Science.gov

Sample records for 3d phase space

  1. 3D imaging in volumetric scattering media using phase-space measurements.

    PubMed

    Liu, Hsiou-Yuan; Jonas, Eric; Tian, Lei; Zhong, Jingshan; Recht, Benjamin; Waller, Laura

    2015-06-01

    We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogenous volumetric scattering, then develop a reconstruction algorithm that exploits sparsity in order to further constrain the problem. By using 4D measurements for 3D reconstruction, the dimensionality mismatch provides significant robustness to multiple scattering, with either static or dynamic diffusers. Experimentally, our high-resolution 4D phase-space data is collected by a spectrogram setup, with results successfully recovering the 3D positions of multiple LEDs embedded in turbid scattering media. PMID:26072807

  2. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  3. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    PubMed

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity. PMID:11015933

  4. Phase unwrapping in the dynamic 3D measurement

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Zhang, Qican

    2010-04-01

    In the dynamic 3D shape measurement phase distribution has 3D character, in which phase changes along x and y directions in space and also along t direction in time. 3D phase unwrapping plays a very important role in the dynamic 3D shape measurement. In the dynamic 3D shape measurement methods based on the structured illumination, Fourier transformation profilometry (FTP) is particularly fit for dynamic 3D measurement, because of only one fringe pattern needed and full field analysis. In this paper some 3D phase unwrapping techniques for dynamic 3D shape measurement mainly in our Lab. are presented and reviewed. The basic methods and algorithm design are introduced. The basic methods include direct 3D phase unwrapping, 3D diamond phase unwrapping, 3D phase unwrapping based on reliability ordering, 3D phase unwrapping based on marked fringe tracing. The advantage of the phase unwrapping based on reliability ordering is that the path of phase unwrapping is always along the direction from the pixel with higher reliability parameter value to the pixel with low reliability parameter value. Therefore, in the worse case the error is limited, if there is any, to local minimum areas.

  5. NOTE: A software tool for 2D/3D visualization and analysis of phase-space data generated by Monte Carlo modelling of medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Neicu, Toni; Aljarrah, Khaled M.; Jiang, Steve B.

    2005-10-01

    A computer program has been developed for novel 2D/3D visualization and analysis of the phase-space parameters of Monte Carlo simulations of medical accelerator radiation beams. The software is written in the IDL language and reads the phase-space data generated in the BEAMnrc/BEAM Monte Carlo code format. Contour and colour-wash plots of the fluence, mean energy, energy fluence, mean angle, spectra distribution, energy fluence distribution, angular distribution, and slices and projections of the 3D ZLAST distribution can be calculated and displayed. Based on our experience of using it at Massachusetts General Hospital, the software has proven to be a useful tool for analysis and verification of the Monte Carlo generated phase-space files. The software is in the public domain.

  6. 3-D inversion of magnetotelluric Phase Tensor

    NASA Astrophysics Data System (ADS)

    Patro, Prasanta; Uyeshima, Makoto

    2010-05-01

    Three-dimensional (3-D) inversion of the magnetotelluric (MT) has become a routine practice among the MT community due to progress of algorithms for 3-D inverse problems (e.g. Mackie and Madden, 1993; Siripunvaraporn et al., 2005). While availability of such 3-D inversion codes have increased the resolving power of the MT data and improved the interpretation, on the other hand, still the galvanic effects poses difficulties in interpretation of resistivity structure obtained from the MT data. In order to tackle the galvanic distortion of MT data, Caldwell et al., (2004) introduced the concept of phase tensor. They demonstrated how the regional phase information can be retrieved from the observed impedance tensor without any assumptions for structural dimension, where both the near surface inhomogeneity and the regional conductivity structures can be 3-D. We made an attempt to modify a 3-D inversion code (Siripunvaraporn et al., 2005) to directly invert the phase tensor elements. We present here the main modification done in the sensitivity calculation and then show a few synthetic studies and its application to the real data. The synthetic model study suggests that the prior model (m_0) setting is important in retrieving the true model. This is because estimation of correct induction scale length lacks in the phase tensor inversion process. Comparison between results from conventional impedance inversion and new phase tensor inversion suggests that, in spite of presence of the galvanic distortion (due to near surface checkerboard anomalies in our case), the new inverion algorithm retrieves the regional conductivitity structure reliably. We applied the new inversion to the real data from the Indian sub continent and compared with the results from conventional impedance inversion.

  7. Amazing Space: Explanations, Investigations, & 3D Visualizations

    NASA Astrophysics Data System (ADS)

    Summers, Frank

    2011-05-01

    The Amazing Space website is STScI's online resource for communicating Hubble discoveries and other astronomical wonders to students and teachers everywhere. Our team has developed a broad suite of materials, readings, activities, and visuals that are not only engaging and exciting, but also standards-based and fully supported so that they can be easily used within state and national curricula. These products include stunning imagery, grade-level readings, trading card games, online interactives, and scientific visualizations. We are currently exploring the potential use of stereo 3D in astronomy education.

  8. Independent and arbitrary generation of spots in the 3D space domain with computer generated holograms written on a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Jian; Xia, Yang; Wang, Hao

    2012-10-01

    An improved multiple independent iterative plane algorithm, based on a projection optimization idea, is proposed for the independent and arbitrary generation of one spot or multiple spots in a speckle-suppressed 3D work-area. Details of the mathematical expressions of the algorithm are given to theoretically show how it is improved for 3D spot generation. Both simulations and experiments are conducted to investigate the performance of the algorithm for independent and arbitrary 3D spot generation in several different cases. Simulation results agree well with experimental results, which validates the effectiveness of the algorithm proposed. Several additional experiments are demonstrated for fast and independent generation of four or more spots in the 3D space domain, which confirms the capabilities and practicalities of the algorithm further.

  9. Transferring of speech movements from video to 3D face space.

    PubMed

    Pei, Yuru; Zha, Hongbin

    2007-01-01

    We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models. PMID:17093336

  10. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  11. Custom 3D Printers Revolutionize Space Supply Chain

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a series of SBIR contracts with Marshall Space Flight Center, start-up company Made In Space, located on the center's campus, developed a high-precision 3D printer capable of manufacturing items in microgravity. The company will soon have a printer installed on the International Space Station, altering the space supply chain. It will print supplies and tools for NASA, as well as nanosatellite shells and other items for public and private entities.

  12. High Resolution 3D Cine Phase Contrast MRI of Small Intracranial Aneurysms using a Stack of Stars k-Space Trajectory

    PubMed Central

    Kecskemeti, Steve; Johnson, Kevin; Wu, Yijing; Mistretta, Chuck; Turski, Patrick; Wieben, Oliver

    2013-01-01

    Purpose To develop a method for targeted volumetric, three directional cine phase contrast imaging with high spatial resolution in clinically feasible scan times. Materials and Methods A hybrid radial-Cartesian k-space trajectory is used for cardiac gated, volumetric imaging with three directional velocity encoding. Imaging times are reduced by radial undersampling and temporal viewsharing. Phase contrast angiograms are displayed in a new approach that addresses the concern of signal drop out in regions of slow flow. The feasibility of the PC stack of stars (SOS) trajectory was demonstrated with an in-vivo study capturing 12 small intracranial aneurysms (2-10mm). Aneurysm measures from six aneurysms also imaged with DSA were compared with linear regression to those from the PC SOS images. Results All aneurysms were identified on the phase contrast angiograms. The geometric measures from PC SOS and DSA were in good agreement (linear regression: slope = 0.89, intercept = 0.35, R^2 = 0.88). Conclusion PC SOS is a promising method for obtaining volumetric angiograms and cine phase contrast velocity measurements in three dimensions. Acquired spatial resolutions of 0.4 × 0.4 × (0.7-1.0)mm make this method especially promising for studying flow in small intracranial aneurysms. PMID:22095652

  13. Demonstration of a 3D vision algorithm for space applications

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P. (Editor)

    1987-01-01

    This paper reports an extension of the MIAG algorithm for recognition and motion parameter determination of general 3-D polyhedral objects based on model matching techniques and using movement invariants as features of object representation. Results of tests conducted on the algorithm under conditions simulating space conditions are presented.

  14. Undersampling k-space using fast progressive 3D trajectories.

    PubMed

    Spiniak, Juan; Guesalaga, Andres; Mir, Roberto; Guarini, Marcelo; Irarrazaval, Pablo

    2005-10-01

    In 3D MRI, sampling k-space with traditional trajectories can be excessively time-consuming. Fast imaging trajectories are used in an attempt to efficiently cover the k-space and reduce the scan time without significantly affecting the image quality. In many applications, further reductions in scan time can be achieved via undersampling of the k-space; however, no clearly optimal method exists. In most 3D trajectories the k-space is divided into regions that are sampled with shots that share a common geometry (e.g., spirals). A different approach is to design trajectories that gradually but uniformly cover the k-space. In the current work, successive shots progressively add sampled regions to the 3D frequency space. By cutting the sequence short, a natural undersampled method is obtained. This can be particularly efficient because in these types of trajectories the contribution of new information by later shots is less significant. In this work the performance of progressive trajectories for different degrees of undersampling is assessed with trajectories based on missile guidance (MG) ideas. The results show that the approach can be efficient in terms of reducing the scan time, and performs better than the stack of spirals (SOS) technique, particularly under nonideal conditions. PMID:16142719

  15. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  16. 3D RISM theory with fast reciprocal-space electrostatics

    SciTech Connect

    Heil, Jochen; Kast, Stefan M.

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  17. 3D RISM theory with fast reciprocal-space electrostatics.

    PubMed

    Heil, Jochen; Kast, Stefan M

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems. PMID:25796231

  18. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  19. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  20. Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature

    SciTech Connect

    Ballesteros, A.; Enciso, A.; Herranz, F. J.; Ragnisco, O.

    2010-02-15

    A quantum sl(2,R) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-)de Sitter spaces. The connection and curvature tensors for these 'deformed' spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z {yields} 0 is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.

  1. 3D hand tracking using Kalman filter in depth space

    NASA Astrophysics Data System (ADS)

    Park, Sangheon; Yu, Sunjin; Kim, Joongrock; Kim, Sungjin; Lee, Sangyoun

    2012-12-01

    Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.

  2. Sonification of range information for 3-D space perception.

    PubMed

    Milios, Evangelos; Kapralos, Bill; Kopinska, Agnieszka; Stergiopoulos, Sotirios

    2003-12-01

    We present a device that allows three-dimensional (3-D) space perception by sonification of range information obtained via a point laser range sensor. The laser range sensor is worn by a blindfolded user, who scans space by pointing the laser beam in different directions. The resulting stream of range measurements is then converted to an auditory signal whose frequency or amplitude varies with the range. Our device differs from existing navigation aids for the visually impaired. Such devices use sonar ranging whose primary purpose is to detect obstacles for navigation, a task to which sonar is well suited due to its wide beam width. In contrast, the purpose of our device is to allow users to perceive the details of 3-D space that surrounds them, a task to which sonar is ill suited, due to artifacts generated by multiple reflections and due to its limited range. Preliminary trials demonstrate that the user is able to easily and accurately detect corners and depth discontinuities and to perceive the size of the surrounding space. PMID:14960118

  3. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    NASA Astrophysics Data System (ADS)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  4. Geodiversity: Exploration of 3D geological model space

    NASA Astrophysics Data System (ADS)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  5. 3D Building Adjustment Using Planar Half-Space Regularities

    NASA Astrophysics Data System (ADS)

    Wichmann, A.; Kada, M.

    2014-08-01

    The automatic reconstruction of 3D building models with complex roof shapes is still an active area of research. In this paper we present a novel approach for local and global regularization rules that integrate building knowledge to improve both the shape of the reconstructed building models and their accuracy. These rules are defined for the planar half-space representation of our models and emphasize the presence of symmetries, co-planarity, parallelism, and orthogonality. By not adjusting building features separately (e.g. ridges, eaves, etc.) we are able to handle more than one feature at a time without considering dependencies between different features. Additionally, we present a new method for reconstructing buildings with concave outlines using half-spaces that avoids the need to partition the models into smaller convex parts. We present both extensions in the context of a fully automatic feature-driven 3D building reconstruction approach where the whole process is suited for processing large urban areas with complex building roofs.

  6. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D W; Eppler, W G; Poland, D N

    2005-02-18

    A 3D solid model-aided object cueing method that matches phase angles of directional derivative vectors at image pixels to phase angles of vectors normal to projected model edges is described. It is intended for finding specific types of objects at arbitrary position and orientation in overhead images, independent of spatial resolution, obliqueness, acquisition conditions, and type of imaging sensor. It is shown that the phase similarity measure can be efficiently evaluated over all combinations of model position and orientation using the FFT. The highest degree of similarity over all model orientations is captured in a match surface of similarity values vs. model position. Unambiguous peaks in this surface are sorted in descending order of similarity value, and the small image thumbnails that contain them are presented to human analysts for inspection in sorted order.

  7. Characterizing 3D Vegetation Structure from Space: Mission Requirements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan; Shugart, H. H.; Wickland, Diane

    2012-01-01

    Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral

  8. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method. PMID:21652284

  9. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  10. Transport of 3D space charge dominated beams

    NASA Astrophysics Data System (ADS)

    Lü, Jian-Qin

    2013-10-01

    In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code.

  11. 3D thin film microstructures for space microrobots

    NASA Technical Reports Server (NTRS)

    Shimoyama, Isao

    1995-01-01

    Micromechanisms of locomotion and a manipulator with an external skeleton like the structure of an insect are proposed. Several micro-sized models were built on silicon wafers by using polysilicon for rigid plates and polyimide for elastic joints. Due to scale effects, friction in micromechanical components is dominant as compared to the inertial forces because friction is proportional to L(exp 2) while mass is proportional to L(exp 3). Therefore, to ensure efficient motion, rotational joint that exhibits rubbing should be avoided. In this paper, paper models of a robot leg and a micro-manipulator are presented to show structures with external skeletons and elastic joints. Then the large scale implementation using plastic plates, springs, and solenoids is demonstrated. Since the assembly technique is based on paper folding, it is compatible with thin film micro-fabrication and integrated circuit (IC) planar processes. Finally, several micromechanisms were fabricated on silicon wafers to demonstrate the feasibility of building a 3D microstructure from a single planar structure that can be used for space microrobots.

  12. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  13. 3D Embedded Reconfigurable Riometer for Heliospheric Space Missions

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a new three-dimensional embedded reconfigurable Riometer for performing remote sensing of planetary magnetospheres. The system couples the in situ measurements of probe or orbiter magnetospheric space missions. The new prototype features a multi-frequency mode that allows measurements at frequencies, where heliospheric physics events' signatures are distinct on the ionized planetary plasma. For our planet similar measurements are meaningful for frequencies below 55 MHz. Observation frequencies above 55 MHz yield to direct measurements of the Cosmic Microwave Background intensity. The system acts as a prototyping platform for subsequent space exploration phased-array imaging experiments, due to its high-intensity scientific processing capabilities. The performance improvement over existing systems in operation is in the range of 80%, due to the state-of-the-art hardware and scientific processing used.

  14. 3D Simulations of Supernovae into the Young Remnant Phase

    NASA Astrophysics Data System (ADS)

    Ellinger, Carola I.; Young, P. A.; Fryer, C.; Rockefeller, G.; Park, S.

    2013-01-01

    The explosion of massive stars as core-collapse supernovae is an inherently three dimensional phenomenon. Observations of the young, ejecta dominated remnants of those explosions unambiguously demonstrate that asymmetry on large and small scales is the rule, rather than the exception. Numerical models of supernova remnants connect the observed remnants to models of the exploding stellar system and thus facilitate both improved interpretations of the observations as well as improve our understanding of the explosion mechanism. We present first 3D simulations of core- collapse supernovae evolving into supernova remnants calculated with SNSPH. The calculations were started from 1D collapsed models of 2 progenitor stars of different types, and follow the explosion from revival of the shock wave to shock break out in 3D. Two different interstellar media, a cold neutral medium and a dense molecular cloud, as well as a red supergiant stellar wind profile, were added to the explosion calculations shortly before shock breakout, so that the blast wave stays in the simulation. With this setup we can follow the dispersal of the nucleosynthesis products from the explosion into the Sedov stage of the supernova remnant evolution starting from realistic initial conditions for the supernova ejecta. We will present a first investigation in the mixing between stellar and interstellar matter as the supernova evolves into the young supernova remnant phase, and contrasts differences that are observed between the scenarios that are investigated. One of the goals is to distinguish between features that arose in instabilities during the explosion from those that were created in the interaction with the surrounding medium.

  15. 3D harmonic phase tracking with anatomical regularization.

    PubMed

    Zhou, Yitian; Bernard, Olivier; Saloux, Eric; Manrique, Alain; Allain, Pascal; Makram-Ebeid, Sherif; De Craene, Mathieu

    2015-12-01

    This paper presents a novel algorithm that extends HARP to handle 3D tagged MRI images. HARP results were regularized by an original regularization framework defined in an anatomical space of coordinates. In the meantime, myocardium incompressibility was integrated in order to correct the radial strain which is reported to be more challenging to recover. Both the tracking and regularization of LV displacements were done on a volumetric mesh to be computationally efficient. Also, a window-weighted regression method was extended to cardiac motion tracking which helps maintain a low complexity even at finer scales. On healthy volunteers, the tracking accuracy was found to be as accurate as the best candidates of a recent benchmark. Strain accuracy was evaluated on synthetic data, showing low bias and strain errors under 5% (excluding outliers) for longitudinal and circumferential strains, while the second and third quartiles of the radial strain errors are in the (-5%,5%) range. In clinical data, strain dispersion was shown to correlate with the extent of transmural fibrosis. Also, reduced deformation values were found inside infarcted segments. PMID:26363844

  16. Communicating Experience of 3D Space: Mathematical and Everyday Discourse

    ERIC Educational Resources Information Center

    Morgan, Candia; Alshwaikh, Jehad

    2012-01-01

    In this article we consider data arising from student-teacher-researcher interactions taking place in the context of an experimental teaching program making use of multiple modes of communication and representation to explore three-dimensional (3D) shape. As teachers/researchers attempted to support student use of a logo-like formal language for…

  17. PSF Rotation with Changing Defocus and Applications to 3D Imaging for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Kumar, R.

    2013-09-01

    For a clear, well corrected imaging aperture in space, the point-spread function (PSF) in its Gaussian image plane has the conventional, diffraction-limited, tightly focused Airy form. Away from that plane, the PSF broadens rapidly, however, resulting in a loss of sensitivity and transverse resolution that makes such a traditional best-optics approach untenable for rapid 3D image acquisition. One must scan in focus to maintain high sensitivity and resolution as one acquires image data, slice by slice, from a 3D volume with reduced efficiency. In this paper we describe a computational-imaging approach to overcome this limitation, one that uses pupil-phase engineering to fashion a PSF that, although not as tight as the Airy spot, maintains its shape and size while rotating uniformly with changing defocus over many waves of defocus phase at the pupil edge. As one of us has shown recently [1], the subdivision of a circular pupil aperture into M Fresnel zones, with the mth zone having an outer radius proportional to m and impressing a spiral phase profile of form m? on the light wave, where ? is the azimuthal angle coordinate measured from a fixed x axis (the dislocation line), yields a PSF that rotates with defocus while keeping its shape and size. Physically speaking, a nonzero defocus of a point source means a quadratic optical phase in the pupil that, because of the square-root dependence of the zone radius on the zone number, increases on average by the same amount from one zone to the next. This uniformly incrementing phase yields, in effect, a rotation of the dislocation line, and thus a rotated PSF. Since the zone-to-zone phase increment depends linearly on defocus to first order, the PSF rotates uniformly with changing defocus. For an M-zone pupil, a complete rotation of the PSF occurs when the defocus-induced phase at the pupil edge changes by M waves. Our recent simulations of reconstructions from image data for 3D image scenes comprised of point sources at

  18. Phase Sensitive Cueing for 3D Objects in Overhead Images

    SciTech Connect

    Paglieroni, D

    2005-02-04

    Locating specific 3D objects in overhead images is an important problem in many remote sensing applications. 3D objects may contain either one connected component or multiple disconnected components. Solutions must accommodate images acquired with diverse sensors at various times of the day, in various seasons of the year, or under various weather conditions. Moreover, the physical manifestation of a 3D object with fixed physical dimensions in an overhead image is highly dependent on object physical dimensions, object position/orientation, image spatial resolution, and imaging geometry (e.g., obliqueness). This paper describes a two-stage computer-assisted approach for locating 3D objects in overhead images. In the matching stage, the computer matches models of 3D objects to overhead images. The strongest degree of match over all object orientations is computed at each pixel. Unambiguous local maxima in the degree of match as a function of pixel location are then found. In the cueing stage, the computer sorts image thumbnails in descending order of figure-of-merit and presents them to human analysts for visual inspection and interpretation. The figure-of-merit associated with an image thumbnail is computed from the degrees of match to a 3D object model associated with unambiguous local maxima that lie within the thumbnail. This form of computer assistance is invaluable when most of the relevant thumbnails are highly ranked, and the amount of inspection time needed is much less for the highly ranked thumbnails than for images as a whole.

  19. Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry.

    PubMed

    Sorenson, Gregory P; Schmitt, Adam K; Mahanthappa, Mahesh K

    2014-11-01

    Network phase aqueous lyotropic liquid crystals (LLCs) are technologically useful materials with myriad applications in chemistry, biology, and materials science, which stem from their structurally periodic aqueous and hydrophobic nanodomains (∼0.7-5.0 nm in diameter) that are lined with well-defined chemical functionalities. The exclusive observation of bicontinuous cubic network phase LLCs (e.g., double gyroid, double diamond, and primitive phases) has fueled speculations that all stable LLC network phases must exhibit cubic symmetry. Herein, we describe the self-assembly behavior of a simple aliphatic gemini surfactant that forms the first example of a triply periodic network phase LLC with the 3D-hexagonal symmetry P63/mcm (space group #193). This normal, tetracontinuous 3D-hexagonal network LLC phase HI(193) partitions space into four continuous and interpenetrating, yet non-intersecting volumes. This discovery directly demonstrates that the gemini amphiphile platform furnishes a rational strategy for discovering and stabilizing new, three-dimensionally periodic multiply continuous network phase LLCs with variable symmetries and potentially new applications. PMID:25182008

  20. Holographic and weak-phase projection system for 3D shape reconstruction using temporal phase unwrapping

    NASA Astrophysics Data System (ADS)

    González, C. A.; Dávila, A.; Garnica, G.

    2007-09-01

    Two projection systems that use an LCoS phase modulator are proposed for 3D shape reconstruction. The LCoS is used as an holographic system or as a weak phase projector, both configurations project a set of fringe patterns that are processed by the technique known as temporal phase unwrapping. To minimize the influence of camera sampling, and the speckle noise in the projected fringes, an speckle noise reduction technique is applied to the speckle patterns generated by the holographic optical system. Experiments with 3D shape reconstruction of ophthalmic mold and other testing specimens show the viability of the proposed techniques.

  1. Synergia: an accelerator modeling tool with 3-D space charge

    SciTech Connect

    Amundson, James F.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab booster accelerator.

  2. Heuristic Techniques Application In A 3-D Space

    NASA Astrophysics Data System (ADS)

    Mazouz, A. Kader

    1989-02-01

    This paper discusses the application of a heuristic technique to stack regular and irregular shapes objects on the same container or on the same pallet. The computer representation of any object is based on the recursive octree method where each unit volume element is a voxel. Then, the choice of the space taken by any shape object within the volume is made through the heuristic approach. The heuristic technique developed is an evaluation function that compares all the available spaces based on weighing factors and threshold levels. The parameters used are shape, space available, contents of the object, and dimensions. The goal is to choose the most feasible available space every time an object is ready to be stacked. The heuristic algorithm is implemented within a knowledge based system to control a flexible material handling cell. Generally the cell comprises a material handling robot, a conveyance system that brings the objects to the cell where objects are distributed randomly to the cell, a vision system to identify the objects and verify the stacking procedure, and a computer to control and initiate the decision making process to stack all shape objects on the same volume.

  3. Space Radar Image of Long Valley, California - 3D view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Long Valley, California by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This view was constructed by overlaying a color composite SIR-C image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle and, which then, are compared to obtain elevation information. The data were acquired on April 13, 1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR radar instrument. The color composite radar image was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is off the image to the left. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory

  4. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are

  5. Space Radar Image of Missoula, Montana in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective view of Missoula, Montana, created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are useful because they show scientists the shapes of the topographic features such as mountains and valleys. This technique helps to clarify the relationships of the different types of materials on the surface detected by the radar. The view is looking north-northeast. The blue circular area at the lower left corner is a bend of the Bitterroot River just before it joins the Clark Fork, which runs through the city. Crossing the Bitterroot River is the bridge of U.S. Highway 93. Highest mountains in this image are at elevations of 2,200 meters (7,200 feet). The city is about 975 meters (3,200 feet) above sea level. The bright yellow areas are urban and suburban zones, dark brown and blue-green areas are grasslands, bright green areas are farms, light brown and purple areas are scrub and forest, and bright white and blue areas are steep rocky slopes. The two radar images were taken on successive days by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue are differences seen in the L-band data between the two days. This image is centered near 46.9 degrees north latitude and 114.1 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA

  6. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  7. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  8. Calculating Least Risk Paths in 3d Indoor Space

    NASA Astrophysics Data System (ADS)

    Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.

    2013-08-01

    Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the

  9. Space Radar Image of Karakax Valley, China 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective of the remote Karakax Valley in the northern Tibetan Plateau of western China was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are helpful to scientists because they reveal where the slopes of the valley are cut by erosion, as well as the accumulations of gravel deposits at the base of the mountains. These gravel deposits, called alluvial fans, are a common landform in desert regions that scientists are mapping in order to learn more about Earth's past climate changes. Higher up the valley side is a clear break in the slope, running straight, just below the ridge line. This is the trace of the Altyn Tagh fault, which is much longer than California's San Andreas fault. Geophysicists are studying this fault for clues it may be able to give them about large faults. Elevations range from 4000 m (13,100 ft) in the valley to over 6000 m (19,700 ft) at the peaks of the glaciated Kun Lun mountains running from the front right towards the back. Scale varies in this perspective view, but the area is about 20 km (12 miles) wide in the middle of the image, and there is no vertical exaggeration. The two radar images were acquired on separate days during the second flight of the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in October 1994. The interferometry technique provides elevation measurements of all points in the scene. The resulting digital topographic map was used to create this view, looking northwest from high over the valley. Variations in the colors can be related to gravel, sand and rock outcrops. This image is centered at 36.1 degrees north latitude, 79.2 degrees east longitude. Radar image data are draped over the topography to provide the color with the following assignments: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted

  10. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  11. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or research…

  12. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of a false-color image of the eastern part of the Big Island of Hawaii. It was produced using all three radar frequencies -- X-band, C-band and L-band -- from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying on the space shuttle Endeavour, overlaid on a U.S. Geological Survey digital elevation map. Visible in the center of the image in blue are the summit crater (Kilauea Caldera) which contains the smaller Halemaumau Crater, and the line of collapse craters below them that form the Chain of Craters Road. The image was acquired on April 12, 1994 during orbit 52 of the space shuttle. The area shown is approximately 34 by 57 kilometers (21 by 35 miles) with the top of the image pointing toward northwest. The image is centered at about 155.25 degrees west longitude and 19.5 degrees north latitude. The false colors are created by displaying three radar channels of different frequency. Red areas correspond to high backscatter at L-HV polarization, while green areas exhibit high backscatter at C-HV polarization. Finally, blue shows high return at X-VV polarization. Using this color scheme, the rain forest appears bright on the image, while the green areas correspond to lower vegetation. The lava flows have different colors depending on their types and are easily recognizable due to their shapes. The flows at the top of the image originated from the Mauna Loa volcano. Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quartermile) inland from the coast. A moving lava flow about 200 meters (650 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. Currently, most of the lava that is

  13. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information

  14. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information

  15. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments. PMID:23062070

  16. Evaluation of Home Delivery of Lectures Utilizing 3D Virtual Space Infrastructure

    ERIC Educational Resources Information Center

    Nishide, Ryo; Shima, Ryoichi; Araie, Hiromu; Ueshima, Shinichi

    2007-01-01

    Evaluation experiments have been essential in exploring home delivery of lectures for which users can experience campus lifestyle and distant learning through 3D virtual space. This paper discusses the necessity of virtual space for distant learners by examining the effects of virtual space. The authors have pursued the possibility of…

  17. Modelling Galaxies with a 3D Multi-Phase ISM

    NASA Astrophysics Data System (ADS)

    Harfst, Stefan; Theis, Christian; Hensler, Gerhard

    We present a modified TREE-SPH code to model galaxies in three dimensions. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH, whereas a cloudy medium is represented by a sticky particle scheme. Interaction processes (such as star formation and feedback), cooling, and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 Msolar yr-1. Condensation and evaporation rates are in balance at 0.1-1 Msolar yr-1.

  18. Modelling galaxies with a 3d multi-phase ISM

    NASA Astrophysics Data System (ADS)

    Harfst, S.; Theis, Ch.; Hensler, G.

