    In the upstream region of the bow shock, many transient structures have been found such as hot flow anomalies (HFAs), foreshock cavities (FCs), hot diamagnetic cavities (HDCs), and short- and large-amplitude magnetic structures. Density holes (DHs) are one of such transient phenomena with similar characteristics to those of HFAs, FCs, and HDCs: density depletion accompanied by the depression of magnetic field and "deflection of" flow velocity. While sometimes regarded as the early phase of HFA, DH has a lower magnetic shear and a smaller flow deviation than the HFA. However, the most significant difference between the two structures is the direction of motional electric field (convection electric field). The solar wind convection electric fields of DHs have an outward-component from the embedding IMF current sheets while HFAs usually have components directed inward on either or both of the edges. As the Cluster observations indicate the isolated DH structures generally accompany diffuse ion beams in the rotating magnetic fields, which can be interpreted as a current sheet or a solitary wave, we conjecture the ion-ion beam instability occurring around the current sheet to be the important factor of DHs structures and set up simulation models using a two-dimensional electromagnetic particle-in-cell (PIC) code. Here, we report the characteristics of DHs observed by Cluster and the progress of our simulation study.

  2. Benchmarking of particle-in-cell simulations with Monte Carlo collisions using LXcat data

    NASA Astrophysics Data System (ADS)

    Turner, M. M.; Hanzlikova, N.; Eremin, D.; Mussenbrock, T.; Derzsi, A.; Donko, Z.

    2011-10-01

    As a direct solution of the Boltzmann equation, particle-in-cell simulation potentially yields highly accurate descriptions of low-temperature plasma. However, this accuracy is realised only with correct implementation and appropriately chosen numerical parameters. Particle-in-cell simulation is a computationally intensive procedure. Consequently, efficient implementations that take full advantage of the resources of modern computer hardware are highly desirable. Such hardware typically offers some degree of parallelisation, such as is found in multicored processors and graphical processing units. Implementations exploiting these facilities can be orders of magnitude faster than traditional serialized approaches. However, parallelisation introduces a great increase in algorithmic complexity, and thereby intensifies concerns about correct implementation. In this report we describe a suite of benchmark calculations for particle-in-cell simulations, making use of LXcat cross section data. These bench marks have three aims: (1) to demonstrate correct implementation (2) to facilitate performance comparisons of different implementations and (3) to provide a baseline for other simulation methods. We will discuss the benchmarks, which include measurements of plasma kinetic properties, transport coefficients and discharge simulations, together with the results obtained from a variety of particle-in-cell implementations.

  3. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) ANALYSIS METHODS

    EPA Science Inventory

    The report gives results of method evaluations for products of incomplete combustion (PICs): 36 proposed PICs were evaluated by previously developed gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectroscopy (GC/MS) methods. It also gives resu...

  4. First PIC simulations modeling the interaction of ultra-intense lasers with sub-micron, liquid crystal targets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass

    2014-10-01

    We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.

  5. Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube

    SciTech Connect

    Liewer, P.C.; Leaver, E.W.; Decyk, V.K.; Dawson, J.M.

    1990-12-31

    Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance.

  6. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  7. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  8. The IBEX Ribbon and the Pickup Ion Ring Stability in the Outer Heliosheath II. Monte-Carlo and Particle-in-cell Model Results

    NASA Astrophysics Data System (ADS)

    Niemiec, J.; Florinski, V.; Heerikhuisen, J.; Nishikawa, K.-I.

    2016-08-01

    The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite (IBEX), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are not too narrow (parallel thermal spread above a few km s‑1) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.

  9. Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code

    NASA Astrophysics Data System (ADS)

    Domański, J.; Badziak, J.; Jabloński, S.

    2016-04-01

    Laser-driven generation of high-energy ion beams has recently attracted considerable interest due to a variety of potential applications including proton radiography, ICF fast ignition, nuclear physics or hadron therapy. The ion beam parameters depend on both laser pulse and target parameters, and in order to produce the ion beam of properties required for a particular application the laser and target parameters must be carefully selected, and the mechanism of the ion beam generation should be well understood and controlled. Convenient and commonly used tools for studies of the ion acceleration process are particle-in-cell (PIC) codes. Using two-dimensional PIC simulations, the properties of a proton beam generated from a thin erbium hydride (ErH3) target irradiated by a 25fs laser pulse of linear or circular polarization and of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It has been found that using erbium hydride targets instead of hydrocarbon ones creates an opportunity to generate more compact proton beams of higher mean energy, intensity and of better collimation. This is especially true for the linear polarization of the laser beam, for which the mean proton energy, the amount of high energy protons and the intensity of the proton beam generated from the hydride target is by an order of magnitude higher than for the hydrocarbon target. For the circular polarization, the proton beam parameters are lower than those for the linear one, and the effect of target composition on the acceleration process is weaker.

  10. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  11. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  12. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  13. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  14. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  17. Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams

    SciTech Connect

    Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I.

    2003-11-04

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

  18. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes

    SciTech Connect

    Perez, F.; Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E.

    2012-08-15

    An improved Monte Carlo collisional scheme modeling both elastic and inelastic interactions has been implemented into the particle-in-cell code CALDER[E. Lefebvre et al., Nucl. Fusion 43, 629 (2003)]. Based on the technique proposed by Nanbu and Yonemura [J. Comput. Phys. 145, 639 (1998)] allowing to handle arbitrarily weighted macro-particles, this binary collision scheme uses a more compact and accurate relativistic formulation than the algorithm recently worked out by Sentoku and Kemp [J. Comput. Phys. 227, 6846 (2008)]. Our scheme is validated through several test cases, demonstrating, in particular, its capability of modeling the electrical resistivity and stopping power of a solid-density plasma over a broad parameter range. A relativistic collisional ionization scheme is developed within the same framework, and tested in several physical scenarios. Finally, our scheme is applied in a set of integrated particle-in-cell simulations of laser-driven fast electron transport.

  19. Leap frog integrator modifications in highly collisional particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Hanzlikova, N.; Turner, M. M.

    2014-07-01

    Leap frog integration method is a standard, simple, fast, and accurate way to implement velocity and position integration in particle-in-cell codes. Due to the direct solution of kinetics of particles in phase space central to the particle-in-cell procedure, important information can be obtained on particle velocity distributions, and consequently on transport and heating processes. This approach is commonly associated with physical situations where collisional effects are weak, but can also be profitably applied in some highly collisional cases, such as occur in semiconductor devices and gaseous discharges at atmospheric pressure. In this paper, we show that the implementation of the leap frog integration method in these circumstances can violate some of the assumptions central to the accuracy of this scheme. Indeed, without adaptation, the method gives incorrect results. We show here how the method must be modified to deal correctly with highly collisional cases.

  20. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  1. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  2. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  3. Implementations of mesh refinement schemes for particle-in-cell plasma simulations

    SciTech Connect

    Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.

    2003-10-20

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.

  4. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, J.; Qin, H.; Tang, W. M.

    2012-08-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  5. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    SciTech Connect

    Squire, J.; Tang, W. M.; Qin, H.

    2012-08-15

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  6. Geometric Integration Of The Vlasov-Maxwell System With A Variational Particle-in-cell Scheme

    SciTech Connect

    J. Squire, H. Qin and W.M. Tang

    2012-03-27

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  7. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    NASA Astrophysics Data System (ADS)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  8. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    SciTech Connect

    Qiang, Ji; Corlett, John; Staples, John

    2009-03-02

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.

  9. Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations

    SciTech Connect

    Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun

    2013-12-15

    A particle-in-cell/Monte Carlo code is developed to rescale the microwave breakdown theory which is put forward by Vyskrebentsev and Raizer. The results of simulations show that there is a distinct error in this theory when the high energy tail of electron energy distribution function increases. A rescaling factor is proposed to modify this theory, and the change rule of the rescaling factor is presented.