    2006-04-01

    We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We include star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions, and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag, and energy dissipation. The last is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback that include a consistent calculation of the star-formation efficiency (SFE) based on ISM properties, as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is strongly variable locally depending on the local SF and stellar feedback. We start only with two distinct phases, but a three-phase ISM is formed soon and consists of cold molecular clouds, a warm gas disk, and a hot gaseous halo. Hot gas is also found in bubbles in the disk accompanied by type II supernovae explosions. The volume-filling factor of the hot gas in the disk is 35%. The mass spectrum of the clouds follows a power-law with an index of α ≈ -2. The star-formation rate (SFR) is 1.6 M⊙ yr-1 on average, decreasing slowly with time due to gas consumption. In order to maintain a constant SFR, gas replenishment, e.g. by infall, of the order 1 M⊙ yr-1 is required. Our model is in fair agreement with Kennicutt's (1998, ApJ, 498, 541) SF law including the cut-off at 10 M⊙ pc-2. Models with a constant SFE, i.e. no feedback on the SF, fail to reproduce Kennicutt's law. We performed a parameter study varying the particle resolution, feedback energy, cloud radius, SF time scale, and metallicity. In most these cases the evolution

  19. COMMIX-1B. 3-D Single-Phase Thermal Hydraulics

    SciTech Connect

    Wildman, D.J.

    1986-01-31

    COMMIX-1B is designed to perform steady-state or transient, single-phase, three-dimensional analysis of fluid flow with heat transfer in a single-component or multicomponent system. The program was developed for the analysis of heat transfer and fluid flow processes in a nuclear reactor system; however, it can easily be applied to non-nuclear systems requiring heat transfer and/or fluid flow analysis. COMMIX-1B solves the conservation equations of mass, momentum, and energy, and transport equations of turbulence parameters and provides detailed local velocity, temperature, and pressure fields for the problem under consideration. It is capable of solving thermal-hydraulic problems involving either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components.

  20. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  1. Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE

    PubMed Central

    Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh

    2014-01-01

    AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923

  2. 3D space perception as embodied cognition in the history of art images

    NASA Astrophysics Data System (ADS)

    Tyler, Christopher W.

    2014-02-01

    Embodied cognition is a concept that provides a deeper understanding of the aesthetics of art images. This study considers the role of embodied cognition in the appreciation of 3D pictorial space, 4D action space, its extension through mirror reflection to embodied self-­-cognition, and its relation to the neuroanatomical organization of the aesthetic response.

  3. Embodied collaboration support system for 3D shape evaluation in virtual space

    NASA Astrophysics Data System (ADS)

    Okubo, Masashi; Watanabe, Tomio

    2005-12-01

    Collaboration mainly consists of two tasks; one is each partner's task that is performed by the individual, the other is communication with each other. Both of them are very important objectives for all the collaboration support system. In this paper, a collaboration support system for 3D shape evaluation in virtual space is proposed on the basis of both studies in 3D shape evaluation and communication support in virtual space. The proposed system provides the two viewpoints for each task. One is the viewpoint of back side of user's own avatar for the smooth communication. The other is that of avatar's eye for 3D shape evaluation. Switching the viewpoints satisfies the task conditions for 3D shape evaluation and communication. The system basically consists of PC, HMD and magnetic sensors, and users can share the embodied interaction by observing interaction between their avatars in virtual space. However, the HMD and magnetic sensors, which are put on the users, would restrict the nonverbal communication. Then, we have tried to compensate the loss of nodding of partner's avatar by introducing the speech-driven embodied interactive actor InterActor. Sensory evaluation by paired comparison of 3D shapes in the collaborative situation in virtual space and in real space and the questionnaire are performed. The result demonstrates the effectiveness of InterActor's nodding in the collaborative situation.

  4. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  5. Soil water content variability in the 3D 'support-spacing-extent' space of scale metrics

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Martinez, Gonzalo; Vereecken, Harry

    2014-05-01

    Knowledge of soil water content variability provides important insight into soil functioning, and is essential in many applications. This variability is known to be scale-dependent, and divergent statements about the change of the variability magnitude with scale can be found in literature. We undertook a systematic review to see how the definition of scale can affect conclusions about the scale-dependence in soil water content variability. Support, spacing, and extent are three metrics used to characterize scale in hydrology. Available data sets describe changes in soil moisture variability with changes in one or more of these scale metrics. We found six types of experiments with the scale change. With data obtained without a change in extent, the scale change in some cases consisted in the simultaneous change of support and spacing. This was done with remote sensing data, and the power law decrease in variance with support increase was found. Datasets that were collected with different support or sample volumes for the same extent and spacing showed the decrease of variance as the sample size increased. A variance increase was common when the scale change consisted in change in spacing without the change in supports and extents. An increase in variance with the extent of the study area was demonstrated with data an evolution of variability with increasing size of the area under investigation (extent) without modification of support. The variance generally increased with the extent when the spacing was changed so that the change in variability at areas of different sizes was studied with the same number of samples with equal support. Finally, there are remote sensing datasets that document decrease in variability with a change in extent for a given support without modification of spacing. Overall, published information on the effect of scale on soil water content variability in the 3D space of scale metrics did not contain controversies in qualitative terms

  6. An accurate 3D inspection system using heterodyne multiple frequency phase-shifting algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenzhong; Chee, Oichoo; Asundi, Anand

    This paper presents an accurate 3D inspection system for industrial applications, which uses digital fringe projection technology. The system consists of two CCD cameras and a DLP projector. The mathematical model of the 3D inspection system with 10 distortion parameters for each camera is proposed. A heterodyne multiple frequency phase-shifting algorithm is employed for overcoming the unwrapping problem of phase functions and for a reliable unwrapping procedure. The redundant phase information is used to increase the accuracy of the 3D reconstruction. To demonstrate the effectiveness of our system, a standard sphere was used for testing. The verification test for the 3D inspection systems are based on the VDI standard 2634. The result shows the proposed system can be used for industrial quality inspection with high measurement precision.

  7. Powering an in-space 3D printer using solar light energy

    NASA Astrophysics Data System (ADS)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  8. Usage of Underground Space for 3D Cadastre Purposes and Related Problems in Turkey

    PubMed Central

    Aydin, Cevdet C.

    2008-01-01

    Modern cities have been trying to meet their needs for space by using not only surface structures but also by considering subsurface space use. It is also anticipated that without planning of underground spaces for supporting surface city life in the years and generations to come, there will be serious and unavoidable problems with growing populations. The current Turkish cadastral system, including land right registrations, has been trying to meet users' needs in all aspects since 1924. Today Turkey's national cadastre services are carried out by the General Directorate of Land Titles and Cadastre (TKGM). The Cadastre Law, Number 3402, was approved in 1985 to eliminate problems by gathering all existing cadastral regulations under one law and also to produce 3D cadastral bases to include underground spaces and determine their legal status in Turkey. Although the mandate for 3D cadastre works is described and explained by the laws, until now the bases have been created in 2D and the reality is that legal gaps and deficiencies presently exist in them. In this study, the usage of underground spaces for the current cadastral system in Turkey was briefly evaluated, the concept of 3D cadastral data is examined and the need for using subsurface and 3D cadastre in addition to the traditional 2D register system, related problems and registration are mentioned with specific examples, but without focusing on a specific model.

  9. Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope

    SciTech Connect

    Yin, G.-C.; Chen, F.-R.; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.

    2007-01-19

    X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experiment, eight sets of de-focal series image data sets were recorded covering the angular range of 0 to 180 degree. Only three set of image cubes were used in 3D TIE equation for solving the phase tomography. The phase contrast of the polymer blend in 3D is obviously enhanced, and the two different groups of polymer blend can be distinguished in the phase tomography.

  10. A Secret 3D Model Sharing Scheme with Reversible Data Hiding Based on Space Subdivision

    NASA Astrophysics Data System (ADS)

    Tsai, Yuan-Yu

    2016-03-01

    Secret sharing is a highly relevant research field, and its application to 2D images has been thoroughly studied. However, secret sharing schemes have not kept pace with the advances of 3D models. With the rapid development of 3D multimedia techniques, extending the application of secret sharing schemes to 3D models has become necessary. In this study, an innovative secret 3D model sharing scheme for point geometries based on space subdivision is proposed. Each point in the secret point geometry is first encoded into a series of integer values that fall within [0, p - 1], where p is a predefined prime number. The share values are derived by substituting the specified integer values for all coefficients of the sharing polynomial. The surface reconstruction and the sampling concepts are then integrated to derive a cover model with sufficient model complexity for each participant. Finally, each participant has a separate 3D stego model with embedded share values. Experimental results show that the proposed technique supports reversible data hiding and the share values have higher levels of privacy and improved robustness. This technique is simple and has proven to be a feasible secret 3D model sharing scheme.

  11. Fusion of laser and image sensory data for 3-D modeling of the free navigation space

    NASA Technical Reports Server (NTRS)

    Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.

    1994-01-01

    A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.

  12. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  13. 3D Point Correspondence by Minimum Description Length in Feature Space.

    PubMed

    Chen, Jiun-Hung; Zheng, Ke Colin; Shapiro, Linda G

    2010-01-01

    Finding point correspondences plays an important role in automatically building statistical shape models from a training set of 3D surfaces. For the point correspondence problem, Davies et al. [1] proposed a minimum-description-length-based objective function to balance the training errors and generalization ability. A recent evaluation study [2] that compares several well-known 3D point correspondence methods for modeling purposes shows that the MDL-based approach [1] is the best method. We adapt the MDL-based objective function for a feature space that can exploit nonlinear properties in point correspondences, and propose an efficient optimization method to minimize the objective function directly in the feature space, given that the inner product of any vector pair can be computed in the feature space. We further employ a Mercer kernel [3] to define the feature space implicitly. A key aspect of our proposed framework is the generalization of the MDL-based objective function to kernel principal component analysis (KPCA) [4] spaces and the design of a gradient-descent approach to minimize such an objective function. We compare the generalized MDL objective function on KPCA spaces with the original one and evaluate their abilities in terms of reconstruction errors and specificity. From our experimental results on different sets of 3D shapes of human body organs, the proposed method performs significantly better than the original method. PMID:25328917

  14. A client–server framework for 3D remote visualization of radiotherapy treatment space

    PubMed Central

    Santhanam, Anand P.; Min, Yugang; Dou, Tai H.; Kupelian, Patrick; Low, Daniel A.

    2013-01-01

    Radiotherapy is safely employed for treating wide variety of cancers. The radiotherapy workflow includes a precise positioning of the patient in the intended treatment position. While trained radiation therapists conduct patient positioning, consultation is occasionally required from other experts, including the radiation oncologist, dosimetrist, or medical physicist. In many circumstances, including rural clinics and developing countries, this expertise is not immediately available, so the patient positioning concerns of the treating therapists may not get addressed. In this paper, we present a framework to enable remotely located experts to virtually collaborate and be present inside the 3D treatment room when necessary. A multi-3D camera framework was used for acquiring the 3D treatment space. A client–server framework enabled the acquired 3D treatment room to be visualized in real-time. The computational tasks that would normally occur on the client side were offloaded to the server side to enable hardware flexibility on the client side. On the server side, a client specific real-time stereo rendering of the 3D treatment room was employed using a scalable multi graphics processing units (GPU) system. The rendered 3D images were then encoded using a GPU-based H.264 encoding for streaming. Results showed that for a stereo image size of 1280 × 960 pixels, experts with high-speed gigabit Ethernet connectivity were able to visualize the treatment space at approximately 81 frames per second. For experts remotely located and using a 100 Mbps network, the treatment space visualization occurred at 8–40 frames per second depending upon the network bandwidth. This work demonstrated the feasibility of remote real-time stereoscopic patient setup visualization, enabling expansion of high quality radiation therapy into challenging environments. PMID:23440605

  15. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  16. Holographic display system for dynamic synthesis of 3D light fields with increased space bandwidth product.

    PubMed

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2016-06-27

    We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593

  17. Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography.

    PubMed

    Liu, Zhao; Chen-Wiegart, Yu-Chen K; Wang, Jun; Barnett, Scott A; Faber, Katherine T

    2016-02-01

    Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO2 electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO2 particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surface area, feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. The electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation. PMID:26765538

  18. Systolically gated 3D phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia

    SciTech Connect

    Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de

    1996-03-01

    Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs and symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.

  19. Etiology of phantom limb syndrome: Insights from a 3D default space consciousness model.

    PubMed

    Jerath, Ravinder; Crawford, Molly W; Jensen, Mike

    2015-08-01

    In this article, we examine phantom limb syndrome to gain insights into how the brain functions as the mind and how consciousness arises. We further explore our previously proposed consciousness model in which consciousness and body schema arise when information from throughout the body is processed by corticothalamic feedback loops and integrated by the thalamus. The parietal lobe spatially maps visual and non-visual information and the thalamus integrates and recreates this processed sensory information within a three-dimensional space termed the "3D default space." We propose that phantom limb syndrome and phantom limb pain arise when the afferent signaling from the amputated limb is lost but the neural circuits remain intact. In addition, integration of conflicting sensory information within the default 3D space and the loss of inhibitory afferent feedback to efferent motor activity from the amputated limb may underlie phantom limb pain. PMID:26003829

  20. Enablement of scientific remote sensing missions with in-space 3D printing

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of the capability of a 3D printer to successfully operate in-space to create structures and equipment useful in the field of scientific remote sensing. Applications of this printer involve oceanography, weather tracking, as well as space exploration sensing. The design for the 3D printer includes a parabolic array to collect and focus thermal energy. This thermal energy then be used to heat the extrusion head, allowing for the successful extrusion of the print material. Print material can range from plastics to metals, with the hope of being able to extrude aluminum for its low-mass structural integrity and its conductive properties. The printer will be able to print structures as well as electrical components. The current process of creating and launching a remote sensor into space is constrained by many factors such as gravity on earth, the forces of launch, the size of the launch vehicle, and the number of available launches. The design intent of the in-space 3D printer is to ease or eliminate these constraints, making space-based scientific remote sensors a more readily available resource.

  1. International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.

    2015-01-01

    In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.

  2. CAD Tools for Creating Space-filing 3D Escher Tiles

    SciTech Connect

    Howison, Mark; Sequin, Carlo H.

    2009-04-10

    We discuss the design and implementation of CAD tools for creating decorative solids that tile 3-space in a regular, isohedral manner. Starting with the simplest case of extruded 2D tilings, we describe geometric algorithms used for maintaining boundary representations of 3D tiles, including a Java implementation of an interactive constrained Delaunay triangulation library and a mesh-cutting algorithm used in layering extruded tiles to create more intricate designs. Finally, we demonstrate a CAD tool for creating 3D tilings that are derived from cubic lattices. The design process for these 3D tiles is more constrained, and hence more difficult, than in the 2D case, and it raises additional user interface issues.

  3. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  4. Automatic detection of endothelial cells in 3D angiogenic sprouts from experimental phase contrast images

    NASA Astrophysics Data System (ADS)

    Wang, MengMeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H. Harry

    2015-03-01

    Cell migration studies in 3D environments become more popular, as cell behaviors in 3D are more similar to the behaviors of cells in a living organism (in vivo). We focus on the 3D angiogenic sprouting in microfluidic devices, where Endothelial Cells (ECs) burrow into the gel matrix and form solid lumen vessels. Phase contrast microscopy is used for long-term observation of the unlabeled ECs in the 3D microfluidic devices. Two template matching based approaches are proposed to automatically detect the unlabeled ECs in the angiogenic sprouts from the acquired experimental phase contrast images. Cell and non-cell templates are obtained from these phase contrast images as the training data. The first approach applies Partial Least Square Regression (PLSR) to find the discriminative features and their corresponding weight to distinguish cells and non-cells, whereas the second approach relies on Principal Component Analysis (PCA) to reduce the template feature dimension and Support Vector Machine (SVM) to find their corresponding weight. Through a sliding window manner, the cells in the test images are detected. We then validate the detection accuracy by comparing the results with the same images acquired with a confocal microscope after cells are fixed and their nuclei are stained. More accurate numerical results are obtained for approach I (PLSR) compared to approach II (PCA & SVM) for cell detection. Automatic cell detection will aid in the understanding of cell migration in 3D environment and in turn result in a better understanding of angiogenesis.

  5. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    NASA Astrophysics Data System (ADS)

    Taute, K. M.; Gude, S.; Tans, S. J.; Shimizu, T. S.

    2015-11-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments.

  6. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  7. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    PubMed Central

    Taute, K.M.; Gude, S.; Tans, S.J.; Shimizu, T.S.

    2015-01-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments. PMID:26522289

  8. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Staeckel transform and 3D classification theory

    SciTech Connect

    Kalnins, E.G.; Kress, J.M.; Miller, W. Jr.

    2006-04-15

    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Staeckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Staeckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems.

  9. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  10. Uniformly spaced 3D modeling of human face from two images using parallel particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2011-09-01

    This paper proposes a scheme for finding the correspondence between uniformly spaced locations on the images of human face captured from different viewpoints at the same instant. The correspondence is dedicated for 3D reconstruction to be used in the registration procedure for neurosurgery where the exposure to projectors must be seriously restricted. The approach utilizes structured light to enhance patterns on the images and is initialized with the scale-invariant feature transform (SIFT). Successive locations are found according to spatial order using a parallel version of the particle swarm optimization algorithm. Furthermore, false locations are singled out for correction by searching for outliers from fitted curves. Case studies show that the scheme is able to correctly generate 456 evenly spaced 3D coordinate points in 23 seconds from a single shot of projected human face using a PC with 2.66 GHz Intel Q9400 CPU and 4GB RAM.

  11. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    SciTech Connect

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab.

  12. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  13. Bone segmentation and fracture detection in ultrasound using 3D local phase features.

    PubMed

    Hacihaliloglu, Ilker; Abugharbieh, Rafeef; Hodgson, Antony; Rohling, Robert

    2008-01-01

    3D ultrasound (US) is increasingly considered as a viable alternative imaging modality in computer-assisted orthopaedic surgery (CAOS) applications. Automatic bone segmentation from US images, however, remains a challenge due to speckle noise and various other artifacts inherent to US. In this paper, we present intensity invariant three dimensional (3D) local image phase features, obtained using 3D Log-Gabor filter banks, for extracting ridge-like features similar to those that occur at soft tissue/bone interfaces. Our contributions include the novel extension of 2D phase symmetry features to 3D and their use in automatic extraction of bone surfaces and fractured fragments in 3D US. We validate our technique using phantom, in vitro, and in vivo experiments. Qualitative and quantitative results demonstrate remarkably clear segmentations results of bone surfaces with a localization accuracy of better than 0.62 mm and mean errors in estimating fracture displacements below 0.65 mm, which will likely be of strong clinical utility. PMID:18979759

  14. Characterization of 3D Joint Space Morphology Using an Electrostatic Model (with Application to Osteoarthritis)

    PubMed Central

    Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.

    2015-01-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images [e.g., cone-beam CT (CBCT)] using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g., the knee or elbow) or multi-axial joints (e.g., the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies. PMID:25575100

  15. A new algorithm of laser 3D visualization based on space-slice

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Song, Yanfeng; Song, Yong; Cao, Jie; Hao, Qun

    2013-12-01

    Traditional visualization algorithms based on three-dimensional (3D) laser point cloud data consist of two steps: stripe point cloud data into different target objects and establish the 3D surface models of the target objects to realize visualization using interpolation point or surface fitting method. However, some disadvantages, such as low efficiency, loss of image details, exist in most of these algorithms. In order to cope with these problems, a 3D visualization algorithm based on space-slice is proposed in this paper, which includes two steps: data classification and image reconstruction. In the first step, edge detection method is used to check the parametric continuity and extract edges to classify data into different target regions preliminarily. In the second stage, the divided data is split further into space-slice according to coordinates. Based on space-slice of the point cloud data, one-dimensional interpolation methods is adopted to get the curves connected by each group of cloud point data smoother. In the end, these interpolation points obtained from each group are made by the use of getting the fitting surface. As expected, visual morphology of the objects is obtained. The simulation experiment results compared with real scenes show that the final visual images have explicit details and the overall visual result is natural.

  16. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis)

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.

    2015-02-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.

  17. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  18. Wrapping-free phase retrieval with applications to interferometry, 3D-shape profiling, and deflectometry.

    PubMed

    Perciante, César D; Strojnik, Marija; Paez, Gonzalo; Di Martino, J Matias; Ayubi, Gastón A; Flores, Jorge L; Ferrari, José A

    2015-04-01

    Phase unwrapping is probably the most challenging step in the phase retrieval process in phase-shifting and spatial-carrier interferometry. Likewise, phase unwrapping is required in 3D-shape profiling and deflectometry. In this paper, we present a novel phase retrieval method that completely sidesteps the phase unwrapping process, significantly eliminating the guessing in phase reconstruction and thus decreasing the time data processing. The proposed wrapping-free method is based on the direct integration of the spatial derivatives of the interference patterns under the single assumption that the phase is continuous. This assumption is valid in most physical applications. Validation experiments are presented confirming the robustness of the proposed method. PMID:25967217

  19. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  20. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  1. X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure

    PubMed Central

    Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  2. X-ray phase nanotomography resolves the 3D human bone ultrastructure.

    PubMed

    Langer, Max; Pacureanu, Alexandra; Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  3. Element-specific X-ray phase tomography of 3D structures at the nanoscale.

    PubMed

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J

    2015-03-20

    Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287

  4. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication

  5. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2005-01-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  6. Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Woo; Kim, Yun-Tae; Cho, Yang-Ho; Park, Kee-Hyon; Choe, Wonhee; Ha, Yeong-Ho

    2004-12-01

    This paper proposes a color decomposition method for a multi-primary display (MPD) using a 3-dimensional look-up-table (3D-LUT) in linearized LAB space. The proposed method decomposes the conventional three primary colors into multi-primary control values for a display device under the constraints of tristimulus matching. To reproduce images on an MPD, the color signals are estimated from a device-independent color space, such as CIEXYZ and CIELAB. In this paper, linearized LAB space is used due to its linearity and additivity in color conversion. First, the proposed method constructs a 3-D LUT containing gamut boundary information to calculate the color signals for the MPD in linearized LAB space. For the image reproduction, standard RGB or CIEXYZ is transformed to linearized LAB, then the hue and chroma are computed with reference to the 3D-LUT. In linearized LAB space, the color signals for a gamut boundary point are calculated to have the same lightness and hue as the input point. Also, the color signals for a point on the gray axis are calculated to have the same lightness as the input point. Based on the gamut boundary points and input point, the color signals for the input point are then obtained using the chroma ratio divided by the chroma of the gamut boundary point. In particular, for a change of hue, the neighboring boundary points are also employed. As a result, the proposed method guarantees color signal continuity and computational efficiency, and requires less memory.

  7. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

    PubMed

    Toyoshima, Yu; Tokunaga, Terumasa; Hirose, Osamu; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-06-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  8. Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space

    PubMed Central

    Tokunaga, Terumasa; Kanamori, Manami; Teramoto, Takayuki; Jang, Moon Sun; Kuge, Sayuri; Ishihara, Takeshi; Yoshida, Ryo; Iino, Yuichi

    2016-01-01

    To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured. PMID:27271939

  9. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects. PMID:19505502

  10. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using

  11. Parallel Imaging of 3D Surface Profile with Space-Division Multiplexing

    PubMed Central

    Lee, Hyung Seok; Cho, Soon-Woo; Kim, Gyeong Hun; Jeong, Myung Yung; Won, Young Jae; Kim, Chang-Seok

    2016-01-01

    We have developed a modified optical frequency domain imaging (OFDI) system that performs parallel imaging of three-dimensional (3D) surface profiles by using the space division multiplexing (SDM) method with dual-area swept sourced beams. We have also demonstrated that 3D surface information for two different areas could be well obtained in a same time with only one camera by our method. In this study, double field of views (FOVs) of 11.16 mm × 5.92 mm were achieved within 0.5 s. Height range for each FOV was 460 µm and axial and transverse resolutions were 3.6 and 5.52 µm, respectively. PMID:26805840

  12. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  13. Deconfinement Phase Transition in a 3D Nonlocal U(1) Lattice Gauge Theory

    SciTech Connect

    Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko

    2005-06-03

    We introduce a 3D compact U(1) lattice gauge theory having nonlocal interactions in the temporal direction, and study its phase structure. The model is relevant for the compact QED{sub 3} and strongly correlated electron systems like the t-J model of cuprates. For a power-law decaying long-range interaction, which simulates the effect of gapless matter fields, a second-order phase transition takes place separating the confinement and deconfinement phases. For an exponentially decaying interaction simulating matter fields with gaps, the system exhibits no signals of a second-order transition.

  14. 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.

    2015-11-01

    With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.

  15. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    NASA Astrophysics Data System (ADS)

    van Gorp, Jetse S.; Bakker, Chris J. G.; Bouwman, Job G.; Smink, Jouke; Zijlstra, Frank; Seevinck, Peter R.

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  16. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging.

    PubMed

    van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Smink, Jouke; Zijlstra, Frank; Seevinck, Peter R

    2015-01-21

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  17. The design of 3D optical system for multidirectional phase tomography

    NASA Astrophysics Data System (ADS)

    Antoš, Martin

    2008-12-01

    The design of 3D optical system for multidirectional phase tomograph is presented in detail. The suggested tomograph uses a multidirectional holographic interferometer with diffusive light. The method of dividing of the laser-beam to object and reference beams is described. The optimisation of geometrical dimensions of the testing area and optical parameters of projection beams was done in order to increase the number of obtainable angular projections. Finally, projecting properties of the scanning system of the tomograph are presented.

  18. Reservoir lithofacies analysis using 3D seismic data in dissimilarity space

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Riahi, M. A.; Hashemi, H.

    2013-06-01

    Seismic data interpretation is one of the most important steps in exploration seismology. Seismic facies analysis (SFA) with emphasis on lithofacies can be used to extract more information about structures and geology, which results in seismic interpretation enhancement. Facies analysis is based on unsupervised and supervised classification using seismic attributes. In this paper, supervised classification by a support vector machine using well logs and seismic attributes is applied. Dissimilarity as a new measuring space is employed, after which classification is carried out. Often, SFA is carried out in a feature space in which each dimension stands as a seismic attribute. Different facies show lots of class overlap in the feature space; hence, high classification error values are reported. Therefore, decreasing class overlap before classification is a necessary step to be targeted. To achieve this goal, a dissimilarity space is initially created. As a result of the definition of the new space, the class overlap between objects (seismic samples) is reduced and hence the classification can be done reliably. This strategy causes an increase in the accuracy of classification, and a more trustworthy lithofacies analysis is attained. For applying this method, 3D seismic data from an oil field in Iran were selected and the results obtained by a support vector classifier (SVC) in dissimilarity space are presented, discussed and compared with the SVC applied in conventional feature space.

  19. SVD-GFD scheme to simulate complex moving body problems in 3D space

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Yu, P.; Yeo, K. S.; Khoo, B. C.

    2010-03-01

    The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.

  20. 3D model-based detection and tracking for space autonomous and uncooperative rendezvous

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Zhang, Yueqiang; Liu, Haibo

    2015-10-01

    In order to fully navigate using a vision sensor, a 3D edge model based detection and tracking technique was developed. Firstly, we proposed a target detection strategy over a sequence of several images from the 3D model to initialize the tracking. The overall purpose of such approach is to robustly match each image with the model views of the target. Thus we designed a line segment detection and matching method based on the multi-scale space technology. Experiments on real images showed that our method is highly robust under various image changes. Secondly, we proposed a method based on 3D particle filter (PF) coupled with M-estimation to track and estimate the pose of the target efficiently. In the proposed approach, a similarity observation model was designed according to a new distance function of line segments. Then, based on the tracking results of PF, the pose was optimized using M-estimation. Experiments indicated that the proposed method can effectively track and accurately estimate the pose of freely moving target in unconstrained environment.

  1. Using articulated scene models for dynamic 3d scene analysis in vista spaces

    NASA Astrophysics Data System (ADS)

    Beuter, Niklas; Swadzba, Agnes; Kummert, Franz; Wachsmuth, Sven

    2010-09-01

    In this paper we describe an efficient but detailed new approach to analyze complex dynamic scenes directly in 3D. The arising information is important for mobile robots to solve tasks in the area of household robotics. In our work a mobile robot builds an articulated scene model by observing the environment in the visual field or rather in the so-called vista space. The articulated scene model consists of essential knowledge about the static background, about autonomously moving entities like humans or robots and finally, in contrast to existing approaches, information about articulated parts. These parts describe movable objects like chairs, doors or other tangible entities, which could be moved by an agent. The combination of the static scene, the self-moving entities and the movable objects in one articulated scene model enhances the calculation of each single part. The reconstruction process for parts of the static scene benefits from removal of the dynamic parts and in turn, the moving parts can be extracted more easily through the knowledge about the background. In our experiments we show, that the system delivers simultaneously an accurate static background model, moving persons and movable objects. This information of the articulated scene model enables a mobile robot to detect and keep track of interaction partners, to navigate safely through the environment and finally, to strengthen the interaction with the user through the knowledge about the 3D articulated objects and 3D scene analysis. [Figure not available: see fulltext.

  2. PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED ACCELERATOR LIBRARY.

    SciTech Connect

    D'IMPERIO, N.L.; LUCCIO, A.U.; MALITSKY, N.

    2006-06-26

    The paper presents the integration of the SIMBAD space charge module in the UAL framework. SIMBAD is a Particle-in-Cell (PIC) code. Its 3-D Parallel approach features an optimized load balancing scheme based on a genetic algorithm. The UAL framework enhances the SIMBAD standalone version with the interactive ROOT-based analysis environment and an open catalog of accelerator algorithms. The composite package addresses complex high intensity beam dynamics and has been developed as part of the FAIR SIS 100 project.

  3. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography

    PubMed Central

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-01-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  4. Quantitative analysis of two-phase 3D+time aortic MR images

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Honghai; Walker, Nicholas E.; Yang, Fuxing; Olszewski, Mark E.; Wahle, Andreas; Scholz, Thomas; Sonka, Milan

    2006-03-01

    Automated and accurate segmentation of the aorta in 3D+time MR image data is important for early detection of connective tissue disorders leading to aortic aneurysms and dissections. A computer-aided diagnosis method is reported that allows the objective identification of subjects with connective tissue disorders from two-phase 3D+time aortic MR images. Our automated segmentation method combines level-set and optimal border detection. The resulting aortic lumen surface was registered with an aortic model followed by calculation of modal indices of aortic shape and motion. The modal indices reflect the differences of any individual aortic shape and motion from an average aortic behavior. The indices were input to a Support Vector Machine (SVM) classifier and a discrimination model was constructed. 3D+time MR image data sets acquired from 22 normal and connective tissue disorder subjects at end-diastole (R-wave peak) and at 45% of the R-R interval were used to evaluate the performance of our method. The automated 3D segmentation result produced accurate aortic surfaces covering the aorta from the left-ventricular outflow tract to the diaphragm and yielded subvoxel accuracy with signed surface positioning errors of -0.09+/-1.21 voxel (-0.15+/-2.11 mm). The computer aided diagnosis method distinguished between normal and connective tissue disorder subjects with a classification correctness of 90.1 %.

  5. Flexible 3D reconstruction method based on phase-matching in multi-sensor system.

    PubMed

    Wu, Qingyang; Zhang, Baichun; Huang, Jinhui; Wu, Zejun; Zeng, Zeng

    2016-04-01

    Considering the measuring range limitation of a single sensor system, multi-sensor system has become essential in obtaining complete image information of the object in the field of 3D image reconstruction. However, for the traditional multi-sensors worked independently in its system, there was some point in calibrating each sensor system separately. And the calibration between all single sensor systems was complicated and required a long time. In this paper, we present a flexible 3D reconstruction method based on phase-matching in multi-sensor system. While calibrating each sensor, it realizes the data registration of multi-sensor system in a unified coordinate system simultaneously. After all sensors are calibrated, the whole 3D image data directly exist in the unified coordinate system, and there is no need to calibrate the positions between sensors any more. Experimental results prove that the method is simple in operation, accurate in measurement, and fast in 3D image reconstruction. PMID:27137020

  6. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  7. 3D imaging of amplitude objects embedded in phase objects using transport of intensity

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Basunia, Mahmudunnabi

    2015-09-01

    The amplitude and phase of the complex optical field in the Helmholtz equation obey a pair of coupled equations, arising from equating the real and imaginary parts. The imaginary part yields the transport of intensity equation (TIE), which can be used to derive the phase distribution at the observation plane. If a phase object is approximately imaged on the recording plane(s), TIE yields the phase without the need for phase unwrapping. In our experiment, the 3D image of a phase object and an amplitude object embedded in a phase object is recovered. The phase object is created by heating a liquid, comprising a solution of red dye in alcohol, using a focused 514 nm laser beam to the point where self-phase modulation of the beam is observed. The optical intensities are recorded at various planes during propagation of a low power 633 nm laser beam through the liquid. In the process of applying TIE to derive the phase at the observation plane, the real part of the complex equation is also examined as a cross-check of our calculations. For pure phase objects, it is shown that the real part of the complex equation is best satisfied around the image plane. Alternatively, it is proposed that this information can be used to determine the optimum image plane.

  8. Representing geometric structures in 3D tomography soil images: Application to pore-space modeling

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ndeye Ngom, Fatou; François Delerue, Jean

    2007-09-01

    Only in the last decade have geoscientists started to use 3D computed tomography (CT) images of soil for better understanding and modeling of soil properties. In this paper, we propose one of the first approaches to allow the definition and computation of stable (intrinsic) geometric representations of structures in 3D CT soil images. This addresses the open problem set by the description of volume shapes from discrete traces without any a priori information. The basic concept involves representing the volume shape by a piecewise approximation using simple volume primitives (bowls, cylinders, cones, etc.). This typical representation is assumed to optimize a criterion ensuring its stability. This criterion includes the representation scale, which characterizes the trade-off between the fitting error and the number of patches. We also take into account the preservation of topological properties of the initial shape: the number of connected components, adjacency relationships, etc. We propose an efficient computation method for this piecewise approximation using cylinders or bowls. For cylinders, we use optimal region growing in a valuated adjacency graph that represents the primitives and their adjacency relationships. For bowls, we compute a minimal set of Delaunay spheres recovering the skeleton. Our method is applied to modeling of a coarse pore space extracted from 3D CT soil images. The piecewise bowls approximation gives a geometric formalism corresponding to the intuitive notion of pores and also an efficient way to compute it. This geometric and topological representation of coarse pore space can be used, for instance, to simulate biological activity in soil.

  9. 3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)

    NASA Technical Reports Server (NTRS)

    Bean, Quincy; Cooper, Ken; Werkheiser, Niki

    2015-01-01

    The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.

  10. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  11. Signatures of topological phase transition in 3 d topological insulators from dynamical axion response

    NASA Astrophysics Data System (ADS)

    Makhfudz, Imam

    2016-04-01

    Axion electrodynamics, first proposed in the context of particle physics, manifests itself in condensed matter physics in the topological field theory description of 3 d topological insulators and gives rise to magnetoelectric effect, where applying magnetic (electric) field B (E ) induces polarization (magnetization) p (m ) . We use linear response theory to study the associated topological current using the Fu-Kane-Mele model of 3 d topological insulators in the presence of time-dependent uniform weak magnetic field. By computing the dynamical current susceptibility χij jpjp(ω ) , we discover from its static limit an `order parameter' of the topological phase transition between weak topological (or ordinary) insulator and strong topological insulator, found to be continuous. The χij jpjp(ω ) shows a sign-changing singularity at a critical frequency with suppressed strength in the topological insulating state. Our results can be verified in current noise experiment on 3 d TI candidate materials for the detection of such topological phase transition.

  12. 3D models as a platform for urban analysis and studies on human perception of space

    NASA Astrophysics Data System (ADS)

    Fisher-Gewirtzman, D.

    2012-10-01

    The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents' evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.

  13. Analytical description of 3D optical pulse diffraction by a phase-shifted Bragg grating.

    PubMed

    Golovastikov, Nikita V; Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2016-08-22

    Diffraction of a three-dimensional (3D) spatiotemporal optical pulse by a phase-shifted Bragg grating (PSBG) is considered. The pulse diffraction is described in terms of signal transmission through a linear system with a transfer function determined by the reflection or transmission coefficient of the PSBG. Resonant approximations of the reflection and transmission coefficients of the PSBG as functions of the angular frequency and the in-plane component of the wave vector are obtained. Using these approximations, a hyperbolic partial differential equation (Klein-Gordon equation) describing a general class of transformations of the incident 3D pulse envelope is derived. A solution to this equation is found in the form of a convolution integral. The presented rigorous simulation results fully confirm the proposed theoretical description. The obtained results may find application in the design of new devices for spatiotemporal pulse shaping and for optical information processing and analog optical computing. PMID:27557167

  14. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    SciTech Connect

    Edwards, Robert; Huang, Zhengyu

    2001-06-17

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown.

  15. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of {approx}7000 galaxies at 1 < z < 3.5, the epoch when {approx}60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin{sup 2}) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of {approx}5 per resolution element at H{sub 140} {approx} 23.1 and a 5{sigma} emission-line sensitivity of {approx}5 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} for typical objects, improving by a factor of {approx}2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 {mu}m at a spatial resolution of {approx}0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of {sigma}(z) = 0.0034(1 + z), or {sigma}(v) Almost-Equal-To 1000 km s{sup -1}. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z {approx} 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will

  16. Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space

    SciTech Connect

    Hui Lam; Gaztanaga, Enrique; LoVerde, Marilena

    2008-03-15

    In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e. impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.

  17. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  18. 3D motion tracking of the heart using Harmonic Phase (HARP) isosurfaces

    NASA Astrophysics Data System (ADS)

    Soliman, Abraam S.; Osman, Nael F.

    2010-03-01

    Tags are non-invasive features induced in the heart muscle that enable the tracking of heart motion. Each tag line, in fact, corresponds to a 3D tag surface that deforms with the heart muscle during the cardiac cycle. Tracking of tag surfaces deformation is useful for the analysis of left ventricular motion. Cardiac material markers (Kerwin et al, MIA, 1997) can be obtained from the intersections of orthogonal surfaces which can be reconstructed from short- and long-axis tagged images. The proposed method uses Harmonic Phase (HARP) method for tracking tag lines corresponding to a specific harmonic phase value and then the reconstruction of grid tag surfaces is achieved by a Delaunay triangulation-based interpolation for sparse tag points. Having three different tag orientations from short- and long-axis images, the proposed method showed the deformation of 3D tag surfaces during the cardiac cycle. Previous work on tag surface reconstruction was restricted for the "dark" tag lines; however, the use of HARP as proposed enables the reconstruction of isosurfaces based on their harmonic phase values. The use of HARP, also, provides a fast and accurate way for tag lines identification and tracking, and hence, generating the surfaces.

  19. Universal gates based on targeted phase shifts in a 3D neutral atom array

    NASA Astrophysics Data System (ADS)

    Kumar, Aishwarya; Wang, Yang; Wu, Tsung-Yao; Weiss, David

    2016-05-01

    We demonstrate a new approach to making targeted single qubit gates using Cesium atoms in a 5x5x5 3D neutral atom array. It combines targeted AC Zeeman phase shifts with global microwave pulses to produce arbitrary single qubit gates. Non-targeted atoms are left virtually untouched by the gates. We have addressed 48 sites, targeted individually, in a 40% full array. We have also performed Randomized Benchmarking to characterize the fidelity and crosstalk errors of this gate. These gates are highly insensitive to addressing beam imperfections and can be applied to other systems and geometries. Supported by NSF.

  20. Domain Decomposition PN Solutions to the 3D Transport Benchmark over a Range in Parameter Space

    NASA Astrophysics Data System (ADS)

    Van Criekingen, S.

    2014-06-01

    The objectives of this contribution are twofold. First, the Domain Decomposition (DD) method used in the parafish parallel transport solver is re-interpreted as a Generalized Schwarz Splitting as defined by Tang [SIAM J Sci Stat Comput, vol.13 (2), pp. 573-595, 1992]. Second, parafish provides spherical harmonic (i.e., PN) solutions to the NEA benchmark suite for 3D transport methods and codes over a range in parameter space. To the best of the author's knowledge, these are the first spherical harmonic solutions provided for this demanding benchmark suite. They have been obtained using 512 CPU cores of the JuRoPa machine installed at the Jülich Computing Center (Germany).

  1. Neuronal Representation of 3-D Space in the Primary Visual Cortex and Control of Eye Movements.

    PubMed

    Alekseenko, Svetlana V

    2015-01-01

    The aim of this article is to consider the correlations between the structure of the primary visual cortical area V1 and control of coordinated movements of the two eyes. Using the anatomical data available, a schematic map of 3-D space representation in the layer IV of area V1 containing only monocular cells has been constructed. The analysis of this map revealed that binocular neurons of V1, which are formed by convergence of monocular cells, should encode the absolute disparity. Participation of monocular and binocular neurons of V1 in the control of convergence, divergence, and version eye movements is discussed. It is proposed that synchronous contraction of corresponding extraocular muscles of both eyes for vergence might be ensured by duplicated transmission of information from the central part of retina to visual cortex of both hemispheres. PMID:26562914

  2. A 3D space-time motion evaluation for image registration in digital subtraction angiography.

    PubMed

    Taleb, N; Bentoutou, Y; Deforges, O; Taleb, M

    2001-01-01

    In modern clinical practice, Digital Subtraction Angiography (DSA) is a powerful technique for the visualization of blood vessels in a sequence of X-ray images. A serious problem encountered in this technique is the presence of artifacts due to patient motion. The resulting artifacts frequently lead to misdiagnosis or rejection of a DSA image sequence. In this paper, a new technique for removing both global and local motion artifacts is presented. It is based on a 3D space-time motion evaluation for separating pixels changing values because of motion from those changing values because of contrast flow. This technique is proved to be very efficient to correct for patient motion artifacts and is computationally cheap. Experimental results with several clinical data sets show that this technique is very fast and results in higher quality images. PMID:11179698

  3. The 3D Space and Spin Velocities of a Gamma-ray Pulsar

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2016-04-01

    PSR J2030+4415 is a LAT-discovered 0.5My-old gamma-ray pulsar with an X-ray synchrotron trail and a rare Halpha bowshock. We have obtained GMOS IFU spectroscopic imaging of this shell, and show a sweep through the remarkable Halpha structure, comparing with the high energy emission. These data provide a unique 3D map of the momentum distribution of the relativistic pulsar wind. This shows that the pulsar is moving nearly in the plane of the sky and that the pulsar wind has a polar component misaligned with the space velocity. The spin axis is shown to be inclined some 95degrees to the Earth line of sight, explaining why this is a radio-quiet, gamma-only pulsar. Intriguingly, the shell also shows multiple bubbles that suggest that the pulsar wind power has varied substantially over the past 500 years.

  4. Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Yang, Lianxiang; Chen, Xu; Xu, Nan; Wang, Yonghong

    2013-10-01

    High accuracy full field three dimensional (3D) deformation measurements have always been an essential problem for the manufacturing, instrument, and aerospace industry. 3D deformations, which can be translated further into 3D strain and stress, are the key parameter for design, manufacturing and quality control. Due to the fast development of the manufacturing industry, especially in the automobile and airspace industry, rapid design and optimization concepts have already widely accepted. These concepts all require the support of rapid, high sensitive and accuracy 3D deformation measurement. Advanced optical methods are gaining widely acceptance for deformation and stain measurement by industry due to the advantages of non-contact, full-field and high measurement sensitivity. Of these methods, Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. Combined with a phase shift technique, ESPI systems can measure the 3D deformation with dozens of nanometer level sensitivity. Cataloged by phase calculation methods, ESPI systems can be divided into temporal phase shift ESPI systems and spatial phase shift ESPI system. This article provides a review and a comparison of temporal and spatial phase shift speckle pattern interferometry for 3D deformation measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI which is suited well for static measurement and by the spatial phase-shift ESPI which is particularly useful for dynamic measurement will be discussed in detail. Basic theory, brief derivation and different optical layouts for the two systems will be presented. The potentials and limitations of the both ESPI

  5. Compactification on phase space

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin; Wheeler, James

    2016-03-01

    A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.

  6. Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces

    ERIC Educational Resources Information Center

    Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed

    2012-01-01

    The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…

  7. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals.

    PubMed

    Wang, C M; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-08-12

    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1/8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1/8 and ±5/8, as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1/8 or ±5/8. Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd_{2}As_{3} and should be helpful for exploring the Berry phase in various 3D systems. PMID:27563993

  8. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-08-01

    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1 /8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1 /8 and ±5 /8 , as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1 /8 or ±5 /8 . Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd2 As3 and should be helpful for exploring the Berry phase in various 3D systems.

  9. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings. PMID:25528691

  10. Application of a 3d Smart Flexible Phased-Array to Piping Inspection

    NASA Astrophysics Data System (ADS)

    Toullelan, G.; Casula, O.; Abittan, E.; Dumas, P.

    2008-02-01

    The piping inspection in nuclear power plants is mainly performed in contact with ultrasonic wedge transducers. During the scanning, the fixed shape of the wedges cannot conform to the irregular surfaces and complex geometries of the components (butt weld, nozzle, elbow). The surface irregularities lead to thickness variations of the coupling medium that result in beam distortions and losses of sensitivity. A 3-D ultrasonic flexible phased-array is presented here and applied to the ultrasonic inspection of a welded pipe. This example of a complex geometry inspection is typical of the field of application for such sensor. The phased-array probe is flexible to conform to a complex profile and to minimize the thickness of the coupling layer. The independent piezoelectric elements composing the radiating surface are mechanically assembled to build an articulated structure. A profilometer, embedded in the transducer, measures the local surface distortion allowing to compute in real-time the optimized delay laws and to compensate the distortions of the 2D or 3D profiles. Those delay laws transferred to the UT-acquisition system are applied in real-time to the piezoelectric elements. The experiments presented here aim to determine the detection abilities of this technique using multi-shot configurations (e.g. angular scanning, several points focusing).

  11. Decay of the 3D inviscid liquid-gas two-phase flow model

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-06-01

    We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.

  12. Simple tools for simulating phased array focal laws on 3D solids

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Frazer, Leigh

    2001-04-01

    This paper reports our progress on the development of a three-dimensional raytracing program that can simulate the focal laws of a phased array system. The modeled transducer is divided into elements of a given length, width and inter-element gap distance. Each focal law to be modeled requires a steering angle, focal length and selection of which groups of elements are transmitting and receiving. Electronic scanning is simulated by stepping through a series of predefined focal laws. The program phase shifts and sums the received rays at each element based on the properties of the currently-active focal law. Simulated A-scans are constructed from the received rays which appear animated as the beam is swept. Beam profiles can also be generated that show the primary forward beam and energy in the side lobes. The work is based on Imagine3D ultrasonic simulation software and the dedicated efforts of Doug Mair and Leigh Frazer.

  13. Fast phase-added stereogram algorithm for generation of photorealistic 3D content.

    PubMed

    Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi

    2016-01-20

    A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945

  14. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    PubMed Central

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  15. The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin

    2008-01-01

    In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…

  16. A novel method of target recognition based on 3D-color-space locally adaptive regression kernels model

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-10-01

    Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.

  17. Tilt scanning interferometry: a 3D k-space representation for depth-resolved structure and displacement measurement in scattering materials

    NASA Astrophysics Data System (ADS)

    Galizzi, Gustavo E.; Coupland, Jeremy M.; Ruiz, Pablo D.

    2010-09-01

    Tilt Scanning Interferometry (TSI) has been recently developed as an experimental method to measure multi-component displacement fields inside the volume of semitransparent scattering materials. It can be considered as an extension of speckle interferometry in 3D, in which the illumination angle is tilted to provide depth information, or as an optical diffraction tomography technique with phase detection. It relies on phase measurements to extract the displacement information, as in the usual 2D counterparts. A numerical model to simulate the speckle fields recorded in TSI has been recently developed to enable the study on how the phase and amplitude are affected by factors such as refraction, absorption, scattering, dispersion, stress-optic coupling and spatial variations of the refractive index, all of which may lead to spurious displacements. In order to extract depth-resolved structure and phase information from TSI data, the approach had been to use Fourier Transformation of the intensity modulation signal along the illumination angle axis. However, it turns out that a more complete description of the imaging properties of the system for tomographic optical diffraction can be achieved using a 3D representation of the transfer function in k-space. According to this formalism, TSI is presented as a linear filtering operation. In this paper we describe the transfer function of TSI in 3D k-space, evaluate the 3D point spread function and present simulated results.

  18. Revitalizing the Space Shuttle's Thermal Protection System with Reverse Engineering and 3D Vision Technology

    NASA Technical Reports Server (NTRS)

    Wilson, Brad; Galatzer, Yishai

    2008-01-01

    The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.

  19. Understanding WCAG2.0 Colour Contrast Requirements Through 3D Colour Space Visualisation.

    PubMed

    Sandnes, Frode Eika

    2016-01-01

    Sufficient contrast between text and background is needed to achieve sufficient readability. WCAG2.0 provides a specific definition of sufficient contrast on the web. However, the definition is hard to understand and most designers thus use contrast calculators to validate their colour choices. Often, such checks are performed after design and this may be too late. This paper proposes a colour selection approach based on three-dimensional visualisation of the colour space. The complex non-linear relationships between the colour components become comprehendible when viewed in 3D. The method visualises the available colours in an intuitive manner and allows designers to check a colour against the set of other valid colours. Unlike the contrast calculators, the proposed method is proactive and fun to use. A colour space builder was developed and the resulting models were viewed with a point cloud viewer. The technique can be used as both a design tool and a pedagogical aid to teach colour theory and design. PMID:27534328

  20. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  1. Phase space quantum mechanics

    NASA Astrophysics Data System (ADS)

    Błaszak, Maciej; Domański, Ziemowit

    2012-02-01

    This paper develops an alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise product of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket are the key elements in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special case all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental than the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism. The equivalence of two formulations of quantum mechanics is proved by observing that the Wigner-Moyal transform has all properties of the tensor product. This observation allows writing many previous results found in the literature in a transparent way, from which the equivalence of the two formulations of quantum mechanics follows naturally. In addition, examples of a free particle and a simple harmonic

  2. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry.

    PubMed

    Tang, Yan; Su, Xianyu; Liu, Yuankun; Jing, Hailong

    2008-09-15

    An advanced Phase Measuring Deflectometry(PMD) is proposed to measure the three dimensional (3D) shape of the aspheric mirror. In the measurement process, a liquid crystal display(LCD)screen displaying sinusoidal fringe patterns and a camera observing the fringe patterns reflected via the tested mirror, are moved along the tested mirror optical axis, respectively. At each movement position, the camera records the fringe patterns of the screen located at two different positions. Using these fringe patterns, every camera pixels can find a corresponding point on the tested mirror and gets its coordinate and slope. By integrating, the 3D shape of the tested mirror can be reconstructed. Compared with the traditional PMD, this method doesn???t need complex calibration and can measure the absolute height of the aspheric mirror which has large range of surface geometries unambiguously. Furthermore, this method also has strong anti-noise ability. Computer simulations and preliminary experiment validate the feasibility of this method. PMID:18795046

  3. Long term effects of CO2 on 3-D pore structure and 3-D phase distribution in reservoir sandstones from the Green River well (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Kisoensingh, Shailesh

    2014-05-01

    Reservoir sandstones and cap rocks from the Green River area in Utah (USA) have been naturally exposed to CO2 fluids for hundreds of thousands of years, leading to compositional and microstructural alterations of the rocks. A 300m long section of this section of these Green river reservoir and cap rocks has been cored in 2012. Here, results of a high-resolution micro X-ray tomography study of a suite of samples from the well are reported detailing the 3D pore structure and phase distribution changes due to long term CO2 exposure. The reservoir sandstones from the Green River well (Utah) reveal the presence of various degrees of carbonate precipitation in the pores. Both reservoir sandstones (the shallower Entrada Formation and the deeper Navajo Formation) show variations in carbonate content and porosity structure. The Entrada sandstone exhibits widespread carbonate precipitation (up to 60% of infill of the original porosity), with the largest amount of carbonates at the boundary with the underlying Carmel cap rock. In an interval of a meter from the contact, carbonate precipitation decreases sharply till ~20%. The porosity is significantly reduced in the lowest 1 meter. The reduction in porosity lead to a reduction in pore connectivity and thereby permeability by the long-term CO2 exposure. On the other hand the Navajo sandstone shows predominantly only isolated spots of carbonate precipitation (up to 20% of the original porosity). Widespread carbonate precipitation is absent in the Navajo reservoir sandstone samples. Because carbonate precipitation is not present throughout, the large-scale permeability of the formation is likely not significantly affected by the CO2 exposure. The results show how the 3D distribution of the phases and the 3D shapes of the pores are affected by long term CO2 exposure and can be used as an example for potential changes to be expected in reservoir sandstones due to CO2 storage in future CO2 sequestration endeavours.

  4. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  5. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space

    NASA Astrophysics Data System (ADS)

    Ahmad, Ezak; Yap, Moi Hoon; Degens, Hans; McPhee, Jamie S.

    2014-03-01

    Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field across an image. In this paper, we demonstrate a combination framework of atlas construction and image registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the targeted image based on the prior atlas information and non-rigid image registration methods.

  6. Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.

    PubMed

    Garro, Valeria; Giachetti, Andrea

    2016-06-01

    In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels. PMID:26372206

  7. Use and Evaluation of 3D GeoWall Visualizations in Undergraduate Space Science Classes

    NASA Astrophysics Data System (ADS)

    Turner, N. E.; Hamed, K. M.; Lopez, R. E.; Mitchell, E. J.; Gray, C. L.; Corralez, D. S.; Robinson, C. A.; Soderlund, K. M.

    2005-12-01

    One persistent difficulty many astronomy students face is the lack of 3- dimensional mental model of the systems being studied, in particular the Sun-Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause, for example, the cycle of lunar phases or the pattern of seasons. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs for use in geology classes, but as yet very little work has been done involving the GeoWall for astronomy classes. We present results from a large study involving over 1000 students of varied backgrounds: some students were tested at the University of Texas at El Paso, a large public university on the US-Mexico border and other students were from the Florida Institute of Technology, a small, private, technical school in Melbourne Florida. We wrote a lecture tutorial-style lab to go along with a GeoWall 3D visual of the Earth-Moon system and tested the students before and after with several diagnostics. Students were given pre and post tests using the Lunar Phase Concept Inventory (LPCI) as well as a separate evaluation written specifically for this project. We found the lab useful for both populations of students, but not equally effective for all. We discuss reactions from the students and their improvement, as well as whether the students are able to correctly assess the usefullness of the project for their own learning.

  8. Ion Phase Space Transport

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel Peter

    1987-09-01

    Experimental measurements are presented of ion phase space evolution in a collisionless magnetoplasma utilizing nonperturbing laser induced fluorescence (LIF) diagnostics. Ion configuration space and velocity space transport, and ion thermodynamic information were derived from the phase space diagrams for the following beam-plasma and obstacle-plasma systems:(UNFORMATTED TABLE OR EQUATION FOLLOWS) OBSTACLE & PLASMA SPECIES qquad disc & quad Ba ^+/e^ qquad disc & quad Ba^+/SF _6^-/e^ BEAM SPECIES & PLASMA SPECIES} qquad Ba^+ & quad Cs^+/e^ qquad Cs^+ & quad Ba^+/e^ qquad Ba^+ & quad Cs^+/SF_6 ^-/e^ qquad e^- & quad Ba^+ /e^ TABLE/EQUATION ENDS The ions were roughly mass symmetric. Plasma systems were reconstructed from multiple discrete Ba(II) ion velocity distributions with spatial, temporal, and velocity resolution of 1 mm^3, 2 musec, and 3 times 1010 cm ^3/sec^3 respectively. Phase space reconstructions indicated resonant ion response to the current-driven electrostatic ion cyclotron wave (EICW) in the case of an electron beam and to the ion cyclotron-cyclotron wave in the case of ion beams. Ion energization was observed in both systems. Local particle kinetic energy densities increase far above thermal levels in the presence of the EICW and ICCW. Time-resolved measurements of the EICW identified phase space particle bunching. The nonlinear evolution of f_{rm i}(x,v,t) was investigated for both beam systems. The near wake of conducting electrically floating disc obstacle was studied. Anomalous cross field diffusion (D_bot > 10 ^4 cm^2/sec) and ion energization were correlated with strong, low-frequency turbulence generated by the obstacle. Ion perpendicular kinetic energy densities doubled over thermal levels in the near wake. Upstream of the obstacle, l ~ 50 lambda_ {rm D}, a collisionless shock was indicated; far downstream, an ion flux peak was observed. Three negative ion plasma (NIP) sources were developed and characterized in the course of research: two

  9. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used. PMID:25265174

  10. Quantum Criticality of Topological Phase Transitions in 3D Interacting Electronic Systems

    NASA Astrophysics Data System (ADS)

    Moon, Eun Gook; Yang, Bohm-Jung; Isobe, Hiroki; Nagaosa, Naoto

    2014-03-01

    We investigate the quantum criticality of topological phase transitions in three dimensional (3D) interacting electronic systems lacking either the time-reversal symmetry or the inversion symmetry. The minimal model, Weyl fermions with anisotropic dispersion relation, is suggested as the quantum critical theory based on the zerochirality condition. The interplay between the fermions and the long range Coulomb interaction is investigated by the standard renormalization group (RG) approach. We find that the quantum fluctuations of the anisotropic Weyl fermions induce the anisotropic partial screening of the Coulomb interaction, which eventually makes the Coulomb interaction irrelevant. It is in sharp contrast to the quantum criticality of conventional semi-metallic phases such as graphene where physical quantities receive logarithmic corrections from the marginal Coulomb interaction. Thus, the critical point is described by the non-interacting fermion theory allowing the complete theoretical understanding of the problem. The renormalized Coulomb potential shows the anisotropic power law. Its physical consequence is further illustrated by the screening problem of a charged impurity due to anisotropic Weyl fermions.

  11. Computing and monitoring potential of public spaces by shading analysis using 3d lidar data and advanced image analysis

    NASA Astrophysics Data System (ADS)

    Zwolinski, A.; Jarzemski, M.

    2015-04-01

    The paper regards specific context of public spaces in "shadow" of tall buildings located in European cities. Majority of tall buildings in European cities were built in last 15 years. Tall buildings appear mainly in city centres, directly at important public spaces being viable environment for inhabitants with variety of public functions (open spaces, green areas, recreation places, shops, services etc.). All these amenities and services are under direct impact of extensive shading coming from the tall buildings. The paper focuses on analyses and representation of impact of shading from tall buildings on various public spaces in cities using 3D city models. Computer environment of 3D city models in cityGML standard uses 3D LiDAR data as one of data types for definition of 3D cities. The structure of cityGML allows analytic applications using existing computer tools, as well as developing new techniques to estimate extent of shading coming from high-risers, affecting life in public spaces. These measurable shading parameters in specific time are crucial for proper functioning, viability and attractiveness of public spaces - finally it is extremely important for location of tall buildings at main public spaces in cities. The paper explores impact of shading from tall buildings in different spatial contexts on the background of using cityGML models based on core LIDAR data to support controlled urban development in sense of viable public spaces. The article is prepared within research project 2TaLL: Application of 3D Virtual City Models in Urban Analyses of Tall Buildings, realized as a part of Polish-Norway Grants.

  12. Random center vortex lines in continuous 3D space-time

    NASA Astrophysics Data System (ADS)

    Höllwieser, Roman; Altarawneh, Derar; Engelhardt, Michael

    2016-01-01

    We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation and the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.