  10. Verification of particle-in-cell simulations against exact solutions of kinetic equations

    NASA Astrophysics Data System (ADS)

    Turner, Miles

    2015-09-01

    Demonstrating correctness of computer simulations (or verification) has become a matter of increasing concern in recent years. The strongest type of verification is a demonstration that the simulation converges to an exact solution of the mathematical model that is supposed to be solved. Of course, this is possible only if such an exact solution is available. In this paper, we are interested in kinetic simulation using the particle-in-cell method, and consequently a relevant exact solution must be a solution of a kinetic equation. While we know of no such solutions that exercise all the features of a typical particle-in-cell simulation, in this paper we show that the mathematical literature contains several such solutions that involve a large fraction of the functionality of such a code, and which collectively exercise essentially all of the code functionality. These solutions include the plane diode, the neutron criticality problem, and the calculation of ion energy distribution functions in oscillating fields. In each of theses cases, we can show the the particle-in-cell simulation converges to the exact solution in the expected way. These demonstrations are strong evidence of correct implementation. Work supported by Science Foundation Ireland under grant 08/SRC/I1411.

  11. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  12. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  13. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  14. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  15. Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving

    2014-02-01

    The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.

  16. XPDC2-R{theta} a two-dimensional electrostatic PIC code

    SciTech Connect

    Birdsall, C.K.; Cooperberg, D.; Gopinath, V.P.; Mirrashidi, P.; Vahedi, V.; Verboncoeur, J.

    1995-12-31

    A two dimensional particle-in-cell simulation has been written using a cylindrical R-{theta} Poisson field solver. The simulator is capable of simulating coaxial structures with and without a central conductor. In the presence of a central conductor, an external circuit consisting of V,I sources and R-L-C elements can be self-consistently simulated with the plasma equations. The simulation model includes the PIC-MCC package to model collisions between charged particles and neutral species. The field solve in the {theta} direction can be done using finite-difference or Fourier transforms. The simulator is currently being used to study the diocotron and Kelvin-Helmholtz instabilities. The ability to generate movies to study time-varying phenomenon will be discussed. In addition, comparisons with theory and 1D models will also be presented.

  17. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun

    2015-03-01

    We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  18. Hybrid PIC Simulations of Particle Dynamics in Coaxial Plasma Jet Accelerators

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten; Hughes, Thomas; Welch, Dale; Hakel, Peter

    2007-11-01

    We describe the results of 1D and 2D simulations of plasma jet accelerators using the particle-in-cell (PIC) code Lsp. Previous studies of 1D cartesian simulations have shown that ion particle dynamics at the plasma-vacuum interface depend critically on the local Hall parameter, which is strongly dependent on electron temperature. In a coaxial accelerator with finite transverse dimensions, large transverse ion motions, predicted at moderate Hall parameters in 1D, can lead to ion loss to the walls. The results of 2D r-z jet simulations are described and compared with the 1D cartesian results. The effects of particle loss and ablation at the wall are considered, as are electron heating mechanisms at the plasma-vacuum interface, including radiation losses. We will apply the results to the plasma jet experiments underway at HyperV Technologies Corp.

  19. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  20. Development of a 3D particle treecode for plasma simulations

    NASA Astrophysics Data System (ADS)

    Ong, Benjamin; Christlieb, Andrew; Krasny, Robert

    2008-11-01

    In this work we present a fully 3-D Boundary Integral Treecode (BIT). We apply the method to several classic problems such as sheath formation and 3D simulations of a Penning trap. In addition, we investigate the ability of the solver to naturally capture Coloumb scattering. A key point in the investigation is to understand the effect of different types of regularizations, and how to appropriately incorporate the regularization in the BIT framework. This work builds on substantial efforts in 1- and 2-D. [1] R. Krasny and K. Lindsay, A particle method and adaptive treecode for vortex sheet motion in 3-D flow, JCP, Vol. 172, No. 2, 879-907 [2] K. Matyash, R. Schneider, R. Sydora, and F. Taccogna, Application of a Grid-Free Kinetic Model to the Collisionless Sheath, Contrib. Plasma Phys, Vol. 48, No. 1-3, 116-120 (2008) [3] K. Cartwright and A. Christlieb, Boundary Integral Corrected Particle in Cell, SIAM Journal on Sci. Comput., submitted [4] A. Christlieb, R. Krasny, B. Ong and J. Qiu, A Step Towards Addressing Temporal Multi-scale Problems in Plasma Physics, in prep.

  1. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  2. PARTICLE-IN-CELL SIMULATIONS OF PARTICLE ENERGIZATION VIA SHOCK DRIFT ACCELERATION FROM LOW MACH NUMBER QUASI-PERPENDICULAR SHOCKS IN SOLAR FLARES

    SciTech Connect

    Park, Jaehong; Ren Chuang; Workman, Jared C.; Blackman, Eric G.

    2013-03-10

    Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new two-dimensional particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime of E {approx}< 40 {approx} 100 keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler instabilities are identified using numerical solutions of the kinetic dispersion relations. We also show that the results from PIC simulations with reduced ion/electron mass ratio can be scaled to those with the realistic mass ratio.

  3. PIC simulations of SMLWFA for 35fs class lasers

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Tsung, F. S.; Ren, Chuang; Mori, W. B.; Fonseca, R. A.; Silva, L. O.

    2001-10-01

    In the self-modulated laser wakefield regime a laser pulse several to many 2 π c/ ωp long breaks up via Raman scattering type instabilities producing large wakes. In some cases these wakes can trap background electrons generating a beam of accelerated electrons with a large energy spread. PIC simulations have shown that this process is highly sensitive to the laser intensity, pulse length, and plasma density [K-C.Tzeng et al., PRL 76, 3332 (1996), K-C.Tzeng et al., PRL 79, 5258 (1997)]. There have been some recent experimental results in which 35fs laser pulses have been used. In this case the pulses are at most only a few 2 π c/ ωp long even for the highest densities 10**20 cm-3. We report here on 1D, 2D, and 3D PIC simulations using OSIRIS for parameters closely related to the LULI/LOA results [V.Malka et al., Phys. Plasmas 8, 2605 (2001)].

  4. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  5. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  6. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  7. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  8. A portable approach for PIC on emerging architectures

    NASA Astrophysics Data System (ADS)

    Decyk, Viktor

    2016-03-01

    A portable approach for designing Particle-in-Cell (PIC) algorithms on emerging exascale computers, is based on the recognition that 3 distinct programming paradigms are needed. They are: low level vector (SIMD) processing, middle level shared memory parallel programing, and high level distributed memory programming. In addition, there is a memory hierarchy associated with each level. Such algorithms can be initially developed using vectorizing compilers, OpenMP, and MPI. This is the approach recommended by Intel for the Phi processor. These algorithms can then be translated and possibly specialized to other programming models and languages, as needed. For example, the vector processing and shared memory programming might be done with CUDA instead of vectorizing compilers and OpenMP, but generally the algorithm itself is not greatly changed. The UCLA PICKSC web site at http://www.idre.ucla.edu/ contains example open source skeleton codes (mini-apps) illustrating each of these three programming models, individually and in combination. Fortran2003 now supports abstract data types, and design patterns can be used to support a variety of implementations within the same code base. Fortran2003 also supports interoperability with C so that implementations in C languages are also easy to use. Finally, main codes can be translated into dynamic environments such as Python, while still taking advantage of high performing compiled languages. Parallel languages are still evolving with interesting developments in co-Array Fortran, UPC, and OpenACC, among others, and these can also be supported within the same software architecture. Work supported by NSF and DOE Grants.

  9. Parallel PIC Simulations of Short-Pulse High Intensity Laser Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Lasinski, B. F.; Still, C. H.; Langdon, A. B.