  13. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-06-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  14. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  15. Design of Mott and topological phases on buckled 3d-oxide honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Pentcheva, Rossitza

    The honeycomb lattice, as realized e.g. in graphene, has rendered a robust platform for innovative science and potential applications. A much richer generalization of this lattice arises in (111)-oriented bilayers of perovskites, adding the complexity of the strongly correlated, multiorbital nature of electrons in transition metal oxides. Based on first principles calculations with an on-site Coulomb repulsion, here we provide trends in the evolution of ground states versus band filling in (111)-oriented (La XO3)2 /(LaAlO3)4 superlattices, with X spanning the entire 3d transition metal series. The competition between local quasi-cubic and global triangular symmetry triggers unanticipated broken symmetry phases, with mechanisms ranging from Jahn-Teller distortion, to charge-, spin-, and orbital-ordering. LaMnO3 and LaCoO3 bilayers, where spin-orbit coupling opens a sizable gap in the Dirac-point Fermi surface, emerge as much desired oxide-based Chern insulators, the latter displaying a gap capable of supporting room-temperature applications Further realizations of the honeycomb lattice and geometry patterns beyond the perovskite structure will be addressed. Research supported by the DFG, SFB/TR80.

  16. PGD and separated space variables representation for linear elasticity in 3D representation of plate domains

    NASA Astrophysics Data System (ADS)

    Bognet, B.; Leygue, A.; Chinesta, F.; Poitou, A.

    2011-01-01

    In this paper, we focus on the simulation of linear elastic behaviour of plates using a 3D approach which numerical cost only scales like a 2D one. In the case of plates, the kinematic hypothesis introduced in plate theories to go from 3D to 2D is usually unsatisfactory where one cannot rely on St Venant's principle (usually close to the plate edges). We propose to apply the PGD (Proper Generalized Decomposition) method [1] to the simulation of the linear elastic behavior of plates. This method allows us to separately search for the in-plane and the out-of plane contributions to the 3D solution, yielding significant savings in computational cost. The method is validated on a simple case and its full potential is then presented for the simulation of the behavior of laminated composite plates.

  17. Phase-sensitive SQUIDs based on the 3D topological insulator HgTe

    NASA Astrophysics Data System (ADS)

    Maier, L.; Bocquillon, E.; Grimm, M.; Oostinga, J. B.; Ames, C.; Gould, C.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.

    2015-12-01

    Three-dimensional (3D) topological insulators represent a new class of materials in which transport is governed by Dirac surface states while the bulk remains insulating. Due to helical spin polarization of the surface states, the coupling of a 3D topological insulator to a nearby superconductor is expected to generate unconventional proximity induced p-wave superconductivity. We report here on the development and measurements of superconducting quantum interference devices on the surface of strained HgTe, a 3D topological insulator, as a potential tool to investigate this effect.

  18. 3D high resolution mineral phase distribution and seismic velocity structure of the transition zone: predicted by a full spherical-shell compressible mantle convection model

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Heister, T.; Van Den Berg, A. P.; Jacobs, M.; Bangerth, W.

    2011-12-01

    We present high resolution 3D results of the complex mineral phase distribution in the transition zone obtained by numerical modelling of mantle convection. We extend the work by [Jacobs and van den Berg, 2011] to 3D and illustrate the efficiency of adaptive mesh refinement for capturing the complex spatial distribution and sharp phase transitions as predicted by their model. The underlying thermodynamical model is based on lattice dynamics which allows to predict thermophysical properties and seismic wave speeds for the applied magnesium-endmember olivine-pyroxene mineralogical model. The use of 3D geometry allows more realistic prediction of phase distribution and seismic wave speeds resulting from 3D flow processes involving the Earth's transition zone and more significant comparisons with interpretations from seismic tomography and seismic reflectivity studies aimed at the transition zone. Model results are generated with a recently developed geodynamics modeling application based on dealII (www.dealii.org). We extended this model to incorporate both a general thermodynamic model, represented by P,T space tabulated thermophysical properties, and a solution strategy that allows for compressible flow. When modeling compressible flow in the so called truncated anelastic approximation framework we have to adapt the solver strategy that has been proven by several authors to be highly efficient for incompressible flow to incorporate an extra term in the continuity equation. We present several possible solution strategies and discuss their implication in terms of robustness and computational efficiency.

  19. Stereoscopic 3D Projections with MITAKA An Important Tool to Get People Interested in Astronomy and Space Science in Peru

    NASA Astrophysics Data System (ADS)

    Shiomi, Nemoto; Shoichi, Itoh; Hidehiko, Agata; Mario, Zegarra; Jose, Ishitsuka; Edwin, Choque; Adita, Quispe; Tsunehiko, Kato

    2014-02-01

    National Astronomical Observatory of Japan has developed space simulation software "Mitaka". By using Mitaka on two PCs and two projectors with polarizing filter, and look through polarized glasses, we can enjoy space travel in three dimensions. Any one can download Mitaka from anywhere in the world by Internet. But, it has been prepared only Japanese and English versions now. We improved a Mitaka Spanish version, and now we are making projections for local people. The experience of the universe in three dimensions is a very memorable for people, and it has become an opportunity to get interested in astronomy and space sciences. A 40 people capacity room, next o to our Planetarium, has been conditioned for 3D projections; also a portable system is available. Due to success of this new outreach system more 3D show rooms will be implemented within the country.

  20. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  1. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    PubMed

    Tracey, Jeff A; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R; Fisher, Robert N

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  2. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    USGS Publications Warehouse

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  3. Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation

    PubMed Central

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  4. Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2008-01-01

    The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the

  5. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system.

    PubMed

    Tao, Tianyang; Chen, Qian; Da, Jian; Feng, Shijie; Hu, Yan; Zuo, Chao

    2016-09-01

    In recent years, fringe projection has become an established and essential method for dynamic three-dimensional (3-D) shape measurement in different fields such as online inspection and real-time quality control. Numerous high-speed 3-D shape measurement methods have been developed by either employing high-speed hardware, minimizing the number of pattern projection, or both. However, dynamic 3-D shape measurement of arbitrarily-shaped objects with full sensor resolution without the necessity of additional pattern projections is still a big challenge. In this work, we introduce a high-speed 3-D shape measurement technique based on composite phase-shifting fringes and a multi-view system. The geometry constraint is adopted to search the corresponding points independently without additional images. Meanwhile, by analysing the 3-D position and the main wrapped phase of the corresponding point, pairs with an incorrect 3-D position or a considerable phase difference are effectively rejected. All of the qualified corresponding points are then corrected, and the unique one as well as the related period order is selected through the embedded triangular wave. Finally, considering that some points can only be captured by one of the cameras due to the occlusions, these points may have different fringe orders in the two views, so a left-right consistency check is employed to eliminate those erroneous period orders in this case. Several experiments on both static and dynamic scenes are performed, verifying that our method can achieve a speed of 120 frames per second (fps) with 25-period fringe patterns for fast, dense, and accurate 3-D measurement. PMID:27607632

  6. A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back

    NASA Technical Reports Server (NTRS)

    Morstadt, Robert A.

    2003-01-01

    In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.

  7. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  8. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.

  9. PLANETARY NEBULAE DETECTED IN THE SPITZER SPACE TELESCOPE GLIMPSE 3D LEGACY SURVEY

    SciTech Connect

    Zhang Yong; Hsia, Chih-Hao; Kwok, Sun E-mail: xiazh@hku.hk

    2012-01-20

    We used the data from the Spitzer Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) to investigate the mid-infrared (MIR) properties of planetary nebulae (PNs) and PN candidates. In previous studies of GLIMPSE I and II data, we have shown that these MIR data are very useful in distinguishing PNs from other emission-line objects. In the present paper, we focus on the PNs in the field of the GLIMPSE 3D survey, which has a more extensive latitude coverage. We found a total of 90 Macquarie-AAO-Strasbourg (MASH) and MASH II PNs and 101 known PNs to have visible MIR counterparts in the GLIMPSE 3D survey area. The images and photometry of these PNs are presented. Combining the derived IRAC photometry at 3.6, 4.5, 5.8, and 8.0 {mu}m with the existing photometric measurements from other infrared catalogs, we are able to construct spectral energy distributions (SEDs) of these PNs. Among the most notable objects in this survey is the PN M1-41, whose GLIMPSE 3D image reveals a large bipolar structure of more than 3 arcmin in extent.

  10. 3D Analysis of Remote-Sensed Heliospheric Data for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Yu, H. S.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Bisi, M. M.; Odstrcil, D.; Hong, S.; Kim, J.; Yi, J.; Tokumaru, M.; Gonzalez-Esparza, A.

    2015-12-01

    The University of California, San Diego (UCSD) time-dependent iterative kinematic reconstruction technique has been used and expanded upon for over two decades. It currently provides some of the most accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and magnetic fields. Precise time-dependent results are obtained at any solar distance in the inner heliosphere using current Solar-Terrestrial Environment Laboratory (STELab), Nagoya University, Japan IPS data sets, but the reconstruction technique can also incorporate data from other IPS systems from around the world. With access using world IPS data systems, not only can predictions using the reconstruction technique be made without observation dead times due to poor longitude coverage or system outages, but the program can itself be used to standardize observations of IPS. Additionally, these analyses are now being exploited as inner-boundary values to drive an ENLIL 3D-MHD heliospheric model in real time. A major potential of this is that it will use the more realistic physics of 3D-MHD modeling to provide an automatic forecast of CMEs and corotating structures up to several days in advance of the event/features arriving at Earth, with or without involving coronagraph imagery or the necessity of magnetic fields being used to provide the background solar wind speeds.

  11. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    NASA Astrophysics Data System (ADS)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions

  12. Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes.

    PubMed

    Park, Chang-Young; Fygenson, Deborah K; Saleh, Omar A

    2016-06-21

    Rod-like particles form solutions of technological and biological importance. In particular, biofilaments such as actin and microtubules are known to form a variety of phases, both in vivo and in vitro, whose appearance can be controlled by depletion, confinement, and electrostatic interactions. Here, we utilize DNA nanotubes to undertake a comprehensive study of the effects of those interactions on two particular rod-like phases: a 2D nematic phase consisting of aligned rods pressed against a glass surface, and a 3D bundled network phase. We experimentally measure the stability of these two phases over a range of depletant concentrations and ionic strengths, finding that the 2D phase is slightly more stable than the 3D phase. We formulate a quantitative model of phase stability based on consideration of pairwise rod-rod and rod-surface interactions; notably, we include a careful accounting of solution electrostatics interactions using an effective-charge strategy. The model is relatively simple and contains no free parameters, yet predicts phase boundaries in good agreement with the experiment. Our results indicate that electrostatic interactions, rather than depletion, are largely responsible for the enhanced stability of the 2D phase. This work provides insight into the polymorphism of rod-like solutions, indicating why certain phases appear, and providing a means (and a predictive model) for controlling those phases. PMID:27126684

  13. Three-Dimensional Integrated Characterization and Archiving System (3D-ICAS). Phase 1

    SciTech Connect

    1994-07-01

    3D-ICAS is being developed to support Decontamination and Decommissioning operations for DOE addressing Research Area 6 (characterization) of the Program Research and Development Announcement. 3D-ICAS provides in-situ 3-dimensional characterization of contaminated DOE facilities. Its multisensor probe contains a GC/MS (gas chromatography/mass spectrometry using noncontact infrared heating) sensor for organics, a molecular vibrational sensor for base material identification, and a radionuclide sensor for radioactive contaminants. It will provide real-time quantitative measurements of volatile organics and radionuclides on bare materials (concrete, asbestos, transite); it will provide 3-D display of the fusion of all measurements; and it will archive the measurements for regulatory documentation. It consists of two robotic mobile platforms that operate in hazardous environments linked to an integrated workstation in a safe environment.

  14. GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas

    2002-01-01

    This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more

  15. 3D reconstruction of tomographic images applied to largely spaced slices.

    PubMed

    Traina, A J; Prado, A H; Bueno, J M

    1997-12-01

    This paper presents a full reconstruction process of magnetic resonance images. The first step is to bring the acquired data from the frequency domain, using a Fast Fourier Transform algorithm. A Tomographic Image Interpolation is then used to transform a sequence of tomographic slices in an isotropic volume data set, a process also called 3D Reconstruction. This work describes an automatic method whose interpolation stage is based on a previous matching stage using Delaunay Triangulation. The reconstruction approach uses an extrapolation procedure that permits appropriate treatment of the boundaries of the object under analysis. PMID:9555624

  16. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.

    PubMed

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    2015-12-22

    Polyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging. In order to target these issues, a hybrid of PI with 3D-graphene (3D-C), 3D-C/PI, is developed here. This composite renders extraordinary enhancements of thermal conductivity (one order of magnitude) and electrical conductivity (10 orders of magnitude). It withstands and keeps a stable performance throughout various bending and thermal cycles, as well as the oxidative and aggressive environment of ground-based, simulated space environments. This makes this new hybrid film a suitable material for flexible space applications. PMID:26479496

  17. Effect of space balance 3D training using visual feedback on balance and mobility in acute stroke patients

    PubMed Central

    Ko, YoungJun; Ha, HyunGeun; Bae, Young-Hyeon; Lee, WanHee

    2015-01-01

    [Purpose] The purpose of the study was to determine the effects of balance training with Space Balance 3D, which is a computerized measurement and visual feedback balance assessment system, on balance and mobility in acute stroke patients. [Subjects and Methods] This was a randomized controlled trial in which 52 subjects were assigned randomly into either an experimental group or a control group. The experimental group, which contained 26 subjects, received balance training with a Space Balance 3D exercise program and conventional physical therapy interventions 5 times per week during 3 weeks. Outcome measures were examined before and after the 3-week interventions using the Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Postural Assessment Scale for Stroke Patients (PASS). The data were analyzed by a two-way repeated measures ANOVA using SPSS 19.0. [Results] The results revealed a nonsignificant interaction effect between group and time period for both groups before and after the interventions in the BBS score, TUG score, and PASS score. In addition, the experimental group showed more improvement than the control group in the BBS, TUG and PASS scores, but the differences were not significant. In the comparisons within the groups by time, both groups showed significant improvement in BBS, TUG, and PASS scores. [Conclusion] The Space Balance 3D training with conventional physical therapy intervention is recommended for improvement of balance and mobility in acute stroke patients. PMID:26157270

  18. Utility of 3D SPACE T2-weighted volumetric sequence in the localization of spinal dural arteriovenous fistula.

    PubMed

    Kannath, Santhosh Kumar; Alampath, Praveen; Enakshy Rajan, Jayadevan; Thomas, Bejoy; Sankara Sarma, P; Tirur Raman, Kapilamoorthy

    2016-07-01

    OBJECTIVE The aim of this study was to investigate the utility of a heavily T2-weighted volumetric MRI sequence (3D sampling perfection with application-optimized contrasts using different flip-angle evolutions [SPACE]) in the feeder localization of spinal dural arteriovenous fistula (SDAVF). METHODS Patients who were diagnosed with SDAVF and who had 3D SPACE source images available for review were identified from a retrospective review of medical records. A total of 16 patients were identified, and MR images were analyzed separately by 2 blinded observers. The accuracy of the observation and interobserver agreement were measured by Kendall's tau and kappa statistics. RESULTS The site of fistula was accurately predicted by Observers 1 and 2 in 81% and 88% of cases, respectively, which improved to 94% when the level was considered within 1 vertebral level. The observer agreement with gold-standard angiography and interobserver agreement were found to be highly significant (p < 0.0001). CONCLUSIONS The 3D SPACE MRI sequence is valuable in the precise detection of the site of SDAVF. It may help to tailor digital subtraction angiography and thereby reduce the radiation exposure, contrast load, and study time. PMID:26943253

  19. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  20. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  1. 3D modeling of building indoor spaces and closed doors from imagery and point clouds.

    PubMed

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-01-01

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. PMID:25654723

  2. 3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds

    PubMed Central

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-01-01

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. PMID:25654723

  3. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  4. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy

    PubMed Central

    Nakamura, Yuko; Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Okuyama, Shuhei; Choyke, Peter L.; Yamauchi, Toyohiko; Kobayashi, Hisataka

    2016-01-01

    Filopodia are highly organized cellular membrane structures that facilitate intercellular communication. Near infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that causes necrotic cell death. Three-dimensional low-coherent quantitative phase microscopy (3D LC-QPM) is based on a newly established low-coherent interference microscope designed to obtain serial topographic images of the cellular membrane. Herein, we report rapid involution of filopodia after NIR-PIT using 3D LC-QPM. For 3T3/HER2 cells, the number of filopodia decreased immediately after treatment with significant differences. Volume and relative height of 3T3/HER2 cells increased immediately after NIR light exposure, but significant differences were not observed. Thus, disappearance of filopodia, evaluated by 3D LC-QPM, is an early indicator of cell membrane damage after NIR-PIT. PMID:27446702

  5. Theoretical study on the reaction mechanism of the gas-phase H2/CO2/Ni(3D) system.

    PubMed

    Qin, Song; Hu, Changwei; Yang, Huaqing; Su, Zhishan

    2005-07-28

    The ground-state potential energy surface (PES) in the gas-phase H2/CO2/Ni(3D) system is investigated at the CCSD(T)//B3LYP/6-311+G(2d,2p) levels in order to explore the possible reaction mechanism of the reverse water gas shift reaction catalyzed by Ni(3D). The calculations predict that the C-O bond cleavage of CO2 assisted by co-interacted H2 is prior to the dissociation of the H2, and the most feasible reaction path for Ni(3D) + H2 + CO2 --> Ni(3D) + H2O + CO is endothermic by 12.5 kJ mol(-1) with an energy barrier of 103.9 kJ mol(-1). The rate-determining step for the overall reaction is predicted to be the hydrogen migration with water formation. The promotion effect of H2 on the cleavage of C-O bond in CO2 is also discussed and compared with the analogous reaction of Ni(3D) + CO2 --> NiO + CO, and the difference between triplet and singlet H2/CO2/Ni systems is also discussed. PMID:16833994

  6. On the Blow-up Criterion of 3D-NSE in Sobolev-Gevrey Spaces

    NASA Astrophysics Data System (ADS)

    Benameur, Jamel; Jlali, Lotfi

    2016-05-01

    In Benameur (Methods Appl 103:87-97, 2014), Benameur proved a blow-up result of the non regular solution of (NSE) in the Sobolev-Gevrey spaces. In this paper we improve this result, precisely we give an exponential type explosion in Sobolev-Gevrey spaces with less regularity on the initial condition. Fourier analysis and standard techniques are used.

  7. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    PubMed

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-01

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers. PMID:25325677

  8. Pitch–Catch Phase Aberration Correction of Multiple Isoplanatic Patches for 3-D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2013-01-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° × 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke. PMID:23475914

  9. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  10. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  11. Minimum slice spacing required to reconstruct 3D shape for serial sections of breast tissue for comparison with medical imaging

    NASA Astrophysics Data System (ADS)

    Reis, Sara; Eiben, Bjoern; Mertzanidou, Thomy; Hipwell, John; Hermsen, Meyke; van der Laak, Jeroen; Pinder, Sarah; Bult, Peter; Hawkes, David

    2015-03-01

    There is currently an increasing interest in combining the information obtained from radiology and histology with the intent of gaining a better understanding of how different tumour morphologies can lead to distinctive radiological signs which might predict overall treatment outcome. Relating information at different resolution scales is challenging. Reconstructing 3D volumes from histology images could be the key to interpreting and relating the radiological image signal to tissue microstructure. The goal of this study is to determine the minimum sampling (maximum spacing between histological sections through a fixed surgical specimen) required to create a 3D reconstruction of the specimen to a specific tolerance. We present initial results for one lumpectomy specimen case where 33 consecutive histology slides were acquired.

  12. Raman Spectroscopic Investigation of the Superionic Phase Transition in Cs3D(SO4)2

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiyuki; Kakuma, Takayuki; Muta, Shinnosuke

    2016-06-01

    The superionic phase transition of Cs3D(SO4)2 (TCDS) is investigated using Raman scattering and differential scanning calorimetry (DSC) measurements. It is confirmed that TCDS undergoes a superionic phase transition at 415.1 K. The result of the Raman scattering measurement at room temperature shows that TCDS does not form the dimer structure SO4⋯D⋯SO4. It suggests that this phase transition is not caused by the destruction of hydrogen bonds forming a dimer structure.

  13. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China

    NASA Astrophysics Data System (ADS)

    Hou, Weisheng; Yang, Liang; Deng, Dongcheng; Ye, Jing; Clarke, Keith; Yang, Zhijun; Zhuang, Wenming; Liu, Jianxiong; Huang, Jichun

    2016-04-01

    Urban underground spaces (UUS), especially those containing natural resources that have not yet been utilized, have been recognized as important for future sustainable development in large cities. One of the key steps in city planning is to estimate the quality of urban underground space resources, since they are major determinants of suitable land use. Yet geological constraints are rarely taken into consideration in urban planning, nor are the uncertainties in the quality of the available assessments. Based on Fuzzy Set theory and the analytic hierarchy process, a 3D stepwise process for the quality assessment of geotechnical properties of natural resources in UUS is presented. The process includes an index system for construction factors; area partitioning; the extraction of geological attributes; the creation of a relative membership grade matrix; the evaluation of subject and destination layers; and indeterminacy analysis. A 3D geological model of the study area was introduced into the process that extracted geological attributes as constraints. This 3D geological model was coupled with borehole data for Foshan City, Guangdong province, South China, and the indeterminacies caused by the cell size and the geological strata constraints were analyzed. The results of the case study show that (1) a relatively correct result can be obtained if the cell size is near to the average sampling distance of the boreholes; (2) the constraints of the 3D geological model have a major role in establishing the UUS quality level and distribution, especially at the boundaries of the geological bodies; and (3) the assessment result is impacted by an interaction between the cell resolution and the geological model used.

  14. On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay

    NASA Astrophysics Data System (ADS)

    Keller, Lukas M.; Holzer, Lorenz; Wepf, Roger; Gasser, Philippe; Münch, Beat; Marschall, Paul

    The evaluation and optimization of radioactive disposal systems requires a comprehensive understanding of mass transport processes. Among others, mass transport in porous geomaterials depends crucially on the topology and geometry of the pore space. Thus, understanding the mechanism of mass transport processes ultimately requires a 3D characterization of the pore structure. Here, we demonstrate the potential of focused ion beam nanotomography (FIB-nT) in characterizing the 3D geometry of pore space in clay rocks, i.e. Opalinus clay. In order to preserve the microstructure and to reduce sample preparation artefacts we used high pressure freezing and subsequent freeze drying to prepare the samples. Resolution limitations placed the lower limit in pore radii that can be analyzed by FIB-nT to about 10-15 nm. Image analysis and the calculation of pore size distribution revealed that pores with radii larger than 15 nm are related to a porosity of about 3 vol.%. To validate the method, we compared the pores size distribution obtained by FIB-nT with the one obtained by N 2 adsorption analysis. The latter yielded a porosity of about 13 vol.%. This means that FIB-nT can describe around 20-30% of the total pore space. For pore radii larger than 15 nm the pore size distribution obtained by FIB-nT and N 2 adsorption analysis were in good agreement. This suggests that FIB-nT can provide representative data on the spatial distribution of pores for pore sizes in the range of about 10-100 nm. Based on the spatial analysis of 3D data we extracted information on the spatial distribution of pore space geometrical properties.

  15. Finding Space in Second Life, NASA Education and Public Outreach in a 3D Metaverse

    NASA Astrophysics Data System (ADS)

    Ireton, F. M.

    2007-12-01

    Second Life (SL) is a virtual 3D simulation or metaverse with almost eight million users worldwide. SL has seen explosive growth in the four years it has been available and hosts a number of educational and institutional "islands" or sims. Federal agencies with an SL presence include NASA and NOAA. There are several educational institutions and education specific sims in SL. At any one time there may be as many as 40,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars are able to move around the sim islands by walking or flying and move from island to island or remote locations by teleporting. While a big part of the Second Life experience deals with avatar interactions and exploring, there is an active community of builders who create the scenery, buildings, and other artifacts of the SL world including clothing and other personal items. SL builders start with basic shapes and through size manipulation on three axis and adding texture to the shapes create a myriad of objects - a 3D world. This paper will deal with the design and creation of exhibits halls for NASA's LRO/LCROSS mission slated for launch October 2008 and a NASA sponsored aeronautical engineering student challenge contest. The exhibit halls will be placed on the NASA sponsored Co-Lab sim and will feature models of the spacecraft and the instruments carried on board and student exhibits. There also will be storyboards with information about the mission and contest. Where appropriate there will be links to external websites for further information. The exhibits will be interactive to support the outreach efforts associated with the mission and the contest. Upon completion of the visit to the LRO/LCROSS hall participants will have the opportunity to visit a near by sandbox - SL parlance for a building area - to design and build a spacecraft from a suite of instruments provided for them depending on their area of interest. Real limitations such as mass

  16. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Development and comparison of projection and image space 3D nodule insertion techniques

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  18. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.

  19. RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark

    SciTech Connect

    Strydom, G.; Epiney, A. S.

    2012-07-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requires participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)

  20. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space

    SciTech Connect

    Hui, Lam; LoVerde, Marilena; Gaztanaga, Enrique

    2007-11-15

    It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separation of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in

  1. Neural correlates of visuospatial consciousness in 3D default space: insights from contralateral neglect syndrome.

    PubMed

    Jerath, Ravinder; Crawford, Molly W

    2014-08-01

    One of the most compelling questions still unanswered in neuroscience is how consciousness arises. In this article, we examine visual processing, the parietal lobe, and contralateral neglect syndrome as a window into consciousness and how the brain functions as the mind and we introduce a mechanism for the processing of visual information and its role in consciousness. We propose that consciousness arises from integration of information from throughout the body and brain by the thalamus and that the thalamus reimages visual and other sensory information from throughout the cortex in a default three-dimensional space in the mind. We further suggest that the thalamus generates a dynamic default three-dimensional space by integrating processed information from corticothalamic feedback loops, creating an infrastructure that may form the basis of our consciousness. Further experimental evidence is needed to examine and support this hypothesis, the role of the thalamus, and to further elucidate the mechanism of consciousness. PMID:25049208

  2. 3D Reconfigurable NoC Multiprocessor Imaging Interferometer for Space Climate

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the development of an imaging interferometer for long-term observations of solar activity related events. Heliospheric physics phenomena are responsible for causing irregularities to the ionospheric-magnetospheric plasmasphere. Distinct signatures of these events are captured and studied over long periods of time deducting crucial conclusions about the short-term Space Weather and in the long run about Space Climate. The new prototype features an eight-channel implementation. The available hardware resources permit a 256- channel configuration for accurate beam scanning of the Earth's plasmasphere. A dual-polarization scheme has been implemented for obtaining accurate measurements. The system is based on state-of-the-art three-dimensional reconfigurable logic and exhibits a performance increase in the range of 70% compared to similar instruments in operation. Special circuits allow measurements of the most intense heliospheric physics events to be fully captured and analyzed.

  3. 3D Embedded Reconfigurable SoC for Expediting Magnetometric Space Missions

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the development of a state-of-the-art three-dimensional embedded reconfigurable System-on-Chip (SoC) for accelerating the design of future magnetometric space missions. This involves measurements of planetary magnetic fields or measurements of heliospheric physics events' signatures superimposed on the aggregate measurements of the stronger planetary fields. The functionality of the embedded core is fully customizable, therefore, its operation is independent of the magnetic sensor being used. Standard calibration procedures still apply for setting the magnetometer measurements to the desired initial state and removing any seriatim interference inferred by the adjacent environment. The system acts as a pathfinder for future high-resolution heliospheric space missions.

  4. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  5. Effects of scene content and layout on the perceived light direction in 3D spaces.

    PubMed

    Xia, Ling; Pont, Sylvia C; Heynderickx, Ingrid

    2016-08-01

    The lighting and furnishing of an interior space (i.e., the reflectance of its materials, the geometries of the furnishings, and their arrangement) determine the appearance of this space. Conversely, human observers infer lighting properties from the space's appearance. We conducted two psychophysical experiments to investigate how the perception of the light direction is influenced by a scene's objects and their layout using real scenes. In the first experiment, we confirmed that the shape of the objects in the scene and the scene layout influence the perceived light direction. In the second experiment, we systematically investigated how specific shape properties influenced the estimation of the light direction. The results showed that increasing the number of visible faces of an object, ultimately using globally spherical shapes in the scene, supported the veridicality of the estimated light direction. Furthermore, symmetric arrangements in the scene improved the estimation of the tilt direction. Thus, human perception of light should integrally consider materials, scene content, and layout. PMID:27548091

  6. 3D optical phase reconstruction within PMMA samples using a spectral OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel d. J.; De La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2015-08-01

    The optical coherence tomography (OCT) technique has proved to be a useful method in biomedical areas such as ophthalmology, dentistry, dermatology, among many others. In all these applications the main target is to reconstruct the internal structure of the samples from which the physician's expertise may recognize and diagnose the existence of a disease. Nowadays OCT has been applied one step further and is used to study the mechanics of some particular type of materials, where the resulting information involves more than just their internal structure and the measurement of parameters such as displacements, stress and strain. Here we report on a spectral OCT system used to image the internal 3D microstructure and displacement maps from a PMMA (Poly-methyl-methacrylate) sample, subjected to a deformation by a controlled three point bending and tilting. The internal mechanical response of the polymer is shown as consecutive 2D images.

  7. Microwave and camera sensor fusion for the shape extraction of metallic 3D space objects

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1989-01-01

    The vacuum of space presents special problems for optical image sensors. Metallic objects in this environment can produce intense specular reflections and deep shadows. By combining the polarized RCS with an incomplete camera image, it has become possible to better determine the shape of some simple three-dimensional objects. The radar data are used in an iterative procedure that generates successive approximations to the target shape by minimizing the error between computed scattering cross-sections and the observed radar returns. Favorable results have been obtained for simulations and experiments reconstructing plates, ellipsoids, and arbitrary surfaces.

  8. Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin

    2016-09-01

    Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.

  9. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  10. Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase

    NASA Astrophysics Data System (ADS)

    Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.

    2015-09-01

    We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.

  11. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. PMID:22776549

  12. Tracing the dark matter sheet in phase space

    NASA Astrophysics Data System (ADS)

    Abel, Tom; Hahn, Oliver; Kaehler, Ralf

    2012-11-01

    The primordial velocity dispersion of dark matter is small compared to the velocities attained during structure formation. The initial density distribution is close to uniform, and it occupies an initial sheet in phase space that is single valued in velocity space. Because of gravitational forces, this 3D manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured 3D mesh moving in 6D phase space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics and count the number of streams as well as their individual contributions to any point in configuration space. We calculate the bulk velocity, local velocity dispersions and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.

  13. The organization and management of 3D multi-source space models data in GeoGlobe

    NASA Astrophysics Data System (ADS)

    Chen, Xinqin; Zhang, Yongzhi; Yuan, Tao; Pan, Jun

    2008-12-01

    The traditional two-dimensional and three-dimensional GIS can no longer satisfy people's requirement to understand the real world. So, the new three-dimensional digital terrestrial GIS based on digital earth has been developed, which can give users more intuitive information. Further more, in a more realistic manner, the new three-dimensional digital terrestrial GIS can treatment Multi-source space information of models, It can indicate the variety, the quantity and the quality of spatial objects, the spatial location of these objects and the spatial and temporal distribution of the phenomena. This paper is based on GeoGlobe digital terrestrial platform. It requires some fast scheduling data method. Because the data organization and management methods in the traditional 3D GIS are no longer suitable according to the requirement of data scheduling in the digital earth theory, it is necessary to put forward a more reasonable and conformable data structure to implement clipping data scheduling. Advances one method, which takes geometric object model systems to deal with multi-source space model data and takes reasonable data organization, supports quick data scheduling for digital earth and constructs one 3D model database which is fit for digital earth's use.

  14. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  15. Nonsinusoidal Current-Phase Relationship in Josephson Junctions from the 3D Topological Insulator HgTe

    NASA Astrophysics Data System (ADS)

    Sochnikov, Ilya; Maier, Luis; Watson, Christopher A.; Kirtley, John R.; Gould, Charles; Tkachov, Grigory; Hankiewicz, Ewelina M.; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Moler, Kathryn A.

    2015-02-01

    We use superconducting quantum interference device microscopy to characterize the current-phase relation (CPR) of Josephson junctions from the three-dimensional topological insulator HgTe (3D HgTe). We find clear skewness in the CPRs of HgTe junctions ranging in length from 200 to 600 nm. The skewness indicates that the Josephson current is predominantly carried by Andreev bound states with high transmittance, and the fact that the skewness persists in junctions that are longer than the mean free path suggests that the effect may be related to the helical nature of the Andreev bound states in the surface of HgTe. These experimental results suggest that the topological properties of the normal state can be inherited by the induced superconducting state, and that 3D HgTe is a promising material for realizing the many exciting proposals that require a topological superconductor.

  16. Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2

    NASA Astrophysics Data System (ADS)

    Neupane, M.; Xu, S.-Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, Chang; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, Fangcheng; Hasan, M. Z.

    2014-03-01

    Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport. Using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface, which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity is seen in samples where the mobility far exceeds 20,000 cm2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications, which can also incorporate topological quantum phenomena in a large gap setting. This work is primarily supported by U.S. DOE and Princeton University.

  17. Beam dynamics study of RFQ for CADS with a 3D space-charge-effect

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhang, Zhi-Lei; Qi, Xin; Xu, Xian-Bo; He, Yuan; Yang, Lei

    2014-03-01

    The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.

  18. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    NASA Technical Reports Server (NTRS)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  19. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images.

    PubMed

    Cusack, R; Papadakis, N

    2002-07-01

    The phase, as well as the magnitude, of MRI images can carry useful information. It may be used to encode flow or temperature, or to map the magnetic field for the undistorting of EPIs and automated shimming. In all cases, we measure the extra spin given to nuclei. Unfortunately, we can only measure the final phase of the spins: the rotation is wrapped into the range [-pi, +pi], and to obtain a measure of the parameter of interest the missing multiples of 2pi must be replaced--a process known as phase unwrapping. While simple in principle, standard phase unwrapping algorithms fail catastrophically in the presence of even small amounts of noise. Here we present a new algorithm for robust three-dimensional phase unwrapping, in which unwrapping is guided, so that it initially works on less noisy regions. We test the algorithm on simulated phase data, and on maps of magnetic field, which were then used to successfully undistort EPI images. The unwrapping algorithm could be directly applied to other kinds of phase data. PMID:12169259

  20. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  1. The Relationship Between Glass Formability and the Properties of the Bcc Phase in TITANIUM-3D Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sinkler, Wharton

    The present study concerns glass formation and the beta (bcc) phase in Ti-3d metal systems. beta phase stability is related to amorphization, because the formability and stability of metallic glasses depends on the relative thermodynamic instability of chemically disordered crystalline solid solution phases (Johnson 1986). Correlations are found in this series of alloys which support a connection between electronic characteristics of the bcc phase and the tendency for glass formation. Electron irradiation-induced amorphization in Ti-3d metal systems is investigated as a function of temperature and DeltaN, the group number difference between Ti and the solute. DeltaN is made continuous by using a series of pseudobinary Laves compounds Ti(M1_{x}M2 _{(1-x)}_2. For DeltaN <= 2.2 (between TiCr_2 and TiMn _2) low temperature irradiation damage induces oriented precipitation of the beta (bcc) solid solution phase from the damaged compound. For DeltaN > 2.2 amorphization occurs. beta-phase precipitation under irradiation suggests that beta phase stability is continuously enhanced as Delta N decreases. Diffuse omega scattering in the quenched Ti-Cr beta phase is investigated using electron diffraction and low temperature electron irradiation. A new model of the short range ordered atomic displacements causing the diffuse scattering is developed. Based on this model, it is proposed that the structure reflects chemical short range order. This is supported by irradiation results on the beta phase. A correlation is found between the diffuse scattering and the valence electron concentration. The explanation proposed for this correlation is that the chemical ordering in the beta phase is driven by Fermi surface nesting. Results of annealing of quenched beta Ti-Cr are presented, and are compared with reports of annealing-induced amorphization of this phase (Blatter et al. 1988; Yan et al. 1993). Amorphization is not reproduced. A metastable compound phase beta ^{''} precipitates

  2. High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2015-10-15

    High-speed three dimensional imaging based on two-wavelength parallel-phase-shift interferometry is presented. The technique is demonstrated using a high-resolution polarization-based Linnik interferometer operating with three high-speed phase-masked CCD cameras and two quasi-monochromatic modulated light sources. The two light sources allow for phase unwrapping the single source wrapped phase so that relatively high step profiles having heights as large as 3.7 μm can be imaged in video rate with ±2  nm accuracy and repeatability. The technique is validated using a certified very large scale integration (VLSI) step standard followed by a demonstration from the semiconductor industry showing an integrated chip with 2.75 μm height copper micro pillars at different packing densities. PMID:26469586

  3. Characterization Method for 3D Substructure of Nuclear Cell Based on Orthogonal Phase Images

    PubMed Central

    Ji, Ying; Liang, Minjie; Hua, Tingting; Xu, Yuanyuan; Xin, Zhiduo; Wang, Yawei

    2015-01-01

    A set of optical models associated with blood cells are introduced in this paper. All of these models are made up of different parts possessing symmetries. The wrapped phase images as well as the unwrapped ones from two orthogonal directions related to some of these models are obtained by simulation technique. Because the phase mutation occurs on the boundary between nucleus and cytoplasm as well as on the boundary between cytoplasm and environment medium, the equation of inflexion curve is introduced to describe the size, morphology, and substructure of the nuclear cell based on the analysis of the phase features of the model. Furthermore, a mononuclear cell model is discussed as an example to verify this method. The simulation result shows that characterization with inflexion curve based on orthogonal phase images could describe the substructure of the cells availably, which may provide a new way to identify the typical biological cells quickly without scanning. PMID:26355740

  4. Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo

    PubMed Central

    2013-01-01

    Background Cardiovascular-MR (CMR) is the gold standard for quantifying myocardial infarction using late gadolinium enhancement (LGE) technique. Both 2D- and 3D-LGE-sequences are used in clinical practise and in clinical and experimental studies for infarct quantification. Therefore the aim of this study was to investigate if image acquisitions with 2D- and 3D-LGE show the same infarct size in patients and ex vivo. Methods Twenty-six patients with previous myocardial infarction who underwent a CMR scan were included. Images were acquired 10-20 minutes after an injection of 0.2 mmol/kg gadolinium-based contrast agent. Two LGE-sequences, 3D-inversion recovery (IR) and 2D-phase-sensitive (PS) IR, were used in all patients to quantify infarction size. Furthermore, six pigs with reperfused infarction in the left anterior descending artery (40 minutes occlusion and 4 hours of reperfusion) were scanned with 2D- and 3D-LGE ex vivo. A high resolution T1-sequence was used as reference for the infarct quantification ex vivo. Spearman’s rank-order correlation, Wilcoxon matched pairs test and bias according to Bland-Altman was used for comparison of infarct size with different LGE-sequences. Results There was no significant difference between the 2D- and 3D-LGE sequence in left ventricular mass (LVM) (2D: 115 ± 25 g; 3D: 117 ± 24 g: p = 0.35). Infarct size in vivo using 2D- and 3D-LGE showed high correlation and low bias for both LGE-sequences both in absolute volume of infarct (r = 0.97, bias 0.47 ± 2.1 ml) and infarct size as part of LVM (r = 0.94, bias 0.16 ± 2.0%). The 2D- and 3D-LGE-sequences ex vivo correlated well (r = 0.93, bias 0.67 ± 2.4%) for infarct size as part of the LVM. The IR LGE-sequences overestimated infarct size as part of the LVM ex vivo compared to the high resolution T1-sequence (bias 6.7 ± 3.0%, 7.3 ± 2.7% for 2D-PSIR and 3D-IR respectively, p < 0.05 for both). Conclusions Infarct quantification with

  5. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to

  6. Phase microscope imaging in phase space

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Mehta, Shalin B.

    2016-03-01

    Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.

  7. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  8. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  9. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  10. 3D visualization of the lumbar facet joint after degeneration using propagation phase contrast micro-tomography

    PubMed Central

    Cao, Yong; Zhang, Yi; Yin, Xianzheng; Lu, Hongbin; Hu, Jianzhong; Duan, Chunyue

    2016-01-01

    Lumbar facet joint (LFJ) degeneration is believed to be an important cause of low back pain (LBP). Identifying the morphological changes of the LFJ in the degeneration process at a high-resolution level could be meaningful for our better understanding of the possible mechanisms underlying this process. In the present study, we determined the 3D morphology of the LFJ using propagation phase contrast micro-tomography (PPCT) in rats to assess the subtle changes that occur during the degeneration process. PPCT provides vivid 3D images of micromorphological changes in the LFJ during its degeneration process, and the changes in the subchondral bone occurred earlier than in the cartilage during the early stage of degeneration of the LFJ. The delineation of this alteration was similar to that with the histological method. Our findings demonstrated that PPCT could serve as a valuable tool for 3D visualization of the morphology of the LFJ by providing comprehensive information about the cartilage and the underlying subchondral bone and their changes during degeneration processes. It might also have great potential for providing effective diagnostic tools to track changes in the cartilage and to evaluate the effects of therapeutic interventions for LFJ degeneration in preclinical studies. PMID:26907889

  11. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  12. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach. PMID:26560789

  13. Vibration measurements based on demodulating the phase of a fiber 3dB-coupler Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Li, Min; Xie, Fang; Ren, Junyu

    2009-11-01

    A fiber interferometric vibration measurement system which is based on demodulating the phase of a fiber Michelson interferometer which is made with a fiber 3dB-coupler is presented. In the work, the system employed the characteristics of fiber Brag gratings (FBGs) to interleave two fiber Michelson interferometers which share almost the same part of the main optical path. One of the fiber interferometers is used to stabilize the system, employing an electronic feedback loop to drive a piezoelectric actuator to tune the optical path of the reference beam in order to keep the interferometer in quadrature state. By this way, the low frequency drifts in the phase of the interferometric signals which are resulted from environmental disturbances are compensated for. The other one is used to perform the measurement task. By employing the characteristics of 3dB-coupler, the interferometric signals from the two outputs of the 3dB-couper are 180º out of phase. The two interferometric signals are input into an electronic processor and convert into currents, which are linear to the power of the optical interferometric light. The signals are collected by NI USB-5132 acquisition card and processed by a program in a personal computer. The measurement system is configured with fiber and fiber components which are integrated together. As the cutoff frequency of the feedback loop is 1.5Hz, the measurement system is capable of measuring vibration with frequencies bigger than 1.5Hz and the amplitude of the measured vibration is not limited.

  14. Apply Multi-baseline SAR Interferometry on Long Term Space-borne SAR Data for 3-D Reconstruction in Forest and Urban Areas

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Zebker, H. A.

    2014-12-01

    Multi Baseline Synthetic Aperture Radar (MB SAR) Tomography is a promising extension to traditional SAR interferometry. By coherently combining SAR images acquired from different baseline location, MB SAR Tomography can achieve unprecedentedly full 3-D imaging of volumetric and layover scatters for each SAR cell.Its capability of 3-D reflectivity reconstruction and multiple scatters separation is enormously helpful for different scientific applications in forestry, agriculture , glaciology etc. However, in order to apply on repeat-pass space borne interferometric dataset, the Fourier Based MB SAR Tomography is generally affected by unsatisfactory imaging quality due to low number of baseline with unequal distribution, atmospheric phase disturbance and temporal decorrelation. In this paper, we propose different signal processing techniques for overcoming these limitations in oder for a better image quality. 1) we develop a robust interpolator to translate the nonuniform greed to uniform one, largely improved the image quality 2) we apply Robust Capon Spectrum Estimation method to improve the resolution and interference of uncertainty in steering matrix. 3) for atmosphere disturbance and radiometric , we select certain flat and known area from image as a estimation for atmospheric offset. We first test our result in simulated SAR data. Comparing with Fourier based method, the result shows better sidelobe suppression and robustness to unknown multiplicative phase noise. Finally, we test the algorithm using real ALOS PALSAR L-band data, acquired between August 2009 to February 2011 near Harvard Forest Area, MA, USA.

  15. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers.

    PubMed

    Zhao, Yunzhe; Brun, Emmanuel; Coan, Paola; Huang, Zhifeng; Sztrókay, Aniko; Diemoz, Paul Claude; Liebhardt, Susanne; Mittone, Alberto; Gasilov, Sergei; Miao, Jianwei; Bravin, Alberto

    2012-11-01

    Mammography is the primary imaging tool for screening and diagnosis of human breast cancers, but ~10-20% of palpable tumors are not detectable on mammograms and only about 40% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic method for 3D diagnosis of human breast cancers. By combining phase contrast X-ray imaging with an image reconstruction method known as equally sloped tomography, we imaged a human breast in three dimensions and identified a malignant cancer with a pixel size of 92 μm and a radiation dose less than that of dual-view mammography. According to a blind evaluation by five independent radiologists, our method can reduce the radiation dose and acquisition time by ~74% relative to conventional phase contrast X-ray tomography, while maintaining high image resolution and image contrast. These results demonstrate that high-resolution 3D diagnostic imaging of human breast cancers can, in principle, be performed at clinical compatible doses. PMID:23091003

  16. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  17. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  18. Phase-retrieved optical projection tomography for 3D imaging through scattering layers

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Di Battista, Diego; Giasafaki, Georgia; Psycharakis, Stylianos; Liapis, Evangelos; Zacharopoulos, Athanasios; Zacharakis, Giannis

    2016-03-01

    Recently great progress has been made in biological and biomedical imaging by combining non-invasive optical methods, novel adaptive light manipulation and computational techniques for intensity-based phase recovery and three dimensional image reconstruction. In particular and in relation to the work presented here, Optical Projection Tomography (OPT) is a well-established technique for imaging mostly transparent absorbing biological models such as C. Elegans and Danio Rerio. On the contrary, scattering layers like the cocoon surrounding the Drosophila during the pupae stage constitutes a challenge for three dimensional imaging through such a complex structure. However, recent studies enabled image reconstruction through scattering curtains up to few transport mean free paths via phase retrieval iterative algorithms allowing to uncover objects hidden behind complex layers. By combining these two techniques we explore the possibility to perform a three dimensional image reconstruction of fluorescent objects embedded between scattering layers without compromising its structural integrity. Dynamical cross correlation registration was implemented for the registration process due to translational and flipping ambiguity of the phase retrieval problem, in order to provide the correct aligned set of data to perform the back-projection reconstruction. We have thus managed to reconstruct a hidden complex object between static scattering curtains and compared with the effective reconstruction to fully understand the process before the in-vivo biological implementation.

  19. The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model

    NASA Astrophysics Data System (ADS)

    Wang, Zhejiang; He, Qiaodeng; Wang, Deli

    2008-03-01

    Biot-flow and squirt-flow are the two most important fluid flow mechanisms in porous media containing fluids. Based on the BISQ (Biot-Squirt) model where the two mechanisms are treated simultaneously, the elastic wave-field simulation in the porous medium is limited to two-dimensions and two-components (2D2C) or two-dimensions and three-components (2D3C). There is no previous report on wave simulation in three-dimensions and three-components. Only through three dimensional numerical simulations can we have an overall understanding of wave field coupling relations and the spatial distribution characteristics between the solid and fluid phases in the dual-phase anisotropic medium. In this paper, based on the BISQ equation, we present elastic wave propagation in a three dimensional dual-phase anisotropic medium simulated by the staggered-grid high-order finite-difference method. We analyze the resulting wave fields and show that the results are an improvement.

  20. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  1. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGESBeta

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  2. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  3. Writing Position Vectors in 3-d Space: A Student Difficulty With Spherical Unit Vectors in Intermediate E&M

    NASA Astrophysics Data System (ADS)

    Hinrichs, Brant E.

    2010-10-01

    An intermediate E&M course (i.e. based on Griffiths [1]) involves the extensive integration of vector calculus concepts and notation with abstract physics concepts like field and potential. We hope that students take what they have learned in their math courses and apply it to help represent and make sense of the physics. To assess how well students are able to do this integration and application I have developed several simple concept tests on position and unit vectors in non-Cartesian coordinate systems as they are used in intermediate E&M. In this paper I describe one of these concept tests and present results that show both undergraduate physics majors and physics graduate students have difficulty using spherical unit vectors to write position vectors in 3-d space.

  4. Robust initialization of 2D-3D image registration using the projection-slice theorem and phase correlation

    SciTech Connect

    Bom, M. J. van der; Bartels, L. W.; Gounis, M. J.; Homan, R.; Timmer, J.; Viergever, M. A.; Pluim, J. P. W.

    2010-04-15

    Purpose: The image registration literature comprises many methods for 2D-3D registration for which accuracy has been established in a variety of applications. However, clinical application is limited by a small capture range. Initial offsets outside the capture range of a registration method will not converge to a successful registration. Previously reported capture ranges, defined as the 95% success range, are in the order of 4-11 mm mean target registration error. In this article, a relatively computationally inexpensive and robust estimation method is proposed with the objective to enlarge the capture range. Methods: The method uses the projection-slice theorem in combination with phase correlation in order to estimate the transform parameters, which provides an initialization of the subsequent registration procedure. Results: The feasibility of the method was evaluated by experiments using digitally reconstructed radiographs generated from in vivo 3D-RX data. With these experiments it was shown that the projection-slice theorem provides successful estimates of the rotational transform parameters for perspective projections and in case of translational offsets. The method was further tested on ex vivo ovine x-ray data. In 95% of the cases, the method yielded successful estimates for initial mean target registration errors up to 19.5 mm. Finally, the method was evaluated as an initialization method for an intensity-based 2D-3D registration method. The uninitialized and initialized registration experiments had success rates of 28.8% and 68.6%, respectively. Conclusions: The authors have shown that the initialization method based on the projection-slice theorem and phase correlation yields adequate initializations for existing registration methods, thereby substantially enlarging the capture range of these methods.

  5. Dimensional phase transition from 1D behavior to a 3D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Morath, Denis; Straßel, Dominik; Eggert, Sebastian

    The emergence of new properties from low-dimensional building blocks is a universal theme in different areas in physics. The investigation of transitions between isolated and coupled low-dimensional systems promises to reveal new phenomena and exotic phases. Interacting 1D bosons, which are coupled in a two-dimensional array, are maybe the most fundamental example of a system which illustrates the concept of a dimensional phase transition. However, recent experiments using ultracold gases have shown a surprising discrepancy between theory and experiment and it is far from obvious if the power laws from the underlying 1D theory can predict the transition temperature and order parameter correctly for all interaction strengths. Using a combination of large-scale Quantum Monte-Carlo simulations and chain mean-field calculations, we show that the behavior of the ordering temperature as a function of inter-chain coupling strength does not follow a universal powerlaw, but also depends strongly on the filling

  6. BOAST-VHS. 3D 3-Phase Black Oil Applied Simulator

    SciTech Connect

    Chang, M.; Sarathi, P.; Heemstra, R.J.; Cheng, A.M.; Pautz, J.F.

    1992-01-01

    BOAST-VHS is a three-dimensional, three-phase, finite-difference black oil simulator developed for use on a personal computer. It simulates isothermal, Darcy flow in three dimensions. The simulator assumes that the reservoir fluids can be described by three fluid phases (oil, gas, and water) of constant composition whose properties are functions of pressure only. BOAST-VHS can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and imbibition mechanisms. BOAST-VHS is recommended as a cost-effective reservoir simulation tool for the study of such problems as primary depletion, pressure maintenance (by water and/or gas injection) and basic secondary recovery operations (such as waterflooding) in a black oil reservoir using slanted or horizontal wells, in addition to conventional vertical wells. The well model in BOAST-VHS permits specification of rate or pressure constraints on well performance. The model also allows the user to add or recomplete wells during the period represented by the simulation. BOAST-VHS has flexible initialization capabilities, a bubble point tracking scheme, an automatic time-step control method, a zero transmissibility option (inactive grid blocks), and a material balance check on solution stability.

  7. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array.

    PubMed

    Wang, Yang; Kumar, Aishwarya; Wu, Tsung-Yao; Weiss, David S

    2016-06-24

    Although the quality of individual quantum bits (qubits) and quantum gates has been steadily improving, the number of qubits in a single system has increased quite slowly. Here, we demonstrate arbitrary single-qubit gates based on targeted phase shifts, an approach that can be applied to atom, ion, or other atom-like systems. These gates are highly insensitive to addressing beam imperfections and have little cross-talk, allowing for a dramatic scaling up of qubit number. We have performed gates in series on 48 individually targeted sites in a 40% full 5 by 5 by 5 three-dimensional array created by an optical lattice. Using randomized benchmarking, we demonstrate an average gate fidelity of 0.9962(16), with an average cross-talk fidelity of 0.9979(2) (numbers in parentheses indicate the one standard deviation uncertainty in the final digits). PMID:27339984

  8. Noninvasive 3D elasticity mapping using phase-stabilized optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Li, Jiasong; Wang, Shang; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We demonstrate a novel method for noninvasive elasticity mapping in three dimensions using phase stabilized swept source optical coherence elastography (PhS-SSOCE). By calculating the velocity in all radial directions from the origin of the induced shear wave, a volumetric elasticity map of the sample was generated. Due to the submicrometer spatial sensitivity of PhS-SSOCE, the loading force and the induced deformation amplitude can be minimal, thus preserving the structure and function of delicate tissues such as the cornea and sclera of the eye. Tissue mimicking agar phantoms were utilized for proof of concept testing and the results show that this method can noninvasively provide a three dimensional estimation of sample elasticity.

  9. 3D CFD Modeling and Simulation of NREL Phase VI Rotor

    NASA Astrophysics Data System (ADS)

    Mahu, R.; Popescu, F.; Frunzulicǎ, F.; Dumitrache, Al.

    2011-09-01

    Numerical modeling and simulation of the NREL Phase VI Rotor operation was attempted using a commercial CFD code (ANSYS FLUENT® v12.1). The extensive experimental data that was collected at the NASA Ames Research Center 80'×120' Wind Tunnel allowed a detailed evaluation of the numerical result, in order to asses the accuracy of the numerical modeling approach. Computations were performed only for the axial operating conditions, at constant RPM and variable wind speed. The SST k-omega turbulence model was applied for its reasonably accurate prediction of boundary layer separation under adverse pressure gradient. Results indicate that the model captures very well the occurrence of blade stall. The turbine torque is well predicted for lower wind speeds (pre-stall) but under predicted at higher wind speeds (deep blade stall).

  10. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  11. Semi-automatic characterization of fractured rock masses using 3D point clouds: discontinuity orientation, spacing and SMR geomechanical classification

    NASA Astrophysics Data System (ADS)

    Riquelme, Adrian; Tomas, Roberto; Abellan, Antonio; Cano, Miguel; Jaboyedoff, Michel

    2015-04-01

    Investigation of fractured rock masses for different geological applications (e.g. fractured reservoir exploitation, rock slope instability, rock engineering, etc.) requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in 3D data acquisition using photogrammetric and/or LiDAR techniques currently allow a quick and an accurate characterization of rock mass discontinuities. This contribution presents a methodology for: (a) use of 3D point clouds for the identification and analysis of planar surfaces outcropping in a rocky slope; (b) calculation of the spacing between different discontinuity sets; (c) semi-automatic calculation of the parameters that play a capital role in the Slope Mass Rating geomechanical classification. As for the part a) (discontinuity orientation), our proposal identifies and defines the algebraic equations of the different discontinuity sets of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test. Additionally, the procedure finds principal orientations by Kernel Density Estimation and identifies clusters (Riquelme et al., 2014). As a result of this analysis, each point is classified with a discontinuity set and with an outcrop plane (cluster). Regarding the part b) (discontinuity spacing) our proposal utilises the previously classified point cloud to investigate how different outcropping planes are linked in space. Discontinuity spacing is calculated for each pair of linked clusters within the same discontinuity set, and then spacing values are analysed calculating their statistic values. Finally, as for the part c) the previous results are used to calculate parameters F_1, F2 and F3 of the Slope Mass Rating geomechanical classification. This analysis is carried out for each discontinuity set using their respective orientation extracted in part a). The open access tool SMRTool (Riquelme et al., 2014) is then used to calculate F1 to F3 correction

  12. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  13. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  14. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    NASA Astrophysics Data System (ADS)

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-04-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks.

  15. Deconvolution approach for 3D scanning microscopy with helical phase engineering.

    PubMed

    Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; Jesacher, Alexander

    2016-07-11

    RESCH (refocusing after scanning using helical phase engineering) microscopy is a scanning technique using engineered point spread functions which provides volumetric information. We present a strategy for processing the collected raw data with a multi-view maximum likelihood deconvolution algorithm, which inherently comprises the resolution gain of pixel-reassignment microscopy. The method, which we term MD-RESCH (for multi-view deconvolved RESCH), achieves in our current implementation a 20% resolution advantage along all three axes compared to RESCH and confocal microscopy. Along the axial direction, the resolution is comparable to that of image scanning microscopy. However, because the method inherently reconstructs a volume from a single 2D scan, a significantly higher optical sectioning becomes directly visible to the user, which would otherwise require collecting multiple 2D scans taken at a series of axial positions. Further, we introduce the use of a single-helical detection PSF to obtain an increased post-acquisition refocusing range. We present data from numerical simulations as well as experiments to confirm the validity of our approach. PMID:27410820

  16. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning.

    PubMed

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22-51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  17. 3D Structures & dynamic of the solar corona: inputs from stereovision technics and joigned Ground Based and Space Observatories for the development of Space Weather

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Stereo/Secchi Team At Mpae

    While taking into account the difficulties encountered by 3D imaging specialists with usual objects over the last 20 years, we derived appropriate stereoscopic methods that we could use for the very specific case of the solar corona. Tomographic methods which should be better for such optically thin EUV lines need lots of different quasi-simultaneous viewpoints which is not possible. Usual objects reconstructed by stereovision are mainly optical thick objects such as lands, buildings, planes, tanks with variable external luminosity. Directlty applied, classical algorithms give at least big uncertainties due to the light emission integration along the line of sight. Also structures extractions and maching between images are very difficult to derived. Epipolar geometry has to be determined before all other steps and decomposing each image in wavelet spatial frequencies with Multiscale Vision Model for example, improves a lot the extract/match step. Results of such automatization of the method are presented in the paper. Another shorter method is to derive some 3D parameters with an 'a priori geometry' shape of the object observed. It has been used for loops studies. For an emerging active region loops, twist variations together with the expansion have been measured with consequences on the helicity. With such method, sigmoids evolution can be also described. When we limit the 3D study for some structures (such as filaments forming CMEs) to the calculation of the plane of expansion or the degree of twist, some evolution can be partly described from SOHO in the space weather context, which would be even better described when STEREO would take simultaneous images at different angle to take into account more the dynamic of the solar corona with less evolution necessary assumption. The two methods will be mixed in the future with the philosophy of computer learning in 3D image processing for automatic space weather alerts.