    2001-10-01

    We extend our previous simulations of high intensity short pulse laser plasma interactions footnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.

  10. Parallel PIC Simulations of Ultra-High Intensity Laser Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Lasinski, B. F.; Still, C. H.; Langdon, A. B.; Wilks, S. C.; Hatchett, S. P.; Hinkel, D. E.

    1999-11-01

    We extend our previous simulations of high intensity short pulse laser plasma interactionsfootnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. Our simulation parameters are guided by the recent Petawatt experiments at Livermore. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.

  11. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  12. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  13. Fully explicit nonlinear optics model in a particle-in-cell framework

    SciTech Connect

    Gordon, D.F. Helle, M.H.; Peñano, J.R.

    2013-10-01

    A numerical technique which incorporates the nonlinear optics of anisotropic crystals into a particle-in-cell framework is described. The model is useful for simulating interactions between crystals, ultra-short laser pulses, intense relativistic electron bunches, plasmas, or any combination thereof. The frequency content of the incident and scattered radiation is limited only by the resolution of the spatial and temporal grid. A numerical stability analysis indicates that the Courant condition is more stringent than in the vacuum case. Numerical experiments are carried out illustrating the electro-optic effect, soliton propagation, and the generation of fields in a crystal by a relativistic electron bunch.

  14. Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations

    SciTech Connect

    Levko, D.; Gurovich, V. Tz.; Krasik, Ya. E.

    2012-06-15

    The conductivity of the discharge gap during the nanosecond high-voltage pulsed discharge in nitrogen and sulfur hexafluoride is studied using particle-in-cell numerical simulations. It is shown that the conductivity in different locations of the cathode-anode gap is not uniform and that the conductivity is determined by both the runaway and the plasma electrons. In addition, it is shown that runaway electrons generated prior to the virtual cathode formation pre-ionize the discharge gap, which makes it conductive.

  15. Particle-in-cell modeling of gas-confined barrier discharge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  16. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Qin, Hong; Tang, William

    2012-10-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law. This work was supported by USDOE Contract DE-AC02-09CH11466.[4pt] [1] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, (2005), arXiv:math/0508341

  17. PICPANTHER: A simple, concise implementation of the relativistic moment implicit particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Kempf, Andreas; Kilian, Patrick; Ganse, Urs; Schreiner, Cedric; Spanier, Felix

    2015-03-01

    A three-dimensional, parallelized implementation of the electromagnetic relativistic moment implicit particle-in-cell method in Cartesian geometry (Noguchi et al., 2007) is presented. Particular care was taken to keep the C++11 codebase simple, concise, and approachable. GMRES is used as a field solver and during the Newton-Krylov iteration of the particle pusher. Drifting Maxwellian problem setups are available while more complex simulations can be implemented easily. Several test runs are described and the code's numerical and computational performance is examined. Weak scaling on the SuperMUC system is discussed and found suitable for large-scale production runs.

  18. Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes

    SciTech Connect

    Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman

    2011-01-15

    Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.

  19. Sheath and presheath in ion-ion plasmas via particle-in-cell simulation

    SciTech Connect

    Meige, A.; Leray, G.; Raimbault, J.-L.; Chabert, P.

    2008-02-11

    A full particle-in-cell simulation is developed to investigate electron-free plasmas constituted of positive and negative ions under the influence of a dc bias voltage. It is shown that high-voltage sheaths following the classical Child-law sheaths form within a few microseconds (which corresponds to the ion transit time) after the dc voltage is applied. It is also shown that there exists the equivalent of a Bohm criterion where a presheath accelerates the ions collected at one of the electrodes up to the sound speed before they enter the sheath. From an applied perspective, this leads to smaller sheaths than one would expect.

  20. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  1. Quasilinear theory and particle-in-cell simulation of proton cyclotron instability

    SciTech Connect

    Seough, Jungjoon E-mail: yoonp@umd.edu; Yoon, Peter H. E-mail: yoonp@umd.edu; Hwang, Junga E-mail: yoonp@umd.edu

    2014-06-15

    The electromagnetic ion (proton) cyclotron instability is important for regulating the excessive development of perpendicular temperature anisotropy in the solar wind, for instance, when it is compressed in the vicinity of the Earth's magnetosheath environment. A recent letter [Seough et al., Phys. Rev. Lett. 110, 071103 (2013)] successfully employed the quasilinear kinetic theory to explain the observed temperature anisotropy upper bound. The present paper rigorously examines the reliability of the quasilinear theory by making a direct comparison against results from the particle-in-cell simulation method. It is found that the quasilinear approach is indeed a valid first-cut theoretical tool in the study of proton cyclotron instability.

  2. Particle-in-Cell Simulations of Ponderomotive Particle Acceleration in a Plasma

    SciTech Connect

    Startsev, E.A.; McKinstrie, C.J.

    2003-06-17

    (B204)In previous publications the ponderomotive acceleration of electrons by an idealized (one-dimensional) circularly polarized laser pulse in a plasma was studied analytically. Acceleration gradients of order 100 GeV/m were predicted. To verify the predictions of the theoretical model, a two-dimensional relativistic particle-in-cell code was developed. Simulations of the interaction of a preaccelerated electron bunch with a realistic (two-dimensional)laser pulse in a plasma are presented and analyzed. The simulation results validate the theoretical model and show that significant ponderomotive acceleration is possible.

  3. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    SciTech Connect

    Simões, F. J. R. Jr.; Pavan, J.; Gaelzer, R.; Ziebell, L. F.; Yoon, P. H.

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  4. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  5. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  6. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  7. PIC-MCC Simulations of Capacitive High-Frequency Discharge Dynamics with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina V.

    A new combined particle-in-cell Monte Carlo collision (PIC-MCC) approach is discussed for accurate and fast simulation of a radio-frequency (rf) discharge at a low gas pressure and high plasma density. Test calculations of the heating mode transition in a capacitively coupled rf-discharge in helium and argon show a good agreement with experimental data. The combined PIC-MCC algorithm is very efficient, especially for the collisionless regime of electron heating. Using this algorithm, the properties of a capacitively coupled 13.56 MHz discharge are studied in a mixture of Ar/C2H2 with nanoparticles of different sizes. For the description of plasma-dust interaction a kinetic model is introduced. The dust surface potential and discharge parameters are calculated self-consistently. In this model, any assumption about electron and ion energy distribution functions is not used. This allows us to calculate accurately the dust particle charging. The transport of dust is calculated by using the fluid approach. It is shown that at the initial stage of the growth, nanoparticles are accumulated near the sheath-plasma boundaries, where the ionization rate has maximum value. The nanoparticles suppress the ionization due to the absorbing of fast electrons and stimulate a quick change of the plasma parameters followed by the transition between different modes of discharge operation.

  8. Asymmetric Magnetic Reconnection with Flow Shear: PIC Simulations and Magnetopause Applications

    NASA Astrophysics Data System (ADS)

    Doss, C.; Cassak, P.

    2015-12-01

    Magnetic reconnection at Earth's dayside magnetopause is typically characterized by significant asymmetries in both magnetic field strength and plasma density. In addition, a flow shear across the reconnection site in the plane of the reconnecting magnetic field can be caused by magnetosheath flow, especially at higher latitudes. Being able to predict the solar wind's effect on reconnection is important for understanding, e.g., solar wind-magnetospheric coupling. Recently, we showed that flow shear during asymmetric reconnection causes the reconnection site to convect in the outflow direction, predicted the flow speed from momentum conservation, and confirmed the results with two-dimensional two-fluid numerical simulations (Doss et al., J. Geophys. Res., submitted). We also predicted and confirmed with two-fluid simulations the reconnection rate as a function of upstream plasma conditions and the flow shear required to shut reconnection off. Here, we revisit this system using two-dimensional fully electromagnetic particle-in-cell (PIC) simulations, which treat plasma mixing in the exhaust more realistically than the fluid model. We find very good agreement between the predictions and PIC simulation results for both the X-line convection speed and the reconnection rate for flow speeds below the cutoff speed. For reconnection with typical conditions at the dayside magnetopause, we predict the reconnection site of isolated X-lines convect at nearly the same speed as the tangential component of the solar wind velocity, and the flow has little effect on the reconnection rate.