  18. Phase I 3D Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: RTOG 9803

    PubMed Central

    Tsien, Christina; Moughan, Jennifer; Michalski, Jeff M; Gilbert, Mark R.; Purdy, James; Simpson, Joseph; Kresel, John J.; Curran, Walter J.; Diaz, A.; Mehta, Minesh P.

    2010-01-01

    Purpose Phase I trial to evaluate the feasibility and toxicity of dose escalated 3DCRT concurrent with chemotherapy in patients with primary supratentorial GBM. Materials/Methods 209 patients were enrolled. All received 46 Gy in 2 Gy fractions to PTV1, defined as GTV plus 1.8 cm. Subsequent boost was given to PTV2, defined as GTV plus 0.3 cm. Patients were stratified into two groups (gp): (Gp 1: PTV2 < 75 cc, and Gp 2: PTV2≥75 cc). Four RT dose levels were evaluated: 66, 72 ,78 and 84 Gy. BCNU 80 mg/m2 was given during RT, then q 8 weeks for 6 cycles. Pre-treatment characteristics were well balanced. Results Acute and late grade (Gr) 3/4 RT-related toxicities were no more frequent at higher RT dose or with larger tumors. There were no DLTs (acute ≥ Gr 3 irreversible CNS toxicities) observed on any dose level in either group. Based on the absence of DLTs, dose was escalated to 84 Gy in both groups. Late RT necrosis was noted at 66 (1 pt), 72 (2), 78 (2) and 84 Gy (3) in Group 1. In Group 2, late RT necrosis was noted at 78 (1 pt) and 84 Gy (2). Median time to RT necrosis was 8.8 months (range: 5.1–12.5). Median survival in Group 1: 11.8–19.3 months. Median survival in Group 2: 8.2–13.9 months. Conclusions Our study shows the feasibility of delivering higher than standard (60 Gy) RT dose with concurrent chemotherapy for primary GBM with an acceptable risk of late CNS toxicity. PMID:18723297

  19. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969

  20. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  1. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  2. Three-Dimensional (3-D) Reconstructions of EISCAT IPS Velocity Data in the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Jackson, B. V.; Breen, A. R.; Dorrian, G. D.; Fallows, R. A.; Clover, J. M.; Hick, P. P.

    2010-08-01

    The European Incoherent SCATter (EISCAT) radar has been used for remote-sensing observations of interplanetary scintillation (IPS) for a quarter of a century. During the April/May 2007 observing campaign, a large number of observations of IPS using EISCAT took place to give a reasonable spatial and temporal coverage of solar wind velocity structure throughout this time during the declining phase of Solar Cycle 23. Many co-rotating and transient features were observed during this period. Using the University of California, San Diego three-dimensional (3-D) time-dependent computer assisted tomography (C.A.T.) solar-wind reconstruction analysis, we show the velocity structure of the inner heliosphere in three dimensions throughout the time interval of 20 April through 20 May 2007. We also compare to white-light remote-sensing observations of an interplanetary coronal mass ejection (ICME) seen by the STEREO Ahead spacecraft inner Heliospheric Imager on 16 May 2007, as well as to in-situ solar-wind measurements taken with near-Earth spacebourne instrumentation throughout this interval. The reconstructions show clear co-rotating regions during this period, and the time-series extraction at spacecraft locations compares well with measurements made by the STEREO, Wind, and ACE spacecraft. This is the first time such clear structures have been revealed using this 3-D technique with EISCAT IPS data as input.

  3. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    NASA Astrophysics Data System (ADS)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  4. Longitudinal phase space tomography with space charge

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Lindroos, M.; Koscielniak, S.

    2000-12-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron booster. Comparisons

  5. Two phase liquid helium flow testing to simulate the operation of a cryocondensation pump in the D3-D tokamak

    NASA Astrophysics Data System (ADS)

    Laughon, G. J.; Baxi, C. B.; Campbell, G. L.; Mahdavi, M. A.; Makariou, C. C.; Smith, J. P.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1994-06-01

    A liquid helium-cooled cryocondensation pump has been installed in the D3-D tokamak fusion energy research experiment at General Atomics. The pump is located within the tokamak vacuum chamber beneath the divertor baffle plates and is utilized for plasma density and contamination control. Two-phase helium flows through the pump at 5 to 10 g/s utilizing the heat transfer and constant temperature characteristics of boiling liquid . helium. The pump is designed for a pumping speed of 32,000 1/s. Extensive testing was performed with a prototypical pump test fixture. Several pump geometries (simple tube, coaxial flow plug, and coaxial slotted insert) were tested, in an iterative process, to determine which was the most satisfactory for stable cryocondensation pumping. Results from the different tests illustrating the temperature distribution and flow characteristics for each configuration are presented.

  6. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  7. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique.

    PubMed

    Wang, Yajun; Laughner, Jacob I; Efimov, Igor R; Zhang, Song

    2013-03-11

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  8. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.

    PubMed

    Vogler, Andreas; Labouvie, Ralf; Barontini, Giovanni; Eggert, Sebastian; Guarrera, Vera; Ott, Herwig

    2014-11-21

    We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators. PMID:25479499

  9. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    NASA Astrophysics Data System (ADS)

    Sakane, S.; Takaki, T.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated.

  10. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  11. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  12. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-01

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. PMID:26873472

  13. First-principles study of magnetic interactions in 3d transition metal-doped phase-change materials

    NASA Astrophysics Data System (ADS)

    Fukushima, T.; Katayama-Yoshida, H.; Sato, K.; Fujii, H.; Rabel, E.; Zeller, R.; Dederichs, P. H.; Zhang, W.; Mazzarello, R.

    2014-10-01

    Recently, magnetic phase-change materials have been synthesized experimentally by doping with 3d transition metal impurities. Here, we investigate the electronic structure and the magnetic properties of the prototypical phase-change material Ge2Sb2Te5 (GST) doped with V, Cr, Mn, and Fe by density functional calculations. Both the supercell method and the coherent potential approximation (CPA) are employed to describe this complex substitutionally disordered system. As regards the first approach, we consider a large unit cell containing 1000 sites to model the random distribution of the cations and of the impurities in doped cubic GST. Such a large-scale electronic structure calculation is performed using the program kkrnano, where the full potential screened Korringa-Kohn-Rostoker Green's function method is optimized by a massively parallel linear scaling (order-N) all-electron algorithm. Overall, the electronic structures and magnetic exchange coupling constants calculated by kkrnano agree quite well with the CPA results. We find that ferromagnetic states are favorable in the cases of V and Cr doping, due to the double exchange mechanism, whereas antiferromagnetic superexchange interactions appear to be dominant for Fe- and Mn-doped GST. The ferromagnetic interaction is particularly strong in the case of Cr. As a result, high Curie temperatures close to room temperatures are obtained for large Cr concentrations of 15%.

  14. 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting.

    PubMed

    Fassler, Andrew; Majidi, Carmel

    2013-11-21

    Liquid phase electronic circuits are created by freeze casting gallium-indium (GaIn) alloys, such as eutectic gallium-indium (EGaIn), and encapsulating these frozen components within an elastomer. These metal alloys are liquid at room temperature, and can be cast using either injection or a vacuum to fill a PDMS mold and placing the mold in a freezer. Once solidified, a GaIn alloy segment can be manipulated, altered, or bonded to other circuit elements. A stretchable circuit can be fabricated by placing frozen components onto an elastomer substrate, which can be either patterned or flat, and sealing with an additional layer of elastomer. Circuits produced in this fashion are soft, stretchable, and can have complex 3D channel geometries. In contrast, current fabrication techniques, including needle injection, mask deposition, and microcontact printing, are limited to 2D planar designs. Additionally, freeze casting fabrication can create closed loops, multi-terminal circuits with branching features, and large area geometries. PMID:24067934

  15. Calibrating Phase Delay Measurements and Comparison of 3-D Waveform Kernels with and without Near-field Terms

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.

    2012-12-01

    We present the calibration of an automated scheme to properly window the fundamental surface wave mode of an event record. Multi-taper fundamental mode phase delay measurements were made on a synthetic dataset. Measurement errors are reduced when minimal over tone energy is included in the window. The time window is calibrated by simply varying the minimum and maximum surface wave velocities used to determine the beginning and ending window times with source-receiver distance, as opposed to constant velocities. We compare phase delay measurements with and without calibration against measurements made manually. Manual window setting of a small representative subset of event seismograms are used to adjust these minimum and maximum surface wave velocities. The orthogonal 2.5π-prolate spheroidal wave function eigentapers (Slepian tapers) used in multi-taper methods reduce noise biasing, and can provide error estimates in phase delay measurements. Additionally, we examine the effects of excluding near-field terms in the calculation of 3-D finite-frequency waveform kernels for Rayleigh and Love waves on a synthetic dataset. Two methods of kernel calculation based on the single scatterer Born approximation are compared, that of Panning and Nolet (2008) and Zhao and Chevrot (2011). The Panning and Nolet (2008) method calculates the strain Green's tensors for the source-scatterer and scatterer-receiver paths by the summation of asymptotic surface wave modes, which is an inherently far-field approximation. Waveform kernels are then found by convolution (in the time domain) of these strain Green's tensors. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. The Zhao and Chevrot (2011) method creates a database of the set of strain Green's tensors for the source-scatterer (two-sided strain Green's tensor) and scatterer-receiver (one-sided strain Green's tensor) paths, and is calculated by normal mode summation. The full-wave waveform

  16. A general formalism for phase space calculations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  17. Future Mission Concept for 3-D Aerosol Monitoring From Space Based on Fusion of Remote Sensing Approaches

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Kahn, R. A.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cairns, B.; Torres, O.

    2006-05-01

    extinction independently along with vertically resolved estimates of microphysical properties, thus representing a significant advance relative to simpler backscatter systems such as GLAS and CALIPSO. This fusion of satellite-based approaches is aimed at observing the 3-D distribution of aerosol abundances, sizes, shapes, and absorption, and would represent a major technological advance in our ability to monitor and characterize near-surface particulate matter from space.

  18. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  19. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.

    PubMed

    Bukhari, W; Hong, S-M

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+) , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+) . The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating

  20. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network

    NASA Astrophysics Data System (ADS)

    Bukhari, W.; Hong, S.-M.

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit

  1. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    NASA Astrophysics Data System (ADS)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  2. Sensor-enhanced 3D conformal cueing for safe and reliable HC operation in DVE in all flight phases

    NASA Astrophysics Data System (ADS)

    Münsterer, Thomas; Schafhitzel, Tobias; Strobel, Michael; Völschow, Philipp; Klasen, Stephanus; Eisenkeil, Ferdinand

    2014-06-01

    Low level helicopter operations in Degraded Visual Environment (DVE) still are a major challenge and bear the risk of potentially fatal accidents. DVE generally encompasses all degradations to the visual perception of the pilot ranging from night conditions via rain and snowfall to fog and maybe even blinding sunlight or unstructured outside scenery. Each of these conditions reduce the pilots' ability to perceive visual cues in the outside world reducing his performance and finally increasing risk of mission failure and accidents, like for example Controlled Flight Into Terrain (CFIT). The basis for the presented solution is a fusion of processed and classified high resolution ladar data with database information having a potential to also include other sensor data like forward looking or 360° radar data. This paper reports on a pilot assistance system aiming at giving back the essential visual cues to the pilot by means of displaying 3D conformal cues and symbols in a head-tracked Helmet Mounted Display (HMD) and a combination with synthetic view on a head-down Multi-Function Display (MFD). Each flight phase and each flight envelope requires different symbology sets and different possibilities for the pilots to select specific support functions. Several functionalities have been implemented and tested in a simulator as well as in flight. The symbology ranges from obstacle warning symbology via terrain enhancements through grids or ridge lines to different waypoint symbols supporting navigation. While some adaptations can be automated it emerged as essential that symbology characteristics and completeness can be selected by the pilot to match the relevant flight envelope and outside visual conditions.

  3. Phase grouping-based needle segmentation in 3-D trans-rectal ultrasound-guided prostate trans-perineal therapy.

    PubMed

    Qiu, Wu; Yuchi, Ming; Ding, Mingyue

    2014-04-01

    A robust and efficient needle segmentation method used to localize and track the needle in 3-D trans-rectal ultrasound (TRUS)-guided prostate therapy is proposed. The algorithmic procedure begins by cropping the 3-D US image containing a needle; then all voxels in the cropped 3-D image are grouped into different line support regions (LSRs) based on the outer product of the adjacent voxels' gradient vector. Two different needle axis extraction methods in the candidate LSR are presented: least-squares fitting and 3-D randomized Hough transform. Subsequent local optimization refines the position of the needle axis. Finally, the needle endpoint is localized by finding an intensity drop along the needle axis. The proposed methods were validated with 3-D TRUS tissue-mimicking agar phantom images, chicken breast phantom images and patient images obtained during prostate cryotherapy. The results of the in vivo test indicate that our method can localize the needle accurately and robustly with a needle endpoint localization accuracy <1.43 mm and detection accuracy >84%, which are favorable for 3-D TRUS-guided prostate trans-perineal therapy. PMID:24462163

  4. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space

  5. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space

  6. Quantum phase-space representation for curved configuration spaces

    NASA Astrophysics Data System (ADS)

    Gneiting, Clemens; Fischer, Timo; Hornberger, Klaus

    2013-12-01

    We extend the Wigner-Weyl-Moyal phase-space formulation of quantum mechanics to general curved configuration spaces. The underlying phase space is based on the chosen coordinates of the manifold and their canonically conjugate momenta. The resulting Wigner function displays the axioms of a quasiprobability distribution, and any Weyl-ordered operator gets associated with the corresponding phase-space function, even in the absence of continuous symmetries. The corresponding quantum Liouville equation reduces to the classical curved space Liouville equation in the semiclassical limit. We demonstrate the formalism for a point particle moving on two-dimensional manifolds, such as a paraboloid or the surface of a sphere. The latter clarifies the treatment of compact coordinate spaces, as well as the relation of the presented phase-space representation to symmetry groups of the configuration space.

  7. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-07-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  8. 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry.

    PubMed

    Obara, Masaki; Yoshimori, Kyu

    2016-04-01

    Recently developed interferometric 3D imaging spectrometry (J. Opt. Soc. Am A18, 765 [2001]1084-7529JOAOD610.1364/JOSAA.18.000765) enables obtainment of the spectral information and 3D spatial information for incoherently illuminated or self-luminous object simultaneously. Using this method, we can obtain multispectral components of complex holograms, which correspond directly to the phase distribution of the wavefronts propagated from the polychromatic object. This paper focuses on the analysis of spectral resolution and 3D spatial resolution in interferometric 3D imaging spectrometry. Our analysis is based on a novel analytical impulse response function defined over four-dimensional space. We found that the experimental results agree well with the theoretical prediction. This work also suggests a new criterion and estimate method regarding 3D spatial resolution of digital holography. PMID:27139648

  9. One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space.

    PubMed

    Spitzer, Gudrun M; Heiss, Mathias; Mangold, Martina; Markt, Patrick; Kirchmair, Johannes; Wolber, Gerhard; Liedl, Klaus R

    2010-07-26

    Feature-based pharmacophore modeling is a well-established concept to support early stage drug discovery, where large virtual databases are filtered for potential drug candidates. The concept is implemented in popular molecular modeling software, including Catalyst, Phase, and MOE. With these software tools we performed a comparative virtual screening campaign on HSP90 and FXIa, taken from the 'maximum unbiased validation' data set. Despite the straightforward concept that pharmacophores are based on, we observed an unexpectedly high degree of variation among the hit lists obtained. By harmonizing the pharmacophore feature definitions of the investigated approaches, the exclusion volume sphere settings, and the screening parameters, we have derived a rationale for the observed differences, providing insight on the strengths and weaknesses of these algorithms. Application of more than one of these software tools in parallel will result in a widened coverage of chemical space. This is not only rooted in the dissimilarity of feature definitions but also in different algorithmic search strategies. PMID:20583761

  10. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  11. Reducing effects of aberration in 3D fluorescence imaging using wavefront coding with a radially symmetric phase mask.

    PubMed

    Patwary, Nurmohammed; King, Sharon V; Saavedra, Genaro; Preza, Chrysanthe

    2016-06-13

    In this work, a wavefront encoded (WFE) imaging system built using a squared cubic phase mask, designed to reduce the sensitivity of the imaging system to spherical aberration, is investigated. The proposed system allows the use of a space-invariant image restoration algorithm, which uses a single PSF, to restore intensity distribution in images suffering aberration, such as sample-induced aberration in thick tissue. This provides a computational advantage over depth-variant image restoration algorithms developed previously to address this aberration. Simulated PSFs of the proposed system are shown to change up to 25% compared to the 0 µm depth PSF (quantified by the structural similarity index) over a 100 µm depth range, while the conventional system PSFs change up to 84%. Results from experimental test-sample images show that restoration error is reduced by 29% when the proposed WFE system is used instead of the conventional system over a 30 µm depth range. PMID:27410310

  12. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  13. Mining the Observational Phase Space

    NASA Astrophysics Data System (ADS)

    Norris, Ray

    2012-09-01

    Experience has shown that many great discoveries in astronomy have been made, not by testing a hypothesis, but by observing the sky in an innovative way. The necessary conditions for this to take place are (a) a telescope observing an unexplored part of the observational phase space (frequency, resolution, time-domain, area of sky, etc), (b) an intelligent observer who understands the instrument sufficiently well to distinguish between artefact and discovery, (c) a prepared and enthusiastic mind ready to accommodate and interpret a new discovery. Next generation survey telescopes will easily satisfy (a), if only in terms of the numbers of objects surveyed. However, their petabytes of data, and arms-length access, may prevent an observer from satisfying (b) and (c). We can only hope that someone will eventually stumble across any unexpected phenomena in the data. However the impenetrable size of the database implies dark corners that will never be fully explored. Discoveries may remain undiscovered, forever. What is the alternative? Can we harness data-mining techniques to help the intelligent observer search for the unexpected? I believe we can, and indeed we must if we are to reap the full scientific benefit of next-generation survey telescopes.

  14. Quantum Phase Space from Schwinger's Measurement Algebra

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2014-07-01

    Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.

  15. Phase-space quantization of field theory.

    SciTech Connect

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  16. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  17. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  18. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  19. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  20. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    PubMed

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26891126

  1. A new method of constructing a grid in the space of 3D rotations and its applications to texture analysis

    NASA Astrophysics Data System (ADS)

    Roşca, D.; Morawiec, A.; De Graef, M.

    2014-10-01

    In computational work, data sets must often be represented on the surface of a sphere or inside a ball, requiring uniform grids. We construct a new volume-preserving projection between a cube and the set of unit quaternions. The projection consists of two steps: an equal-volume mapping from the cube to the unit ball, followed by an inverse generalized Lambert projection to either of the two unit quaternion hemispheres. The new projection provides a one-to-one mapping between a grid in the cube and elements of the special orthogonal group SO(3), i.e., 3D rotations. We provide connections to other rotation representation schemes, including the Rodrigues-Frank vector and the homochoric parameterizations, and illustrate the new mapping through example applications relevant to texture analysis.

  2. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  3. 'If you assume, you can make an ass out of u and me': a decade of the disector for stereological counting of particles in 3D space.

    PubMed Central

    Mayhew, T M; Gundersen, H J

    1996-01-01

    The year 1984 was a watershed in stereology. It saw the introduction of highly efficient and unbiased design-based methods for counting the number of arbitrary objects in 3-dimensional (3D) space using 2D sectional images. The only requirement is that the objects be unambiguously identifiable on parallel sections or successive focal planes. The move away from the ¿assumption-based' and ¿model-based' methods applied previously has been a major scientific advance. It has led to the resolution of several problems in different biomedical areas. The basic principle which makes possible 3D counting from sections is the disector. Here, we review the disector principle and consider its impact on the counting and sizing of biological particles. From now on, there can be no excuse for applying the biased counting methods of yesteryear. Their continued use, despite the availability of unbiased alternatives, should be seen as paying homage to History rather than advancing Science. PMID:8655396

  4. Effects of vertical interarch space and abutment height on stress distributions: a 3D finite element analysis.

    PubMed

    Naveau, Adrien; Renault, Patrick; Pierrisnard, Laurent

    2009-06-01

    This three dimensional Finite Element Analysis study investigated stress distribution and intensity in implants restored with cemented or screwed crown. Two parameters varied: interarch space and abutment height. Highest stresses occurred at the cervical area in all models. Stresses increased mainly with vertical interarch space highness, and secondarily with abutments shortness. From a mechanical point of view, bone and prosthetics components supporting cemented crowns were not as solicited as with screwed crowns. PMID:19645311

  5. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    NASA Astrophysics Data System (ADS)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" № 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" № 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  6. The Way to Phase Space Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Michael, Marthaler; Schön, Gerd

    A novel way to create a band structure of the quasienergy spectrum for driven systems is proposed based on the discrete symmetry in phase space. The system, e.g., an ion or ultracold atom trapped in a potential, shows no spatial periodicity, but it is driven by a time-dependent field. Under rotating wave approximation, the system can produce a periodic lattice structure in phase space. The band structure in quasienergy arises as a consequence of the n-fold discrete periodicity in phase space induced by this driving field. We propose explicit models to realize such a phase space crystal and analyze its band structure in the frame of a tightbinding approximation. The phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry. The phase space crystal opens new ways to engineer energy band structures, with the added advantage that its properties can be changed in situ by tuning the driving field's parameters. Carl-Zeiss Stiftung.

  7. Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask

    NASA Astrophysics Data System (ADS)

    Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe

    2014-03-01

    Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.

  8. Space dosimetry with the application of a 3D silicon detector telescope: response function and inverse algorithm.

    PubMed

    Pázmándi, Tamás; Deme, Sándor; Láng, Edit

    2006-01-01

    One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation. PMID:16581928

  9. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes.

    PubMed

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes; Hübner, Christian G

    2016-05-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach. PMID:26972111

  10. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    SciTech Connect

    Gerhard Strydom

    2014-04-01

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

  11. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  12. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  13. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 M_⊙) and luminous ( = 5 × 10^{6} L_⊙) star Eta Carinae, with its spectacular bipolar ``Homunculus'' nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e ˜ 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i ˜ 40°, an argument of periapsis ω ˜ 255°, and a projected orbital axis with a position angle of ˜ 312° east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  14. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  15. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  16. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  17. Stochastic Multi-Scale Reconstruction of 3D Microstructure Consisting of Polycrystalline Grains and Second-Phase Particles from 2D Micrographs

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Kirubanandham, Antony; Chawla, Nikhilesh; Jiao, Yang

    2016-03-01

    An accurate knowledge of the 3D polycrystalline microstructure of a material is crucial to its property prediction, performance optimization, and design. Here, we present a multi-scale computational scheme that allows one to stochastically reconstruct the 3D microstructure of a highly heterogeneous polycrystalline material with large variation in grain size, morphology, and spatial distribution, as well as the distribution of second-phase particles, from single-2D electron back-scattered diffraction (EBSD) micrograph. Specifically, the two-point correlation functions S 2 are employed to statistically characterize grain morphology, orientation, and spatial distribution and are incorporated into the simulated annealing procedure for microstructure reconstruction. During the reconstruction, the original polycrystalline microstructure is coarsened such that the large grains are reconstructed first and the smaller ones are generated later. The second-phase particles are then inserted into the reconstructed polycrystalline material based on the pair-correlation function g 2 sampled from the 2D back-scattered electron micrograph. The utility of our multi-scale scheme is demonstrated by successfully reconstructing a highly heterogeneous polycrystalline Sn-rich solder joint with Cu6Sn5 intermetallic particles. The accuracy of our reconstruction is ascertained by comparing the virtual microstructure with the actual 3D structure of the joint obtained via serial sectioning techniques.

  18. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2015-12-21

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure. PMID:26568395

  19. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2015-11-01

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1st order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

  20. Filming Underwater in 3d Respecting Stereographic Rules

    NASA Astrophysics Data System (ADS)

    Rinaldi, R.; Hordosch, H.

    2015-04-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie's box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  1. Studies of a new class of high electro-thermal performing Polyimide embedded with 3D scaffold in the harsh environment of outer space

    NASA Astrophysics Data System (ADS)

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    The polymer class of Polyimides (PIs) has been wide-spread in the use of outer space coatings due to their chemical stability and flexibility. Nevertheless, their poor thermal conductivity and completely electrically insulating characteristics have caused severe limitations, such as thermal management challenges and spacecraft electrostatic charging, which forces the use of additional materials such as brittle ITO in order to completely resist the harsh environment of space. For this reason, we developed a new composite material via infiltration of PI with a 3D scaffold which improves PIs performance and resilience and enables the use of only a single flexible material to protect spacecraft. Here we present a study of this new material based on outer-space environment simulated on ground. It includes an exhaustive range of tests simulating space environments in accordance with European Cooperation for Space Standard (ECSS), which includes atomic oxygen (AO) etching, Gamma-ray exposure and outgassing properties over extended periods of time and under strenuous mechanical bending and thermal annealing cycles. Measurement methods for the harsh environment of space and the obtained results will be presented.

  2. The fast multipole method in the differential algebra framework for the calculation of 3D space charge fields

    NASA Astrophysics Data System (ADS)

    Zhang, He

    2013-01-01

    The space charge effect is one of the most important collective effects in beam dynamic studies. In many cases, numerical simulations are inevitable in order to get a clear understanding of this effect. The particle-particle interaction algorithms and the article-in-cell algorithms are widely used in space charge effect simulations. But they both have difficulties in dealing with highly correlated beams with abnormal distributions or complicated geometries. We developed a new algorithm to calculate the three dimensional self-field between charged particles by combining the differential algebra (DA) techniques with the fast multi-pole method (FMM). The FMM hierarchically decomposes the whole charged domain into many small regions. For each region it uses multipole expansions to represent the potential/field contributions from the particles far away from the region and then converts the multipole expansions into a local expansion inside the region. The potential/field due to the far away particles is calculated from the expansions and the potential/field due to the nearby particles is calculated from the Coulomb force law. The DA techniques are used in the calculation, translation and converting of the expansions. The new algorithm scales linearly with the total number of particles and it is suitable for any arbitrary charge distribution. Using the DA techniques, we can calculate both the potential/field and its high order derivatives, which will be useful for the purpose of including the space charge effect into transfer maps in the future. We first present the single level FMM, which decomposes the whole domain into boxes of the same size. It works best for charge distributions that are not overly non-uniform. Then we present the multilevel fast multipole algorithm (MLFMA), which decomposes the whole domain into different sized boxes according to the charge density. Finer boxes are generated where the higher charge density exists; thus the algorithm works for any

  3. International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.

  4. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  5. Solid-phase synthesis of 2-substituted 4-amino-7-oxo-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidines.

    PubMed

    Falcó, José L; Borrell, José I; Teixidó, Jordi

    2003-01-01

    An efficient solid-phase synthesis of 2-substituted 4-aminopyrido[2,3-d]pyrimidines 15 is reported. The procedure started by solid supporting a p-hydroxybenzaldehyde 8 to the Wang resin by using the Mitsunobu protocol. The resulting aldehyde 17 was treated with a substituted acid methyl malonate 10 to afford the corresponding alpha, beta-unsaturated ester 18, which was converted to the Michael adduct 21 by reaction with malononitrile. Cyclization of 21 with an amidine system 13 yielded the solid supported pyridopyrimidine 22, which afforded the corresponding 2-substituted 4-aminopyrido[2,3-d]pyrimidine 15 upon treatment with TFA:DCM. Compounds 15 present three diversity centers R1, R2 and R3. Having validated the chemistry on solid support, a 32-membered combinatorial library was obtained using this protocol. PMID:14761159

  6. Comparison of the PHISICS/RELAP5-3D ring and block model results for phase I of the OECD/NEA MHTGR-350 benchmark

    SciTech Connect

    Strydom, G.; Epiney, A. S.; Alfonsi, Andrea; Rabiti, Cristian

    2015-12-02

    The PHISICS code system has been under development at INL since 2010. It consists of several modules providing improved coupled core simulation capability: INSTANT (3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and modules performing criticality searches, fuel shuffling and generalized perturbation. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D was finalized in 2013, and as part of the verification and validation effort the first phase of the OECD/NEA MHTGR-350 Benchmark has now been completed. The theoretical basis and latest development status of the coupled PHISICS/RELAP5-3D tool are described in more detail in a concurrent paper. This paper provides an overview of the OECD/NEA MHTGR-350 Benchmark and presents the results of Exercises 2 and 3 defined for Phase I. Exercise 2 required the modelling of a stand-alone thermal fluids solution at End of Equilibrium Cycle for the Modular High Temperature Reactor (MHTGR). The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 required a coupled neutronics and thermal fluids solution, and the PHISICS/RELAP5-3D code suite was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of results obtained with the traditional RELAP5-3D “ring” model approach against a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity that can be obtained by this “block” model is illustrated with comparison results on the temperature, power density and flux distributions. Furthermore, it is shown that the ring model leads to significantly lower fuel temperatures (up to 10%) when compared with the higher fidelity block model, and that the additional model development and run-time efforts are worth the gains obtained in the

  7. Comparison of the PHISICS/RELAP5-3D ring and block model results for phase I of the OECD/NEA MHTGR-350 benchmark

    DOE PAGESBeta

    Strydom, G.; Epiney, A. S.; Alfonsi, Andrea; Rabiti, Cristian

    2015-12-02

    The PHISICS code system has been under development at INL since 2010. It consists of several modules providing improved coupled core simulation capability: INSTANT (3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and modules performing criticality searches, fuel shuffling and generalized perturbation. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D was finalized in 2013, and as part of the verification and validation effort the first phase of the OECD/NEA MHTGR-350 Benchmark has now been completed. The theoretical basis and latest development status of the coupled PHISICS/RELAP5-3D tool are described in more detailmore » in a concurrent paper. This paper provides an overview of the OECD/NEA MHTGR-350 Benchmark and presents the results of Exercises 2 and 3 defined for Phase I. Exercise 2 required the modelling of a stand-alone thermal fluids solution at End of Equilibrium Cycle for the Modular High Temperature Reactor (MHTGR). The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 required a coupled neutronics and thermal fluids solution, and the PHISICS/RELAP5-3D code suite was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of results obtained with the traditional RELAP5-3D “ring” model approach against a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity that can be obtained by this “block” model is illustrated with comparison results on the temperature, power density and flux distributions. Furthermore, it is shown that the ring model leads to significantly lower fuel temperatures (up to 10%) when compared with the higher fidelity block model, and that the additional model development and run-time efforts are worth the gains obtained

  8. RADON reconstruction in longitudinal phase space

    SciTech Connect

    Mane, V.; Peggs, S.; Wei, J.

    1997-07-01

    Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC).

  9. Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li(x)FePO4 Nanoparticles from Surface Wetting and Coherency Strain.

    PubMed

    Welland, Michael J; Karpeyev, Dmitry; O'Connor, Devin T; Heinonen, Olle

    2015-10-27

    We study the mesoscopic effects which modify phase-segregation in LixFePO4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3 to 40 nm and examine the equilibrium microstructure and voltage profiles as they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. We find that the miscibility gap vanishes for particles of radius ∼5 nm, and the solubility limits change with overall particle lithiation. Surface wetting stabilizes minority phases by aligning them with energetically beneficial facets. The equilibrium voltage profile is modified by these effects in magnitude, and the length and slope of the voltage plateau during two-phase coexistence. PMID:26355590

  10. Deep space LADAR, phase 1

    NASA Astrophysics Data System (ADS)

    Frey, Randy W.; Rawlins, Greg; Zepkin, Neil; Bohlin, John

    1989-03-01

    A pseudo-ranging laser radar (PRLADAR) concept is proposed to provide extended range capability to tracking LADAR systems meeting the long-range requirements of SDI mission scenarios such as the SIE midcourse program. The project will investigate the payoff of several transmitter modulation techniques and a feasibility demonstration using a breadboard implementation of a new receiver concept called the Phase Multiplexed Correlator (PMC) will be accomplished. The PRLADAR concept has specific application to spaceborne LADAR tracking missions where increased CNR/SNR performance gained by the proposed technique may reduce the laser power and/or optical aperture requirement for a given mission. The reduction in power/aperture has similar cost reduction advantages in commercial ranging applications. A successful Phase 1 program will lay the groundwork for a quick reaction upgrade to the AMOS/LASE system in support of near term SIE measurement objectives.

  11. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  12. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  13. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  14. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  15. 3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats

    NASA Technical Reports Server (NTRS)

    Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)

    1995-01-01

    A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to

  16. A model-based 3D template matching technique for pose acquisition of an uncooperative space object.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2015-01-01

    This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented. PMID:25785309

  17. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  18. Hubble Space Telescope scale 3D simulations of MHD disc winds: a rotating two-component jet structure

    NASA Astrophysics Data System (ADS)

    Staff, J. E.; Koning, N.; Ouyed, R.; Thompson, A.; Pudritz, R. E.

    2015-02-01

    We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disc winds for different initial magnetic field configurations. The jets are followed from the source to 90 au scale, which covers several pixels of Hubble Space Telescope images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be up to above 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disc (counter-rotating). The RW Aur jet is narrow, indicating that the disc field in that case is very open meaning the jet can contain a counter-rotating component that we suggest explains why observations of rotation in this jet have given confusing results. Thus magnetized disc winds from underlying Keplerian discs can develop rotation profiles far down the jet that is not Keplerian.

  19. A Model-Based 3D Template Matching Technique for Pose Acquisition of an Uncooperative Space Object

    PubMed Central

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2015-01-01

    This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented. PMID:25785309

  20. 3D acoustic wave modelling with time-space domain dispersion-relation-based finite-difference schemes and hybrid absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sen, Mrinal K.

    2011-09-01

    Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of

  1. Beam Tomography in Longitudinal Phase Space

    NASA Astrophysics Data System (ADS)

    Mane, V.; Wei, J.; Peggs, S.

    1997-05-01

    Longitudinal particle motion in circular accelerators is typically monitored by one dimensional (1-D) profiles. Adiabatic particle motion in 2-D phase space can be reconstructed with tomographic techniques, using 1-D profiles. In this paper, we discuss a filtered backprojection algorithm, with a high pass ramp or Hann filter, for phase space reconstruction. The algorithm uses several projections of the beam at equally spaced angles over half a synchrotron period. A computer program RADON has been developed to process digitized mountain range data and do the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC). Analysis has been performed to determine the sensitivity to machine parameters and data acquisition errors. During the Sextant test of RHIC in early 1997, this program has been successfully employed to reconstruct the motion of Au^77+ beam in the AGS.

  2. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  3. Critical behavior near the ferromagnetic - paramagnetic phase transition in La0.7Sr0.3MnO3+d nanowires synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Datta, Subarna; Ghosh, Barnali

    2015-06-01

    We report here the synthesis, characterization and magnetic properties of functional oxide nanowire (NW) of hole doped manganite La0.7Sr0.3MnO3+d (LSMO). The nanowires (NWs) are fabricated by hydrothermal method using autoclave at a temperature of 240°C. Due to size reduction of the NWs the volume of the unit cell decreases ~ 1% with respect to the bulk La0.7Sr0.3MnO3. The LSMO NWs have a ferromagnetic - paramagnetic transition temperature or Curie temperature (TC) at 311 K and it shows second order phase transition at TC as seen in bulk.

  4. The EISCAT_3D Science Case

    NASA Astrophysics Data System (ADS)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  5. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  6. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  7. Strategies for the crystallization of viruses: using phase diagrams and gels to produce 3D crystals of Grapevine fanleaf virus.

    PubMed

    Schellenberger, Pascale; Demangeat, Gérard; Lemaire, Olivier; Ritzenthaler, Christophe; Bergdoll, Marc; Oliéric, Vincent; Sauter, Claude; Lorber, Bernard

    2011-05-01

    The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly₂₉₇Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies. PMID:21352920

  8. Axonemal Positioning and Orientation in 3-D Space for Primary Cilia: What is Known, What is Assumed, and What Needs Clarification

    PubMed Central

    Farnum, Cornelia E.; Wilsman, Norman J.

    2012-01-01

    Two positional characteristics of the ciliary axoneme – its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional space – are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3-D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations. PMID:22012592

  9. Neutral line chaos and phase space structure

    NASA Technical Reports Server (NTRS)

    Burkhart, Grant R.; Speiser, Theodore W.; Martin, Richard F., Jr.; Dusenbery, Paul B.

    1991-01-01

    Phase space structure and chaos near a neutral line are studied with numerical surface-of-section (SOS) techniques and analytic methods. Results are presented for a linear neutral line model with zero crosstail electric field. It was found that particle motion can be divided into three regimes dependening on the value of the conserved canonical momentum, Py, and the conserved Hamiltonian, h. The phase space structure, using Poincare SOS plots, is highly sensitive to bn = Bn/B0 variations, but not to h variations. It is verified that the slow motion preserves the action, Jz, as evaluated by Sonnerup (1971), when the period of the fast motion is smaller than the time scale of the slow motion. Results show that the phase space structure and particle chaos depend sensitively upon Py and bn, but are independent of h.

  10. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  11. Phase II trial of temozolomide and reirradiation using conformal 3D-radiotherapy in recurrent brain gliomas

    PubMed Central

    2014-01-01

    Purpose This phase II trial was designed to assess the response rate, survival benefits and toxicity profile of temozolomide, and brain reirradiation using conformal radiotherapy (RT) for treatment of recurrent high grade glioma. Design Open-label phase II trial. Patients Twenty-nine patients had been enrolled in the study between February 2006 and June 2009. Patients had to show unequivocal evidence of tumour recurrence on gadolinium-enhanced magnetic resonance imaging (MRI) after failing conventional RT with or without temozolomide and surgery for initial disease. Histology included recurrent anaplastic astrocytoma, glioblastoma multiforme. Interventions Patients were treated by temozolomide at a dose of 200 mg/m2/day for chemonaïve patients, and at a dose of 150 mg/m2/day to previously treated patients, for 4-5 cycles. Then, patients underwent reirradiation by conformal RT at a dose of 30-40 Gy by conventional fractionation. Main outcome measures The primary end point of the study was response. The secondary end points included survival benefit. Results All the 29 patients were treated with temozolomide and reirradiation. Two patients achieved complete remission (CR), 4 achieved partial remission (PR), with an overall objective response rate of 20.6%, and further 10 patients had stable disease (SD), with a SD rate of 34.4%. The mean progression free survival (PFS) was 10.1 months, and the mean overall survival (OS) was 11.4 months. Additionally, treatment significantly improved quality of life (QOL). Treatment was tolerated well with mild grade 1, 2 nausea/vomiting in 40% of cycles, and mild grade 1, 2 haematological toxicities (neutropenia/thrombocytoprnia) in 8.6% of cycles. Conclusions Temozolomide and conformal RT had an anti-tumor activity in recurrent high grade glioma, and represented a good treatment hope for patients with recurrent brain glioma. PMID:25333019

  12. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2010-01-01

    The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  13. Noether symmetries in the phase space

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes

    2014-09-01

    The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.

  14. Space Fence PDR Concept Development Phase

    NASA Astrophysics Data System (ADS)

    Haines, L.; Phu, P.

    2011-09-01

    The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate

  15. Phase-space foundations of electron holography

    NASA Astrophysics Data System (ADS)

    Lubk, A.; Röder, F.

    2015-09-01

    We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.

  16. Phase-space contraction and quantum operations

    SciTech Connect

    Garcia-Mata, Ignacio; Spina, Maria Elena; Saraceno, Marcos; Carlo, Gabriel

    2005-12-15

    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as 'quantum phase space contraction rate' and which is related to a fundamental property of quantum channels: nonunitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attractor-like structures is displayed.

  17. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  18. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  19. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  20. First-principles study of magnetic interactions in 3d transition metal-doped phase-change materials

    NASA Astrophysics Data System (ADS)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Fujii, Hitoshi; Rabel, Elias; Zeller, Rudolf; Dederichs, Peter; Zhang, Wei; Mazzarello, Riccardo

    2015-03-01

    We investigate the electronic structure and the magnetic properties of the prototypical phase-change material Ge2Sb2Te5 (GST) doped with V, Cr, Mn and Fe by density functional calculations. Both the supercell method and the coherent potential approximation (CPA) are employed to describe this complex substitutionally disordered system. As regards the first approach, we consider a large unit cell containing 1000 sites to model the random distribution of the cations and of the impurities in doped cubic GST. Such a large-scale electronic structure calculation is performed using the program KKRnano, where the full potential screened Korringa-Kohn-Rostoker Green's function method is optimized by a massively parallel linear scaling all electron algorithm. We find that ferromagnetic states are favorable in the cases of V and Cr doping, due to the double exchange mechanism. The ferromagnetic interaction is particularly strong in the case of Cr. As a result, high Curie temperatures close to room temperatures are obtained for large Cr concentration.

  1. Quantum order in chiral magnets: 3D Non-Fermi Liquid Phase and Blue Quantum Fog in MnSi

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Christian

    2007-03-01

    The discovery of a distinct change from Fermi liquid to non-Fermi liquid resistivity and the observation of partial magnetic order in MnSi under high pressure [1,2] has generated great scientific interest in the properties of itinerant-electron systems with weak chiral spin-orbit interactions. Recent theoretical predictions include the spontaneous formation of a skyrmion phase at the boundary of conventional helical order [3] and the existence of a new type of Goldstone-like excitation, so called helimagnons [4]. New experimental work using sophisticated neutron scattering techniques and bulk properties exploring the question of skyrmion textures and helimagnon excitations, as well as studies of the thermal expansion under pressure using a newly developed ultra-high resolution neutron spin-resonance technique (Larmor diffraction) will be reviewed. [1] C. Pfleiderer, S. R. Julian, G. G. Lonzarich, Nature 414, 427 (2001). [2] C. Pfleiderer, et al., Nature 427, 227 (2004). [3] U. R"oßler, A. B. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006). [4] D. Belitz, T. R. Kirkpatrick, A. Rosch, Phys. Rev. B 73, 054431 (2006).

  2. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    NASA Technical Reports Server (NTRS)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  3. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGESBeta

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; Gaston, Derek R.

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  4. Disentangling the history of complex multi-phased shell beds based on the analysis of 3D point cloud data

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2015-04-01

    Shell beds are key features in sedimentary records throughout the Phanerozoic. The interplay between burial rates and population productivity is reflected in distinct degrees of shelliness. Consequently, shell beds may provide informations on various physical processes, which led to the accumulation and preservation of hard parts. Many shell beds pass through a complex history of formation being shaped by more than one factor. In shallow marine settings, the composition of shell beds is often strongly influenced by winnowing, reworking and transport. These processes may cause considerable time averaging and the accumulation of specimens, which have lived thousands of years apart. In the best case, the environment remained stable during that time span and the mixing does not mask the overall composition. A major obstacle for the interpretation of shell beds, however, is the amalgamation of shell beds of several depositional units in a single concentration, as typically for tempestites and tsunamites. Disentangling such mixed assemblages requires deep understanding of the ecological requirements of the taxa involved - which is achievable for geologically young shell beds with living relatives - and a statistic approach to quantify the contribution by the various death assemblages. Furthermore it requires understanding of sedimentary processes potentially involved into their formation. Here we present the first attempt to describe and decipher such a multi-phase shell-bed based on a high resolution digital surface model (1 mm) combined with ortho-photos with a resolution of 0.5 mm per pixel. Documenting the oyster reef requires precisely georeferenced data; owing to high redundancy of the point cloud an accuracy of a few mm was achieved. The shell accumulation covers an area of 400 m2 with thousands of specimens, which were excavated by a three months campaign at Stetten in Lower Austria. Formed in an Early Miocene estuary of the Paratethys Sea it is mainly composed

  5. Quantifying fluid distribution and phase connectivity with a simple 3D cubic pore network model constrained by NMR and MICP data

    NASA Astrophysics Data System (ADS)

    Xu, Chicheng; Torres-Verdín, Carlos

    2013-12-01

    A computer algorithm is implemented to construct 3D cubic pore networks that simultaneously honor nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) measurements on core samples. The algorithm uses discretized pore-body size distributions from NMR and pore-throat size versus incremental pore-volume fraction information from MICP as initial inputs. Both pore-throat radius distribution and body-throat correlation are iteratively refined to match percolation-simulated primary drainage capillary pressure with MICP data. It outputs a pore-throat radius distribution which is not directly measurable with either NMR or MICP. In addition, quasi-static fluid distribution and single-phase connectivity are quantified at each capillary pressure stage. NMR measurements on desaturating core samples are simulated from the quantitative fluid distribution in a gas-displacing-water drainage process and are verified with laboratory measurements. We invoke effective medium theory to quantify the single-phase connectivity in two-phase flow by simulating percolation in equivalent sub-pore-networks that consider the remaining fluid phase as solid cementation. Primary drainage relative permeability curves quantified from fluid distribution and phase connectivity show petrophysical consistency after applying a hydrated-water saturation correction. Core measurements of tight-gas sandstone samples from the Cotton Valley formation, East Texas, are used to verify the new algorithm.

  6. Improvement of the phase regulation between two amplifiers feeding the inputs of the 3dB combiner in the ASDEX-Upgrade ICRH system

    NASA Astrophysics Data System (ADS)

    Grine, D.; Pompon, F.; Faugel, H.; Funfgelder, H.; Noterdaeme, J. M.; Koch, R.

    2011-12-01

    The present ICRF system at ASDEX Upgrade uses 3dB combiners to forward the combined power of a generator pair to a single line [1]. Optimal output performance is achieved when the voltages at the two input lines of a combiner are equal in amplitude and in phase quadrature. If this requirement is not met, a large amount of power is lost in the dummy loads of the combiner. To minimize losses, it is paramount to reach this phase relationship in a fast and stable way. The current phase regulation system is based on analog phase locked loops circuits. The main limitation of this system is the response time: several tens of milliseconds are needed to achieve a stable state. In order to get rid of the response time limitation of the current system, a new system is proposed based on a multi-channel direct digital synthesis device which is steered by a microcontroller and a software-based controller. The proposed system has been developed and successfully tested on a test-bench. The results show a remarkable improvement in the reduction of the response times. Other significant advantages provided by the new system include greater flexibility for frequency and phase settings, lower cost and a noticeable size reduction of the system.

  7. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description

    NASA Astrophysics Data System (ADS)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-01

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3-D cloud-tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.

  8. Particle emission from covariant phase space

    SciTech Connect

    Bambah, B.A. )

    1992-12-01

    Using Lorentz-covariant sources, we calculate the multiplicity distribution of {ital n} pair correlated particles emerging from a Lorentz-covariant phase-space volume. We use the Kim-Wigner formalism and identify these sources as the squeezed states of a relativistic harmonic oscillator. The applications of this to multiplicity distributions in particle physics is discussed.

  9. In-situ Neutron Scattering Determination of 3D Phase-Morphology Correlations in Fullerene Block Copolymer Systems

    SciTech Connect

    Karim, Alamgir; Bucknall, David; Raghavan, Dharmaraj

    2015-02-23

    a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPV’s and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing

  10. Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin, S.

    2012-01-01

    Ice Particle trajectory calculations with phase change were made for the Energy Efficient Engine (E(sup 3)) using the LEWICE3D Version 3.2 software. The particle trajectory computations were performed using the new Glenn Ice Particle Phase Change Model which has been incorporated into the LEWICE3D Version 3.2 software. The E(sup 3) was developed by NASA and GE in the early 1980 s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E(sup 3) flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E(sup 3) for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20, and 100 microns and a free stream particle concentration of 0.3 g/cu m. The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting and the amount of melting was relatively small with a maximum average melting fraction of 0.836. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22 percent).

  11. Characterizing maximally singular phase-space distributions

    NASA Astrophysics Data System (ADS)

    Sperling, J.

    2016-07-01

    Phase-space distributions are widely applied in quantum optics to access the nonclassical features of radiations fields. In particular, the inability to interpret the Glauber-Sudarshan distribution in terms of a classical probability density is the fundamental benchmark for quantum light. However, this phase-space distribution cannot be directly reconstructed for arbitrary states, because of its singular behavior. In this work, we perform a characterization of the Glauber-Sudarshan representation in terms of distribution theory. We address important features of such distributions: (i) the maximal degree of their singularities is studied, (ii) the ambiguity of representation is shown, and (iii) their dual space for nonclassicality tests is specified. In this view, we reconsider the methods for regularizing the Glauber-Sudarshan distribution for verifying its nonclassicality. This treatment is supported with comprehensive examples and counterexamples.

  12. Space Weather at Mars: 3-D studies using one-way coupling between the Multi-fluid MHD, M-GITM and M-AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei

    This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.

  13. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study

    PubMed Central

    Bonanno, Gabriele; Coppo, Simone; Modregger, Peter; Pellegrin, Maxime; Stuber, Annina; Stampanoni, Marco; Mazzolai, Lucia; Stuber, Matthias; van Heeswijk, Ruud B.

    2015-01-01

    The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details. PMID:26165698

  16. Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study

    NASA Astrophysics Data System (ADS)

    Bonanno, Gabriele; Coppo, Simone; Modregger, Peter; Pellegrin, Maxime; Stuber, Annina; Stampanoni, Marco; Mazzolai, Lucia; Stuber, Matthias; van Heeswijk, Ruud B.

    2015-07-01

    The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details.

  17. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  18. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  19. A space-fed phased array for surveillance from space

    NASA Astrophysics Data System (ADS)

    Hightower, Charles H.; Wong, Sam H.; Perkons, Alfred R.; Igwe, Christian I.

    1991-05-01

    A space-fed radar antenna called a venetian blind is proposed for all-weather wide-area surveillance from space. Radar requirements for tasked and untasked operation are discussed, and the process of selecting the venetian blind concept, which can support both, is described. In its untasked form (essentially a space-fed passive lens), it achieves off-axis squint angles of many beamwidths with negligible performance degradation. It is inherently insensitive to mechanical distortion and is a first step in the evolution to the more complex tasked system antenna. The antenna lens consists of easily manufactured slats with microstrip dipole radiating elements and matching networks on a dielectric substrate. Phase control is achieved with low-loss delay lines in the passive lens or active transmit/receive modules if electronic scan is desired.

  20. Space market model development project, phase 3

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Hamel, Gary P.

    1989-01-01

    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  1. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  2. Phase Space Tomography: A Simple, Portable and Accurate Technique to Map Phase Spaces of Beams with Space Charge

    SciTech Connect

    Stratakis, D.; Kishek, R. A.; Bernal, S.; Walter, M.; Haber, I.; Fiorito, R.; Thangaraj, J. C. T.; Quinn, B.; Reiser, M.; O'Shea, P. G.; Li, H.

    2006-11-27

    In order to understand the charged particle dynamics, e.g. the halo formation, emittance growth, x-y energy transfer and coupling, knowledge of the actual phase space is needed. Other the past decade there is an increasing number of articles who use tomography to map the beam phase space and measure the beam emittance. These studies where performed at high energy facilities where the effect of space charge was neglible and therefore not considered in the analysis. This work extends the tomography technique to beams with space charge. In order to simplify the analysis linear forces where assumed. By carefully modeling the tomography process using the particle-in-cell code WARP we test the validity of our assumptions and the accuracy of the reconstructed phase space. Finally, we report experimental results of phase space mapping at the University of Maryland Electron Ring (UMER) using tomography.

  3. Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data

    NASA Astrophysics Data System (ADS)

    Eiken, J.; Apel, M.

    2015-06-01

    The mechanical properties of Al-Si cast alloys are mainly controlled by the morphology of the eutectic silicon. Phase-field simulations were carried out to study the evolution of the multidimensional branched eutectic structures in 3D. Coupling to a Calphad database provided thermodynamic data for the multicomponent multiphase Al-Si-Sr-P system. A major challenge was to model the effect of the trace element Sr. Minor amounts of Sr are known to modify the silicon morphology from coarse flakes to fine coral-like fibers. However, the underlying mechanisms are still not fully understood. Two different in literature most discussed mechanisms were modelled: a) an effect of Sr on the growth kinetics of eutectic silicon and b) the formation of Al2Si2Sr on AlP particles, which consumes most potent nucleation sites and forces eutectic silicon to form with lower frequency and higher undercooling. The phase-field simulations only revealed a successful modification of the eutectic morphology when both effects acted in combination. Only in this case a clear depression of the eutectic temperature was observed. The required phase formation sequence L → fcc-(Al) → AlP → Al2Si2Sr → (Si) determines critical values for the Sr and P content.

  4. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  5. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    SciTech Connect

    Afshar, Mehran Zaefferer, Stefan

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amount of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.

  6. Thermophotovoltaic space power system, phase 3

    NASA Technical Reports Server (NTRS)

    Horne, W. E.; Lancaster, C.

    1987-01-01

    Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.

  7. Noncanonical phase-space noncommutative black holes

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, Joa~o. Nuno

    2012-07-01

    In this contribution we present a noncanonical phase-space noncommutative (NC) extension of a Kantowski Sachs (KS) cosmological model to describe the interior of a Schwarzschild black hole (BH). We evaluate the thermodynamical quantities inside this NC Schwarzschild BH and compare with the well known quantities. We find that for a NCBH the temperature and entropy have the same mass dependence as the Hawking quantities for a Schwarzschild BH.

  8. Analytical satellite theory in extended phase space

    NASA Technical Reports Server (NTRS)

    Bond, V.; Broucke, R.

    1980-01-01

    It is noted that a satellite theory, based on extended phase space and on the true anomaly, was introduced by Scheifele (1970). In the present paper a simple canonical transformation is shown that makes the transition from the classical Delaunay elements to the Scheifele variables. It is stressed that neither spherical coordinates nor Hamilton-Jacobi theory is used. Finally, attention is given to the meaning of the new variables, especially the use of the true anomaly as one of the variables.

  9. Chirp-driven giant phase space vortices

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  10. Evolution of electron beam phase space distribution in a high-gain FEL

    SciTech Connect

    Webb,S.D.; Litvinenko, V. N.

    2009-08-23

    FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.

  11. Separating Leaves from Trunks and Branches with Dual-Wavelength Terrestrial Lidar Scanning: Improving Canopy Structure Characterization in 3-D Space

    NASA Astrophysics Data System (ADS)

    Li, Z.; Strahler, A. H.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Yao, T.; Zhao, F.; Woodcock, C.; Jupp, D.; Schaefer, M.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Leaf area index (LAI) is an important parameter characterizing forest structure, used in models regulating the exchange of carbon, water and energy between the land and the atmosphere. However, optical methods in common use cannot separate leaf area from the area of upper trunks and branches, and thus retrieve only plant area index (PAI), which is adjusted to LAI using an appropriate empirical woody-to-total index. An additional problem is that the angular distributions of leaf normals and normals to woody surfaces are quite different, and thus leafy and woody components project quite different areas with varying zenith angle of view. This effect also causes error in LAI retrieval using optical methods. Full-waveform scans at both the NIR (1064 nm) and SWIR (1548 nm) wavelengths from the new terrestrial Lidar, the Dual-Wavelength Echidna Lidar (DWEL), which pulses in both wavelengths simultaneously, easily separate returns of leaves from trunks and branches in 3-D space. In DWEL scans collected at two different forest sites, Sierra National Forest in June 2013 and Brisbane Karawatha Forest Park in July 2013, the power returned from leaves is similar to power returned from trunks/branches at the NIR wavelength, whereas the power returned from leaves is much lower (only about half as large) at the SWIR wavelength. At the SWIR wavelength, the leaf scattering is strongly attenuated by liquid water absorption. Normalized difference index (NDI) images from the waveform mean intensity at the two wavelengths demonstrate a clear contrast between leaves and trunks/branches. The attached image shows NDI from a part of a scan of an open red fir stand in the Sierra National Forest. Leaves appear light, while other objects are darker.Dual-wavelength point clouds generated from the full waveform data show weaker returns from leaves than from trunks/branches. A simple threshold classification of the NDI value of each scattering point readily separates leaves from trunks and

  12. In-situ, nanometer-scale visualization of nanoparticle phase transitions and light-matter interactions in 2- and 3-D

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer

    2015-03-01

    We present new spectroscopic techniques that enable visualization of nanoparticle phase transitions in reactive environments and light-matter interactions with nanometer-scale resolution. First, we directly monitor hydrogen absorption and desorption in individual palladium nanocrystals. Our approach is based on in-situ electron energy-loss spectroscopy (EELS) in an environmental transmission electron microscope. By probing hydrogen-induced shifts of the palladium plasmon resonance, we find that hydrogen loading and unloading isotherms are characterized by abrupt phase transitions and macroscopic hysteresis gaps. These results suggest that alpha and beta phases do not coexist in single-crystalline nanoparticles, in striking contrast with conventional phase transitions and ensemble measurements of Pd nanoparticles. Then, we then extend these techniques to monitor nanoparticle reactions in a liquid environment. By constructing a flow chamber, we directly monitor growth and assembly of colloidal plasmonic metamaterial constituents induced by chemical catalysts. Lastly, we introduce a novel tomographic technique, cathodoluminescence spectroscopic tomography, to probe optical properties in three dimensions with nanometer-scale spatial and spectral resolution. Particular attention is given to reconstructing a 3D metamaterial resonator supporting broadband electric and magnetic resonances at optical frequencies. Our tomograms allow us to locate regions of efficient cathodoluminescence across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. The experimental signal can further be correlated with the radiative local density of optical states in particular regions of the reconstruction. Our results provide a general framework for visualizing chemical reactions and light-matter interactions in plasmonic materials and metamaterials, with sub-nanometer-scale resolution, and in three-dimensions.

  13. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure

    NASA Astrophysics Data System (ADS)

    Matsuishi, K.; Ishihara, T.; Onari, S.; Chang, Y. H.; Park, C. H.

    2004-11-01

    Optical absorption, photoluminescence and Raman scattering of lead-halide based inorganic-organic perovskite semiconductors were measured under quasi-hydrostatic pressure at room temperature. For the 3D perovskite semiconductor, (CH3NH3)PbBr3, the free exciton photoluminescence band exhibits red-shifts with pressure, and jumps to a higher energy by 0.07 eV at 0.8 GPa, which is associated with a phase transition from a cubic to an orthorhombic structure confirmed by Raman scattering. Above the phase transition pressure, the exciton band shows blue-shifts with further increasing pressure, and eventually disappears above 4.7 GPa. The results are compared with those for the 2D perovskite semiconductor, (C4H9NH3)2PbI4. First principles pseudopotential calculations were performed to investigate changes in octahedral distortion and electronic band structures with pressure. The calculations have explained the origins of the intriguing changes in the electronic states with pressure in view of bonding characters between atomic orbitals in octahedra.

  14. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K. PMID:26828950

  15. An analysis of TA-Student Interaction and the Development of Concepts in 3-d Space Through Language, Objects, and Gesture in a College-level Geoscience Laboratory

    NASA Astrophysics Data System (ADS)

    King, S. L.