  9. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    SciTech Connect

    Kreh, B.B.

    1994-12-01

    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 {times} 10{sup {minus}11} seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 {times} 10{sup {minus}10} seconds. Since the electron-electron collision rate of 10{sup 9} Hz and the electron atom collision rate of 10{sup 7} Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism.

  10. 2D electrostatic PIC algorithm for laser induced studying plasma in vacuum

    NASA Astrophysics Data System (ADS)

    Álvarez, C. A.; Riascos, H.; Gonzalez, C.

    2016-02-01

    Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.

  11. Validation of RF CCP Discharge Model against Experimental Data using PIC Method

    NASA Astrophysics Data System (ADS)

    Icenhour, Casey; Kummerer, Theresa; Green, David L.; Smithe, David; Shannon, Steven

    2014-10-01

    The particle-in-cell (PIC) simulation method is a well-known standard for the simulation of laboratory plasma discharges. Using parallel computation on the Titan supercomputer at Oak Ridge National Laboratory (ORNL), this research is concerned with validation of a radio-frequency (RF) capacitively-coupled plasma (CCP) discharge PIC model against previously obtained experimental data. The plasma sources under simulation are 10--100 mTorr argon plasmas with a 13 MHz source and 27 MHz source operating at 50--200 W in both pulse and constant power conditions. Plasma parameters of interest in the validation include peak electron density, electron temperature, and RF plasma sheath voltages and thicknesses. The plasma is modeled utilizing the VSim plasma simulation tool, developed by the Tech-X Corporation. The implementation used here is a two-dimensional electromagnetic model, with corresponding external circuit model of the experimental setup. The goal of this study is to develop models for more complex RF plasma systems utilizing highly parallel computing technologies and methodology. This work is carried out with the support of Oak Ridge National Laboratory and the Tech-X Corporation.

  12. Generalized SIMD algorithm for efficient EM-PIC simulations on modern CPUs

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo; Decyk, Viktor; Mori, Warren; Silva, Luis

    2012-10-01

    There are several relevant plasma physics scenarios where highly nonlinear and kinetic processes dominate. Further understanding of these scenarios is generally explored through relativistic particle-in-cell codes such as OSIRIS [1], but this algorithm is computationally intensive, and efficient use high end parallel HPC systems, exploring all levels of parallelism available, is required. In particular, most modern CPUs include a single-instruction-multiple-data (SIMD) vector unit that can significantly speed up the calculations. In this work we present a generalized PIC-SIMD algorithm that is shown to work efficiently with different CPU (AMD, Intel, IBM) and vector unit types (2-8 way, single/double). Details on the algorithm will be given, including the vectorization strategy and memory access. We will also present performance results for the various hardware variants analyzed, focusing on floating point efficiency. Finally, we will discuss the applicability of this type of algorithm for EM-PIC simulations on GPGPU architectures [2]. [4pt] [1] R. A. Fonseca et al., LNCS 2331, 342, (2002)[0pt] [2] V. K. Decyk, T. V. Singh; Comput. Phys. Commun. 182, 641-648 (2011)

  13. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  14. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  15. Particle-in-cell plasma simulation codes on the connection machine

    NASA Astrophysics Data System (ADS)

    Walker, D. W.

    Methods for implementing three-dimensional, electromagnetic, relativistic PIC plasma simulation codes on the Connection Machine (CM-2) are discussed. The gather and scatter phases of the PIC algorithm involve indirect indexing of data, which results in a large amount of communication on the CM-2. Different data decompositions are described that seek to reduce the amount of communication while maintaining good load balance. These methods require the particles to be spatially sorted at the start of each time step, which introduced another form of overhead. The different methods are implemented in CM FORTRAN on the CM-2 and compared. It was found that the general router is slow in performing the communication in the gather and scatter steps, which precludes an efficient CM FORTRAN implementation. An alternative method that uses PARIS calls and the NEWS communication network to pipeline data along the axes of the VP set is suggested as a more efficient algorithm.

  16. Beam dynamics study of RFQ for CADS with a 3D space-charge-effect

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhang, Zhi-Lei; Qi, Xin; Xu, Xian-Bo; He, Yuan; Yang, Lei

    2014-03-01

    The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.

  17. 3D particle simulation of beams using the WARP code: Transport around bends

    SciTech Connect

    Friedman, A.; Grote, D.P.; Callahan, D.A.; Langdon, A.B. ); Haber, I. )

    1990-11-30

    WARP is a discrete-particle simulation program which was developed for studies of space charge dominated ion beams. It combines features of an accelerator code and a particle-in-cell plasma simulation. The code architecture, and techniques employed to enhance efficiency, are briefly described. Current applications are reviewed. In this paper we emphasize the physics of transport of three-dimensional beams around bends. We present a simple bent-beam PIC algorithm. Using this model, we have followed a long, thin beam around a bend in a simple racetrack system (assuming straight-pipe self-fields). Results on beam dynamics are presented; no transverse emittance growth (at mid-pulse) is observed. 11 refs., 5 figs.

  18. Quasisteady and steady states in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Bottino, A.; Angelino, P.

    2009-05-15

    Collisionless delta-f gyrokinetic particle-in-cell simulations suffer from the entropy paradox, in which the entropy grows linearly in time while low-order moments are saturated. As a consequence, these simulations do not reach a steady state and are unsuited to make quantitative predictions. A solution to this issue is the introduction of artificial dissipation. The notion of steady state in gyrokinetic simulations is studied by deriving an evolution equation for the fluctuation entropy and applying it to the global collisionless particle-in-cell code ORB5 [S. Jolliet et al., Comput. Phys. Commun. 177, 409 (2007)]. It is shown that a recently implemented noise-control algorithm [B. F. McMillan et al., Phys. Plasmas 15, 052308 (2008)] based on a W-stat provides the necessary dissipation to reach a steady state. The two interesting situations of decaying and driven turbulence are considered. In addition, it is shown that a separate heating algorithm, not based on a W-stat, does not lead to a statistical steady state.

  19. photon-plasma: A modern high-order particle-in-cell code

    SciTech Connect

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-06-15

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks.

  20. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors

    NASA Astrophysics Data System (ADS)

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2016-05-01

    This paper concerns the development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss the suitability of the method for Xeon Phi architecture and present our experience in the porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting without code modification gives performance on Xeon Phi close to that of an 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step optimization techniques, such as improving data locality, enhancing parallelization efficiency and vectorization leading to an overall 4.2 × speedup on CPU and 7.5 × on Xeon Phi compared to the baseline version. The optimized version achieves 16.9 ns per particle update on an Intel Xeon E5-2660 CPU and 9.3 ns per particle update on an Intel Xeon Phi 5110P. For a real problem of laser ion acceleration in targets with surface grating, where a large number of macroparticles per cell is required, the speedup of Xeon Phi compared to CPU is 1.6 ×.

  1. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    SciTech Connect

    Gatsonis, Nikolaos A. Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  2. Enhanced stopping of macro-particles in particle-in-cell simulations

    SciTech Connect

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2014-05-15

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q{sup 2}/m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles.

  3. Voronoi particle merging algorithm for PIC codes

    NASA Astrophysics Data System (ADS)

    Luu, Phuc T.; Tückmantel, T.; Pukhov, A.

    2016-05-01

    We present a new particle-merging algorithm for the particle-in-cell method. Based on the concept of the Voronoi diagram, the algorithm partitions the phase space into smaller subsets, which consist of only particles that are in close proximity in the phase space to each other. We show the performance of our algorithm in the case of the two-stream instability and the magnetic shower.

  4. Velocity-Shear Driven Magnetic Reconnection in Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Black, Carrie; Antiochos, Spiro; DeVore, Rick; Karpen, Judy; Germaschewski, Kai

    2012-10-01

    In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field balanced by a downward tension due to overlying un-sheared field. Magnetic reconnection is widely believed to be the mechanism that disrupts this force balance, leading to explosive eruption. For understanding CME/flare initiation, therefore, it is critical to model the onset of reconnection that is driven by the buildup of magnetic shear. In MHD simulations, the application of a magnetic field shear is a trivial matter. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial: it must be done in a self-consistent manner that avoids the generation of waves that destroy the applied shear. In this work, we discuss methods for applying a velocity shear perpendicular to the plane of reconnection within a 2.5D, aperiodic, PIC system. We also discuss the implementation of boundary conditions that allow a net electric current to flow through the walls.

  5. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  6. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  7. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  8. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  9. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  10. Simulation of Current Generation in a 3-D Plasma Model

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Dawson, J. M.

    1996-11-01

    In the advanced tokamak regime, transport phenomena can account for a signficant fraction of the toroidal current, possibly over that driven directly by the ohmic heating electric fields. Bootstrap theory accounts for contributions of the collisional modification of banana orbits on the toroidal currents. In our previous simulations in 21/2-D, currents were spontaneously generated in both the cylindrical and the toroidal geometries, contrary to neoclassical predictions. In these calculations, it was believed that the driving mechanism is the preferential loss of particles whose initial velocity is opposite to that of the plasma current. We are extending these simulations to three dimensions. A parallel 3-D electromagnetic PIC code running on the IBM SP2, with a localized field-solver has been developed to investigate the effects of perturbations parallel to the field lines, and direct comparisons has been made between the 21/2-D and 3-D simulations and we have found good agreements between the 2 1/2-D calculations and the 3-D results. We will present our new results at the meeting. Research partially supported by NSF and DOE.

  11. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  12. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  13. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  16. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  17. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  18. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  19. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  20. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  1. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. Three-Dimensional PIC Simulation of Laser-Ion Acceleration from Ultrathin Targets

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Bergen, B.; Hegelich, B. M.; Flippo, K. A.; Fernández, J. C.

    2008-11-01

    One- and two-dimensional particle-in-cell simulations of the Break-Out Afterburner (BOA) [1] show that new ion acceleration regimes emerge when ultraintense, high- contrast lasers impinge on ultrathin (10s of nm) targets. The BOA has now been demonstrated in three-dimensional (3D) simulations with solid-density targets using VPIC [2]. Comparisons of monoenergetic beams, maximum ion energy, and conversion efficiency have been made with 3D VPIC simulations of ion acceleration from high- contrast circularly polarized lasers [3] with identical intensity, spot size and target composition. Studies have been made of BOA for different intensity and target thickness. [1] Yin et al. LPB 24, 1-8 (2006) ; Yin et al. PoP 14, 056706 (2007). [2] Bowers et al., PoP 15, 055703 (2008). [3] Zhang et al., PoP 14, 123108 (2007); Robinson et al., NJP 10 013021 (2008)

  3. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    SciTech Connect

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-22

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  4. A particle-in-cell approach to obliquely propagating electrostatic waves

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Maharaj, Shimul K.

    2014-09-15

    The electron-acoustic and beam-driven modes associated with electron beams have previously been identified and studied numerically. These modes are associated with Broadband Electrostatic Noise found in the Earth's auroral and polar cusp regions. Using a 1-D spatial Particle-in-Cell simulation, the electron-acoustic instability is studied for a magnetized plasma, which includes cool ions, cool electrons and a hot, drifting electron beam. Both the weakly and strongly magnetized regimes with varying wave propagation angle, θ, with respect to the magnetic field are studied. The amplitude and frequency of the electron-acoustic mode are found to decrease with increasing θ. The amplitude of the electron-acoustic mode is found to significantly grow at intermediate wavenumber ranges. It reaches a saturation level at the point, where a plateau forms in the hot electron velocity distribution after which the amplitude of the electron-acoustic mode decays.

  5. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    DOE PAGESBeta

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less

  6. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    NASA Astrophysics Data System (ADS)

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-01

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  7. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  8. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-01

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy {T}{{e}\\perp }\\gt {T}{{e}| | } develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. The energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.

  9. New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation

    SciTech Connect

    Balsa Terzic, Rui Li

    2010-05-01

    We present a first look at the new code for self-consistent, 2D simulations of beam dynamics affected by the coherent synchrotron radiation. The code is of the particle-in-cell variety: the beam bunch is sampled by point-charge particles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.

  10. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    SciTech Connect

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-11-13

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design.

  11. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph E-mail: pgary@lanl.gov

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  12. Particle-in-cell study of the ion-to-electron sheath transition

    NASA Astrophysics Data System (ADS)

    Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.; Barnat, Edward V.

    2016-08-01

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within Te/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electron sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. The flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.

  13. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    SciTech Connect

    Stancari, Giulio; Moens, Vince; Redaelli, Stefano

    2014-07-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  14. Balancing Particle and Mesh Computation in a Particle-In-Cell Code

    SciTech Connect

    Worley, Patrick H; D'Azevedo, Eduardo; Hager, Robert; Ku, Seung-Hoe; Yoon, Eisung; Chang, C. S.

    2016-01-01

    The XGC1 plasma microturbulence particle-in-cell simulation code has both particle-based and mesh-based computational kernels that dominate performance. Both of these are subject to load imbalances that can degrade performance and that evolve during a simulation. Each separately can be addressed adequately, but optimizing just for one can introduce significant load imbalances in the other, degrading overall performance. A technique has been developed based on Golden Section Search that minimizes wallclock time given prior information on wallclock time, and on current particle distribution and mesh cost per cell, and also adapts to evolution in load imbalance in both particle and mesh work. In problems of interest this doubled the performance on full system runs on the XK7 at the Oak Ridge Leadership Computing Facility compared to load balancing only one of the kernels.

  15. CPIC: A Parallel Particle-In-Cell Code for Studying Spacecraft Charging

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Collin; Delzanno, Gian Luca; Moulton, David; Vernon, Louis

    2015-11-01

    CPIC is a three-dimensional electrostatic particle-in-cell code designed for use with curvilinear meshes. One of its primary objectives is to aid in studying spacecraft charging in the magnetosphere. CPIC maintains near-optimal computational performance and scaling thanks to a mapped logical mesh field solver, and a hybrid physical-logical space particle mover (avoiding the need to track particles). CPIC is written for parallel execution, utilizing a combination of both OpenMP threading and MPI distributed memory. New capabilities are being actively developed and added to CPIC, including the ability to handle multi-block curvilinear mesh structures. Verification results comparing CPIC to analytic test problems will be provided. Particular emphasis will be placed on the charging and shielding of a sphere-in-plasma system. Simulated charging results of representative spacecraft geometries will also be presented. Finally, its performance capabilities will be demonstrated through parallel scaling data.

  16. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  17. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    SciTech Connect

    McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  18. Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Hutchinson, I. H.

    2016-08-01

    The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of "jetting."

  19. Electron-Anode Interactions in Particle-in-Cell Simulations of Applied-B Ion Diodes

    SciTech Connect

    Bailey, J.E.; Cuneo, M.D.; Johnson, D.J.; Mehlhorn, T.A.; Pointon, T.D.; Renk, T.J.; Stygar, W.A.; Vesey, R.A.

    1998-11-12

    Particle-in-cell simulations of applied-B ion diodes using the QUICKSILVER code have been augmented with Monte Carlo calculations of electron-anode interactions (reflection and energy deposition). Extraction diode simulations demonstrate a link between the instability evolution and increased electron loss and anode heating. Simulations of radial and extraction ion diodes show spatial non-uniformity in the predicted electron loss profile leading to hot spots on the anode that rapidly exceed the 350-450 {degree}C range, known to be sufficient for plasma formation on electron-bombarded surfaces. Thermal resorption calculations indicate complete resorption of contaminants with 15-20 kcal/mole binding energies in high-dose regions of the anode during the power pulse. Comparisons of parasitic ion emission simulations and experiment show agreement in some aspects; but also highlight the need for better ion source, plasma, and neutral gas models.

  20. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators

    SciTech Connect

    Veltri, P. Serianni, G.; Cavenago, M.

    2014-02-15

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λ{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  1. Two Dimensional Particle-In-Cell Code for Simulation of Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Decyk, V. K.; Tonge, J.; Dauger, D. E.

    2002-11-01

    We have developed a two dimensional code for simulating quantum plasmas (1). This unique code propagates many quantum particles forward in time self-consistently using the semi-classical approximation. Because of this it can model the statistical properties of interacting quantum particles. We are currently testing this code using small numbers of particles with model problems which we can use to verify the accuracy of the code. The goal is to model from first principles the statistical properties of plasmas where quantum mechanics plays a role such as hot high density plasmas found in stellar interiors (2). (1) D. Dauger, Semiclassical Modeling of Quantum-Mechanical Multiparticle Systems using Parallel Particle-In-Cell Methods, PHD Thesis (2) M. Opher et. al. , Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasma, 8, No. 5, p. 2454 Sponsored by NSF

  2. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  3. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  4. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  5. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  6. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  7. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  8. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  9. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  10. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  11. Particle-In-Cell Multi-Algorithm Numerical Test-Bed

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Yu, P.; Tableman, A.; Decyk, V. K.; Mori, W. B.

    2015-11-01

    We describe a numerical test-bed that allows for the direct comparison of different numerical simulation schemes using only a single code. It is built from the UPIC Framework, which is a set of codes and modules for constructing parallel PIC codes. In this test-bed code, Maxwell's equations are solved in Fourier space in two dimensions. One can readily examine the numerical properties of a real space finite difference scheme by including its operators' Fourier space representations in the Maxwell solver. The fields can be defined at the same location in a simulation cell or can be offset appropriately by half-cells, as in the Yee finite difference time domain scheme. This allows for the accurate comparison of numerical properties (dispersion relations, numerical stability, etc.) across finite difference schemes, or against the original spectral scheme. We have also included different options for the charge and current deposits, including a strict charge conserving current deposit. The test-bed also includes options for studying the analytic time domain scheme, which eliminates numerical dispersion errors in vacuum. We will show examples from the test-bed that illustrate how the properties of some numerical instabilities vary between different PIC algorithms. Work supported by the NSF grant ACI 1339893 and DOE grant DE-SC0008491.

  12. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  13. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  14. Continuation of the Application of Parallel PIC Simulations to Laser and Electron Transport Through Plasmas Under Conditions Relevant to ICF and SBSS

    SciTech Connect

    Warren B. Mori

    2007-04-20

    One of the important research questions in high energy density science (HEDS) is how intense laser and electron beams penetrate into and interact with matter. At high beam intensities the self-fields of the laser and particle beams can fully ionize matter so that beam -matter interactions become beam-plasma interactions. These interactions involve a disparity of length and time scales, and they involve interactions between particles, between particles and waves, and between waves and waves. In a plasma what happens in one region can significantly impact another because the particles are free to move and many types of waves can be excited. Therefore, simulating these interactions requires tools that include wave particle interactions and that include wave nonlinearities. One methodology for studying such interactions is particle-in-cell (PIC) simulations. While PIC codes include most of the relevant physics they are also the most computer intensive. However, with the development of sophisticated software and the use of massively parallel computers, PIC codes can now be used to accurately study a wide range of problems in HEDS. The research in this project involved building, maintaining, and using the UCLA parallel computing infrastructure. This infrastructure includes the codes OSIRIS and UPIC which have been improved or developed during this grant period. Specifically, we used this PIC infrastructure to study laser-plasma interactions relevant to future NIF experiments and high-intensity laser and beam plasma interactions relevant to fast ignition fusion. The research has led to fundamental knowledge in how to write parallel PIC codes and use parallel PIC simulations, as well as increased the fundamental knowledge of HEDS. This fundamental knowledge will not only impact Inertial Confinement Fusion but other fields such as plasma-based acceleration and astrophysics.

  15. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  17. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  19. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  1. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  2. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  3. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  4. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGESBeta

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  5. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  6. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  7. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  8. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  9. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  10. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  11. Particle-in-cell simulation of electromagnetic wave scattering in the presence of interchange instability

    NASA Astrophysics Data System (ADS)

    Main, Daniel; Caplinger, James; Kim, Tony; Sotnikov, Vladimir

    2014-10-01

    The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that vortex density structures can develop on nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. We will use a numerical solution of nonlinear equations which govern the development of interchange instability to define a spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density distribution from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra.

  12. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    PubMed Central

    Torrano, Adriano A

    2014-01-01

    Summary Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division. PMID:25383274

  13. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  14. QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas

    SciTech Connect

    Huang, C. . E-mail: huangck@ee.ucla.edu; Decyk, V.K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W.B.; Cooley, J.H.; Antonsen, T.M.; Katsouleas, T.

    2006-09-20

    A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static or frozen field approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computational time by 2-3 orders of magnitude. Comparison between the new algorithm and conventional fully explicit models (OSIRIS) is presented. The agreement is excellent for problems of interest. Direction for future work is also presented.

  15. Energy dissipation by whistler turbulence: Three-dimensional particle-in-cell simulations

    SciTech Connect

    Chang, Ouliang; Peter Gary, S.; Wang, Joseph

    2014-05-15

    Three-dimensional particle-in-cell simulations of whistler turbulence are carried out on a collisionless, homogeneous, magnetized plasma model. The simulations use an initial ensemble of relatively long wavelength whistler modes and follow the temporal evolution of the fluctuations as they cascade into a broadband, anisotropic, turbulent spectrum at shorter wavelengths. For relatively small levels of the initial fluctuation energy ϵ{sub e}, linear collisionless damping provides most of the dissipation of the turbulence. But as ϵ{sub e} and the total dissipation increase, linear damping becomes less important and, especially at β{sub e} ≪ 1, nonlinear processes become stronger. The PDFs and kurtoses of the magnetic field increments in the simulations suggest that intermittency in whistler turbulence generally increases with increasing ϵ{sub e} and β{sub e}. Correlation coefficient calculations imply that the current structure dissipation also increases with increasing ϵ{sub e} and β{sub e}, and that the nonlinear dissipation processes in these simulations are primarily associated with regions of localized current structures.

  16. Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Workman, Jared; Blackman, Eric; Ren, Chuang; Siller, Robert

    2012-10-01

    Low Mach number, high plasma beta, fast mode shocks likely occur in the outflows from reconnection sites associated with solar flares. These shocks are sites of particle energization with observable consequences, but there has been much less work on understanding the underlying physics compared to that of Mach number shocks. To make progress, we have simulated a low Mach number/high beta shock using 2D particle-in-cell simulations with a ``moving wall'' method and studied the shock structure and particle acceleration processes therein [Park et. al (2012), Phys. Plasmas, 19, 062904]. The moving wall method can control the shock speed in the simulation frame to allow smaller simulation boxes and longer simulation times. We found that the modified two-stream instability in the shock transition region is responsible for shock sustenance via turbulent dissipation and entropy creation throughout the downstream region long after the initial shock formation. Particle tracking and the particle energy distributions show that both electrons and ions participate in shock-drift-acceleration (SDA). The simulation combined with a theoretical analysis reveals a two-temperature Maxwellian distribution for the electron energy distribution via SDA.

  17. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  18. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-03-15

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.

  19. Pegasus: A new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew W.; Stone, James M.; Bai, Xue-Ning

    2014-02-01

    We describe Pegasus, a new hybrid-kinetic particle-in-cell code tailored for the study of astrophysical plasma dynamics. The code incorporates an energy-conserving particle integrator into a stable, second-order-accurate, three-stage predictor-predictor-corrector integration algorithm. The constrained transport method is used to enforce the divergence-free constraint on the magnetic field. A δf scheme is included to facilitate a reduced-noise study of systems in which only small departures from an initial distribution function are anticipated. The effects of rotation and shear are implemented through the shearing-sheet formalism with orbital advection. These algorithms are embedded within an architecture similar to that used in the popular astrophysical magnetohydrodynamics code Athena, one that is modular, well-documented, easy to use, and efficiently parallelized for use on thousands of processors. We present a series of tests in one, two, and three spatial dimensions that demonstrate the fidelity and versatility of the code.

  20. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.

    PubMed

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced. PMID:27475552

  1. Particle-in-cell simulation study of a lower-hybrid shock

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Doria, D.; Ynnerman, A.; Borghesi, M.

    2016-06-01

    The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.

  2. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    SciTech Connect

    Lee, Sang-Yun; Lee, Ensang Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  3. Particle-in-cell simulation of stationary processes in a relativistic carcinotron

    NASA Astrophysics Data System (ADS)

    Pegel', I. V.

    1996-12-01

    A one-dimensional nonstationary model of relativistic carcinotrons, combines the particle-in-cell method in the description of an electron beam with a single-wave approximation in the description of the dynamics of an electromagnetic field. The influence of the intrinsic space charge of the beam is taken into account in the quasistatic approximation. A procedure is developed for computational experiment with a carcinotron in the axisymmetric approximation on the basis of the entirely electromagnetic code KARAT. The computations support the main known laws for a relativistic carcinotron. The effect the space charge has on inertial electronbeam bunching is examined. Mechanisms by which the space charge affects the carcinotron generation efficiency are demonstrated. The space charge may cause anomalously accelerated electrons in the beam and a reverse electron current to appear, increasing the impedance of the coaxial magnetically insulated diode that feeds the device. The carcinotron power and frequency are studied as functions of the strength of the guiding magnetic field. Cyclotron suppression of generation is confirmed. Calculation in combination with an electronic diode shows that generation at a higher frequency can be excited in the cyclotron “dip”.

  4. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    SciTech Connect

    Daniel S. Clark; Nathaniel J. Fisch

    2003-06-27

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of {approx}10{sup 17}W/cm{sup 2} by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function.

  5. A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster

    SciTech Connect

    Coche, P.; Garrigues, L.

    2014-02-15

    We have developed a two-dimensional Particle-In-Cell model in the azimuthal and axial directions of the Hall thruster. A scaling method that consists to work at a lower plasma density to overcome constraints on time-step and grid-spacing is used. Calculations are able to reproduce the breathing mode due to a periodic depletion of neutral atoms without the introduction of a supplementary anomalous mechanism, as in fluid and hybrid models. Results show that during the increase of the discharge current, an electron-cyclotron drift instability (frequency in the range of MHz and wave number on the order of 3000 rad s{sup −1}) is formed in the region of the negative gradient of magnetic field. During the current decrease, an axial electric wave propagates from the channel toward the exhaust (whose frequency is on the order of 400 kHz) leading to a broadening of the ion energy distribution function. A discussion about the influence of the scaling method on the calculation results is also proposed.

  6. Different Choices of the Form Factor in Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kilian, P.; Ganse, U.; Spanier, F.

    2013-04-01

    Numerical simulations have proven a valuable tool to study plasma behavior, especially for conditions in astrophysical scenarios and which are not readily accessible under laboratory conditions. Whenever single particle behavior becomes important or the development of non-thermal components is of interest fluid descriptions have to be replaced by more accurate but also more expensive kinetic descriptions. A very popular such method is the Particle-in-Cell method. Conceptually this method combines the integration of motion if individual elementary particles with field quantities that are restricted to a spatial grid. Both the analytic derivation of the method as well as the computational feasibility require the use of phase space samples instead of the more readily envisioned individual elementary particles. Each macroparticle represents an ensemble of particles of one species that are close to each other in phase space and carries the total charge and mass of the ensemble. Unlike the elementary particles the macroparticle does not necessarily have a vanishing spatial extent. Different choices of the form factor, that is spatial distribution of the particle quantities within the macroparticle, are investigated. Included are the standard choices NGP, CIC and TSC as well as new schemes of higher order.

  7. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    SciTech Connect

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-03-15

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (approx3000 km s{sup -1}) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  8. Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo; Santos, Robert; Parra, Félix I.

    2010-07-01

    Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.

  9. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGESBeta

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  10. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  11. Global Explicit Particle-in-cell Simulations of the Nonstationary Bow Shock and Magnetosphere

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwei; Huang, Can; Liu, Ying D.; Parks, George K.; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-07-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the B z southward solar wind condition, the bow shock undergoes a self-reformation for low β i and high M A . Simultaneously, a magnetic reconnection in the magnetotail is found. For high β i and low M A , the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath at the wings of the bow shock. Hence, the downstream situation is more complicated than that for a planar shock produced in local simulations.

  12. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    SciTech Connect

    Peng, Ivy Bo Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.

  13. Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model

    SciTech Connect

    Ahedo, Eduardo; Santos, Robert; Parra, Felix I.

    2010-07-15

    Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.

  14. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    SciTech Connect

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  15. Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Patacchini, L.; Hutchinson, I. H.

    2009-04-01

    A new explicit time-reversible orbit integrator for the equations of motion in a static homogeneous magnetic field - called Cyclotronic integrator - is presented. Like Spreiter and Walter's Taylor expansion algorithm, for sufficiently weak electric field gradients this second order method does not require a fine resolution of the Larmor motion; it has however the essential advantage of being symplectic, hence time-reversible. The Cyclotronic integrator is only subject to a linear stability constraint ( ΩΔ t < π, Ω being the Larmor angular frequency), and is therefore particularly suitable to electrostatic Particle In Cell codes with uniform magnetic field where Ω is larger than any other characteristic frequency, yet a resolution of the particles' gyromotion is required. Application examples and a detailed comparison with the well-known (time-reversible) Boris algorithm are presented; it is in particular shown that implementation of the Cyclotronic integrator in the kinetic codes SCEPTIC and Democritus can reduce the cost of orbit integration by up to a factor of ten.

  16. Beta dependence of electron heating in decaying whistler turbulence: Particle-in-cell simulations

    SciTech Connect

    Saito, S.; Peter Gary, S.

    2012-01-15

    Two-dimensional particle-in-cell simulations have been carried out to study electron beta dependence of decaying whistler turbulence and electron heating in a homogeneous, collisionless magnetized plasma. Initially, applied whistler fluctuations at relatively long wavelengths cascade their energy into shorter wavelengths. This cascade leads to whistler turbulence with anisotropic wavenumber spectra which are broader in directions perpendicular to the background magnetic field than in the parallel direction. Comparing the development of whistler turbulence at different electron beta values, it is found that both the wavenumber spectrum anisotropy and electron heating anisotropy decrease with increasing electron beta. This indicates that higher electron beta reduces the perpendicular energy cascade of whistler turbulence. Fluctuation energy dissipation by electron Landau damping responsible for the electron parallel heating becomes weaker at higher electron beta, which leads to more isotropic heating. It suggests that electron kinetic processes are important in determining the properties of whistler turbulence. This kinetic property is applied to discuss the generation of suprathermal strahl electron distributions in the solar wind.

  17. Particle-in-cell simulations of electron beam control using an inductive current divider

    NASA Astrophysics Data System (ADS)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-01

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2) with the injected beam current given by Ib = I1 + I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ɛRMS) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ɛRMS at the target. For other applications where the beam is pinched to a current density ˜5 times larger at the target, ɛRMS is 2-3 times larger at the target.

  18. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  19. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    DOE PAGESBeta

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-12-17

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo,more » and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.« less

  20. Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations

    SciTech Connect

    Delzanno, Gian Luca Tang, Xian-Zhu

    2015-11-15

    The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, for the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.

  1. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    SciTech Connect

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-12-17

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo, and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.

  2. Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators.

    PubMed

    Cormier-Michel, Estelle; Shadwick, B A; Geddes, C G R; Esarey, E; Schroeder, C B; Leemans, W P

    2008-07-01

    Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with self-trapping, are modeled. Numerical errors can lead to errors in the macroparticle orbits in both phase and momentum. These errors grow as a function of distance behind the drive laser and can be large enough to result in unphysical trapping in the plasma wake. The resulting numerical heating in intense short-pulse laser-plasma interactions grows much faster and to a higher level than the known numerical grid heating of an initially warm plasma in an undriven system. The amount of heating, at least in the region immediately behind the laser pulse, can, in general, be decreased by decreasing the grid size, increasing the number of particles per cell, or using smoother interpolation methods. The effect of numerical heating on macroparticle trapping is less severe in a highly nonlinear cavitated wake, since trapping occurs in the first plasma wave period immediately behind the laser pulse. PMID:18764064

  3. Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.

    2014-01-01

    First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.

  4. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  5. Shock Injection Problem and Beyond in Hybrid/Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro

    Collisionless shocks are a rich repository of nonlinear plasma instabilities and the self-regulated system of plasma waves, and provide not only quick thermalization but also nonthermal particle acceleration. One of the most widely accepted models of the nonthermal particle acceleration is the diffusive shock acceleration (DSA), which was established in the late seventies. In order that DSA operates effectively, however, the pre-acceleration of particles - the acceleration from the thermal into the suprathermal energies - is needed, namely, the so-called "shock injection problem" remains elusive. The transition from the thermal energies, the suprathermal energies, and the high energy nothermal particles are not well understood yet. With the recent advance of supper computer technology, kinetic plasma modeling by hybrid/particle-in-cell simulations are widely used for understanding the shock dynamics and the particle acceleration mechanisms etc. The modern computer capability is not enough to demonstrate DAS or other strong particle acceleration processes yet, but a great progress is now obtained. In this review talk, we discuss several important progresses: the pre-acceleration at the shock front as the particle injection problem, the turbulent wave generation in the shock transition/upstream as the particle scatterers of DAS, and the magnetic field amplification and so on. We will also give a perspective of the shock acceleration in the future simulation study.

  6. Evolution of the stimulated Raman scattering instability in two-dimensional particle-in-cell simulations

    SciTech Connect

    Masson-Laborde, P. E.; Casanova, M.; Loiseau, P.; Rozmus, W.; Peng, Z.; Pesme, D.; Hueller, S.; Chapman, T.; Bychenkov, V. Yu.

    2010-09-15

    In the following work, we analyze one-dimensional (1D) and two-dimensional (2D) full particle-in-cell simulations of stimulated Raman scattering (SRS) and study the evolution of Langmuir waves (LWs) in the kinetic regime. It is found that SRS reflectivity becomes random due to a nonlinear frequency shift and that the transverse modulations of LWs are induced by (i) the Weibel instability due to the current of trapped particles and (ii) the trapped particle modulational instability (TPMI) [H. Rose, Phys. Plasmas 12, 12318 (2005)]. Comparisons between 1D and 2D cases indicate that the nonlinear frequency shift is responsible for the first saturation of SRS. After this transient interval of first saturation, 2D effects become important: a strong side-scattering of the light, caused by these transverse modulations of the LW and the presence of a nonlinear frequency shift, is observed together with a strong transverse diffusion. This leads to an increase of the Landau damping rate of the LW, contributing to the limiting of Raman backscattering. A model is developed that reproduces the transverse evolution of the magnetic field due to trapped particles. Based on a simple 1D hydrodynamic model, the growth rate for the Weibel instability of the transverse electrostatic mode and magnetic field is estimated and found to be close to the TPMI growth rate [H. Rose et al., Phys. Plasmas 15, 042311 (2008)].

  7. Particle-In-Cell Simulation on the Characteristics of a Receiving Antenna in Space Plasma Environment

    SciTech Connect

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu; Omura, Yoshiharu

    2008-12-31

    We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.

  8. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  9. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  10. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  11. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  12. A study of the early-stage evolution of relativistic electron-ion shock using three-dimensional particle-in-cell simulations

    SciTech Connect

    Choi, E. J.; Min, K.; Choi, C. R.; Nishikawa, K.-I.

    2014-07-15

    We report the results of a 3D particle-in-cell simulation carried out to study the early-stage evolution of the shock formed when an unmagnetized relativistic jet interacts with an ambient electron-ion plasma. Full-shock structures associated with the interaction are observed in the ambient frame. When open boundaries are employed in the direction of the jet, the forward shock is seen as a hybrid structure consisting of an electrostatic shock combined with a double layer, while the reverse shock is seen as a double layer. The ambient ions show two distinct features across the forward shock: a population penetrating into the shocked region from the precursor region and an accelerated population escaping from the shocked region into the precursor region. This behavior is a signature of a combination of an electrostatic shock and a double layer. Jet electrons are seen to be electrostatically trapped between the forward and reverse shock structures showing a ring-like distribution in a phase-space plot, while ambient electrons are thermalized and become essentially isotropic in the shocked region. The magnetic energy density grows to a few percent of the jet kinetic energy density at both the forward and the reverse shock transition layers in a rather short time scale. We see little disturbance of the jet ions over this time scale.

  13. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  14. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  16. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  17. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  18. PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2016-06-01

    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

  19. Ion acceleration in quasi-perpendicular PIC simulations of a reforming heliospheric termination shock

    NASA Astrophysics Data System (ADS)

    Lee, R. E.; Chapman, S. C.; Dendy, R. O.

    2003-12-01

    Recent Particle-in-cell (PIC) simulations have revealed time-dependent shock solutions for parameters relevant to astrophysical and heliospheric shocks [1,2,3]. These solutions are characterised by a shock which cyclically reforms on the spatio-temporal scales of the incoming protons. Whether a shock solution is stationary or reforming depends not only upon the correct treatment of the electrons, but also on the plasma parameters, the upstream β in particular. In the case of the heliospheric termination shock these parameters are not well determined, however, some estimates suggest that the termination shock may be in a parameter regime such that it is time-dependent. It has been pointed out [3] that this will switch off some acceleration mechanisms, for example shock surfing, which has been proposed previously for time-stationary shock solutions. The introduction of time-dependent electromagnetic fields intrinsic to the shock does however introduce the possibility of new mechanisms for the acceleration of protons. Here we present for the first time one such process as revealed by high phase space resolution 1.5D PIC simulations in which all vector quantities are three dimensional, the solution then varying with the spatial coordinate and time. We find that a subset of the protons that reflect off the reforming shock front are accelerated by subsequent interaction with the shock to form a suprathermal population which then propagates into the downstream region with energies of order six times the upstream inflow energy. These may provide an injection population for further acceleration to cosmic ray energies. [1] Shimada, N., and M. Hoshino, Astrophys. J, 543, L67, 2000. [2] Schmitz, H., S.C. Chapman and R.O. Dendy, Astrophys. J, 570, 637, 2002 [3] Scholer, M., I. Shinohara and S. Matsukiyo, J. Geophys. Res., 108, 1014, 2003

  20. Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma

    SciTech Connect

    Tsiklauri, D.

    2012-08-15

    The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.