    2015-12-01

    The purpose of this study is twofold: 1) to describe how a teaching assistant (TA) in an undergraduate geology laboratory employs a multimodal system in order to mediate the students' understanding of scientific knowledge and develop a contextualization of a concept in three-dimensional space and 2) to describe how a linguistic awareness of gestural patterns can be used to inform TA training assessment of students' conceptual understanding in situ. During the study the TA aided students in developing the conceptual understanding and reconstruction of a meteoric impact, which produces shatter cone formations. The concurrent use of speech, gesture, and physical manipulation of objects is employed by the TA in order to aid the conceptual understanding of this particular phenomenon. Using the methods of gestural analysis in works by Goldin-Meadow, 2000 and McNeill, 1992, this study describes the gestures of the TA and the students as well as the purpose and motivation of the meditational strategies employed by TA in order to build the geological concept in the constructed 3-dimensional space. Through a series of increasingly complex gestures, the TA assists the students to construct the forensic concept of the imagined 3-D space, which can then be applied to a larger context. As the TA becomes more familiar with the students' meditational needs, the TA adapts teaching and gestural styles to meet their respective ZPDs (Vygotsky 1978). This study shows that in the laboratory setting language, gesture, and physical manipulation of the experimental object are all integral to the learning and demonstration of scientific concepts. Recognition of the gestural patterns of the students allows the TA the ability to dynamically assess the students understanding of a concept. Using the information from this example of student-TA interaction, a brief short course has been created to assist TAs in recognizing the mediational power as well as the assessment potential of gestural

  16. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  17. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  18. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  19. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  20. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  1. Constructing 3D isotropic and azimuthally anisotropic crustal models across USArray using Rayleigh wave phase velocity and ellipticity: inferring continental stress field

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.; Tsai, V. C.

    2014-12-01

    The EarthScope USArray Transportable Array (TA) has provided a great opportunity for imaging the detailed lithospheric structure beneath the continental US. In this presentation, we will report our recent progress on constructing detailed 3D isotropic and anisotropic crustal models of the contiguous US using Rayleigh wave phase velocity and ellipticity measurements across TA. In particular, we will discuss our recent methodology development of extracting short period Rayleigh wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, using multicomponent noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. Measurements from all available station pairs are used to determine isotropic and directionally dependent Rayleigh-wave H/V ratios at each location between 8- and 24-second period. The isotropic H/V ratio maps, combined with previous longer period Rayleigh-wave H/V ratio maps from earthquakes and Rayleigh-wave phase velocity maps from both ambient noise and earthquakes, are used to invert for a new 3-D isotropic crustal and upper-mantle model in the western United States. The new model has an outstanding vertical resolution in the upper crust and tradeoffs between different parameters are mitigated. A clear 180-degree periodicity is observed in the directionally dependent H/V ratio measurements for many locations where upper crustal anisotropy is likely strong. Across the US, good correlation is observed between the inferred fast directions in the upper crust and documented maximum

  2. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  3. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    NASA Astrophysics Data System (ADS)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R.; García-Granda, Santiago

    2015-05-01

    Three new zinc(II) coordination polymers, [Zn(HO3PCH2CH2COO)(C12H8N2)(H2O)] (1), [Zn3(O3PCH2CH2COO)2(C12H8N2)](H2O)3.40 (2) and [Zn5(HO3PCH2CH2COO)2(O3PCH2CH2COO)2(C12H8N2)4](H2O)0.32 (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P21/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P-1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds.

  4. Using the Flow-3D General Moving Object Model to Simulate Coupled Liquid Slosh - Container Dynamics on the SPHERES Slosh Experiment: Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul

    2013-01-01

    The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.

  5. Using DOE-ARM and Space-Based Assets to Assess the Quality of Air Force Weather 3D Cloud Analysis and Forecast Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2015-12-01

    Air Force Weather (AFW) has documented requirements for global cloud analysis and forecasting to support DoD missions around the world. To meet these needs, AFW utilizes a number of cloud products. Cloud analyses are constructed using 17 different near real time satellite sources. Products include analysis of the individual satellite transmissions at native satellite resolution and an hourly global merge of all 17 sources on a 24km grid. AFW has also recently started creation of a time delayed global cloud reanalysis to produce a 'best possible' analysis for climatology and verification purposes. Forecasted cloud products include global short-range cloud forecasts created using advection techniques as well as statistically post processed cloud forecast products derived from various global and regional numerical weather forecast models. All of these cloud products cover different spatial and temporal resolutions and are produced on a number of different grid projections. The longer term vision of AFW is to consolidate these various approaches into uniform global numerical weather modeling (NWM) system using advanced cloudy-data assimilation processes to construct the analysis and a licensed version of UKMO's Unified Model to produce the various cloud forecast products. In preparation for this evolution in cloud modeling support, AFW has started to aggressively benchmark the performance of their current capabilities. Cloud information collected from so called 'active' sensors on the ground at the DOE-ARM sites and from space by such instruments as CloudSat, CALIPSO and CATS are being utilized to characterize the performance of AFW products derived largely by passive means. The goal is to understand the performance of the 3D cloud analysis and forecast products of today to help shape the requirements and standards for the future NWM driven system.This presentation will present selected results from these benchmarking efforts and highlight insights and observations

  6. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  7. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  8. A green flash from the Moon; BOSS measures the distant universe in 3D; Cuts in Parliament; When asteroids collide; SpaceX to beat China

    NASA Astrophysics Data System (ADS)

    2011-06-01

    The biggest 3D map of the distant universe, based on the intergalactic hydrogen distribution as well as on the distribution of visible galaxies, has been produced by the Sloan Digital Sky Survey (SDSS-III).

  9. Weak values and the quantum phase space

    SciTech Connect

    Lobo, A. C.; Ribeiro, C. A.

    2009-07-15

    We address the issue of how to properly treat, and in a more general setting, the concept of a weak value of a weak measurement in quantum mechanics. We show that for this purpose, one must take in account the effects of the measuring process on the entire phase space of the measuring system. By using coherent states, we go a step further than Jozsa in a recent paper and we present an example where the result of the measurement is symmetrical in the position and momentum observables and seems to be much better suited for quantum optical implementation.

  10. Optical image encryption in phase space

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Xu, Xiaobin; Situ, Guohai; Wu, Quanying

    2014-11-01

    In the field of optical information security, the research of double random phase encoding is becoming deeper with each passing day, however the encryption system is linear, and the dependencies between plaintext and ciphertext is not complicated, with leaving a great hidden danger to the security of the encryption system. In this paper, we encrypted the higher dimensional Wigner distribution function of low dimensional plaintext by using the bilinear property of Wigner distribution function. Computer simulation results show that this method can not only enlarge the key space, but also break through the linear characteristic of the traditional optical encryption technology. So it can significantly improve the safety of the encryption system.

  11. Space Transportation Engine Program (STEP), phase B

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  12. Investigations in Reducing the Computational Expense of Transient 3D Multi-Phase CO2 Wellbore Leakage Simulations: Time-Series Matching versus Multivariate Adaptive Regression Splines

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Pawar, R.

    2014-12-01

    Depleted oil and gas reserves have abandoned wellbore densities up to 10 per square kilometer (Crow, 2010). These locations are considered to have favorable geological structure and properties for CO2 sequestration. To understand the risk of CO2 leakage along these abandoned wellbores requires the simulation of a comprehensive set of realizations encompassing the potential scenarios. The simulations must capture transient, 3D, multi-phase effects (i.e. supercritical, liquid, and gas CO2 phases along with liquid reservoir and aquifer fluids), and include capillary and buoyant flow. Performing a large number of these simulations becomes computationally burdensome. In order to reduce this computational burden, regression approaches have been used to develop computationally efficient reduced order models to try to capture the general trends of the simulations. In these approaches, model inputs and outputs are collected from the transient simulations at each time step. Recognizing that many of the inputs to the regression approach come from time series (i.e. pressures and CO2 saturations) and that all of the outputs are time series (i.e. CO2 and brine flow rates), we develop a time-series matching approach. In this approach, CO2 and brine flow rate time series are estimated given input time series and parameters by averaging the flow rates of the collected simulations weighted by the similarity of their input time series and parameter. Similarity of both time series and parameters is calculated by the Euclidean distance. Euclidean distances are converted to a generalized likelihood metric, and used to weight the flow-rate time-series averages. We present a comparison of this time series matching approach to the MARS algorithm.

  13. 3-D InSAR Phase Unwrapping with Extended Kalman Filter: Applications to interseismic deformation detection across the North Anatolian and San Andreas Fault zones

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Osmanoglu, B.

    2014-12-01

    Interferometric Synthetic Aperture Radar (InSAR) is a method that allows researchers to map elevations, analyze surface deformation and even detect ground water level changes. The InSAR phase measurements are wrapped between 0 and 2π and therefore have to be unwrapped to reveal the full scale of the observations. Even though there are algorithms for finding discrete irrotational fields among neighboring pixels in two-dimensions, a three dimensional unwrapping approach is important as it can constrain the solution of our data to a more robust and accurate state. We developed a 3-D unwrapping algorithm based on an Extended Kalman Filter (EKF) that is capable of simultaneously filtering, unwrapping and inverting multiple interferograms to obtain a DEM or deformation map. The method is based on a path-following algorithm that unwraps the dataset starting from a reference point and moves to the next-highest quality neighboring point. The EKF algorithm allows us to better resolve unwrapping problems, especially in vegetated areas, which tend to be decorrelated, and hence obtain more accurate results. In this study we apply our 3-D EKF unwrapping algorithm to North Anatolian and San Andreas fault zones in order to detect interseismic crustal movement across these two major fault systems. For the North Anatolian Fault we processed 37 Envisat scenes that covers the Ismetpasa segment of the fault, and generated 237 interferograms. The generated interferograms are used with both EKF and SBAS algorithms to estimate the deformation in the area. Our previous study of this segment based on the SBAS technique revealed that the Ismetpasa segment creeps at a rate of 8 mm/yr. For the San Andreas Fault (SAF) we processed 37 descending Envisat ASAR scenes acquired between November 2005 and October 2010. Our area of interest includes the central SAF near its intersection with the Garlock Fault. Initial results show deformation across the fault but the results have low fit to the data

  14. Phase space representation of quantum dynamics

    SciTech Connect

    Polkovnikov, Anatoli

    2010-08-15

    We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.

  15. Quantum mechanics on phase space and teleportation

    NASA Astrophysics Data System (ADS)

    Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.

    2015-03-01

    The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.

  16. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  17. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE PAGESBeta

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less

  18. Enhancing Scientific Collaboration, Transparency, and Public Access: Utilizing the Second Life Platform to Convene a Scientific Conference in 3-D Virtual Space

    NASA Astrophysics Data System (ADS)

    McGee, B. W.

    2006-12-01

    Recent studies reveal a general mistrust of science as well as a distorted perception of the scientific method by the public at-large. Concurrently, the number of science undergraduate and graduate students is in decline. By taking advantage of emergent technologies not only for direct public outreach but also to enhance public accessibility to the science process, it may be possible to both begin a reversal of popular scientific misconceptions and to engage a new generation of scientists. The Second Life platform is a 3-D virtual world produced and operated by Linden Research, Inc., a privately owned company instituted to develop new forms of immersive entertainment. Free and downloadable to the public, Second Life offers an imbedded physics engine, streaming audio and video capability, and unlike other "multiplayer" software, the objects and inhabitants of Second Life are entirely designed and created by its users, providing an open-ended experience without the structure of a traditional video game. Already, educational institutions, virtual museums, and real-world businesses are utilizing Second Life for teleconferencing, pre-visualization, and distance education, as well as to conduct traditional business. However, the untapped potential of Second Life lies in its versatility, where the limitations of traditional scientific meeting venues do not exist, and attendees need not be restricted by prohibitive travel costs. It will be shown that the Second Life system enables scientific authors and presenters at a "virtual conference" to display figures and images at full resolution, employ audio-visual content typically not available to conference organizers, and to perform demonstrations or premier three-dimensional renderings of objects, processes, or information. An enhanced presentation like those possible with Second Life would be more engaging to non- scientists, and such an event would be accessible to the general users of Second Life, who could have an

  19. Computational methods for microfluidic microscopy and phase-space imaging

    NASA Astrophysics Data System (ADS)

    Pegard, Nicolas Christian Richard

    Modern optical devices are made by assembling separate components such as lenses, objectives, and cameras. Traditionally, each part is optimized separately, even though the trade-offs typically limit the performance of the system overall. This component-based approach is particularly unfit to solve the new challenges brought by modern biology: 3D imaging, in vivo environments, and high sample throughput. In the first part of this thesis, we introduce a general method to design integrated optical systems. The laws of wave propagation, the performance of available technology, as well as other design parameters are combined as constraints into a single optimization problem. The solution provides qualitative design rules to improve optical systems as well as quantitative task-specific methods to minimize loss of information. Our results have applications in optical data storage, holography, and microscopy. The second part of this dissertation presents a direct application. We propose a more efficient design for wide-field microscopy with coherent light, based on double transmission through the sample. Historically, speckle noise and aberrations caused by undesired interferences have made coherent illumination unpopular for imaging. We were able to dramatically reduce speckle noise and unwanted interferences using optimized holographic wavefront reconstruction. The resulting microscope not only yields clear coherent images with low aberration---even in thick samples---but also increases contrast and enables optical filtering and in-depth sectioning. In the third part, we develop new imaging techniques that better respond to the needs of modern biology research through implementing optical design optimization. Using a 4D phase-space distribution, we first represent the state and propagation of incoherent light. We then introduce an additional degree of freedom by putting samples in motion in a microfluidic channel, increasing image diversity. From there, we develop a

  20. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  1. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. PMID:24998032

  2. Uncertainty relations for general phase spaces

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    2016-04-01

    We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

  3. Reanalysis of relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Chen, Yue; Kondrashov, Dmitri

    In this study we perform a reanalysis of the sparse relativistic electron data using a relatively simple one-dimensional radial diffusion model and a Kalman filtering approach. The results of the reanalysis clearly show pronounced peaks in the electron phase space density (PSD), which can not be explained by the variations in the outer boundary, and can only be produced by a local acceleration processes. The location of the innovation vector shows that local acceleration is most efficient at L* = 5.5. To verify that our results are not affected by the limitations of the satellite orbit and coverage, we performed an "identical twin" experiments with synthetic data specified only at the locations for which CRRES observations are available. Our results indicate that the model with data assimilation can accurately reproduce the underlying structure of the PSD even when data is sparse.

  4. 3D whiteboard: collaborative sketching with 3D-tracked smart phones

    NASA Astrophysics Data System (ADS)

    Lue, James; Schulze, Jürgen P.

    2014-02-01

    We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D, based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area where they can be seen by the smart phones' cameras, in order to estimate the pose of each phone in the room. Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in 3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their smart phones' displays, as if the display was a window into this space. Besides lines, our prototype application also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other user's phone.

  5. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  6. Space-time geometry of topological phases

    SciTech Connect

    Burnell, F.J.; Simon, Steven H.

    2010-11-15

    The 2 + 1 dimensional lattice models of Levin and Wen (2005) provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.

  7. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  8. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  9. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  10. Future Engineers 3-D Print Timelapse

    NASA Video Gallery

    NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...

  11. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  12. Brightness, hue, and saturation in photopic vision: a result of luminance and wavelength in the cellular phase-grating optical 3D chip of the inverted retina

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1994-10-01

    In photopic vision, two physical variables (luminance and wavelength) are transformed into three psychological variables (brightness, hue, and saturation). Following on from 3D grating optical explanations of aperture effects (Stiles-Crawford effects SCE I and II), all three variables can be explained via a single 3D chip effect. The 3D grating optical calculations are carried out using the classical von Laue equation and demonstrated using the example of two experimentally confirmed observations in human vision: saturation effects for monochromatic test lights between 485 and 510 nm in the SCE II and the fact that many test lights reverse their hue shift in the SCE II when changing from moderate to high luminances compared with that on changing from low to medium luminances. At the same time, information is obtained on the transition from the trichromatic color system in the retina to the opponent color system.

  13. Progress in 3D Particle-In-Cell Modeling of Space-Charge-Dominated Ion Beams for Heavy-Ion Fusion

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Callahan, D. A.; Grote, D. P.; Langdon, A. B.; Lund, S. M.; Haber, I.

    1996-11-01

    The ion beam in an induction accelerator for HIF is a non-neutral plasma, and is effectively simulated using familiar particle-in-cell (PIC) techniques, with the addition of a description of the accelerating and confining elements. The WARP code incorporates electrostatic 3D and r,z PIC models; a number of techniques are used in the 3D package, WARP3d, to increase accuracy and efficiency. These include solution of Poisson's equation with subgrid-scale resolution of internal boundary placement, a bent-system model using ``warped'' coordinates, and parallel processing. In this paper we describe recent applications to HIF experiments, including a high-current electrostatic-quadrupole injector at LBNL, and bending and recirculation experiments at LLNL. We also describe new computational techniques being studied, including higher-order integrators and subcycling methods aimed at allowing larger timesteps, and a ``fat-slice'' model which affords efficient examination of collective modes that transfer thermal energy between degrees of freedom.

  14. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  15. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  16. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  17. Contrast-enhanced 3D MRA with centric ordering in k space: a preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculature.

    PubMed

    Shetty, A N; Bis, K G; Vrachliotis, T G; Kirsch, M; Shirkhoda, A; Ellwood, R

    1998-01-01

    The objective of this study was to determine the clinical utility of a contrast-enhanced, centric reordered, three-dimensional (3D) MR angiography (MRA) pulse sequence in imaging the abdominal aorta and renal and peripheral lower extremity arteries. Twenty-eight MRA studies were performed on 23 patients and four volunteers at 1.5 T using a 3D contrast-enhanced, centric reordered pulse sequence. In 20 patients, the abdominal aorta and renal arteries were imaged, and in seven patients, the lower extremity arteries were imaged. In 19 patients, a total of 51 renal vessels were evaluated (33 renal arteries using .1 mmol/kg of gadopentetate dimeglumine and 18 renal arteries using .2 mmol/kg of gadoteridol). A total of 70 peripheral arterial segments were assessed using .2 mmol/kg of gadoteridol. Correlation with conventional angiography was made for the following 14 cases: renal artery stenosis (four cases), abdominal aortic stenosis (one case), arteriovenous fistula in a transplant kidney (one case), renal arteriovenous malformation (one case), common iliac artery aneurysms (one case), and peripheral lower extremity (six cases). Of the 70 peripheral arterial segments evaluated, in 35, there was correlation with x-ray angiography. The mean percent of aortic signal enhancement was significantly higher in the .2 mmol/kg dose group (370.8 +/- 190.3) than in the .1 mmol/kg dose group (184.5 +/- 128.9) (P = .02). However, there was no apparent difference between the two doses for visualization of the renal and accessory renal arteries. There was concordance between the contrast-enhanced 3D MRA studies and conventional angiography in all cases of renal artery and peripheral arterial stenoses and occlusions, including visualization of reconstituted peripheral arterial segments. There was no evidence of spin dephasing effects at sites of stenoses on the 3D contrast-enhanced MRA studies. Contrast-enhanced, centric reordered, 3D MRA can rapidly image the abdominal aorta and renal

  18. Space market model development project, phase 2

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1988-01-01

    The results of the prototype operations of the Space Business Information Center are presented. A clearinghouse for space business information for members of the U.S. space industry composed of public, private, and academic sectors was conducted. Behavioral and evaluation statistics were recorded from the clearinghouse and the conclusions from these statistics are presented. Business guidebooks on major markets in space business are discussed. Proprietary research and briefings for firms and agencies in the space industry are also discussed.

  19. Analysis of 3d complex structure and heterogeneity effects on formation and propagation of regional phases in Eurasia. Final report, 15 August 1992-30 September 1994

    SciTech Connect

    Lay, T.; Wu, R.S.

    1994-12-13

    This document is the final report for this grant to develop new three-dimensional wave propagation techniques for high frequency waves in heterogeneous media. The report is divided into four sections, each being a published paper sponsored by this grant. In the first section we formulate a one-way wide-angle elastic wave propagation method for arbitrarily heterogeneous media in both the space and wavenumber domains using elastic Rayleigh integrals and local elastic Born scattering theory. In the second section this complex phase screen method is compared with fourth-order finite differences and exact eigenfunction expansion calculations for two-dimensional inhomogeneous media to assess the accuracy of the one-way propagation algorithm. In the third section, an observational study of continental margin structure influence on Lg propagation is presented, using data from the former Soviet stations for nuclear explosions at Novaya Zemlya. We find that bathymetric features can be correlated with energy levels of Lg, suggesting that waveguide structure influences regional phase energy partitioning. This idea is pursued in the fourth section, using Eurasian earthquake and nuclear explosion data along with information about the crustal structure in Eurasia. We develop empirical relations that reduce the scatter in the P/Lg discriminant at low frequency.

  20. Looking for phase-space structures in star-forming regions: an MST-based methodology

    NASA Astrophysics Data System (ADS)

    Alfaro, Emilio J.; González, Marta

    2016-03-01

    We present a method for analysing the phase space of star-forming regions. In particular we are searching for clumpy structures in the 3D sub-space formed by two position coordinates and radial velocity. The aim of the method is the detection of kinematic segregated radial velocity groups, that is, radial velocity intervals whose associated stars are spatially concentrated. To this end we define a kinematic segregation index, tilde{Λ }(RV), based on the Minimum Spanning Tree graph algorithm, which is estimated for a set of radial velocity intervals in the region. When tilde{Λ }(RV) is significantly greater than 1 we consider that this bin represents a grouping in the phase space. We split a star-forming region into radial velocity bins and calculate the kinematic segregation index for each bin, and then we obtain the spectrum of kinematic groupings, which enables a quick visualization of the kinematic behaviour of the region under study. We carried out numerical models of different configurations in the sub-space of the phase space formed by the coordinates and the that various case studies illustrate. The analysis of the test cases demonstrates the potential of the new methodology for detecting different kind of groupings in phase space.

  1. Stabilizer information inequalities from phase space distributions

    NASA Astrophysics Data System (ADS)

    Gross, David; Walter, Michael

    2013-08-01

    The Shannon entropy of a collection of random variables is subject to a number of constraints, the best-known examples being monotonicity and strong subadditivity. It remains an open question to decide which of these "laws of information theory" are also respected by the von Neumann entropy of many-body quantum states. In this article, we consider a toy version of this difficult problem by analyzing the von Neumann entropy of stabilizer states. We find that the von Neumann entropy of stabilizer states satisfies all balanced information inequalities that hold in the classical case. Our argument is built on the fact that stabilizer states have a classical model, provided by the discrete Wigner function: The phase-space entropy of the Wigner function corresponds directly to the von Neumann entropy of the state, which allows us to reduce to the classical case. Our result has a natural counterpart for multi-mode Gaussian states, which sheds some light on the general properties of the construction. We also discuss the relation of our results to recent work by Linden, Ruskai, and Winter ["The quantum entropy cone of stabiliser states," e-print arXiv:1302.5453].

  2. Constructing Phase Space Distributions within the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2014-12-01

    The key function in the description of the dynamics of the heliosheath (HS) is the phase space distribution (PSD) of the protons, i.e., how the interaction between the thermal and non-thermal (heated pick-up) proton populations evolves from the termination shock to the heliopause (HP) in this high-beta plasma. Voyager 1 found the heliopause to be essentially a (compound) magnetic separatrix, because the intensity of the non-thermal particle population became undetectably small beyond the HP, whereas the anisotropy characteristics of the galactic cosmic rays were consistent with no re-entry of the magnetic field lines into the HS (at either end). This paper attempts to synthesize in situ observations from Voyagers 1 and 2 (thermal plasma, magnetic field, energetic ions, and cosmic rays) with global ENA images from IBEX and Cassini/INCA into a self-consistent representation of the PSD within the noseward HS from thermal energies to several MeV/nuc. The interpretation of the ENA images requires assumptions on the global behavior of the bulk plasma flow throughout the HS that are self-consistent with all the available data (e.g., the spatial and energy dependence of the IBEX ribbon), because the Compton-Getting effects produced by the flows strongly affect the intensities (and thereby the partial densities and pressures) inferred from the ENA images.

  3. Overview of Phase Space Manipulations of Relativistic Electron Beams

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-08-31

    Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.

  4. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  5. Comparison of Changes in Immunological Parameters in Human Lymphocytes in 2D Versus 3D Clinostats-Goal Towards Microgravity Analog Calibration for Future Space Experiments

    NASA Astrophysics Data System (ADS)

    Sundaresan, Alamelu; Russomano, Thais; Pellis, Neal R.

    2008-06-01

    Exposure to microgravity may produce changes in the performance of the immunological system at the cellular level as well as in the major physiological systems of the body. Studies in true spaceflight and similar studies in 2D clinostats (Rotating wall vessels) related to decreased immune function in astronaut blood and normal human lymphocytes indicate a decrease in cell proliferation, T cell activation, locomotion and altered lymphocyte signal transduction (Sundaresan and Pellis, 2008, Sundaresan et al., 2004). The present study was designed to investigate whether the proliferation and viability of lymphocytes are reduced by exposure to rotation in a 3D-Clinostat, which is used to simulate microgravity for cells.

  6. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  7. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  8. Revisiting the TORT Solutions to the NEA Suite of Benchmarks for 3D Transport Methods and Codes Over a Range in Parameter Space

    SciTech Connect

    Bekar, Kursat B; Azmy, Yousry

    2009-01-01

    Improved TORT solutions to the 3D transport codes' suite of benchmarks exercise are presented in this study. Preliminary TORT solutions to this benchmark indicate that the majority of benchmark quantities for most benchmark cases are computed with good accuracy, and that accuracy improves with model refinement. However, TORT fails to compute accurate results for some benchmark cases with aspect ratios drastically different from 1, possibly due to ray effects. In this work, we employ the standard approach of splitting the solution to the transport equation into an uncollided flux and a fully collided flux via the code sequence GRTUNCL3D and TORT to mitigate ray effects. The results of this code sequence presented in this paper show that the accuracy of most benchmark cases improved substantially. Furthermore, the iterative convergence problems reported for the preliminary TORT solutions have been resolved by bringing the computational cells' aspect ratio closer to unity and, more importantly, by using 64-bit arithmetic precision in the calculation sequence. Results of this study are also reported.

  9. Space shuttle phase B study plan

    NASA Technical Reports Server (NTRS)

    Hello, B.

    1971-01-01

    Phase B emphasis was directed toward development of data which would facilitate selection of the booster concept, and main propulsion system for the orbiter. A shuttle system is also defined which will form the baseline for Phase C program activities.

  10. Negative space filling and 3D reconstruction of histological sections demonstrates differences in volumes of vessels and ducts within portal tracts of canine livers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visualizing areas of tissue that are occupied by air or liquid can provide a unique perspective on the relationships between various spaces within the tissue. The portal tracts of liver tissue are an example of such a space since the liver contains several vessels and ducts in various patterns of i...

  11. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  12. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  13. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  14. A structurally stable 3D supramolecular framework with 4.0% guest-accessible void spaces that are reversibly occupied by guest water molecules

    NASA Astrophysics Data System (ADS)

    Luo, Feng; Che, Yun-Xia; Zheng, Ji-min

    2008-02-01

    A new Cd(II)-Cu(II)-containing coordination compound, namely Cu(bpy)Cd(ip) 2(μ-OH 2) · (H 2O) 2 ( 1, bpy = 2,2 '-bipyridine, H 2ip = m-phthalic acid), has been synthesized hydrothermally by the reaction of CdCl 2, CuCl 2, bpy, and H 2ip. In 1, Cd(II) and Cu(II) ions are in turn connected by ip 2- ligands to generate the 2D (4, 4) nets. Further, these 2D sheets are linked together via π-π, C-H…O, and O-H…O contacts, thus resulting in the 3D supramolecular frameworks with the irregular 1D channels occupied by water molecules. Remarkably, the investigation by using IR, TG, and PXRD (powder X-ray diffraction) shows that the uptake and release of guest water molecules will not influence the structural integrity.

  15. Quasi-Hermitian quantum mechanics in phase space

    SciTech Connect

    Curtright, Thomas; Veitia, Andrzej

    2007-10-15

    We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. RAG-3D: a search tool for RNA 3D substructures.

    PubMed

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  18. Space law information system design, phase 2

    NASA Technical Reports Server (NTRS)

    Morenoff, J.; Roth, D. L.; Singleton, J. W.

    1973-01-01

    Design alternatives were defined for the implementation of a Space Law Information System for the Office of the General Counsel, NASA. A thesaurus of space law terms was developed and a selected document sample indexed on the basis of that thesaurus. Abstracts were also prepared for the sample document set.

  19. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  20. Phase partitioning in space and on earth

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.

    1987-01-01

    The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.

  1. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  2. Real-space Berry phases: Skyrmion soccer (invited)

    SciTech Connect

    Everschor-Sitte, Karin Sitte, Matthias

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  3. Real-space Berry phases: Skyrmion soccer (invited)

    NASA Astrophysics Data System (ADS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  4. 3D-HST results and prospects

    NASA Astrophysics Data System (ADS)

    Van Dokkum, Pieter G.

    2015-01-01

    The 3D-HST survey is providing a comprehensive census of the distant Universe, combining HST WFC3 imaging and grism spectroscopy with a myriad of other ground- and space-based datasets. This talk constitutes an overview of science results from the survey, with a focus on ongoing work and ways to exploit the rich public release of the 3D-HST data.

  5. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan; Tran, Toan Trong; Aharonovich, Igor; Fanna, Daniel J.; Shepherd, Nicholas D.; Lu, Kim; Li, Feng; Lumpkin, Gregory R.

    2016-02-01

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H2phb) or terephthalic acid (H2tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO2)2(Hphb)2(phb)(DMF)(H2O)3]·4H2O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a μ2-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO2)(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with μ4-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C-O-U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated.