Science.gov

Sample records for 3d phononic crystals

  1. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  2. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  3. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity. PMID:24559126

  4. Harvesting vibrations via 3D phononic isolators

    NASA Astrophysics Data System (ADS)

    Psarobas, Ioannis E.; Yannopapas, Vassilios; Matikas, Theodore E.

    2016-05-01

    We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell. xml:lang="fr"

  5. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  6. Investigation the effect of lattice angle on the band gap width in 3D phononic crystals with rhombohedral(I) lattice

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar

    2014-07-01

    In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.

  7. Phonon manipulation with phononic crystals.

    SciTech Connect

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  8. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  9. Manipulation of Phonons with Phononic Crystals

    SciTech Connect

    Leseman, Zayd Chad

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  10. Phonon-drag thermopower in 3D Dirac semimetals.

    PubMed

    Kubakaddi, S S

    2015-11-18

    A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S(g) increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S(g) ~ T(8) (T(4)) and S(g) ~ n(e)(-5/3)(n(e)(-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T  >  0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase. PMID:26490643

  11. Phonon-drag thermopower in 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Kubakaddi, S. S.

    2015-11-01

    A theory of low-temperature phonon-drag thermopower S g in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S g, in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S g is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S g increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S g ~ T 8 (T 4) and S g ~ n\\text{e}-5/3 (n\\text{e}-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S d shows that S g dominates (and is much greater than) S d for about T  >  0.2 K. Herring’s law S g μ p ~ T -1, relating phonon limited mobility μ p and S g in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.

  12. Tunable Topological Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Chen, Ze-Guo; Wu, Ying

    2016-05-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  13. A wrinkly phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2015-03-01

    The buckling induced surface instability is employed to propose a tunable phononic crystal slab composed of a stiff thin film bonded on a soft elastomer. Wrinkles formation is used to generate one-dimensional periodic scatterers at the surface of a finitely thick slab. Wrinkles' pattern change and corresponding stress is employed to control wave propagation triggered by a compressive strain. Simulation results show that the periodic wrinkly structure can be used as a transformative phononic crystal which can switch band diagram of the structure in a reversible behavior. Results of this study provide opportunities for the smart design of tunable switch and elastic wave filters at ultrasonic and hypersonic frequency ranges.

  14. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  15. Ultrasonic and hypersonic phononic crystals

    NASA Astrophysics Data System (ADS)

    Khelif, A.; Hsiao, F.-L.; Benchabane, S.; Choujaa, A.; Aoubiza, B.; Laude, V.

    2008-02-01

    We report on the experimental and theoretical investigation two kinds of acoustic waves in two dimensional phononic crystal: bulk acoustic waves and surface acoustic waves. For bulk acoustic waves, the work focuses on the experimental observation of full acoustic band gaps in a two-dimensional lattice of steel cylinders immersed in water as well as deaf bands that cause strong attenuation in the transmission for honeycomb and triangular lattices. For surface acoustic waves, complete acoustic band gaps found experimentally in a two-dimensional square-lattice piezoelectric phononic crystal etched in lithium niobate will be presented. Propagation in the phononic crystal is studied by direct generation and detection of surface waves using interdigital transducers. The complete band gap extends from 203 to 226 MHz, in good agreement with theoretical predictions. Near the upper edge of the complete band gap, it is observed that radiation to the bulk of the substrate dominates. This observation is explained by introducing the concept of sound line.

  16. Molding Phonon Flow with Symmetry: Rational Design of Hypersonic Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Koh, Cheong Yang; Thomas, Edwin L.

    2009-03-01

    Phononic crystals structured at appropriate length scales allow control over the flow of phonons, leading to new possibilities in applications such as heat-management, sound isolation and even energy transfer and conversion. Symmetry provides a unified framework for the interpretation 1D to 3D phononic band structures, allowing utilization of a common set of principles for designing band structures of phononic crystals as well as actual purposeful defects such as waveguide location and boundary termination in finite devices. In this work, we explore the band structure properties of phononic crystals with non-symmorphic space groups, as well as those having quasi-crystalline approximants. We demonstrate gap opening abilities from both anti-crossing and Bragg scattering, as well as unique features like ``sticking'' bands. Symmetry concepts are also powerful means to tune the density of states of the structures. Importantly, we fabricate various theoretical designs and measure their experimental dispersion diagrams for comparison with theoretical calculation. This affords an elegant approach toward a design blueprint for fabricating phononic structures for applications such as opto-acoustic coupling.

  17. Watching surface waves in phononic crystals.

    PubMed

    Wright, Oliver B; Matsuda, Osamu

    2015-08-28

    In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. PMID:26217053

  18. Phononic crystals and elastodynamics: Some relevant points

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.

    2014-12-15

    In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  19. Acoustic superfocusing by solid phononic crystals

    SciTech Connect

    Zhou, Xiaoming; Assouar, M. Badreddine Oudich, Mourad

    2014-12-08

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.

  20. Refraction characteristics of phononic crystals

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia

    2015-08-01

    Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy-flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy-flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy-flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum

  1. Two-Dimensional Phononic Crystals: Disorder Matters.

    PubMed

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. PMID:27580163

  2. Synthetic thermoelectric materials comprising phononic crystals

    SciTech Connect

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  3. Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.

    2010-12-01

    In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.

  4. Honeycomb phononic crystals with self-similar hierarchy

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ghosh, Ranajay; Mahdi, Elsadig; Bertoldi, Katia; Vaziri, Ashkan

    2015-09-01

    We highlight the effect of structural hierarchy and deformation on band structure and wave-propagation behavior of two-dimensional phononic crystals. Our results show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the band gaps and directionality of phononic crystals. The work provides insights into the role of structural organization and hierarchy in regulating the dynamic behavior of phononic crystals, and opportunities for developing tunable phononic devices.

  5. Ionizing particle detection based on phononic crystals

    SciTech Connect

    Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  6. Ionizing particle detection based on phononic crystals

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  7. Phononic subsurface: Flow stabilization by crystals

    NASA Astrophysics Data System (ADS)

    Hussein, Mahmoud I.; Biringen, Sedat; Bilal, Osama R.; Kucala, Alec

    2015-11-01

    Flow control is a century-old problem where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport. In this work, we show that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept is demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting (TS) wave is introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, the TS wave is shown to stabilize, or destabilize, as needed. A theory of subsurface phonons is presented that provides an accurate prediction of this behavior without the need for a flow simulation. This represents an unprecedented capability to passively synchronize wave propagation across a fluid-structure interface and achieve favorable, and predictable, alterations to the flow properties. National Science Foundation, Grant No. 1131802.

  8. Tunable magneto-granular phononic crystals

    NASA Astrophysics Data System (ADS)

    Allein, F.; Tournat, V.; Gusev, V. E.; Theocharis, G.

    2016-04-01

    This paper reports on the study of the dynamics of 1D magneto-granular phononic crystals composed of a chain of spherical steel beads inside a properly designed magnetic field. This field is induced by an array of permanent magnets, located in a holder at a given distance from the chain. The theoretical and experimental results of the band gap structure are displayed, including all six degrees of freedom for the beads, i.e., three translations and three rotations. Experimental evidence of transverse-rotational modes of propagation is presented; moreover, by changing the strength of the magnetic field, the dynamic response of the granular chain is tuned. The combination of non-contact tunability with the potentially strong nonlinear behavior of granular systems ensures the suitability of magneto-granular phononic crystals as nonlinear, tunable mechanical metamaterials for use in controlling elastic wave propagation.

  9. Registration of 3-D holograms of diamond crystals (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Marchenko, S. N.; Smirnova, S. N.

    1991-02-01

    Registration of 3D ho1orarns broadens the possibility of using single-crystal tool for imagining and investigating inner inhomogeneities and dynamic stresses in top area of gem diamond, study of which by other techniques,e.g. polarization optics, is difficult or impossible. The difficulty is that the diamond with significant refractive index of 2.42 has comparatively small angle of total internal reflection of 24°50. As a result, with random illumination of the tops of octahedron diamond crystals, both smooth- faceted and with polycentric facets, illuminating light is successively reflected from different farets and absorbed in the crystal or comes out of it in a spot and direction that are difficult to calculate. Optimal schemes of illuminating crystals for recording 3D holograms of smooth faceted octahedron diamonds are given. Analysis of illumination of the crystal with polycentric facets shows that correction of light in the diamond is determined by directivity diagram the width of which depends in inhomogeneity size of the diamond. 3D holograms of diamonds with different reflectivity were produced. For the first time the possibility is shown for registration of holograms for studying stresses in diamond top using single-crystal tool.

  10. Phonon heat conduction in layered anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Minnich, A. J.

    2015-02-01

    The thermal properties of anisotropic crystals are of both fundamental and practical interest, but transport phenomena in anisotropic materials such as graphite remain poorly understood because solutions of the Boltzmann equation often assume isotropy. Here, we extend an analytic solution of the transient, frequency-dependent Boltzmann equation to highly anisotropic solids and examine its predictions for graphite. We show that this simple model predicts key results, such as long c -axis phonon mean free paths and a negative correlation of cross-plane thermal conductivity with in-plane group velocity, that were previously observed with computationally expensive molecular-dynamics simulations. Further, using our analytic solution, we demonstrate a method to reconstruct the anisotropic mean free path spectrum of crystals with arbitrary dispersion relations without any prior knowledge of their harmonic or anharmonic properties using observations of quasiballistic heat conduction. These results provide a useful analytic framework to understand thermal transport in anisotropic crystals.

  11. Engineering thermal conductance using a two-dimensional phononic crystal

    PubMed Central

    Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.; Chaudhuri, Saumyadip; Maasilta, Ilari J.

    2014-01-01

    Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device. PMID:24647049

  12. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing.

    PubMed

    Aristov, Andrey I; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V

    2016-01-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*10(4) deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology. PMID:27151104

  13. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-05-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.

  14. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    PubMed Central

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-01-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology. PMID:27151104

  15. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics. PMID:25479504

  16. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  17. Melting of Temperature-Sensitive 3D Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Alsayed, Ahmed; Han, Yilong; Yodh, Arjun

    2006-03-01

    We employ thermally responsive monodisperse microgel colloidal spheres to study the melting mechanisms of colloidal crystals [1]. The particle diameter decreases with increasing temperature and leads to volume fraction changes that drive phase-transitions. We will describe observations of a variety of phenomena. Premelting, the localized loss of crystalline order near defects (e.g. grain boundaries) at volume fractions above the bulk melting transition, is directly observed by video microscopy, and is characterized by monitoring the first peak position of the particle pair correlation function. We find the position of the first peak shifts toward smaller particle separations at the onset of premelting. After Delaunay triangulation, mean square rotational and translational fluctuations of bonds were measured close to and away from defects. The behavior of all such quantities exhibits increased disorder near the defects. By locally heating the material within a crystal domain, we also studied the superheating and melting of a perfect 3D crystal. Finally, the introduction of weak attractions between spheres reveals free-floating 3D crystal `blobs' which can be made to melt and recrystallize by tuning the temperature. [1] A. M. Alsayed, M. F. Islam, J. Zhang, P. J. Collings, A. G. Yodh, Science 309, 1207 (2005). This work was supported by grants from NSF (DMR-0505048 and MRSEC DMR05-20020) and NASA (NAG8-2172).

  18. Hexagonal liquid crystal lens array for 3D endoscopy.

    PubMed

    Hassanfiroozi, Amir; Huang, Yi-Pai; Javidi, Bahram; Shieh, Han-Ping D

    2015-01-26

    A liquid crystal lens array with a hexagonal arrangement is investigated experimentally. The uniqueness of this study exists in the fact that using convex-ring electrode provides a smooth and controllable applied potential profile across the aperture to manage the phase profile. We observed considerable differences between flat electrode and convex-ring electrode; in particular the lens focal length is variable in a wider range from 2.5cm to infinity. This study presents several noteworthy characteristics such as low driving voltage; 30 μm cell gap and the lens is electrically switchable between 2D/3D modes. We demonstrate a hexagonal LC-lens array for capturing 3D images by using single sensor using integral imaging. PMID:25835856

  19. Large Area Printing of 3D Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Watkins, James J.; Beaulieu, Michael R.; Hendricks, Nicholas R.; Kothari, Rohit

    2014-03-01

    We have developed a readily scalable print, lift, and stack approach for producing large area, 3D photonic crystal (PC) structures. UV-assisted nanoimprint lithography (UV-NIL) was used to pattern grating structures comprised of highly filled nanoparticle polymer composite resists with tune-able refractive indices (RI). The gratings were robust and upon release from a support substrate were oriented and stacked to yield 3D PCs. The RI of the composite resists was tuned between 1.58 and 1.92 at 800 nm while maintaining excellent optical transparency. The grating structure dimensions, line width, depth, and pitch, were easily varied by simply changing the imprint mold. For example, a 6 layer log-pile stack was prepared using a composite resist a RI of 1.72 yielding 72 % reflection at 900 nm. The process is scalable for roll-to-roll (R2R) production. Center for Hierarchical Manufacturing - an NSF Nanoscale Science and Engineering Center.

  20. Remarkable reduction of thermal conductivity in phosphorene phononic crystal

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhang, Gang

    2016-05-01

    Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the ‘non-square’ pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene.

  1. Remarkable reduction of thermal conductivity in phosphorene phononic crystal.

    PubMed

    Xu, Wen; Zhang, Gang

    2016-05-01

    Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the 'non-square' pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene. PMID:27033566

  2. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    PubMed

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells. PMID:26428816

  3. Finite element analysis of surface modes in phononic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Guo, Yuning; Schubert, Martin; Dekorsy, Thomas

    2016-03-01

    The study of surface modes in phononic crystal waveguides in the hypersonic regime is a burgeoning field with a large number of possible applications. By using the finite element method, the band structure and the corresponding transmission spectrum of surface acoustic waves in phononic crystal waveguides generated by line defects in a silicon pillar-substrate system were calculated and investigated. The bandgaps are caused by the hybridization effect of band branches induced by local resonances and propagating modes in the substrate. By changing the sizes of selected pillars in the phononic crystal waveguides, the corresponding bands shift and localized modes emerge due to the local resonance effect induced by the pillars. This effect offers further possibilities for tailoring the propagation and filtering of elastic waves. The presented results have implications for the engineering of phonon dynamics in phononic nanostructures.

  4. Low Frequency Thermal Conductivity in Micro Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Anjos, Virgilio; Arantes, Alison

    2015-03-01

    We study theoretically the cumulative thermal conductivity of a micro phononic crystal at low temperature regime. The phononic crystal considered presents carbon microtubes inclusions arranged periodically in a two-dimensional square lattice embebed in soft elastic matrix. Moderate and high impedance mismatch are considered concerning the material composition. The low frequency phonon spectra (up to tens of GHz) are obtained solving the generalized wave equation for inhomogeneous media within the Plane Wave Expansion method. We consider low temperatures in order to increase the participation of GHz thermal phonons. We observed suppression in the cumulative thermal conductivity at the band gap region and thus a reduction of thermal conductivity of the phononic crystal when compared with the bulk matrix. The authors would like to thank the Brazilian agencies, National Council of Technological and Scientific Development (CNPq), Foundation for Research Support of Minas Gerais (FAPEMIG) and CAPES for their support.

  5. Phononic Thermal Conduction Engineering for Bolometers: From Phononic Crystals to Radial Casimir Limit

    NASA Astrophysics Data System (ADS)

    Maasilta, I. J.; Puurtinen, T. A.; Tian, Y.; Geng, Z.

    2016-07-01

    We discuss two alternative and complementary means of controlling radial phonon conduction for bolometers in two dimensions: by using phononic crystals or by roughening the surface of the membranes (Casimir limit). For phononic crystals, we present new experiments with a modified geometry and a larger hole periodicity than before, achieving a low thermal conductance {˜ }2 pW/K at 150 mK. Calculations in the Casimir limit, on the other hand, show that for small detector dimensions thermal conductance below 1 fW/K seems achievable.

  6. Investigating the existence of coherent phonon scattering in silicon using phononic crystals

    NASA Astrophysics Data System (ADS)

    Goettler, Drew

    In silicon the majority of heat energy is transported by phonons, which are discrete lattice vibrations. Phonon scattering due to the presence of voids in silicon can further alter the material's thermal conductivity. There is a question about the possibility of some of this scattering being coherent rather than purely incoherent. Coherent phonon scattering is defined as constructive interference of phonons scattered from the inclusions in the phononic crystal. The intent of this work is to investigate the existence of coherent scattering in Si via phononic crystals. A phononic crystal is a periodic array of inclusions inside a host material. The inclusions could be a second material or a void. In this work five different supercell phononic crystals comprised of holes in silicon will be used to investigate the existence of coherent phonon scattering. Each of the supercells had nearly identical critical lengths in order to keep the amount of incoherent scattering equal among all of the PnCs. Porosity differences among the supercells were also minimized. All of the PnCs were fabricated with a focused ion beam (FIB). During fabrication a protective layer of Ti was used to protect the Si from unintentional Ga doping from the FIB. The Ti layer also helped generate voids with more vertical sidewalls. A set of experiments was performed to measure the thermal conductivity of each PnC. Thermal conductivity measurements were carried out on a silicon nitride suspended island platform with platinum resistance temperature detectors and coated with aluminum nitride. A silicon slab was concurrently measured with each PnC, and relative thermal conductivity values were determined. The addition of the PnC decreased Si's thermal conductivity to less than 22% of its original value. An analysis of the results shows there is a reduction in thermal conductivity beyond the effects of porosity and incoherent scattering. This enhanced reduction in thermal conductivity is due to coherent

  7. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  8. Phononic Crystal Waveguiding in GaAs

    NASA Astrophysics Data System (ADS)

    Azodi Aval, Golnaz

    Compared to the much more common photonic crystals that are used to manipulate light, phononic crystals (PnCs) with inclusions in a lattice can be used to manipulate sound. While trying to propagate in a periodically structured media, acoustic waves may experience geometries in which propagation forward is totally forbidden. Furthermore, defects in the periodicity can be used to confine acoustic waves to follow complicated routes on a wavelength scale. Using advanced fabrication methods, we aim to implement these structures to control surface acoustic wave (SAW) propagation on the piezoelectric surface and eventually interact SAWs with quantum structures. To investigate the interaction of SAWs with periodic elastic structures, SAW interdigital transducers (IDTs) and PnC fabrication procedures were developed. GaAs is chosen as a piezoelectric substrate for SAWs propagation. Lift-off photolithography processes were used to fabricate IDTs with finger widths as low as 1.5 microns. PnCs are periodic structures of shallow air holes created in GaAs substrate by means of a wet-etching process. The PnCs are square lattices with lattice constants of 8 and 4 microns. To predict the behavior of a SAW when interacting with the PnC structures, an FDTD simulator was used to calculate the band structures and SAW wave displacement on the crystal surface. The bandgap (BG) predicted for the 8 micron crystal ranges from 180 MHz to 220 MHz. Simulations show a shift in the BG position for 4 microns crystals ranging from 391 to 439 MHz. Two main waveguide geometries were considered in this work: a simple line waveguide and a funneling entrance line waveguide. Simulations indicated an increase in acoustic power density for the funneling waveguides. Fabricated device evaluated with electrical measurements. In addition, a scanning Sagnac interferometer is used to map the energy density of the SAWs. The Sagnac interferometer is designed to measure the outward displacement of a surface due to

  9. Phononic Crystal Tunable via Ferroelectric Phase Transition

    NASA Astrophysics Data System (ADS)

    Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu

    2015-09-01

    Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.

  10. Sharp bends of phononic crystal surface modes

    NASA Astrophysics Data System (ADS)

    Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent

    2015-12-01

    Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.

  11. The phononic crystals: An unending quest for tailoring acoustics

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-07-01

    Periodicity (in time or space) is a part and parcel of every living being: one can see, hear and feel it. Everyday examples are locomotion, respiration and heart beat. The reinforced N-dimensional periodicity over two or more crystalline solids results in the so-called phononic band gap crystals. These can have dramatic consequences on the propagation of phonons, vibrations and sound. The fundamental physics of cleverly fabricated phononic crystals can offer a systematic route to realize the Anderson localization of sound and vibrations. As to the applications, the phononic crystals are envisaged to find ways in the architecture, acoustic waveguides, designing transducers, elastic/acoustic filters, noise control, ultrasonics, medical imaging and acoustic cloaking, to mention a few. This review focuses on the brief sketch of the progress made in the field that seems to have prospered even more than was originally imagined in the early nineties.

  12. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  13. One-dimensional hypersonic phononic crystals.

    PubMed

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons. PMID:20141118

  14. Phononic crystals of spherical particles: A tight binding approach

    SciTech Connect

    Mattarelli, M.; Secchi, M.; Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento ; Montagna, M.

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  15. Thermal energy transport in a surface phonon-polariton crystal

    NASA Astrophysics Data System (ADS)

    Ordonez-Miranda, Jose; Tranchant, Laurent; Joulain, Karl; Ezzahri, Younes; Drevillon, Jérémie; Volz, Sebastian

    2016-01-01

    We demonstrate that the energy transport of surface phonon polaritons can efficiently be observed in a crystal made up of a three-dimensional assembly of spheroidal nanoparticles of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure, along with its high surface area-to-volume ratio, allows the predominance of the polariton energy over that generated by phonons. The polariton dispersion relation, propagation length, and thermal conductance are numerically determined as functions of the size, shape, and temperature of the nanoparticles. It is shown that the thermal conductance of a crystal with prolate nanoparticles at 500 K and a minor (major) axis of 50 nm (5 μ m ) is 0.5 nW K-1 , which is comparable to the quantum of thermal conductance of polar nanowires. We also show that a nanoparticle size dispersion of up to 200 nm does not change significantly the polariton energy, which supports the technological feasibility of the proposed crystal.

  16. Bulk phonon scattering in perturbed quasi-3D multichannel crystallographic waveguide.

    PubMed

    Rabia, M S

    2008-11-19

    In the present paper, we concentrate on the influence of local defects on scattering properties of elastic waves in perturbed crystalline quasi-three-dimensional nanostructures in the harmonic approximation. Our model consists of three infinite atomic planes, assimilated into a perfect waveguide in which different distributions of scatterers (or defects) are inserted in the bulk. We have investigated phonon transmission and conductance for three bulk defect configurations. The numerical treatment of the problem, based on the Landauer approach, resorts to the matching method initially employed for the study of surface localized phonons and resonances. We present a detailed study of the defect-induced fluctuations in the transmission spectra. These fluctuations can be related to Fano resonances and Fabry-Pérot oscillations. The first is due to the coupling between localized defect states and the perfect waveguide propagating modes whereas the latter results from the interference between incidental and reflected waves. Numerical results reveal the intimate relation between transmission spectra and localized impurity states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. PMID:21693856

  17. Phonon-enhanced crystal growth and lattice healing

    DOEpatents

    Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

    2013-05-28

    A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

  18. Mode- and Direction-Dependent Mechanical Energy Dissipation in Single-Crystal Resonators due to Anharmonic Phonon-Phonon Scattering

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth S.; Candler, Robert N.

    2016-03-01

    In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal resonators due to anharmonic phonon-phonon scattering in the Akhiezer (Ω τ ≪1 ) regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction- and polarization-dependent mode-Grüneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. This expression reveals the fundamental differences among the internal friction limits for different types of bulk-mode elastic waves. For cubic crystals, 2D-extensional modes have increased dissipation compared to width-extensional modes because the biaxial deformation opposes the natural Poisson contraction of the solid. Additionally, we show that shear-mode vibrations, which preserve volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to pure-shear phonon branches, indicating that Lamé- or wineglass-mode resonators will have the highest upper limit on mechanical efficiency. Finally, we employ key simplifications to evaluate the quality factor limits for common mode shapes in single-crystal silicon devices, explicitly including the correct effective elastic storage moduli for different vibration modes and crystal orientations. Our expression satisfies the pressing need for a reliable analytical model that can predict the phonon-phonon dissipation limits for modern resonant microelectromechanical systems, where precise manufacturing techniques and accurate finite-element methods can be used to select particular vibrational mode shapes and crystal orientations.

  19. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  20. Phonons in Ultrathin Oxide Films: 2D to 3D Transition in FeO on Pt(111).

    PubMed

    Spiridis, N; Zając, M; Piekarz, P; Chumakov, A I; Freindl, K; Goniakowski, J; Kozioł-Rachwał, A; Parliński, K; Ślęzak, M; Ślęzak, T; Wdowik, U D; Wilgocka-Ślęzak, D; Korecki, J

    2015-10-30

    The structural and magnetic properties of ultrathin FeO(111) films on Pt(111) with thicknesses from 1 to 16 monolayers (MLs) were studied using the nuclear inelastic scattering of synchrotron radiation. A distinct evolution of vibrational characteristics with thickness, revealed in the phonon density of states (PDOS), shows a textbook transition from 2D to 3D lattice dynamics. For the thinnest films of 1 and 2 ML, the low-energy part of the PDOS followed a linear ∝E dependence in energy that is characteristic for two-dimensional systems. This dependence gradually transforms with thickness to the bulk ∝E^{2} relationship. Density-functional theory phonon calculations perfectly reproduced the measured 1-ML PDOS within a simple model of a pseudomorphic FeO/Pt(111) interface. The calculations show that the 2D PDOS character is due to a weak coupling of the FeO film to the Pt(111) substrate. The evolution of the vibrational properties with an increasing thickness is closely related to a transient long-range magnetic order and stabilization of an unusual structural phase. PMID:26565477

  1. Phonons in Ultrathin Oxide Films: 2D to 3D Transition in FeO on Pt(111)

    NASA Astrophysics Data System (ADS)

    Spiridis, N.; Zając, M.; Piekarz, P.; Chumakov, A. I.; Freindl, K.; Goniakowski, J.; Kozioł-Rachwał, A.; Parliński, K.; Ślezak, M.; Ślezak, T.; Wdowik, U. D.; Wilgocka-Ślezak, D.; Korecki, J.

    2015-10-01

    The structural and magnetic properties of ultrathin FeO(111) films on Pt(111) with thicknesses from 1 to 16 monolayers (MLs) were studied using the nuclear inelastic scattering of synchrotron radiation. A distinct evolution of vibrational characteristics with thickness, revealed in the phonon density of states (PDOS), shows a textbook transition from 2D to 3D lattice dynamics. For the thinnest films of 1 and 2 ML, the low-energy part of the PDOS followed a linear ∝E dependence in energy that is characteristic for two-dimensional systems. This dependence gradually transforms with thickness to the bulk ∝E2 relationship. Density-functional theory phonon calculations perfectly reproduced the measured 1-ML PDOS within a simple model of a pseudomorphic Fe O /Pt(1 1 1 ) interface. The calculations show that the 2D PDOS character is due to a weak coupling of the FeO film to the Pt(111) substrate. The evolution of the vibrational properties with an increasing thickness is closely related to a transient long-range magnetic order and stabilization of an unusual structural phase.

  2. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    PubMed

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing. PMID:26177830

  3. Cavity-type hypersonic phononic crystals

    NASA Astrophysics Data System (ADS)

    Sato, A.; Pennec, Y.; Yanagishita, T.; Masuda, H.; Knoll, W.; Djafari-Rouhani, B.; Fytas, G.

    2012-11-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.

  4. Topological Phononic Crystals with One-Way Elastic Edge Waves

    NASA Astrophysics Data System (ADS)

    Wang, Pai; Lu, Ling; Bertoldi, Katia

    2015-09-01

    We report a new type of phononic crystals with topologically nontrivial band gaps for both longitudinal and transverse polarizations, resulting in protected one-way elastic edge waves. In our design, gyroscopic inertial effects are used to break the time-reversal symmetry and realize the phononic analogue of the electronic quantum (anomalous) Hall effect. We investigate the response of both hexagonal and square gyroscopic lattices and observe bulk Chern numbers of 1 and 2, indicating that these structures support single and multimode edge elastic waves immune to backscattering. These robust one-way phononic waveguides could potentially lead to the design of a novel class of surface wave devices that are widely used in electronics, telecommunication, and acoustic imaging.

  5. Exciton-phonon interaction in crystals and quantum size structures

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Yukhymchuk, V. O.; Dzhagan, V. M.; Valakh, M. Ya; Baran, J.; Ratajczak, H.

    2007-12-01

    In this report, the problem of electron-phonon interaction (EPI) in bulk semiconductors and quantum dots (QDs) is considered. It is shown that the model of strong EPI developed for organic molecular crystals can be successfully applied to bulk and nano-sized semiconductors. The idea of the approach proposed is to describe theoretically the experimental Raman (IR) spectra, containing the phonon replicas, by varying the EPI constant. The main parameter of the theoretical expression (βS) is the ratio of EPI constant (χS) to the frequency of the corresponding phonon mode (ΩS). The theoretical results show that variation of the QD size can change the value of χS.

  6. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  7. Self assembly of inorganic nanocrystals in 3D supra crystals: Intrinsic properties

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2009-06-01

    Here we describe how arrangements of nanocrystals can self-organize in 3D arrays called supra crystals. The 3D arrays can fall into the familiar categories of face centered cubic (fcc), hexagonal compact packing (hcp) crystals, and body centered (bcc) crystals. Intrinsic collective properties of these 3D arrangements are different from the properties of individual nanoparticles and from particles in bulk. We demonstrate by two various processes and with two types of nanocrystals (silver and cobalt) that when nanocrystals are self ordered in 3D superlattices, they exhibit a coherent breathing mode vibration of the supra crystal, analogous to a breathing mode vibration of atoms in a nanocrystal. Comparison between the approaches to saturation of the magnetic curve for supra crystals and disordered aggregates produced from the same batch of nanocrystals is similar to that observed with films or nanoparticles either highly crystallized or amorphous.

  8. Optical phonon modes and crystal structure of NaLaF4 single crystals

    NASA Astrophysics Data System (ADS)

    Lage, Márcio Martins; Matinaga, Franklin Massami; Gesland, Jean-Yves; Moreira, Roberto Luiz

    2006-03-01

    Polarized Raman scattering and infrared reflectivity measurements have been used to investigate the crystal structure of Czochralski-grown NaLaF4 single crystals. The phonon symmetries, the simultaneous presence of polar modes in the infrared and Raman spectra, as well as the observation of piezoelectric resonance, helped us to identify the P6 group as the correct one for this crystal. This material belongs to a family of sodium lanthanide tetrafluorides (NaLnF4) crystals, whose photoluminescence efficiency is comparable to LiYF4. Therefore, NaLaF4 crystals may be important in the development of diode pumped up-conversion solid-state lasers. The number and behavior of the observed optical phonon modes were analyzed in terms of group theory predictions for the group symmetry found. A few anomalies in the phonon characteristics are discussed in terms of cationic disorder in the crystal lattice.

  9. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  10. Thermal transport in phononic crystals: The role of zone folding effect

    NASA Astrophysics Data System (ADS)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  11. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    PubMed Central

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-01-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal. PMID:27477236

  12. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-08-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.

  13. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals.

    PubMed

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-01-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal. PMID:27477236

  14. Electrical manipulation of crystal symmetry for switching transverse acoustic phonons.

    PubMed

    Jeong, H; Jho, Y D; Stanton, C J

    2015-01-30

    We experimentally explore the use of a novel device where lateral electric fields can be applied to break the translational symmetry within the isotropic plane and hence change the selection rules to allow normally forbidden transverse acoustic (TA) phonon generations. The ultrafast screening of the lateral electric field by the photocarriers relieves shear strain in the structure and switches on the propagating TA waves. The amplitude and on-state time of the TA mode can be modulated by the external field strength and size of the laterally biased region. The observed frequency shift with an external bias as well as the strong geometrical dependence confirm the role of the asymmetric potential distribution in electrically manipulating the crystal symmetry to control modal behavior of acoustic phonons. PMID:25679892

  15. Electrical Manipulation of Crystal Symmetry for Switching Transverse Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Stanton, C. J.

    2015-01-01

    We experimentally explore the use of a novel device where lateral electric fields can be applied to break the translational symmetry within the isotropic plane and hence change the selection rules to allow normally forbidden transverse acoustic (TA) phonon generations. The ultrafast screening of the lateral electric field by the photocarriers relieves shear strain in the structure and switches on the propagating TA waves. The amplitude and on-state time of the TA mode can be modulated by the external field strength and size of the laterally biased region. The observed frequency shift with an external bias as well as the strong geometrical dependence confirm the role of the asymmetric potential distribution in electrically manipulating the crystal symmetry to control modal behavior of acoustic phonons.

  16. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  17. Electron-phonon interaction in three-, two- and one-dimensional ternary mixed crystals

    NASA Astrophysics Data System (ADS)

    Hou, Junhua; Fan, Yunpeng

    2016-05-01

    The electron-phonon (e-p) interaction in three-dimensional (3D), two-dimensional (2D) and one-dimensional (1D) ternary mixed crystals is studied. The e-p interaction Hamiltonians including the unit cell volume variation in ternary mixed crystals are obtained by using the modified random-element-isodisplacement model and Born-Huang method. The polaronic self-trapping energy and renormalized effective mass of GaAsxSb1‑x, GaPxAs1‑x and GaPxSb1‑x compounds are numerically calculated. It is confirmed theoretically that the nonlinear variation of the self-trapping energy and effective mass with the composition is essential and the unit cell volume effects cannot be neglected except the weak e-p coupling. The dimensional effect cannot also be ignored.

  18. Towards true 3D textural analysis; using your crystal mush wisely.

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.; Pankhurst, M. J.

    2014-12-01

    The crystal cargo that is found in volcanic and plutonic rocks contains a wealth of information about magmatic mush processes, crystallisation history, crystal entrainment and recycling. Phenocryst populations predominantly record episodes of growth/nucleation and bulk geochemical changes within an evolving crystal-melt body. Ante- and xeno-crysts provide useful clues to the nature of mush interaction with wall rock and with principal magma(s). Furthermore, crystal evolutions (core to rim) record pathways through pressure, temperature and compositional space. These can often illustrate complex recycling within systems, describing the plumbing architecture. Understanding this architecture underpins our knowledge of how igneous systems can interact with the crust, grow, freeze, re-mobilise and prime for eruption. Initially, 2D studies produced corrected 3D crystal size distributions to help provide information about nucleation and residence times. It immediately became clear that crystal shape is an important factor in determining the confidence placed upon 3D reconstructions of 2D data. Additionally studies utilised serial sections of medium- to coarse-grain-size populations which allowed 3D reconstruction using modelling software to be improved, since size and shape etc. can be directly constrained. Finally the advent of textural studies using X-ray tomography has revolutionised the way in which we can inspect the crystal cargo in mushy systems, allowing us to image in great detail crystal packing arrangements, 3D CSDs, shapes and orientations etc. The latest most innovative studies use X-ray micro-computed tomography to rapidly characterise chemical populations within the crystal cargo, adding a further dimension to this approach, and implies the ability to untangle magmatic chemical components to better understand their individual and combined evolution. In this contribution key examples of the different types of textural analysis techniques in 2D and 3D

  19. Numerical investigation of diffraction of acoustic waves by phononic crystals

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent

    2012-05-01

    Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.

  20. Multiple beam splitting in elastic phononic crystal plates.

    PubMed

    Lee, Hyuk; Oh, Joo Hwan; Kim, Yoon Young

    2015-02-01

    This work presents an experimental evidence for triple beam splitting in an elastic plate with an embedded elastic phononic crystal (PC) prism and elaborates on its working mechanism. While there were reports on negative refraction and double beam splitting with PCs, no experimental evidence on the splitting of triple or more ultrasonic elastic beams through PCs has been shown yet. After the experimental results are presented in case of triple beam splitting, further analysis is carried out to explain how triple or more beams can be split depending on elastic PC prism angles. PMID:25454094

  1. Focusing of Rayleigh waves with gradient-index phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhao, Jinfeng; Bonello, Bernard; Becerra, Loïc; Boyko, Olga; Marchal, Rémi

    2016-05-01

    We report on the subwavelength focusing of Rayleigh waves using gradient-index (GRIN) phononic crystals (PCs) made of air holes scatters in a thick silicon substrate. The subwavelength focusing is demonstrated both in the inner and in the silicon substrate behind the GRIN PCs by using a non-contact experimental technique. In both situations, the focal zone was observed at the position, which is in very good agreement with our theoretical predictions, at a frequency in the sound cone free of radiation into the substrate.

  2. 3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Demina, S. E.; Kalaev, V. V.

    2011-04-01

    In the present work, 3D features of melt convection during sapphire growth of 100 mm diameter Cz and of 200 mm diameter Ky crystals are studied. The approach accounting for radiative heat exchange with absorption and a specular reflection in the crystal, which we applied in 2D modeling [1-3], has been extended to 3D computational domains and coupled to 3D heat transfer in the melt, crystal, and crucible. 3D melt unsteady convection together with crystallization front formation are taken into account within the Direct Numerical Simulation (DNS) approach. Results of 3D modeling are discussed in detail and quantitatively compared to the previously reported data of 2D modeling and experiments [2,3]. It has been found that the features of unsteady melt convection during the "before seeding", "seeding", and "shouldering" growth stages are quite different from each other, which necessitates a flexible control of the radial and vertical temperature gradients in the crucible to provide optimal conditions for stable growth of high quality sapphire crystals.

  3. Technology towards a SAW based phononic crystal sensor

    NASA Astrophysics Data System (ADS)

    Schmidt, Marc-Peter; Oseev, Aleksandr; Lucklum, Ralf; Hirsch, Soeren

    2015-05-01

    Phononic crystals (PnC) with a specifically designed defect have been recently introduced as novel sensor platform. Those sensors feature a band gap covering the typical input span of the measurand as well as a narrow transmission peak within the band gap where the frequency of maximum transmission is governed by the measurand. This innovative approach has been applied for determination of compounds in liquids [1]. Improvement of sensitivity requires higher probing frequencies around 100 MHz and above. In this range surface acoustic wave devices (SAW) provide a promising basis for PnC based microsensors [2]. The respective feature size of the PnC SAW sensor has dimensions in the range of 100 μm and below. Whereas those dimensions are state of the art for common MEMS materials, etching of holes and cavities in piezoelectric materials having an aspect ratio diameter/depth is challenging. In this contribution we describe an improved technological process to manufacture considerably deep and uniform phononic crystal structures inside of SAW substrates.

  4. Raman phonons in multiferroic FeVO4 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, An-Min; Liu, Kai; Ji, Jian-Ting; He, Chang-Zhen; Tian, Yong; Jin, Feng; Zhang, Qing-Ming

    2015-12-01

    Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound, since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality FeVO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry (P - 1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4 Project supported by the National Basic Research Program of China (Grant No. 2012CB921701), the National Natural Science Foundation of China (Grant Nos. 11174367 and 11004243), the China Postdoctoral Science Foundation, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant Nos. 10XNI038, 14XNLF06, and 14XNLQ03).

  5. Temperature insensitive mass sensing of mode selected phononic crystal cavity

    NASA Astrophysics Data System (ADS)

    Li, Peng; Li, Feng; Liu, Yongshun; Shu, Fengfeng; Wu, Junfeng; Wu, Yihui

    2015-12-01

    Phononic crystal cavities with high quality (Q) factors are attractive in both signal processing and sensing applications. In this paper, 2D phononic crystal point defect cavities are fabricated on silicon slabs by micro electromechanical system (MEMS) technologies. An electrode design method is proposed to enhance displacements of the point defect modes. Then the method is applied to design MEMS resonators with different port numbers, among which Q factor as high as 21 300 is obtained in air. Multiport resonators with transmission measurements are proved to be advantageous over one-port resonators with impedance measurements in frequency resolution. A temperature insensitive resonant mass sensor is designed based on a two-port resonator. Two defect modes with strong responses in the two-port resonator are combined to compensate environmental temperature interference. The temperature compensation experiment reveals that temperature interference is effectively compensated from mass measurement and the mass sensitivity of the sensor is 5.4 Hz ng-1. The conclusion of mode selection or sensing mechanism will help to design resonators or sensors with high performances.

  6. Fluxes of nonequilibrium photo-excited phonons along surfaces of crystals without an inversion center

    SciTech Connect

    Blokh, M.D.

    1988-01-01

    The flux of nonequilibrium phonons excited by light in the near-surface domain of a crystal or a thin plate is investigated. An exact expression is obtained for the phonon energy flux for a crystal with a polar direction and its polarization dependence is analyzed. The magnitude of the energy flux can reach the incident light intensity. The temperature difference produced by the flux of nonequilibrium photo-excited phonons is found.

  7. Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling.

    PubMed

    Huber, A; Ocelic, N; Taubner, T; Hillenbrand, R

    2006-04-01

    We show that slight variations of a crystal lattice cause significant spectral modifications of phonon-polariton resonant near-field interaction between polar semiconductor crystals and a scanning metal tip. Exploiting the effect for near-field imaging a SiC polytype boundary, we establish infrared mapping of crystal structure and crystal defects at 20 nm spatial resolution (lambda/500). By spectroscopic probing of doped SiC polytypes, we find that phonon-polariton resonant near-field interaction is also sensitive to electronic properties due to plasmon-phonon coupling in the crystals. PMID:16608282

  8. Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps

    NASA Astrophysics Data System (ADS)

    Kim, Eunho; Yang, Jinkyu

    2014-11-01

    We study the formation of frequency band gaps in single column woodpile phononic crystals composed of orthogonally stacked slender cylinders. We focus on investigating the effect of the cylinders' local vibrations on the dispersion of elastic waves along the stacking direction of the woodpile phononic crystals. We experimentally verify that their frequency band structures depend significantly on the bending resonant behavior of unit cells. We propose a simple theoretical model based on a discrete element method to associate the behavior of locally resonant cylindrical rods with the band gap formation mechanism in woodpile phononic crystals. The findings in this work imply that we can achieve versatile control of frequency band structures in phononic crystals by using woodpile architectures. The woodpile phononic crystals can form a new type of vibration filtering devices that offer an enhanced degree of freedom in manipulating stress wave propagation.

  9. Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers

    NASA Astrophysics Data System (ADS)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano

    2016-02-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.

  10. Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.

    PubMed

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano

    2016-02-14

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design. PMID:26815914

  11. CMOS compatible fabrication of 3D photonic crystals by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Eibelhuber, M.; Uhrmann, T.; Glinsner, T.

    2015-03-01

    Nanoimprinting techniques are an attractive solution for next generation lithography methods for several areas including photonic devices. A variety of potential applications have been demonstrated using nanoimprint lithography (NIL) (e.g. SAW devices, vias and contact layers with dual damascene imprinting process, Bragg structures, patterned media) [1,2]. Nanoimprint lithography is considered for bridging the gap from R and D to high volume manufacturing. In addition, it is capable to adapt to the needs of the fragmented and less standardized photonic market easily. In this work UV-NIL has been selected for the fabrication process of 3D-photonic crystals. It has been shown that UVNIL using a multiple layer approach is well suited to fabricate a 3D woodpile photonic crystal. The necessary alignment accuracies below 100nm were achieved using a simple optical method. In order to obtain sufficient alignment of the stacks to each other, a two stage alignment process is performed: at first proximity alignment is done followed by the Moiré alignment in soft contact with the substrate. Multiple steps of imprinting, etching, Si deposition and chemical mechanical polishing were implemented to create high quality 3D photonic crystals with up to 5 layers. This work has proven the applicability of nanoimprint lithography in a CMOS compatible process on 3D photonic crystals with alignment accuracy down to 100nm. Optimizing the processes will allow scaling up these structures on full wafers while still meeting the requirements of the designated devices.

  12. Accidental degeneracy of double Dirac cones in a phononic crystal

    PubMed Central

    Chen, Ze-Guo; Ni, Xu; Wu, Ying; He, Cheng; Sun, Xiao-Chen; Zheng, Li-Yang; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect. PMID:24714512

  13. Modification of phonon processes in nanostructured rare-earth-ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-07-01

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5 , a widely used material in current quantum memory research.

  14. Edge waves and resonances in two-dimensional phononic crystal plates

    SciTech Connect

    Hsu, Jin-Chen Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.

  15. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals

    PubMed Central

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-hu; Xiao, Min

    2016-01-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385

  16. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min

    2016-07-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction.

  17. Coherent optical phonon oscillation and possible electronic softening in WTe2 crystals.

    PubMed

    He, Bin; Zhang, Chunfeng; Zhu, Weida; Li, Yufeng; Liu, Shenghua; Zhu, Xiyu; Wu, Xuewei; Wang, Xiaoyong; Wen, Hai-Hu; Xiao, Min

    2016-01-01

    A rapidly-growing interest in WTe2 has been triggered by the giant magnetoresistance effect discovered in this unique system. While many efforts have been made towards uncovering the electron- and spin-relevant mechanisms, the role of lattice vibration remains poorly understood. Here, we study the coherent vibrational dynamics in WTe2 crystals by using ultrafast pump-probe spectroscopy. The oscillation signal in time domain in WTe2 has been ascribed as due to the coherent dynamics of the lowest energy A1 optical phonons with polarization- and wavelength-dependent measurements. With increasing temperature, the phonon energy decreases due to anharmonic decay of the optical phonons into acoustic phonons. Moreover, a significant drop (15%) of the phonon energy with increasing pump power is observed which is possibly caused by the lattice anharmonicity induced by electronic excitation and phonon-phonon interaction. PMID:27457385

  18. Presentation and investigation of a new two dimensional heterostructure phononic crystal to obtain extended band gap

    NASA Astrophysics Data System (ADS)

    Bagheri Nouri, Mohammad; Moradi, Mehran

    2016-05-01

    In this paper, a new heterostructure phononic crystal is introduced. The new heterostructure is composed of square and rhombus phononic crystals. Using finite difference method, a displacement-based algorithm is presented to study elastic wave propagation in the phononic crystal. In contrast with conventional finite difference time domain method, at first by using constitutive equations and strain-displacement relations, elastic wave equations are derived based on displacement. Then, these forms are discretized using finite difference method. By this technique, components of stress tensor can be removed from the updating equations. Since the proposed method needs less elementary arithmetical operations, its computational cost is less than that of the conventional FDTD method. Using the presented displacement-based finite difference time domain algorithm, square phononic crystal, rhombus phononic crystal and the new heterostructure phononic crystal were analyzed. Comparison of transmission spectra of the new heterostructure phononic crystal with those creating lattices, showed that band gap can be extended by using the new structure. Also it was observed that by changing the angular constant of rhombus lattice, a new extended band gap can be achieved.

  19. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  20. Theory of rigid-plane phonon modes in layered crystals

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; Verberck, B.

    2012-03-01

    The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan , Nat. Mater., in press, doi:10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.

  1. Tunable ultrasonic phononic crystal controlled by infrared radiation

    SciTech Connect

    Walker, Ezekiel; Neogi, Arup E-mail: arup@unt.edu; Reyes, Delfino; Rojas, Miguel Mayorga; Krokhin, Arkadii; Wang, Zhiming E-mail: arup@unt.edu

    2014-10-06

    A tunable phononic crystal based ultrasonic filter was designed by stimulating the phase of the polymeric material embedded in a periodic structure using infrared radiation. The acoustic filter can be tuned remotely using thermal stimulation induced by the infrared radiation. The filter is composed of steel cylinder scatterers arranged periodically in a background of bulk poly (N-isopropylacrylamide) polymer hydrogel. The lattice structure creates forbidden bands for certain sets of mechanical waves that cause it to behave as an ultrasonic filter. Since the bandstructure is determined by not only the arrangement of the scatterers but also the physical properties of the materials composing the scatterers and background, modulating either the arrangement or physical properties will alter the effect of the crystal on propagating mechanical waves. Here, the physical properties of the filter are varied by inducing changes in the polymer hydrogel using an electromagnetic thermal stimulus. With particular focus on the k{sub 00}-wave, the transmission of ultrasonic wave changes by as much as 20 dBm, and band widths by 22% for select bands.

  2. Micromorph silicon tandem solar cells with fully integrated 3D photonic crystal intermediate reflectors

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Fahr, S.; Rockstuhl, C.; Lederer, F.; Steidl, L.; Zentel, R.; Beckers, T.; Lambertz, A.; Carius, R.; Wehrspohn, R. B.

    2010-05-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell providing an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally-selective intermediate reflective layer (IRL) is necessary. We present the first fully-integrated 3D photonic thin-film IRL device incorporated on a planar substrate. Using a ZnO inverted opal structure the external quantum efficiency of the top cell in the spectral region of interest could be enhanced. As an outlook we present the design and the preparation of a 3D self organized photonic crystal structure in a textured micromorph tandem solar cell.

  3. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    SciTech Connect

    Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  4. 3D position determination in monolithic crystals coupled to SiPMs for PET

    NASA Astrophysics Data System (ADS)

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosá, Gabriela

    2016-05-01

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12× 12× 10 mm3 LYSO crystal coupled to an 8× 8 -pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal.

  5. 3D position determination in monolithic crystals coupled to SiPMs for PET.

    PubMed

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F; Solaz, Carles; Llosá, Gabriela

    2016-05-21

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a [Formula: see text] mm(3) LYSO crystal coupled to an [Formula: see text]-pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal. PMID:27119737

  6. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    NASA Astrophysics Data System (ADS)

    Arantes, A.; Anjos, V.

    2016-03-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon-phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials.

  7. Bloch wave deafness and modal conversion at a phononic crystal boundary

    NASA Astrophysics Data System (ADS)

    Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.

    2011-12-01

    We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  8. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. PMID:27376841

  9. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique. PMID:27250192

  10. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed. PMID:27137284

  11. Phonons in two-dimensional colloidal crystals with bond-strength disorder

    NASA Astrophysics Data System (ADS)

    Gratale, Matthew D.; Yunker, Peter J.; Chen, Ke; Still, Tim; Aptowicz, Kevin B.; Yodh, A. G.

    2013-05-01

    We study phonon modes in two-dimensional colloidal crystals composed of soft microgel particles with hard polystyrene particle dopants distributed randomly on the triangular lattice. This experimental approach produces close-packed lattices of spheres with random bond strength disorder, i.e., the effective springs coupling nearest neighbors are very stiff, very soft, or of intermediate stiffness. Particle tracking video microscopy and covariance matrix techniques are then employed to derive the phonon modes of the corresponding “shadow” crystals with bond strength disorder as a function of increasing dopant concentration. At low frequencies, hard and soft particles participate equally in the phonon modes, and the samples exhibit Debye-like density of states behavior characteristic of crystals. For mid- and high-frequency phonons, the relative participation of hard versus soft particles in each mode is found to vary systematically with dopant concentration. Additionally, a few localized modes, primarily associated with hard particle motions, are found at the highest frequencies.

  12. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process. PMID:24663563

  13. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.

    PubMed

    Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A

    2016-04-27

    A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons. PMID:27045887

  14. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  15. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  16. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges

    PubMed Central

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-01-01

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  17. 2D and 3D Histioid Disclination Networks in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Miao; Guo, Yubing; Lavrentovich, Oleg; Wei, Qi-Huo

    Topological defects and disclination lines are of both fundamental interest and practical importance. In this paper, we will show that periodic/non-periodic 2D/3D networks of disclination lines can be created in nematic liquid crystal cells by setting well-designed alignment patterns at the top and bottom substrate surfaces. The desired complex patterns of liquid crystal molecular alignments at the substrates are obtained using a projection photoalignment technique based on plasmonic metamasks. The designs of alignment patterns and their resulting disclination line networks will be presented. These designable topological networks represent a new kind of artificial materials which could be of useful for directing colloidal and molecular assembly. National Science Foundation CMMI-1436565.

  18. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals.

    PubMed

    Lightman, Shlomi; Gvishi, Raz; Hurvitz, Gilad; Arie, Ady

    2015-10-01

    We demonstrate experimentally spatial-mode conversions of light beams generated in a quadratic nonlinear process by micron-scale structures placed on the facets of nonlinear crystals. These structures were printed on the crystal facets using a three-dimensional (3D) direct laser writing system. The functional structures were designed to modify the phase of the beam at specific wavelengths, thereby enabling conversion of a fundamental Gaussian laser beam into different high-order Hermite-Gaussian modes, Laguerre-Gaussian modes, and zeroth-order Bessel beams of the second harmonic. This facet functionalization opens exciting new opportunities for robust and compact beam shaping in a nonlinear interaction without compromising the conversion efficiency. PMID:26421556

  19. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  20. A 3D parallel simulator for crystal growth and solidification in complex alloy systems

    NASA Astrophysics Data System (ADS)

    Nestler, Britta

    2005-02-01

    A 3D parallel simulator is developed to numerically solve the evolution equations of a new non-isothermal phase-field model for crystal growth and solidification in complex alloy systems. The new model and the simulator are capable to simultaneously describe the diffusion processes of multiple components, the phase transitions between multiple phases and the development of the temperature field. Weak and facetted formulations of both, surface energy and kinetic anisotropies are incorporated in the phase-field model. Multicomponent bulk diffusion effects including interdiffusion coefficients as well as diffusion in the interfacial region of phase or grain boundaries are considered. We introduce our parallel simulator that is based on a finite difference discretization including effective adaptive strategies and multigrid methods to reduce computation time and memory usage. The parallelization is realized for distributed as well as shared memory computer architectures using MPI libraries and OpenMP concepts. Applying the new computer model, we present a variety of simulated crystal structures such as dendrites, grains, binary and ternary eutectics in 2D and 3D. The influence of anisotropy on the microstructure evolution shows the formation of facets in preferred crystallographic directions. Phase transformations and solidification processes in a real multi-component alloy can be described by incorporating the physical data (e.g. surface tensions, kinetic coefficients, specific heat, heat and mass diffusion coefficients) and the specific phase diagram (in particular latent heats and melting temperatures) into the diffuse interface model via the free energies.

  1. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces.

    PubMed

    Otsuka, P H; Nanri, K; Matsuda, O; Tomoda, M; Profunser, D M; Veres, I A; Danworaphong, S; Khelif, A; Benchabane, S; Laude, V; Wright, O B

    2013-01-01

    Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621

  2. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces

    PubMed Central

    Otsuka, P. H.; Nanri, K.; Matsuda, O.; Tomoda, M.; Profunser, D. M.; Veres, I. A.; Danworaphong, S.; Khelif, A.; Benchabane, S.; Laude, V.; Wright, O. B.

    2013-01-01

    Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in governing acoustic confinement in waveguides. However, frequency-domain studies miss vital information concerning the phase of the acoustic field and eigenstate coupling. Using a wide range of wavevectors k, we implement an ultrafast technique to probe the wave field evolution in straight and L-shaped phononic crystal surface-phonon waveguides in real- and k-space in two spatial dimensions, thus revealing the eigenstate-energy redistribution processes and the coupling between different frequency-degenerate eigenstates. Such use of k-t space is a first in acoustics, and should have other interesting applications such as acoustic-metamaterial characterization. PMID:24284621

  3. Raman study of phonon modes in ErVO4 single crystals

    NASA Astrophysics Data System (ADS)

    Guedes, I.; Hirano, Y.; Grimsditch, M.; Wakabayashi, N.; Loong, C.-K.; Boatner, L. A.

    2001-08-01

    The phonon modes of a pure ErVO4 crystal were determined at room temperature using Raman scattering methods, and the observed frequencies were assigned according to group theory in terms of the internal modes of the VO43- ions and the external modes of the Er(VO4) lattice. The assignments of the phonon modes match well with the overall phonon systematics of the rare-earth orthovanadate series, and the results presented here reinforce the general trend of bonding strength in the zircon series of RVO4, RAsO4, and RPO4 materials.

  4. Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals

    NASA Astrophysics Data System (ADS)

    Hsiao, Fu-Li; Khelif, Abdelkrim; Moubchir, Hanane; Choujaa, Abdelkrim; Chen, Chii-Chang; Laude, Vincent

    2007-02-01

    Phononic crystals with triangular and honeycomb lattices are investigated experimentally and theoretically. They are composed of arrays of steel cylinders immersed in water. The measured transmission spectra reveal the existence of complete band gaps but also of deaf bands. Band gaps and deaf bands are identified by comparing band structure computations, obtained by a periodic-boundary finite element method, with transmission simulations, obtained using the finite difference time domain method. The appearance of flat bands and the polarization of the associated eigenmodes is also discussed. Triangular and honeycomb phononic crystals with equal cylinder diameter and smallest spacing are compared. As previously obtained with air-solid phononic crystals, it is found that the first complete band gap opens for the honeycomb lattice but not for the triangular lattice, thanks to symmetry reduction.

  5. Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate

    SciTech Connect

    Wang, Tian; Ke, Manzhu Xu, Shengjun; Feng, Junheng; Qiu, Chunyin; Liu, Zhengyou

    2015-04-20

    In this letter, we present experimental demonstration of multi-particles trapping and patterning by the artificially engineered acoustic field of phononic crystal plate. Polystyrene particles are precisely trapped and patterned in two dimensional arrays, for example, the square, triangular, or quasi-periodic arrays, depending on the structures of the phononic crystal plates with varying sub-wavelength holes array. Analysis shows that the enhanced acoustic radiation force, induced by the resonant transmission field highly localized near the sub-wavelength apertures, accounts for the particles self-organizing. It can be envisaged that this kind of simple design of phononic crystal plates would pave an alternative route for self-assembly of particles and may be utilized in the lab-on-a-chip devices.

  6. Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology

    NASA Astrophysics Data System (ADS)

    Ertman, Slawomir; Bednarska, Karolina; Czapla, Aleksandra; Woliński, Tomasz R.

    2015-09-01

    Photonic liquid crystal fiber has been intensively investigated in last few years. It has been proved that guiding properties of such fibers could be tuned with an electric field. In particular efficient tuning could be obtained if multi-electrode system allowing for dynamic change of not only intensity of the electric field, but also its direction. In this work we report a simple to build four electrode system, which is based on a precisely aligned four cylindrical microelectrodes. As an electrodes we use enameled copper wire with diameter adequate to the diameter of the fiber to be tuned. To ensure uniform and parallel alignment of the wires a special micro-profiles has been designed and then produced with filament 3D printer. The possibility of the dynamic change of the electric field direction in such scalable and cost effective electrode assembly has been experimentally confirmed.

  7. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  8. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  9. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  10. Optimization of a Tunable Piezoelectric Resonator Using Phononic Crystals with Periodic Electrical Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ponge, Marie-Fraise; Dubus, Bertrand; Granger, Christian; Vasseur, Jérôme; Thi, Mai Pham; Hladky-Hennion, Anne-Christine

    Piezoelectric phononic crystals with periodic short-circuit conditions exhibit Bragg band gaps. They are used to design a Fabry-Perot cavity. The design of the device enables a modification of cavity length by a spatial shift of electrical boundary conditions. The resonator is thus tunable and a frequency shift is obtained. An analytical model based on a transfer matrix formalism is used to model longitudinal wave propagation inside the structure. Cavity length, phononic crystal and transducer position are optimized to increase resonance and antiresonance frequency shifts as well as coupling coefficient. Numerical and experimental results are presented and discussed.

  11. Vibration energy harvesting using a phononic crystal with point defect states

    NASA Astrophysics Data System (ADS)

    Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen

    2013-01-01

    A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.

  12. Tunable phononic crystals based on piezoelectric composites with 1-3 connectivity.

    PubMed

    Croënne, Charles; Ponge, Marie-Fraise; Dubus, Bertrand; Granger, Christian; Haumesser, Lionel; Levassort, Franck; Vasseur, Jérôme O; Lordereau, Albert; Pham Thi, Mai; Hladky-Hennion, Anne-Christine

    2016-06-01

    Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios. Experimental results present an overall agreement with the theoretical predictions and clearly show that the pass bands and stop bands of the device under study are easily tunable by only changing the electrical boundary conditions applied on each piezocomposite layer. PMID:27369154

  13. Research on the large band gaps in multilayer radial phononic crystal structure

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Guan, Dong

    2016-04-01

    In this paper, we study the band gaps (BGs) of new proposed radial phononic crystal (RPC) structure composed of multilayer sections. The band structure, transmission spectra and eigenmode displacement fields of the multilayer RPC are calculated by using finite element method (FEM). Due to the vibration coupling effects between thin circular plate and intermediate mass, the RPC structure can exhibit large BGs, which can be effectively shifted by changing the different geometry values. This study shows that multilayer RPC can unfold larger and lower BGs than traditional phononic crystals (PCs) and RPC can be composed of single material.

  14. Interface nano-confined acoustic waves in polymeric surface phononic crystals

    SciTech Connect

    Travagliati, Marco; Nardi, Damiano; Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco; Gusev, Vitalyi; Pingue, Pasqualantonio; Piazza, Vincenzo

    2015-01-12

    The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

  15. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces

    PubMed Central

    Cherry, Simon R.

    2013-01-01

    In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte-Carlo simulations play an important role in guiding research in detector designs and popular software such as GATE now include models of light transport in scintillators. Although current simulation toolkits are able to provide accurate models of perfectly polished surfaces, they do not successfully predict light output for other surface finishes, for example those often used in DOI-encoding detectors. The lack of accuracy of those models mainly originates from a simplified description of rough surfaces as an ensemble of micro-facets determined by the distribution of their normal, typically a Gaussian distribution. The user can specify the standard deviation of this distribution, but this parameter does not provide a full description of the surface reflectance properties. We propose a different approach based on 3D measurements of the surface using atomic force microscopy (AFM). Polished and rough (unpolished) crystals were scanned to compute the surface reflectance properties. The angular distributions of reflectance and reflected rays were computed and stored in look-up tables (LUTs). The LUTs account for the effect of incidence angle and were integrated in a light transport model. Crystals of different sizes were simulated with and without reflector. The simulated maximum light output and the light output as a function of DOI showed very good agreement with experimental characterization of the crystals, indicating that our approach provides an accurate model of polished and rough surfaces and could be used to predict light collection in scintillators. This model is based on a true 3D representation of the surface, makes no assumption about the surface and provides insight on the

  16. Generation of Coherent Phonons in a CdTe Single Crystal Using an Ultrafast Two-Phonon Laser-Excitation Process

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Morishita, R.; Oohata, G.

    2013-02-01

    The detection-energy dependence of a coherent phonon in a (001) CdTe crystal, generated by ultrashort laser pulses with the center energy transparent or opaque to the sample, is investigated using a spectrally resolved pump-probe method. At the excitation in the transparent region, the detection-energy dependence of the phonon amplitude has two peaks at the energy shifted by one times the phonon energy of CdTe from the center energy of the probe pulses. On the other hand, the amplitude in the opaque region shows two peaks at the energy shifted by about two times the phonon energy. This difference occurs even though the observed energies of the coherent phonons in both regions are the same as that of the longitudinal optical phonon of CdTe. The energy shifts in the detection-energy dependence imply that the emission and absorption of one phonon and two phonons in the transparent and opaque regions, respectively, are implicated in coherent phonon generation. In this study, the detection-energy dependence is examined from the viewpoint of the third-order nonlinear susceptibility based on the impulsive stimulated Raman scattering process under nonresonant and resonant conditions.

  17. Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal

    NASA Astrophysics Data System (ADS)

    Gu, Chunlong; Jin, Feng

    2016-05-01

    Point defect modes in a 2D phononic crystal with giant magnetostrictive material tuned by a magnetic field and compressive stress are investigated theoretically in this study. The 3D magnetostrictive constitutive model proposed by Liu and Zheng (2005 Acta Mech. Sin. 21 278-85) is adopted to develop effective elastic, piezomagnetic, and magnetic permeability constants. The finite element method, in combination with a supercell technique, is then applied to obtain the band structures and transmission spectra of the point defect modes in a 2D phononic crystal composed of Terfenol-D rods of circular cross section embedded in a polymethyl methacrylate matrix with a square lattice. The magnetic field not only enlarges the first band gap (FBG) but also opens up a new band gap of XY modes. New point defect modes are simultaneously trapped in the band gaps. The width of the FBG and the frequencies of the point defects of the Z mode decrease as the magnetic field increases.

  18. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGESBeta

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  19. Band structure and transmission characteristics of complex phononic crystals by multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2015-10-01

    A fast scheme based on the multi-level substructure technique is proposed for the band structure and transmission characteristics calculation of phononic crystals uniformly. The main idea is that finite element models of phononic crystals are divided into several domains by a special multi-level decomposition. For the band structure calculation, the upscaling calculation is employed to condense the internal stiffness matrix of the unit cell into the Bloch boundary. Due to the internal stiffness matrix does not change along with reduced wave vectors in an iteration process, the scheme can reduce the computational scale and improve the efficiency greatly, meanwhile it does not introduce approximation into the traditional finite element model. For the transmission characteristics calculation, the unit cell of the phononic crystal is periodic which is taken as a substructure with the same coefficient matrix. Moreover, the downscaling calculation of internal displacements can be selected flexibly. Some closely watched examples of the three-dimensional locally resonant, defect state of Lamb wave and Bragg waveguide are analyzed. Numerical results indicate that the proposed scheme is efficient and accurate, which may widely be applicable and suitable for complex phononic crystal problems, and provides a reliable numerical tool to optimize and design crystal devices.

  20. Switchable 3D liquid crystal grating generated by periodic photo-alignment on both substrates.

    PubMed

    Nys, I; Beeckman, J; Neyts, K

    2015-10-21

    A planar liquid crystal (LC) cell is developed in which two photo-alignment layers have been illuminated with respectively a horizontal and a vertical diffraction pattern of interfering left- and right-handed circularly polarized light. In the bulk of the cell, a complex LC configuration is obtained with periodicity in two dimensions. Remarkably, the period of the structure is larger than the period of the interference pattern, indicating that lowering of the symmetry allows a reduction in the elastic energy. The liquid crystal configuration depends on the periodicity of the alignment but also on the thickness of the cell. By applying a voltage over the electrodes, the power going into the different diffracted orders can be tuned. Finite element (FE) simulations based on Q-tensor theory are used to find the 3D equilibrium director distribution, which is used to simulate the near-field transmission profile based on the Jones calculus. A 2D Fourier transform is performed for both the x- and y-component of the transmitted wave to find the diffraction efficiency. PMID:26313442

  1. Crystalline Hybrid Polyphenylene Macromolecules from Octaalkynylsilsesquioxanes, Crystal Structures, and a Potential Route to 3-D Graphenes

    SciTech Connect

    Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.

    2011-05-10

    We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts to dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.

  2. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    SciTech Connect

    Coffy, Etienne Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.

  3. Dynamic response of a tunable phononic crystal under applied mechanical and magnetic loadings

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2015-06-01

    The dynamic response of a tunable phononic crystal consisting of a porous hyperelastic magnetoelastic elastomer subjected to a macroscopic deformation and an external magnetic field is theoretically investigated. Finite deformations and magnetic induction influence phononic characteristics of the periodic structure through geometrical pattern transformation and material properties. A magnetoelastic energy function is proposed to develop constitutive laws considering large deformations and magnetic induction in the periodic structure. Analytical and finite element methods are utilized to compute the dispersion relation and band structure of the phononic crystal for different cases of deformation and magnetic loadings. It is demonstrated that magnetic induction not only controls the band diagram of the structure but also has a strong effect on preferential directions of wave propagation.

  4. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  5. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    NASA Astrophysics Data System (ADS)

    Coffy, Etienne; Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim

    2015-12-01

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.

  6. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals.

    PubMed

    Wang, He; Wang, Huichao; Liu, Haiwen; Lu, Hong; Yang, Wuhao; Jia, Shuang; Liu, Xiong-Jun; Xie, X C; Wei, Jian; Wang, Jian

    2016-01-01

    Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere. Here, by using point contact spectroscopy measurements, we observe exotic superconductivity around the point contact region on the surface of Cd3As2 crystals. The zero-bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric around zero bias suggest p-wave-like unconventional superconductivity. Considering the topological properties of 3D Dirac semimetals, our findings may indicate that Cd3As2 crystals under certain conditions could be topological superconductors, which are predicted to support Majorana zero modes or gapless Majorana edge/surface modes in the boundary depending on the dimensionality of the material. PMID:26524129

  7. From Modal Mixing to Tunable Functional Switches in Nonlinear Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Ganesh, R.; Gonella, S.

    2015-02-01

    We introduce a paradigm for spatial and modal wave manipulation based on nonlinear phononic crystals and explore its potential for engineering wave control systems with tunable, adaptive, and multifunctional characteristics. Our approach exploits nonlinear mechanisms to stretch the frequency signature of the wave response and distribute it over multiple modes, thereby activating a mixture of modal characteristics and enabling functionalities associated with high-frequency optical modes, even while operating in the low-frequency regime. To elucidate the versatility of this approach, we consider different granular crystal configurations that span the available landscape of crystal topologies and wave control functionalities. The ability to switch between complementary functionalities allows rethinking nonlinear phononic crystals as programmable acoustic ports that form the building blocks of a new structural logic framework enabled by nonlinearity.

  8. From modal mixing to tunable functional switches in nonlinear phononic crystals.

    PubMed

    Ganesh, R; Gonella, S

    2015-02-01

    We introduce a paradigm for spatial and modal wave manipulation based on nonlinear phononic crystals and explore its potential for engineering wave control systems with tunable, adaptive, and multifunctional characteristics. Our approach exploits nonlinear mechanisms to stretch the frequency signature of the wave response and distribute it over multiple modes, thereby activating a mixture of modal characteristics and enabling functionalities associated with high-frequency optical modes, even while operating in the low-frequency regime. To elucidate the versatility of this approach, we consider different granular crystal configurations that span the available landscape of crystal topologies and wave control functionalities. The ability to switch between complementary functionalities allows rethinking nonlinear phononic crystals as programmable acoustic ports that form the building blocks of a new structural logic framework enabled by nonlinearity. PMID:25699446

  9. Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Maire, J.

    2015-06-01

    The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.

  10. Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Maire, J.

    2014-09-01

    The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.

  11. Raman study of phonon dynamics in PMN crystal

    NASA Astrophysics Data System (ADS)

    Svitelskiy, O.; Toulouse, J.; Ye, Z.-G.

    2002-03-01

    PMN is a model system for lead relaxors.Despite much effort,the origin of the relaxor behavior remains a puzzle.Difficulties arise from the coexistence of several phases at the same temperature.We have carried out a new detailed Raman study of PMN in a wide temperature range of 100-1000K.The entire acquired spectra have been analyzed using multiple peak decomposition.A comparison with neutron scattering data[1] suggests that strong Raman line at 45 cm_-1 is dominated by scattering from a distribution of TA phonons near the zone boundary.The fine structure of the line can be explained by interaction with TO1 and LA phonons.Lowering the temperature leads to the gradual appearance of the rhombohedral phase and to the growth and splitting of lines associated with it (as in KTN[2]): TO2,TO3,TO4.None of the lines exhibit a characteristic ferroelectric behavior.No Raman analogue of the neutron scattering waterfall[3] have been observed Thanks for support to DOE#DE-FG02-00ER45842 1.A.Naberezhnov et al,Eur.Phys.J.B11,13(1999) 3.P.DiAntonio et al,Phys.Rev.B,47,5629(1993) 2.P.Gehring et al.,accepted to PRL

  12. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  13. Propagation of Electromagnetic Waves in 3D Opal-based Magnetophotonic Crystals

    NASA Astrophysics Data System (ADS)

    Pardavi-Horvath, Martha; Makeeva, Galina S.; Golovanov, Oleg A.; Rinkevich, Anatolii B.

    2013-03-01

    Opals, a class of self-organized 3D nanostructures, are typical representatives of photonic bandgap structures. The voids inside of the opal structure of close packed SiO2 spheres can be infiltrated by a magnetic material, creating magnetically tunable magnetophotonic crystals with interesting and potentially useful properties at GHz and THz frequencies. The propagation of electromagnetic waves at microwave frequencies was investigated numerically in SiO2 opal based magnetic nanostructures, using rigorous mathematical models to solve Maxwell's equations complemented by the Landau-Lifshitz equation with electrodynamic boundary conditions. The numerical approach is based on Galerkin's projection method using the decomposition algorithm on autonomous blocks with Floquet channels. The opal structure consists of SiO2 nanospheres, with inter-sphere voids infiltrated with nanoparticles of Ni-Zn ferrites. Both the opal matrix and the ferrite are assumed to be lossy. A model, taking into account the real structure of the ferrite particles in the opal's voids was developed to simulate the measured FMR lineshape of the ferrite infiltrated opal. The numerical technique shows an excellent agreement when applied to model recent experimental data on similar ferrite opals.

  14. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

    PubMed

    Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-14

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation. PMID:27606574

  15. Manipulating the temperature dependence of the thermal conductivity of graphene phononic crystal

    NASA Astrophysics Data System (ADS)

    Hu, Shiqian; An, Meng; Yang, Nuo; Li, Baowen

    2016-07-01

    By using non-equilibrium molecular dynamics simulations, modulating the temperature dependence of thermal conductivity of graphene phononic crystals (GPnCs) is investigated. It is found that the temperature dependence of thermal conductivity of GPnCs follows ∼T ‑α behavior. The power exponents (α) can be efficiently tuned by changing the characteristic size of GPnCs. The phonon participation ratio spectra and dispersion relation reveal that the long-range phonon modes are more affected in GPnCs with larger holes (L 0). Our results suggest that constructing GPnCs is an effective method to manipulate the temperature dependence of thermal conductivity of graphene, which would be beneficial for developing GPnC-based thermal management and signal processing devices.

  16. Manipulating the temperature dependence of the thermal conductivity of graphene phononic crystal.

    PubMed

    Hu, Shiqian; An, Meng; Yang, Nuo; Li, Baowen

    2016-07-01

    By using non-equilibrium molecular dynamics simulations, modulating the temperature dependence of thermal conductivity of graphene phononic crystals (GPnCs) is investigated. It is found that the temperature dependence of thermal conductivity of GPnCs follows ∼T (-α) behavior. The power exponents (α) can be efficiently tuned by changing the characteristic size of GPnCs. The phonon participation ratio spectra and dispersion relation reveal that the long-range phonon modes are more affected in GPnCs with larger holes (L 0). Our results suggest that constructing GPnCs is an effective method to manipulate the temperature dependence of thermal conductivity of graphene, which would be beneficial for developing GPnC-based thermal management and signal processing devices. PMID:27196392

  17. Direct fabrication of complex 3D hierarchical nanostructures by reactive ion etching of hollow sphere colloidal crystals.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Van Cleuvenbergen, Stijn; Clays, Koen

    2016-09-21

    Direct reactive ion etching (RIE) of hollow SiO2 sphere colloidal crystals (HSCCs) is employed as a facile, low-cost method to fabricate complex three-dimensional (3D) hierarchical nanostructures. These multilayered structures are gradually transformed into nanostructures of increasing complexity by controlling the etching time, without complicated procedures (no mask needed). The resulting 3D topologies are unique, and cannot be obtained through traditional approaches. The formation mechanism of these structures is explained in detail by geometrical modeling during the different etching stages, through shadow effects of the higher layers. SEM images confirm the modeled morphological changes. The nanostructures obtained by our approach show very fine features as small as ∼30 nm. Our approach opens new avenues to directly obtain complex 3D nanostructures from colloidal crystals and can find applications in sensing, templating, and catalysis where fine tuning the specific surface might be critical. PMID:27545098

  18. Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process

    NASA Astrophysics Data System (ADS)

    Jung, T.; Seebeck, J.; Friedrich, J.

    2013-04-01

    A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.

  19. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    NASA Astrophysics Data System (ADS)

    Arbell, Matan; Hechster, Elad; Sarusi, Gabby

    2016-02-01

    A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction). The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence) was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick) compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal conductance

  20. Convergence of the phonon energy in two-dimensional atomic crystal of lead

    NASA Astrophysics Data System (ADS)

    Yan, Jia-An

    2015-03-01

    Accurate phonon energies are important for the study of two-dimensional (2D) atomic crystals. Using the 2D honeycomb lattice of lead (Pb) as a model system, we studied the convergence of the phonon energies on several important parameters in supercell calculations based on the density-functional perturbation theory as implemented in Quantum Espresso code. These parameters include the plane wave cut-off energy, the vacuum space size, the charge density cut-off, and FFT grid. The tested pseudopotentials (PPs) include the widely used Troullier-Martin (TM), Hartwigsen-Goedeker-Hutter (HGH), Projector Augmented-Wave (PAW), and ultrasoft pseudopotential (USPP), with the same PBE exchange-correlation functional. Surprisingly, the phonon energies calculated using these PPs exhibit quite distinct dependence on those parameters. Specifically, for both TM and USPP PPs, the phonon energies at the Brillouin zone center exhibit oscillations and even large negative phonon modes with the increase of the vacuum size. In contrast, the HGH and PAW PPs show fast and stable convergence with the same settings. The origin of these oscillation will be discussed. Supported by the Towson University Faculty Development and Research Committee (Grant OSPR # 140269), and the Fisher College of Science and Mathematics Fisher General Endowment.

  1. Phonon probe of local strains in SnSxSe2-x mixed crystals

    NASA Astrophysics Data System (ADS)

    Hadjiev, V. G.; De, D.; Peng, H. B.; Manongdo, J.; Guloy, A. M.

    2013-03-01

    We present a combined Raman spectroscopy and density functional perturbation theory (DFPT) study of phonon variation with composition x in the mixed crystals SnSxSe2-x. The experimentally observed two-mode behavior of the A1g and Eg vibrations involving Se(S) atoms is shown to arise from the lack of overlapping of the corresponding phonon dispersion bands in SnS2 and SnSe2. This offers a unique opportunity to assess local distortions of the trigonal Sn3Se pyramids in SnSxSe2-x as no Se and S mode mixing is involved. The dependence of local height and base length of Sn3Se pyramids with x is derived by a procedure that uses the measured A1g (Se) and Eg (Se) phonons in SnSxSe2-x, those calculated by DFPT for SnSe2 at different hydrostatic pressure, DFPT phonon dispersion, and the contribution from mass-disorder induced phonon self-energy.

  2. Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires

    SciTech Connect

    Li, J.; Guan, J. Y.; Zhang, S. F.; Ban, S. L.; Qu, Y.

    2014-04-21

    Within the framework of dielectric continuum and Loudon's uniaxial crystal models, existence conditions dependent on components and frequencies for optical phonons in wurtzite nitride core-shell nanowires (CSNWs) are discussed to obtain dispersion relations and electrostatic potentials of optical phonons in In{sub x}Ga{sub 1−x}N/GaN CSNWs. The results show that there may be four types of optical phonons in In{sub x}Ga{sub 1−x}N/GaN CSNWs for a given ternary mixed crystal (TMC) component due to the phonon dispersion anisotropy. This property is analogous to wurtzite planar heterojunctions. Among the optical phonons, there are two types of quasi-confined optical (QCO) phonons (named, respectively, as QCO-A and QCO-B), one type of interface (IF) phonons and propagating (PR) phonons existing in certain component and frequency domains while the dispersion relations and electrostatic potentials of same type of optical phonons vary with components. Furthermore, the size effect on optical phonons in CSNWs is also discussed. The dispersion relations of IF and QCO-A are independent of the boundary location of CSNWs. Meanwhile, dispersion relations and electrostatic potentials of QCO-B and PR phonons vary obviously with size, especially, when the ratio of a core radius to a shell radius is small, and dispersion relation curves of PR phonons appear to be close to each other, whereas, this phenomenon disappears when the ratio becomes large. Based on our conclusions, one can further discuss photoelectric properties in nitride CSNWs consisting of TMCs associated with optical phonons.

  3. Phonon dispersion in acene molecular crystals using van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.

    Much progress has been made of late in understanding the fundamental processes in optoelectronic materials. An ongoing challenge is the accurate inclusion of nuclear motion and to go beyond the Born-Oppenheimer approximation. Especially in materials like molecular crystals, where van der Waals (vdW) forces dominate the cohesive energy and the electronic structure is very sensitive to intermolecular geometry, phonons can be an important facilitator and dissipation mechanism. Thus there is a need to assess and understand the efficacy of existing approaches for phonon dispersions in vdW-bound solids. In this work we use a vdW density functional to calculate the phonon dispersion of members of the acene family. We establish the accuracy of the method using naphthalene, obtaining excellent agreement with experimental results, and in a further step, we explore the strength of the electron-phonon coupling across the Brillouin zone. Taken all together, our calculations illustrate the potential for quantitative prediction of vibrational properties of weakly-bound organic crystals over the entire Brillouin zone from first principles.

  4. Elastic filter based on coupled resonator waveguides in phononic crystal slabs

    NASA Astrophysics Data System (ADS)

    Khelif, Abdelkrim; Mohammadi, Saeed; Eftekhar, Ali; Adibi, Ali; Aoubiza, Boujemaa

    2010-02-01

    In this paper we demonstrate the possibility of forming a new elastic filter structure based on the coupled resonator waveguides in phononic crystal slabs (CRAW) with superior performance over the conventional filters. The structures are made by etching a honeycomb array of holes in a free standing slab. This phononic slab structure exhibits an absolute phononic band gap for all polarizations of guided waves inside the slab including the Lamb and Love waves. We present an analysis of a different family of waveguides in phononic-crystal slabs, and illustrate the considerations that must be applied to achieve single-mode guided bands in these structures. Consequently, an unusual family of selective elastic filters composed of several single resonators that are coupled periodically through evanescent waves is obtained. The elastic energy is localized in the extended defect formed by the collective coupled resonators. The frequencies of the filters are sensitive to the geometrical parameters and to the separation distance between the indiviual resonators. Numerical simulations are performed using the finite element method and considering Zinc-Oxide slab.

  5. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.; Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  6. A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties.

    PubMed

    Zou, Guo-Dong; Zhang, Gui-Gang; Hu, Bing; Li, Jian-Rong; Feng, Mei-Ling; Wang, Xin-Chen; Huang, Xiao-Ying

    2013-11-01

    A 3D organic-inorganic hybrid compound, (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)(4.5)({Pr4Sb12O18(OH)Cl(9.5)} Cl)]·3(2-Mepy)·28H2O (1; 2-Mepy=2-methylpyridine, 1,10-phen=1,10-phenanthroline, H2TDC=thiophene-2,5-dicarboxylic acid), was hydrothermally synthesized and structurally characterized. Unusually, two kinds of high-nuclearity clusters, namely [(Pr4Sb12O18(OH)Cl11)(COO)5](5-) and [(Pr4Sb12O18(OH)Cl9)Cl(COO)5](4-), coexist in the structure of compound 1; two of the latter clusters are doubly bridged by two μ2-Cl(-) moieties to form a new centrosymmetric dimeric cluster. An unprecedented spontaneous and reversible single-crystal-to-single-crystal transformation was observed, which simultaneously involved a notable organic-ligand movement between the metal ions and an alteration of the bridging ion in the dimeric cluster, induced by guest-release/re-adsorption, thereby giving rise to the interconversion between compound 1 and the compound (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)4({Pr4Sb12O18Cl(10.5)(TDC)(0.5)(H2O)(1.5)}O(0.5))]·25H2O (1'). The mechanism of this transformation has also been discussed in great detail. Photocatalytic H2-evolution activity was observed for compound 1' under UV light with Pt as a co-catalyst and MeOH as a sacrificial electron donor. PMID:24114981

  7. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  8. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  9. Switching band-gaps of a phononic crystal slab by surface instability

    NASA Astrophysics Data System (ADS)

    Bayat, Alireza; Gordaninejad, Faramarz

    2015-07-01

    High-amplitude wrinkle formation is employed to propose a one-dimensional phononic crystal slab consists of a thin film bonded to a thick compliant substrate. Buckling induced surface instability generates a wrinkly structure triggered by a compressive strain. It is demonstrated that a surface periodic pattern and corresponding stress can control elastic wave propagation in the low thickness composite slab. Simulation results show that the periodic wrinkly structure can be used as a transformative phononic crystal that can switch the band diagram of the structure in a reversible manner. The results of this study provide opportunities for the smart design of tunable switches and frequency filters at ultrasonic and hypersonic frequency ranges.

  10. The manipulation of self-collimated beam in phononic crystals composed of orientated rectangular inclusions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Nien; Chen, Lien-Wen

    2016-07-01

    Self-collimation is wave propagation in straight path without diffraction. The performance is evaluated by bandwidth, angular collimating range and straightness of equi-frequency contours. The present study aims to manipulate the self-collimated beam in square-array phononic crystals by means of orientated rectangular inclusions. Finite element simulations are performed to investigate the effects of the aspect ratio and orientation angle of rectangular inclusions on the self-collimated beam. The simulation results show that the proposed design successfully achieves all-angle self-collimation phenomenon. In addition, it also shows that the propagation direction of a self-collimated beam can be effectively manipulated by varying the orientation angle of inclusions. Numerical simulation result of the S-shaped bend demonstrates that acoustic collimated beam can be steered with negligible diffraction. Overall, the proposed design has significant potential for the realization of applications such as collimators, acoustic waveguides and other phononic crystals-based systems.

  11. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect

    SciTech Connect

    Li, Jing; Wu, Fugen Zhong, Huilin; Yao, Yuanwei; Zhang, Xin

    2015-10-14

    We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is discussed. The results show that the total transmission/reflection range decreases/increases as the side length increases. We also find that the relationship between the orientation of the transflective point and the side length of the square rods is quasi-linear.

  12. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Fugen; Zhong, Huilin; Yao, Yuanwei; Zhang, Xin

    2015-10-01

    We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is discussed. The results show that the total transmission/reflection range decreases/increases as the side length increases. We also find that the relationship between the orientation of the transflective point and the side length of the square rods is quasi-linear.

  13. Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Huang, Ping-Ping; Yao, Yuan-Wei; Wu, Fu-Gen; Zhang, Xin; Li, Jing; Hu, Ai-Zhen

    2015-05-01

    We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374068 and 11374066), the Science & Technology Star of Zhujiang Foundation of Guangzhou, China (Grant No. 2011J2200013), and the Natural Science Foundation of Guangdong, China (Grant No. S2012020010885).

  14. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  15. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals.

    PubMed

    Ponge, Marie-Fraise; Croënne, Charles; Vasseur, Jérôme O; Bou Matar, Olivier; Hladky-Hennion, Anne-Christine; Dubus, Bertrand

    2016-06-01

    Two ways of controlling the acoustic waves propagation by external inductance or capacitance in a one-dimensional (1-D) piezomagnetic phononic crystal are investigated. The structure is made of identical bars, constituted of a piezomagnetic material, surrounded by a coil and connected to an external impedance. A model of propagation of longitudinal elastic waves through the periodic structure is developed and the dispersion equation is obtained. Reflection and transmission coefficients are derived from a 2 × 2 transfer matrix formalism that also allows for the calculation of elastic effective parameters (density, Young modulus, speed of sound, impedance). The effect of shunting impedances is numerically investigated. The results reveal that a connected external inductance tunes the Bragg band gaps of the 1-D phononic crystal. When the elements are connected via a capacitance, a hybridization gap, due to the resonance of the LC circuit made of the piezomagnetic element and the capacitance, coexists with the Bragg band gap. The value of the external capacitance modifies the boundaries of both gaps. Calculation of the effective characteristics of the phononic crystal leads to an analysis of the physical mechanisms involved in the wave propagation. When periodically connected to external capacitances, a homogeneous piezomagnetic stack behaves as a dispersive tunable metamaterial. PMID:27369153

  16. Computation of diffuse scattering arising from one-phonon excitations in a neutron time-of-flight single-crystal Laue diffraction experiment

    PubMed Central

    Gutmann, Matthias J.; Graziano, Gabriella; Mukhopadhyay, Sanghamitra; Refson, Keith; von Zimmerman, Martin

    2015-01-01

    Direct phonon excitation in a neutron time-of-flight single-crystal Laue diffraction experiment has been observed in a single crystal of NaCl. At room temperature both phonon emission and excitation leave characteristic features in the diffuse scattering and these are well reproduced using ab initio phonons from density functional theory (DFT). A measurement at 20 K illustrates the effect of thermal population of the phonons, leaving the features corresponding to phonon excitation and strongly suppressing the phonon annihilation. A recipe is given to compute these effects combining DFT results with the geometry of the neutron experiment. PMID:26306090

  17. Light-spectrum modification of warm white-light-emitting diodes with 3D colloidal photonic crystals to approximate candlelight.

    PubMed

    Lai, Chun-Feng; Hsieh, Cheng-Liang; Wu, Chia-Jung

    2013-09-15

    This study presents the light-spectrum modification of warm white-light-emitting diodes (w-WLEDs) with 3D colloidal photonic crystals (3D CPhCs) to approximate candlelight. The study measures the angular-resolved transmission properties of the w-WLEDs with CPhCs, which exhibit photonic stop bands based on the CPhC photonic band structures. The w-WLEDs with 3D CPhCs produce a low correlated color temperature of 1963 K, a high color-rendering index of 85, and a luminous flux of 22.8 lm (four times that of a candle). This study presents the successful development of a novel low-cost technique to produce candlelight w-WLEDs for use as an indoor light source. PMID:24104827

  18. Propagation of thickness-twist waves in elastic plates with periodically varying thickness and phononic crystals.

    PubMed

    Zhu, Jun; Chen, Weiqiu; Yang, Jiashi

    2014-09-01

    We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with periodically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is employed. The problem is found to be mathematically equivalent to the motion of an electron in a periodic potential field governed by Schrodinger's equation. An analytical solution is obtained. Numerical results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be considered as phononic crystals. The effects of various parameters on the frequency spectrum are examined. PMID:24924785

  19. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals.

    PubMed

    Rao, Yanying; Tao, Qin; An, Ming; Rong, Chunhui; Dong, Jian; Dai, Yurong; Qian, Weiping

    2011-11-01

    In this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution. The surface-enhanced Raman scattering (SERS) enhancement factor (EF) of this 2D ordered gold nanobowl array could reach 1.27 × 10(7), which shows high SERS enhancing activity and can be used as a universal SERS substrate. PMID:21932785

  20. Surface and interface phonon-polaritons in freestanding quantum well wire systems of polar ternary mixed crystals

    NASA Astrophysics Data System (ADS)

    Yan, C. L.; Bao, J.; Yan, Z. W.

    2016-03-01

    The surface and interface phonon-polaritons in freestanding rectangular quantum well wire systems consisting of polar ternary mixed crystals are investigated in the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the boundary conditions. The numerical results of the surface and interface phonon-polariton frequencies as functions of the wave-vector, geometric structure, and the composition of the ternary mixed crystals in GaAs/AlxGa1-xAs and ZnxCd1-xSe/ZnSe quantum well wire systems are obtained and discussed. It is shown that there are 10 and 8 branches of surface and interface phonon-polaritons in the two quantum well wire systems respectively. The effects of the "two-mode" and "one-mode" behaviors of the ternary mixed crystals on the surface and interface phonon-polariton modes are shown in the dispersion curves.

  1. Nanostructured TTT(TCNQ)2 Organic Crystals as Promising Thermoelectric n-Type Materials: 3D Modeling

    NASA Astrophysics Data System (ADS)

    Sanduleac, Ionel; Casian, Anatolie

    2016-03-01

    The thermoelectric properties of quasi-one-dimensional TTT(TCNQ)2 organic crystals have been investigated to assess the prospect of using this type of compound as an n-type thermoelectric material. A three-dimensional (3D) physical model was elaborated. This takes into account two of the most important interactions of conduction electrons with longitudinal acoustic phonons—scattering of the electrons' by neighboring molecular chains and scattering by impurities and defects. Electrical conductivity, thermopower, power factor, electronic thermal conductivity, and thermoelectric figure of merit in the direction along the conducting molecular chains were calculated numerically for different crystal purity. It was shown that in stoichiometric compounds the thermoelectric figure of merit ZT remains small even after an increase of crystal perfection. The thermoelectric properties may be significantly enhanced by simultaneous increases of crystal perfection and electron concentration. The latter can be achieved by additional doping with donors. For less pure crystals, the interaction with impurities dominates the weak interchain interaction and the simpler one-dimensional (1D) physical model is applicable. When the impurity scattering is reduced, the interchain interaction begins to limit carrier mobility and use of the 3D physical model is required. The optimum properties enabling prediction of ZT ˜ 1 were determined.

  2. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics.

    PubMed

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  3. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  4. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    SciTech Connect

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; Delaire, Olivier A.; Chen, Xi; Weathers, Annie; Mukhopadhyay, Saikat; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

  5. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-01

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity. PMID:26823061

  6. Design of quasi-one-dimensional phononic crystal cavity for efficient photoelastic modulation

    NASA Astrophysics Data System (ADS)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-08-01

    We propose and design a phononic crystal (PnC) cavity for efficient photoelastic modulation. A strongly confined acoustic field in the cavity enhances light-sound interaction, which results in efficient phase modulation of light. As one of the possible configurations, an acoustic cavity formed in a quasi-one-dimensional (quasi-1D) PnC was investigated. By carefully tuning geometrical parameters, we successfully designed a high-Q cavity mode for a longitudinal wave within a complete phononic band gap. The acoustic Q was calculated to be as high as 9.5 × 104. This enables efficient optical modulation by a factor of 2.5 compared with a bar-type structure without PnCs.

  7. Band gap structures in two-dimensional super porous phononic crystals.

    PubMed

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals. PMID:23089223

  8. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3 As2 crystals

    NASA Astrophysics Data System (ADS)

    Wang, He; Wang, Huichao; Liu, Haiwen; Lu, Hong; Yang, Wuhao; Jia, Shuang; Liu, Xiongjun; Xie, Xincheng; Wei, Jian; Wang, Jian

    The 3D Dirac semimetal state is located at the topological phase boundary and can potentially be driven into other topological phases including topological insulator, topological metal and the long-pursuit topological superconductor states. Crystalline Cd3As2 has been proposed and proved to be one of 3D Dirac semimetals which can survive in atmosphere. By precisely controlled point contact (PC) measurements, we observe the exotic superconductivity in the vicinity of the point contact region on the surface of Cd3As2 crystal, which might be induced by the local pressure in the out-of-plane direction from the metallic tip for PC. The observation of zero bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric to zero bias further reveals p-wave like unconventional superconductivity in Cd3As2. Considering the special topological property of the 3D Dirac semimetal, our findings may indicate that the Cd3As2 crystal under certain conditions is a candidate of topological superconductor, which is predicted to support Majorana zero modes or gapless Majorana edge/surface modes on the boundary depending on the dimensionality of the material. This work was financially supported by the National Basic Research Program of China (Greanted Nos. 2012CB927400).

  9. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

    PubMed

    Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa

    2014-05-21

    We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices. PMID:24691556

  10. Electron-Phonon Coupling and CT-Character in the lowest Triplet Excited State of Anthracene EDA-Complex Crystals

    NASA Astrophysics Data System (ADS)

    Maier, S.; Port, H.

    1987-11-01

    Photoexcitation spectra of triplet (T1← S0) zero-phonon lines and phonon sidebands in different anthracene electron donor-acceptor (EDA) complex crystals (A-PMDA, A-TCNB, A-TCPA) have been analyzed between 1.3 K and 50 K at high spectral resolution. From the electron-phonon coupling strength at T = 0 K values of the charge-transfer (CT) character in the range between 6% and 10% are calculated. The differences in these values are found to be correlated with the energetic positions of the triplet state, which are explained within the framework of the Mulliken theory.

  11. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens. PMID:23464163

  12. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β -gallium oxide single crystals

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Korlacki, R.; Knight, S.; Hofmann, T.; Schöche, S.; Darakchieva, V.; Janzén, E.; Monemar, B.; Gogova, D.; Thieu, Q.-T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Goto, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M.

    2016-03-01

    We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and far-infrared active modes. We apply our model approach to monoclinic β -Ga2O3 single-crystal samples. Surfaces cut under different angles from a bulk crystal, (010) and (2 ¯01 ), are investigated by generalized spectroscopic ellipsometry within infrared and far-infrared spectral regions. We determine the frequency dependence of 4 independent β -Ga2O3 Cartesian dielectric function tensor elements by matching large sets of experimental data using a point-by-point data inversion approach. From matching our monoclinic model to the obtained 4 dielectric function tensor components, we determine all infrared and far-infrared active transverse optic phonon modes with Au and Bu symmetry, and their eigenvectors within the monoclinic lattice. We find excellent agreement between our model results and results of density functional theory calculations. We derive and discuss the frequencies of longitudinal optical phonons in β -Ga2O3 . We derive and report density and anisotropic mobility parameters of the free charge carriers within the tin-doped crystals. We discuss the occurrence of longitudinal phonon plasmon coupled modes in β -Ga2O3 and provide their frequencies and eigenvectors. We also discuss and present monoclinic dielectric constants for static electric fields and frequencies above the reststrahlen range, and we provide a generalization of the Lyddane-Sachs-Teller relation for monoclinic lattices with infrared and far-infrared active modes. We find that the generalized Lyddane-Sachs-Teller relation is fulfilled excellently for β -Ga2O3 .

  13. Crystal structure and phonon softening in Ca3Ir4Sn13

    NASA Astrophysics Data System (ADS)

    Mazzone, D. G.; Gerber, S.; Gavilano, J. L.; Sibille, R.; Medarde, M.; Delley, B.; Ramakrishnan, M.; Neugebauer, M.; Regnault, L. P.; Chernyshov, D.; Piovano, A.; Fernández-Díaz, T. M.; Keller, L.; Cervellino, A.; Pomjakushina, E.; Conder, K.; Kenzelmann, M.

    2015-07-01

    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T >T*≈38 K, the x-ray diffraction data can be satisfactorily refined using the space group P m 3 ¯n . Below T*, the crystal structure is modulated with a propagation vector of q ⃗=(1 /2 ,1 /2 ,0 ) . This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Δ (120 K)=1.05 meV. Using density functional theory, the soft phonon mode is identified as a "breathing" mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single-crystal diffraction data.

  14. Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry

    SciTech Connect

    Celli, Paolo; Gonella, Stefano

    2014-03-14

    Phononic crystals enjoy unique wave manipulation capabilities enabled by their periodic topologies. On one hand, they feature frequency-dependent directivity, which allows directional propagation of selected modes even at low frequencies. However, the stellar nature of the propagation patterns and the inability to induce single-beam focusing represent significant limitations of this functionality. On the other hand, one can realize waveguides by defecting the periodic structure of a crystal operating in bandgap mode along some desired path. Waveguides of this type are only activated in the relatively high and narrow frequency bands corresponding to total bandgaps, which limits their potential technological applications. In this work, we introduce a class of phononic crystals with relaxed cell symmetry and we exploit symmetry relaxation of a population of auxiliary microstructural elements to achieve spatial manipulation of elastic waves at very low frequencies, in the range of existence of the acoustic modes. By this approach, we achieve focusing without modifying the default static properties of the medium and by invoking mechanisms that are well suited to envision adaptive configurations for semi-active wave control.

  15. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts.

    PubMed

    Sun, Shuhui; Zhang, Gaixia; Geng, Dongsheng; Chen, Yougui; Banis, Mohammad Norouzi; Li, Ruying; Cai, Mei; Sun, Xueliang

    2010-01-18

    A newly designed and fabricated novel three dimensional (3D) nanocomposite composed of single-crystal Pt nanowires (PtNW) and a coaxial nanocable support consisting of a tin nanowire and a carbon nanotube (Sn@CNT) is reported. This nanocomposite is fabricated by the synthesis of Sn@CNT nanocables by means of a thermal evaporation method, followed by the direct growth with PtNWs through a facile aqueous solution approach at room temperature. Electrochemical measurements demonstrate that the PtNW--Sn@CNT 3D electrode exhibits enhanced electrocatalytic performance in oxygen reduction reaction (ORR) for polymer electrolyte membrane fuel cells (PEMFCs), methanol oxidation (MOR) for direct methanol fuel cells (DMFCs), and CO tolerance compared with commercial ETEK Pt/C catalyst made of Pt nanoparticles. PMID:20024993

  16. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    NASA Astrophysics Data System (ADS)

    Ketata, H.; Hédi Ben Ghozlen, M.

    2012-06-01

    An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE) method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW). The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  17. Planar modes free piezoelectric resonators using a phononic crystal with holes.

    PubMed

    Aragón, J L; Quintero-Torres, R; Domínguez-Juárez, J L; Iglesias, E; Ronda, S; Montero de Espinosa, F

    2016-09-01

    By using the principles behind phononic crystals, a periodic array of circular holes made along the polarization thickness direction of piezoceramic resonators are used to stop the planar resonances around the thickness mode band. In this way, a piezoceramic resonator adequate for operation in the thickness mode with an in phase vibration surface is obtained, independently of its lateral shape. Laser vibrometry, electric impedance tests and finite element models are used to corroborate the performances of different resonators made with this procedure. This method can be useful in power ultrasonic devices, physiotherapy and other external medical power ultrasound applications where piston-like vibration in a narrow band is required. PMID:27387418

  18. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    SciTech Connect

    Torrent, Daniel Pennec, Yan; Djafari-Rouhani, Bahram

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  19. Wave transmission in time- and space-variant helicoidal phononic crystals

    NASA Astrophysics Data System (ADS)

    Li, F.; Chong, C.; Yang, J.; Kevrekidis, P. G.; Daraio, C.

    2014-11-01

    We present a dynamically tunable mechanism of wave transmission in one-dimensional helicoidal phononic crystals in a shape similar to DNA structures. These helicoidal architectures allow slanted nonlinear contact among cylindrical constituents, and the relative torsional movements can dynamically tune the contact stiffness between neighboring cylinders. This results in cross-talking between in-plane torsional and out-of-plane longitudinal waves. We numerically demonstrate their versatile wave mixing and controllable dispersion behavior in both wavenumber and frequency domains. Based on this principle, a suggestion toward an acoustic configuration bearing parallels to a transistor is further proposed, in which longitudinal waves can be switched on and off through torsional waves.

  20. Hybrid phononic crystal plates for lowering and widening acoustic band gaps.

    PubMed

    Badreddine Assouar, M; Sun, Jia-Hong; Lin, Fan-Shun; Hsu, Jin-Chen

    2014-12-01

    We propose hybrid phononic-crystal plates which are composed of periodic stepped pillars and periodic holes to lower and widen acoustic band gaps. The acoustic waves scattered simultaneously by the pillars and holes in a relevant frequency range can generate low and wide acoustic forbidden bands. We introduce an alternative double-sided arrangement of the periodic stepped pillars for an enlarged pillars' head diameter in the hybrid structure and optimize the hole diameter to further lower and widen the acoustic band gaps. The lowering and widening effects are simultaneously achieved by reducing the frequencies of locally resonant pillar modes and prohibiting suitable frequency bands of propagating plate modes. PMID:24996255

  1. Strategies for the crystallization of viruses: using phase diagrams and gels to produce 3D crystals of Grapevine fanleaf virus.

    PubMed

    Schellenberger, Pascale; Demangeat, Gérard; Lemaire, Olivier; Ritzenthaler, Christophe; Bergdoll, Marc; Oliéric, Vincent; Sauter, Claude; Lorber, Bernard

    2011-05-01

    The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly₂₉₇Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies. PMID:21352920

  2. Image forces on 3d dislocation structures in crystals of finite volume

    SciTech Connect

    El-Azab, A.

    1999-07-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  3. Image Forces on 3-D Dislocation Structures in Crystals of Finite Volume

    SciTech Connect

    El-Azab, Anter ); V.V. Bulatov

    1999-01-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  4. Application of liquid crystal polymer films for photolithographic fabrication of 3D structures

    NASA Astrophysics Data System (ADS)

    Fox, Anna E.; Fontecchio, Adam K.

    2008-02-01

    In this paper, we demonstrate a silicon etching application of a holographically formed polymer dispersed liquid crystal (H-PDLC) photomask. H-PDLC is a periodically nanostructured material consisting of stratified layers of polymer and liquid crystal. Due to the natural random alignment of the liquid crystal axes with respect to the polymer layers, an index of refraction mismatch exists and a reflection occurs. Application of bias across the film aligns the liquid crystals and eliminates the index mismatch causing the film to become transparent. H-PDLC films have been shown to sufficiently attenuate the UV exposure dose in the photolithographic process when in the unbiased state, and can be electrically controlled to modulate the amount of UV transmission when electric field is applied. We show etch depth profiles of patterns masked on a silicon substrate using the H-PDLC photomask device compared with etch profiles of similar structures patterned with more conventional ink jet printed photomasks and chrome on quartz glass photomasks. We investigate reactive ion etching technique and potassium hydroxide wet etch technique.

  5. Experimental studies of cobalt ferrite nanoparticles doped silica matrix 3D magneto-photonic crystals

    NASA Astrophysics Data System (ADS)

    Abou Diwan, E.; Royer, F.; Kekesi, R.; Jamon, D.; Blanc-Mignon, M. F.; Neveu, S.; Rousseau, J. J.

    2013-05-01

    In this paper, we present the synthesis and the optical properties of 3D magneto-photonic structures. The elaboration process consists in firstly preparing then infiltrating polystyrene direct opals with a homogeneous solution of sol-gel silica precursors doped by cobalt ferrite nanoparticles, and finally dissolving the polystyrene spheres. Scanning Electron Microscopy (SEM) images of the prepared samples clearly evidence a periodic arrangement. Using a home-made polarimetric optical bench, the transmittance as a function of the wavelength, the Faraday rotation as a function of the applied magnetic field, and the Faraday ellipticity as a function of the wavelength and as a function of the applied magnetic field were measured. The existence of deep photonic band gaps (PBG), the unambiguous magnetic character of the samples and the qualitative modification of the Faraday ellipticity in the area of the PBG are evidenced.

  6. Tunable Lamb wave band gaps in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field.

    PubMed

    Zhou, Changjiang; Sai, Yi; Chen, Jiujiu

    2016-09-01

    This paper theoretically investigates the band gaps of Lamb mode waves in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. With the assumption of uniformly oriented magnetization, an equivalent piezomagnetic material model is used. The effects of magnetostatic field on phononic crystals are considered carefully in this model. The numerical results indicate that the width of the first band gap is significantly changed by applying the external magnetic field with different amplitude, and the ratio between the maximum and minimum gap widths reaches 228%. Further calculations demonstrate that the orientation of the magnetic field obviously affects the width and location of the first band gap. The contactless tunability of the proposed phononic crystal slabs shows many potential applications of vibration isolation in engineering. PMID:27281285

  7. A study of the structure and scattering mechanisms of subterahertz phonons in lithium fluoride single crystals and optical ceramics

    SciTech Connect

    Khazanov, E. N. Taranov, A. V.; Gainutdinov, R. V.; Akchurin, M. Sh.; Basiev, T. T.; Konyushkin, V. A.; Fedorov, P. P.; Kuznetsov, S. V.; Osiko, V. V.

    2010-06-15

    The methods of optical, electron, and atomic force microscopy (AFM) are applied to the study of the real structure of optical lithium fluoride ceramic obtained by hot deformation of single crystals. A comparative analysis is carried out of the scattering mechanisms of weakly nonequilibrium thermal phonons at liquid helium temperatures in LiF single crystals and ceramics. It is demonstrated that the phonon scattering in the original single crystals is determined by the forced vibrations of dislocations in the stress field of an elastic plane wave (a phonon), i.e., by the flutter mechanism. As the degree of deformation of the original material increases, the ceramics exhibit a change in the plastic deformation mechanisms, which leads to a decrease in the average size of grains and to an ordered structure. In this case, the dominant scattering is that by intergrain boundaries. The thickness and the acoustic impedance of these boundaries are evaluated.

  8. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    SciTech Connect

    Zhao, J.; Boyko, O.; Bonello, B.

    2014-12-15

    This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  9. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Gao, Nansha

    2014-09-01

    In this paper, low-frequency band gaps in two-dimensional Helmholtz resonant phononic crystals (PCs) composed of multilayer-split-tube resonators are investigated. The band structures, transmission spectra, and pressure field of the acoustic modes of these PCs are calculated by using a finite element method (FEM). The numerical results show that the first band gap of the structure is from 88 to 140 Hz. The transmission spectra are in accordance with those of the dispersion relation calculations. The acoustic modes of the bands are analyzed to reveal the nature of this phenomenon. It is found that the interaction between the local resonance and the traveling wave modes in proposed structure is responsible for the formation of the first band gap. The influences of the structural parameters on the band gaps are investigated by using FEM and the electrical circuit analogy. Numerical results show that the band gaps can be modulated in an even wider frequency range by changing the structural parameters, such as the rotation angle, the number of tubes, and the radius of the outer tube. The structural design results provide an effective way for phononic crystals to obtain the low-frequency band gaps, which have potential application in the low-frequency noise reduction.

  10. Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry.

    PubMed

    Cicek, Ahmet; Salman, Aysevil; Kaya, Olgun Adem; Ulug, Bulent

    2016-02-01

    It is numerically shown that surface modes of two-dimensional phononic crystals, which are Bloch modes bound to the interface between the phononic crystal and the surrounding host, can couple back and forth between the surfaces in a length scale determined by the separation of two surfaces and frequency. Supercell band structure computations through the finite-element method reveal that the surface band of an isolated surface splits into two bands which support either symmetric or antisymmetric hybrid modes. When the surface separation is 3.5 times the lattice constant, a coupling length varying between 30 and 48 periods can be obtained which first increases linearly with frequency and, then, decreases rapidly. In the linear regime, variation of coupling length can be used as a means of measuring speeds of objects on the order of 0.1m/s by incorporating the Doppler shift. Speed sensitivity can be improved by increasing surface separation at the cost of larger device sizes. PMID:26565078

  11. Evanescent coupling between surface and linear-defect guided modes in phononic crystals

    NASA Astrophysics Data System (ADS)

    Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent

    2016-01-01

    Evanescent coupling between surface and linear-defect waveguide modes in a two-dimensional phononic crystal of steel cylinders in air is numerically demonstrated. When the ratio of scatterer radii to the lattice constant is set to 0.47 in the square phononic crystal, the two types of modes start interacting if there is one-row separation between the surface and waveguide. Supercell band structure computations through the Finite Element Method suggest that the waveguide band is displaced significantly, whereas the surface band remains almost intact when the waveguide and surface are in close proximity. The two resultant hybrid bands are such that the coupling length, which varies between 8 and 22 periods, initially changes linearly with frequency, while a much sharper variation is observed towards the top of the lower hybrid band. Such small values facilitate the design of compact devices based on heterogeneous coupling. Finite-element simulations demonstrate bilateral coupling behaviour, where waves incident from either the surface or waveguide can efficiently couple to the other side. The coupling lengths calculated from simulation results are in agreement with the values predicted from the supercell band structure. The possible utilisation of the coupling scheme in sensing applications, especially in acoustic Doppler velocimetry, is discussed.

  12. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  13. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Chen, Weihua

    2014-02-01

    In this paper, we theoretically investigate the propagation characteristics of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are calculated by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. The axial symmetry model is validated by three-dimensional finite element model in rectangular coordinates. The effects of the geometrical parameters on the band gaps are further explored numerically. Numerical results show that several complete band gaps with a variable bandwidth exist for Lamb waves in the proposed structures. The formation mechanism of opening the acoustic band gaps is attributed to the coupling between the Lamb modes and the corrugation mode. The band gaps are significantly dependent upon the geometrical parameters such as the corrugation height, the corrugation width, and the plate thickness. Significantly, as the increase of corrugation height, band width shifts, new band gaps appear, the bands become flat, and the corrugation mode plays a more prominent role in the opening of Lamb wave band gaps. These properties of Lamb waves in the radial phononic crystal plates can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  14. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    SciTech Connect

    Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Swinteck, N.; Deymier, P. A.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  15. 3D photonic crystal-based biosensor functionalized with quantum dot-based aptamer for thrombine detection

    NASA Astrophysics Data System (ADS)

    Lim, Chae Young; Choi, Eunpyo; Park, Youngkyu; Park, Jungyul

    2013-05-01

    In this paper, we propose a new technique for protein detection by using the enhancement of intensity in quantum dots (Qdot) whose emission is guided by 3D photonic crystal (PC) structures. For easy to use, we design the emitted light from the sensor can be recovered, when the chemical antibody (aptamer) conjugated with guard DNA (g-DNA) labeled with a quencher (Black FQ) hybridizes with the target proteins. In detail, we synthesis a Qdot-aptamer complex and then immobilize these complex on the PC surfaces. Next, we perform the hybridization of the Qdot-aptamer complex with g-DNA labeled with the quencher. It induces the quenching effect of fluoresce intensity in the Qdot-aptamer. In presence of target protein (thrombin), the Qdot-aptamer complex prefers to form the thrombin-aptamer complex: this results in the release of Black FQ-g-DNA and the quenched light intensity recovers into the original high intensity with Qdot. The intensity recovery varies quantitatively according to the level of the target protein concentration. This proposed sensor shows much higher detection sensitivity than the general fluorescent detection mechanism, which is functionalized on the flat surfaces because of the light guiding effect from 3D photonic crystal structures.

  16. Design of a 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) System

    NASA Astrophysics Data System (ADS)

    Grothe, Rob; Rixon, Greg; Dabiri, Dana

    2007-11-01

    A novel 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) system has been designed and fabricated. By combining 3D Defocusing Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data using temperature-sensitive liquid crystal particles (LCP) as flow sensors. A custom water-filled prism corrects for astigmatism caused by off-axis imaging. New optics equations are derived to account for multi-surface refractions. This redesign also maximizes the use of the CCD area to more efficiently image the volume of interest. Six CCD cameras comprise the imaging system, with three allocated for velocity measurements and three for temperature measurements. The cameras are optically aligned to sub-pixel accuracy using a precision grid and high-resolution translation stages. Two high-intensity custom-designed xenon flashlamps provide illumination. Temperature calibration of the LCP is then performed. These results and proof-of-concept experiments will be discussed in detail.

  17. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  18. Clusters, molecular layers, and 3D crystals of water on Ni(111)

    SciTech Connect

    Thürmer, Konrad; Nie, Shu; Bartelt, Norman C.; Feibelman, Peter J.

    2014-11-14

    We examined the growth and stability of ice layers on Ni(111) up to ∼7 molecular layers (ML) thick using scanning tunneling microscopy. At low coverage, films were comprised of ∼1 nm wide two-dimensional (2D) clusters. Only above ∼0.5 ML did patches of continuous 2D layers emerge, coexisting with the clusters until the first ML was complete. The structure of the continuous layer is clearly different from that of the 2D clusters. Subsequently, a second molecular layer grew on top of the first. 3D crystallites started to form only after this 2nd ML was complete. 2D clusters re-appeared when thicker films were partially evaporated, implying that these clusters represent the equilibrium configuration at low coverage. Binding energies and image simulations computed with density functional theory suggest that the 2D clusters are partially dissociated and surrounded by H adatoms. The complete 2D layer contains only intact water molecules because of the lack of favorable binding sites for H atoms. We propose molecular structures for the 2D layer that are composed of the same pentagon-heptagon binding motif and water density observed on Pt(111). The similarity of the water structures on Pt and Ni suggests a general prescription for generating low-energy configurations on close-packed metal substrates.

  19. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  20. Inverted Yablonovite-like 3D photonic crystals fabricated by laser nanolithography

    NASA Astrophysics Data System (ADS)

    Shishkin, Ivan I.; Samusev, Kirill B.; Rybin, Mikhail V.; Limonov, Mikhail F.; Kivshar, Yuri S.; Gaidukeviciute, Arune; Kiyan, Roman V.; Chichkov, Boris N.

    2012-06-01

    We report on the fabrication of inverted Yablonovite-like three-dimensional photonic crystals by nonlinear optical nanolithography based on two-photon polymerization of a zirconium propoxide hybrid organic-inorganic material with Irgacure 369 as photo-initiator. Advantage of this material is ultra-low shrinkage that guaranty high fabrication fidelity. Images of the fabricated structure are obtained with a scanning electron microscope. The photonic crystal consists of three sets of nearly cylindrical structural elements directed along the three lattice vectors of the fcc lattice and cross each other at certain angles to produce inverted Yablonovite geometry. To investigate photonic properties of the inverted Yablonovite structures, we calculate the photonic band structure for ten lowest-frequency electromagnetic modes. In contrast to the direct Yablonovite structure that has a complete photonic band gap between the second and third bands, we find no complete photonic band gaps in the inverted Yablonovite lattice. This situation is opposite to the case of fcc lattice of close-packed dielectric spheres in air that has a complete photonic band gap only for the inverted geometry.

  1. New application of terahertz time-domain spectrometry (THz-TDS) to the phonon-polariton observation on ferroelectric crystals.

    PubMed

    Nishizawa, Seizi; Tsumura, Naoki; Kitahara, Hideaki; Wada Takeda, Mitsuo; Kojima, Seiji

    2002-11-01

    A new instrument for terahertz time-domain spectroscopy (THz-TDS) has been developed. It consists of a composite THz-TDS system and a high throughput (Martin-Puplett) interferometer. The instrument is for use in the qualitative study of optoelectronic constants of materials. The spectral transmission intensity and phase shift related to phonon-polariton dispersion have been measured between 100 cm(-1) and 3 cm(-1) on ferroelectric crystals of industrial interest. These include bismuth titanate Bi4Ti3O12 (a key material for FeRAM), lithium niobate LiNbO3 (a typical nonlinear crystal for parametric oscillator applications) and lithium heptagermanate Li2Ge7O15 for surface elastic wave filter applications. The complex dielectric constants are well reproduced by the phonon-polariton dispersion relation based on the Kurosawa formula. The instrument details and phonon-polariton dispersion results are described. PMID:12452567

  2. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    NASA Astrophysics Data System (ADS)

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-12-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities.

  3. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector.

    PubMed

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M(2). Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~0.4-2.0 μm for photons with energies 6-14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  4. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  5. The properties of optimal two-dimensional phononic crystals with different material contrasts

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-09-01

    By modifying the spatial distribution of constituent material phases, phononic crystals (PnCs) can be designed to exhibit band gaps within which sound and vibration cannot propagate. In this paper, the developed topology optimization method (TOM), based on genetic algorithms (GAs) and the finite element method (FEM), is proposed to design two-dimensional (2D) solid PnC structures composed of two contrasting elastic materials. The PnCs have the lowest order band gap that is the third band gap for the coupled mode, the first band gap for the shear mode or the XY 34 Z band gap for the mixed mode. Moreover, the effects of the ratios of contrasting material properties on the optimal layout of unit cells and the corresponding phononic band gaps (PBGs) are investigated. The results indicate that the topology of the optimal PnCs and corresponding band gaps varies with the change of material contrasts. The law can be used for the rapid design of desired PnC structures.

  6. Rotational modes in a phononic crystal with fermion-like behavior

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.; Swinteck, N.; Muralidharan, K.

    2014-04-01

    The calculated band structure of a two-dimensional phononic crystal composed of stiff polymer inclusions in a soft elastomer matrix is shown to support rotational modes. Numerical calculations of the displacement vector field demonstrate the existence of modes whereby the inclusions and the matrix regions between inclusions exhibit out of phase rotations but also in phase rotations. The observation of the in-phase rotational mode at low frequency is made possible by the very low transverse speed of sound of the elastomer matrix. A one-dimensional block-spring model is used to provide a physical interpretation of the rotational modes and of the origin of the rotational modes in the band structure. This model is analyzed within Dirac formalism. Solutions of the Dirac-like wave equation possess a spinor part and a spatio-temporal part. The spinor part of the wave function results from a coupling between the senses (positive or negative) of propagation of the wave. The wave-number dependent spinor-part of the wave function for two superposed waves can impose constraints on the integral of the spatio-temporal part that are reflected in a fermion-like lifting of degeneracy in the phonon band structure associated with in-phase rotations.

  7. 3D modeling of the molten zone shape created by an asymmetric HF EM field during the FZ crystal growth process

    NASA Astrophysics Data System (ADS)

    Rudevics, A.; Muiznieks, A.; Ratnieks, G.; Riemann, H.

    2005-06-01

    In the modern industrial floating zone (FZ) silicon crystal growth process by the needle-eye technique, the high frequency (HF) electromagnetic (EM) field plays a crucial role. The EM field melts a rotating poly silicon feed rod and maintains the zone of molten silicon, which is held by the rotating single crystal. To model such a system, the 2D axi-symmetric models can be used, however, due to the system's asymmetry (e.g., the asymmetry of the HF inductor) the applicability of such models is restricted. Therefore, the modeling of FZ process in three dimensions (3D) is necessary. This paper describes a new complex 3D mathematical model of the FZ crystal growth and a correspondingly developed software package Shape3D. A 3D calculation example for the realistic FZ system is also presented. Figs 25, Refs 9.

  8. Integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre for DNA probe immobilization

    NASA Astrophysics Data System (ADS)

    Rutowska, Monika S.; Garcia Gunning, Fatima C.; Kivlehan, Francine; Moore, Eric; Brennan, Des; Galvin, Paul; Ellis, Andrew D.

    2010-09-01

    In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.

  9. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  10. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  11. Photolithographic fabrication of 3D Penrose-like quasi-photonic crystal polymeric templates utilizing lab-made phasemask

    NASA Astrophysics Data System (ADS)

    Torres-Lazos, Faraon

    Photonic crystals (PhC) have recently become of great interest because of their potential as replacement of electronics and/or supplement to semiconductors technology. The PhC's capability to make compact integrated optical circuits has already made possible the laboratory manufacture of an array of different types of optical waveguides, cavities and filters. The work presented here aimed to simultaneously fabricate a 3D-PhC templates employing six-beam holographic lithography. The basic procedures included recording gratings using interference field of laser sources in a photoresist coating on a glass substrate. The manufacturing method utilized only one optical element, a phasemask, drastically reducing the complexity of fabrication by eliminating the need multiple mirrors and beam splitters. Using this approach, a template can be created with a single exposure to laser source and just varying exposure times, increasing reproducibility.

  12. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  13. Pressure-induced phonon freezing in the ZnSeS II-VI mixed crystal: phonon-polaritons and ab initio calculations.

    PubMed

    Hajj Hussein, R; Pagès, O; Polian, A; Postnikov, A V; Dicko, H; Firszt, F; Strzałkowski, K; Paszkowicz, W; Broch, L; Ravy, S; Fertey, P

    2016-05-25

    Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the 'phonon-polariton' transverse optical modes (with mixed electrical-mechanical character) of the II-VI ZnSe1-x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn-S Raman doublet of the three oscillator [1  ×  (Zn-Se), 2  ×  (Zn-S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende  →  rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn-S sub-mode of ZnSe0.68S0.32, due to Zn-S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn-S sub-mode, due to Zn-S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar 'phonon freezing' was earlier evidenced with the well-resolved percolation-type Be-Se doublet of Zn1-x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition. PMID:27114448

  14. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGESBeta

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; Delaire, Olivier A.; Chen, Xi; Weathers, Annie; Mukhopadhyay, Saikat; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  15. Design of acoustic beam aperture modifier using gradient-index phononic crystals

    PubMed Central

    Lin, Sz-Chin Steven; Tittmann, Bernhard R.; Huang, Tony Jun

    2012-01-01

    This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers. PMID:22807585

  16. Broadband and wide-angle negative reflection at a phononic crystal boundary

    SciTech Connect

    Zhao, Degang; Zhu, Xuefeng Yi, Lin; Ye, Yangtao; Xu, Shengjun

    2014-01-27

    We have theoretically and experimentally demonstrated the anomalous negative reflection at the boundary of a well-designed two-dimensional phononic crystal. This exotic phenomenon is attributed to the selective enhancement of −1st order diffraction mode with the zero-order diffraction mode being dramatically suppressed. After material and structural optimization, the negative reflection can be maintained in a broadband of frequencies and for a wide incident angle range. Our system can be employed to design Littrow configuration to realize perfect broadband and wide-angle blazing. The study gives a possibility to achieve greater flexibility and stronger effects in manipulating reflected acoustic waves, which has potential applications in underwater communication, medical ultrasonics, etc.

  17. Thermal tuning of omnidirectional reflection bands in one-dimensional finite phononic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang

    2015-03-01

    This study investigates the temperature-tuned omnidirectional reflection (ODR) bands in a one-dimensional (1D) finite phononic crystal (PnC), formed by alternating layers of nitinol and epoxy. An analytical model, based on the transfer matrix method, is developed to study reflection and transmission characteristics of the acoustic waves including shear and compressional waves in a 1D PnC. Existence criteria and the sensitive and continuous temperature-tunability of ODR bands in the nitinol/epoxy PnC are demonstrated using the analyses of projected-band structures and reflection spectra. The width and location of the ODR bands shift markedly with temperature variations of nitinol across the phase transition from martensite to austenite. The effects of temperature, filling fraction of nitinol layers, and the Si clad layer on ODR bands are considered. The results will be of benefit in the design and optimization of thermal tuning of omnidirectional acoustic mirrors.

  18. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    PubMed

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  19. Boundary element method for calculation of elastic wave transmission in two-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Li, FengLian; Wang, YueSheng; Zhang, ChuanZeng

    2016-06-01

    A boundary element method (BEM) is presented to compute the transmission spectra of two-dimensional (2-D) phononic crystals of a square lattice which are finite along the x-direction and infinite along the y-direction. The cross sections of the scatterers may be circular or square. For a periodic cell, the boundary integral equations of the matrix and the scatterers are formulated. Substituting the periodic boundary conditions and the interface continuity conditions, a linear equation set is formed, from which the elastic wave transmission can be obtained. From the transmission spectra, the band gaps can be identified, which are compared with the band structures of the corresponding infinite systems. It is shown that generally the transmission spectra completely correspond to the band structures. In addition, the accuracy and the efficiency of the boundary element method are analyzed and discussed.

  20. Probing Thermomechanics at the Nanoscale: Impulsively Excited Pseudosurface Acoustic Waves in Hypersonic Phononic Crystals

    PubMed Central

    2011-01-01

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426

  1. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  2. Dirac-like point at the high symmetric M point in a square phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Han-Feng; Zhang, Xin; Wu, Fu-Gen; Yao, Yuan-Wei; Li, Jing

    2016-05-01

    Using the accidental degeneracy of a doubly degenerate state and a single state, a new Dirac-like point was constructed at the high symmetric M point in a two-dimensional phononic crystal (PnC) that consists of a square array of square rods in water. When a plane wave at a frequency near the Dirac-like point impinges on the PnC slab from the left, the spatial phase experiences a minor change in the regions located near the incident interface, but this phase remains uniform in the far field. We also demonstrate two important properties that are correlated to these special field patterns: acoustic cloaking and wavefront reshaping.

  3. Effects of periodicity perturbations on the transmission by underwater phononic crystals.

    PubMed

    Zong, K; Franklin, H; Lenoir, O; Predoi, M V

    2012-10-01

    The effects of periodicity perturbations in underwater phononic crystal layers composed of noninterpenetrating rows of identical shells are investigated. The results for one row are obtained by using a multiple scattering method between shells. Then, taking into account the multiple reflections and transmissions between two adjacent rows, a Debye series method is used to calculate the reflection and transmission coefficients by a finite number of rows. The paper focuses on three kinds of perturbations: (i) variation of the inner radius of shells from row to row, (ii) increase in the spacing from row to row and of the number of rows, and (iii) substitution of simple steel rows by steel-polyethylene bilayers. It is shown by studying the transmission coefficient that the case (i) permits the insertion of narrow pass bands in the stop band while the two other cases (ii) and (iii) widen the stop band. The study intends to model simple underwater acoustic filters. PMID:23039549

  4. Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals

    NASA Astrophysics Data System (ADS)

    Even, Jacky; Paofai, Serge; Bourges, Philippe; Letoublon, Antoine; Cordier, Stéphane; Durand, Olivier; Katan, Claudine

    2016-03-01

    Despite the wealth of research conducted the last three years on hybrid organic perovskites (HOP), several questions remain open including: to what extend the organic moiety changes the properties of the material as compared to allinorganic (AIP) related perovskite structures. To ultimately reach an answer to this question, we have recently introduced two approaches that were designed to take the stochastic molecular degrees of freedom into account, and suggested that the high temperature cubic phase of HOP and AIP is an appropriate reference phase to rationalize HOP's properties. In this paper, we recall the main concepts and discuss more specifically the various possible couplings between charge carriers and low energy excitations such as acoustic and optical phonons. As available experimental or simulated data on low energy excitations are limited, we also present preliminary neutron scattering and ultrasonic measurements obtained and freshly prepared single crystals of CH3NH3PbBr3.

  5. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    PubMed

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ. PMID:26419771

  6. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    NASA Astrophysics Data System (ADS)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  7. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K. PMID:26828950

  8. Phonon interference and thermal conductance reduction in atomic-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Potyomina, Lyudmila G.; Darinskii, Alexandre A.; Volz, Sebastian; Kosevich, Yuriy A.

    2014-05-01

    We introduce and model a three-dimensional (3D) atomic-scale phononic metamaterial producing two-path phonon interference antiresonances to control the heat flux spectrum. We show that a crystal plane partially embedded with defect-atom arrays can completely reflect phonons at the frequency prescribed by masses and interaction forces. We emphasize the predominant role of the second phonon path and destructive interference in the origin of the total phonon reflection and thermal conductance reduction in comparison with the Fano-resonance concept. The random defect distribution in the plane and the anharmonicity of atom bonds do not deteriorate the antiresonance. The width of the antiresonance dip can provide a measure of the coherence length of the phonon wave packet. All our conclusions are confirmed both by analytical studies of the equivalent quasi-1D lattice models and by numerical molecular dynamics simulations of realistic 3D lattices.

  9. 3D mathematical model system for melt hydrodynamics in the silicon single crystal FZ-growth process with rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Lacis, K.; Muiznieks, A.; Ratnieks, G.

    2005-06-01

    A system of three-dimensional numerical models is described to analyse the melt hydrodynamics in the floating zone crystal growth by the needle-eye technique under a rotating magnetic field for the production of high quality silicon single crystals of large diameters big( 100dots 200 mm big). Since the pancake inductor has only one turn, the high frequency (HF) electromagnetic (EM) field and the distribution of heat sources and EM forces on the melt free surface have distinct asymmetric features. This asymmetry together with the displacement of the crystal and feed rod axis and crystal rotation manifests itself as three dimensional hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. Additionally, the rotating magnetic field can be used to influence the melt hydrodynamics and to reduce the flow asymmetry. In the present 3D model system, the shape of the molten zone is obtained from symmetric FZ shape calculations. The asymmetric HF EM field is calculated by the 3D boundary element method. The low-frequency rotating magnetic field and a corresponding force density distribution in the melt are calculated by the 3D finite element method. The obtained asymmetric HF field power distribution on the free melt surface, the corresponding HF EM forces and force density of the rotating magnetic field are used for the coupled calculation of 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with a control volume approach. Beside the EM forces, also the buoyancy and Marangoni forces are considered. After HD calculations a corresponding 3D dopant concentration field is calculated and used to derive the variations resistivity in the grown crystal. The capability of the system of models is illustrated by a calculation example of a realistic FZ system

  10. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  11. Phonon spectra and heat capacity of Li2B4O7 and LiB3O5 crystals

    NASA Astrophysics Data System (ADS)

    Maslyuk, V. V.; Bredow, T.; Pfnür, H.

    2004-12-01

    The results of calculations of the phonon dispersion, the vibrational density of states and the heat capacity of lithium tetraborate and lithium triborate crystals are presented. They are obtained in the framework of a potential model that takes into account the non-equivalence of boron atoms in different structural positions (BO3 and BO4 units). A symmetry analysis of the phonon modes at Γ point was performed, and calculated frequencies are compared to experimental spectra. Analysis of Li contributions to the vibrational density of states reveals that the Li-O bonds in both crystals are relatively weak. This is in line with the experimentally observed high mobility of lithium ions at high temperatures. A good agreement between calculated and measured heat capacities from the literature was obtained.

  12. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    NASA Astrophysics Data System (ADS)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan; Bonello, Bernard; Moiseyenko, Rayisa P.; Hémon, Stéphanie; Pan, Yongdong; Djafari-Rouhani, Bahram

    2016-02-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low frequency gaps for wavelength division in multiplexer devices using heteroradii pillars introduced into waveguide and cavity structures.

  13. Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes

    SciTech Connect

    Zhao Degang; Liu Zhengyou; Qiu Chunyin; He Zhaojian; Cai Feiyan; Ke Manzhu

    2007-10-01

    In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of 'beat.' Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.

  14. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  15. Finite Element Method for Analysis of Band Structures of 2D Phononic Crystals with Archimedean-like tilings

    NASA Astrophysics Data System (ADS)

    Li, Jianbao; Wang, Yue-Sheng; Zhang, Chuanzeng

    2010-05-01

    In this paper, a finite element method based on the ABAQUS code and user subroutine is presented to evaluate the propagation of acoustic waves in the two-dimensional phononic crystals with Archimedean-like tilings. Two systems composed of cylinder scatters embedded in a host in Ladybug and Bathroom lattices are considered. Complete and accurate band structures and transmission spectra are obtained to identify the band gaps and eigenmodes. We found that Archimedean-like structures can have some advantages over the traditional square lattice regarding the completeness of the gap and its position and width. Also, due to the same square primitive unit cell and the first Brillouin zone, the two square-like lattices have similar acoustic response in lower bands. The results indicate that the finite element method is precise for the band structure computation of the complex phononic crystals with Archimedean tilings.

  16. Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Liu, Zhengyou; Qiu, Chunyin; He, Zhaojian; Cai, Feiyan; Ke, Manzhu

    2007-10-01

    In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or Gaussian beam placed in or launched from the background medium, and they propagate along the surface with the form of “beat.” Taking advantage of these surface modes, we can obtain a highly directional emission wave beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.

  17. Influence of force constant on surface phonon polariton properties of cubic ZnS1-xSex crystals

    NASA Astrophysics Data System (ADS)

    Yew, P.; Lee, S. C.; Ng, S. S.; Yoon, T. L.; Hassan, H. Abu.

    2015-04-01

    In this paper, our attention is focused on the influence of force constant on surface phonon polariton (SPhP) properties of cubic ZnS1-xSex mixed crystals. Two different force constants were used, i.e., one considers only the first nearest neighbour interactions and another considers up to the second nearest neighbour interactions. For the theoretical modelling, modified random element iso-displacement (MREI) model was used. The results revealed that the second nearest neighbour interactions assumption gives significant impact on composition dependence of optical phonon spectra in which it can produce theoretical results closer to experimental data. Because of the dependence of SPhP on optical phonon modes, it is expected that the SPhP properties are also sensitive to the force constant. The SPhP dispersion curves are calculated for both of the end member binary crystals (x = 0 and 1) and mixed crystal with composition x = 0.3, 0.5, and 0.8. Finally, implication of the theoretical results on relevant experiment is discussed.

  18. Acoustic add-drop filters based on phononic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin

    2016-01-01

    We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.

  19. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Liu, Nianhua; Wang, Tongbiao; Liao, Qinghua

    2015-09-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented.

  20. Influences of gradient profile on the band gap of two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    Cai, Bei; Wei, P. J.

    2011-11-01

    Propagation characteristics of elastic waves in two-dimensional (2D) phononic crystal consisting of parallel cylinders or cylindrical shells embedded periodically in a homogeneous host are investigated. The cylinders or cylindrical shells with varying material parameters along the radial direction are considered. The influences of the gradient profile on the band gap are the main concern. First, the multiple scattering method and the Bloch theorem are used to derive the dispersive equation. Second, the transfer matrix of graded medium is derived based on the laminated cylindrical shell model. Three cases of combination are considered: (1) Solid cylinders embedded in solid host (solid-solid type). (2) Solid cylinders embedded in liquid host (solid-liquid type). (3) Hollow cylinder filled with liquid embedded in liquid host (liquid-solid-liquid type). Next, the dispersive curves and the band gaps between them are evaluated numerically in the reduced Brillouin zone. Five kinds of typical gradient profiles and two limited cases are considered. At last, the influence of the graded medium with different gradient profiles upon dispersive curves and the band gaps are discussed based on the numerical results.

  1. Frequency characteristics of defect states in a two-dimensional phononic crystal with slit structure

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Jiang, P.; Chen, T. N.; Yu, K. P.

    2016-02-01

    In this paper, the defect state and band gap characteristics in a two-dimensional slit structure phononic crystal, consisting of slotted steel tubes embedded in an air matrix, are investigated theoretically and experimentally. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of the slit structures are calculated. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the band gaps. Additionally, the influence of the slit width on the band gaps in slit structure is investigated. The slit width was found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a method to form defect scatterers by changing the slit width of a single central scatterer, or one row of scatterers, in the perfect PC was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the slit width of defect scatterers. Meanwhile, the relationship between point defect and line defect is investigated. Finally, we verify the results of theoretical research by experiments. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  2. Extremely low-frequency Lamb wave band gaps in a sandwich phononic crystal thin plate

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Liu, Zhangyi; Fu, Gang

    2015-11-01

    In this paper, a kind of sandwich phononic crystal (PC) plate with silicon rubber scatterers embedded in polymethyl methacrylate (PMMA) matrix is proposed to demonstrate its low-frequency Lamb wave band gap (BG) characteristics. The dispersion relationship and the displacement vector fields of the basic slab modes and the locally resonant modes are investigated to show the BG formation mechanism. The anti-symmetric Lamb wave BG is further studied due to its important function in reducing vibration. The analysis on the BG characteristics of the PC through changing their geometrical parameters is performed. By optimizing the structure, a sandwich PC plate with a thickness of only 3 mm and a lower boundary (as low as 23.9 Hz) of the first anti-symmetric BG is designed. Finally, sound insulation experiment on a sandwich PC plate with the thickness of only 2.5 mm is conducted, showing satisfactory noise reduction effect in the frequency range of the anti-symmetric Lamb BG. Therefore, this kind of sandwich PC plate has potential applications in controlling vibration and noise in low-frequency ranges.

  3. Development of an acoustic filter for parametric loudspeaker using phononic crystals.

    PubMed

    Ji, Peifeng; Hu, Wenlin; Yang, Jun

    2016-04-01

    The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. PMID:26855254

  4. Large Area 2D and 3D Colloidal Photonic Crystals Fabricated by a Roll-to-Roll Langmuir-Blodgett Method.

    PubMed

    Parchine, Mikhail; McGrath, Joe; Bardosova, Maria; Pemble, Martyn E

    2016-06-14

    We present our results on the fabrication of large area colloidal photonic crystals on flexible poly(ethylene terephthalate) (PET) film using a roll-to-roll Langmuir-Blodgett technique. Two-dimensional (2D) and three-dimensional (3D) colloidal photonic crystals from silica nanospheres (250 and 550 nm diameter) with a total area of up to 340 cm(2) have been fabricated in a continuous manner compatible with high volume manufacturing. In addition, the antireflective properties and structural integrity of the films have been enhanced via the use of a second roll-to-roll process, employing a slot-die coating of an optical adhesive over the photonic crystal films. Scanning electron microscopy images, atomic force microscopy images, and UV-vis optical transmission and reflection spectra of the fabricated photonic crystals are analyzed. This analysis confirms the high quality of the 2D and 3D photonic crystals fabricated by the roll-to-roll LB technique. Potential device applications of the large area 2D and 3D colloidal photonic crystals on flexible PET film are briefly reviewed. PMID:27218474

  5. A computational and experimental study of surface acoustic waves in phononic crystals

    NASA Astrophysics Data System (ADS)

    Petrus, Joseph Andrew

    The unique frequency range and robustness of surface acoustic wave (SAW) devices has been a catalyst for their adoption as integral components in a range of consumer and military electronics. Furthermore, the strain and piezoelectric fields associated with SAWs are finding novel applications in nanostructured devices. In this thesis, the interaction of SAWs with periodic elastic structures, such as photonic or phononic crystals (PnCs), is studied both computationally and experimentally. To predict the behaviour of elastic waves in PnCs, a finite-difference time-domain simulator (PnCSim) was developed using C++. PnCSim was designed to calculate band structures and transmission spectra of elastic waves through two-dimensional PnCs. By developing appropriate boundary conditions, bulk waves, surface acoustic waves, and plate waves can be simulated. Results obtained using PnCSim demonstrate good agreement with theoretical data reported in the literature. To experimentally investigate the behaviour of SAWs in PnCs, fabrication procedures were developed to create interdigitated transducers (IDTs) and PnCs. Using lift-off photolithography, IDTs with finger widths as low as 1:8 mum were fabricated on gallium arsenide (GaAs), corresponding to a SAW frequency of 397 MHz. A citric acid and hydrogen peroxide wet-etching solution was used to create shallow air hole PnCs in square and triangular lattice configurations, with lattice constants of 8 mum and 12 mum, respectively. The relative transmission of SAWs through these PnCs as a function of frequency was determined by comparing the insertion losses before and after etching the PnCs. In addition, using a scanning Sagnac interferometer, displacement maps were measured for SAWs incident on square lattice PnCs by Mathew (Creating and Imaging Surface Acoustic Waves on GaAs, Master's Thesis). Reasonable agreement was found between simulations and measurements. Additional simulations indicate that SAW waveguiding should be possible

  6. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs.

    PubMed

    Pennec, Y; Djafari Rouhani, B; El Boudouti, E H; Li, C; El Hassouani, Y; Vasseur, J O; Papanikolaou, N; Benchabane, S; Laude, V; Martinez, A

    2010-06-21

    We discuss the simultaneous existence of phononic and photonic band gaps in a periodic array of holes drilled in a Si membrane. We investigate in detail both the centered square lattice and the boron nitride (BN) lattice with two atoms per unit cell which include the simple square, triangular and honeycomb lattices as particular cases. We show that complete phononic and photonic band gaps can be obtained from the honeycomb lattice as well as BN lattices close to honeycomb. Otherwise, all investigated structures present the possibility of a complete phononic gap together with a photonic band gap of a given symmetry, odd or even, depending on the geometrical parameters. PMID:20588565

  7. Physics of band-gap formation and its evolution in the pillar-based phononic crystal structures

    SciTech Connect

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali Asghar; Adibi, Ali; Khelif, Abdelkrim

    2014-07-07

    In this paper, the interplay of Bragg scattering and local resonance is theoretically studied in a phononic crystal (PnC) structure composed of a silicon membrane with periodic tungsten pillars. The comparison of phononic band gaps (PnBGs) in three different lattice types (i.e., square, triangular, and honeycomb) with different pillar geometries shows that different PnBGs have varying degrees of dependency on the lattice symmetry based on the interplay of the local resonances and the Bragg effect. The details of this interplay is discussed. The significance of locally resonating pillars, specially in the case of tall pillars, on PnBGs is discussed and verified by examining the PnBG position and width in perturbed lattices via Monte Carlo simulations. It is shown that the PnBGs caused by the local resonance of the pillars are more resilient to the lattice perturbations than those caused by Bragg scattering.

  8. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J.; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D.; Goertzen, Andrew L.

    2013-12-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  9. Nonequilibrium kinetics of the electron–phonon sybsystem of a crystal in a strong electric field as a base of the electroplastic effect

    SciTech Connect

    Karas, V. I. Vlasenko, A. M.; Sokolenko, V. I.; Zakharov, V. E.

    2015-09-15

    We present the results of a kinetic analysis of nonequilibrium dynamics of the electron–phonon system of a crystal in a strong electric field based on the proposed method of numerically solving a set of Boltzmann equations for electron and phonon distribution functions without expanding the electron distribution function into a series in the phonon energy. It is shown that the electric field action excites the electron subsystem, which by transferring energy to the phonon subsystem creates a large amount of short-wave phonons that effectively influence the lattice defects (point, lines, boundaries of different phases), which results in a redistribution of and decrease in the lattice defect density, in damage healing, in a decrease in the local peak stress, and a decrease in the degradation level of the construction material properties.

  10. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  11. Surface phonon polariton responses of hexagonal sapphire crystals with non-polar and semi-polar crystallographic planes.

    PubMed

    Lee, Sai Cheong; Ng, Sha Shiong; Hassan, Haslan Abu; Hassan, Zainuriah; Dumelow, Thomas

    2014-09-15

    The surface phonon polariton (SPhP) characteristics of hexagonal sapphire crystals with non-polar and semi-polar crystallographic planes are investigated. A formulation that considers the effects of crystal orientation is employed to calculate the SPhP dispersion curves of the samples. The SPhP dispersion curves indicate that the SPhP responses of sapphire crystals in non-polar and semi-polar orientations are directionally sensitive. Resonance frequencies and spectral strengths of the SPhP modes can be modulated simply by tuning the angular positions of the samples. The validity of the theoretical results is confirmed by the polarized infrared attenuated total reflection measurements. PMID:26466299

  12. Role of exciton-phonon interactions and disordering processes in the formation of the absorption edge in Cu6P(S1- x Sex)5Br crystals

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kranjcec, M.; Suslikov, L. M.; Kovacs, D. Sh.; Pan'ko, V. V.

    2002-04-01

    The absorption edge in Cu6P(S1- x Sex)5Br crystals has been studied for strong absorption in the temperature range of 77 330 K. The parameters of the Urbach absorption edge and exciton-phonon interactions in Cu6P(S1- x Sex)5Br crystals are determined and their effect on the composition disorder is studied.

  13. Study of Electron, Phonon and Crystal Stability Versus Thermoelectric Properties in Mg2X(X = Si, Sn) Compounds and Their Alloys

    NASA Astrophysics Data System (ADS)

    Bourgeois, J.; Tobola, J.; Wiendlocha, B.; Chaput, L.; Zwolenski, P.; Berthebaud, D.; Gascoin, F.; Recour, Q.; Scherrer, H.

    2013-10-01

    We present results of extensive theoretical and experimental investigations of Mg2Si and Mg2Sn and their Mg2Si1-xSnx alloys. Electronic and phonon properties of binary compounds were studied by ab initio calculations. Then, both compounds were synthesized by the solid-state reaction and electrical resistivity and thermopower was measured at high temperature (300-900 K). In both the compounds, the theoretical bandgaps (0.56 eV in Mg2Si and 0.16 eV in Mg2Sn) agree very well with the experimental values (0.6 eV in Mg2Si and 0.17 eV from activation law in Mg2Sn) upon applying the modified Becke-Johnson semilocal exchange potential and including spin-orbit coupling in the calculations. Calculated phonon spectra support crystal stability of both compounds. For Mg2Si, the contributions from Si and Mg are spread over all the spectrum (0-10 THz), whereas in the case of Mg2Sn, a gap opens around 4 THz with Sn and Mg contributions dominating in lower and higher energy range, respectively. The calculated heat capacity at low temperature (0-300 K) fairly agrees with available experimental data. The crystal structure of Mg2Si1-xSnx with x = 0, 0.25, 0.4, 0.75, 1 was studied by X-ray diffraction measurements. The alloy compositions exist in the ranges 0 < x < 0.4 and 0.6 < x < 1 and the obtained samples are almost single phased. Detailed crystal stability study with temperature revealed that all powder samples started to decompose into MgO, Si and Sn at 630 K. For hot pressed bulk materials, the decomposition is much slower than in powder compounds but it still appears. Interestingly, thermoelectric properties measurements performed in Mg2Si1-xSnx show that both electrical resistivity and thermopower curves are repeatable during temperature cycles up to 770 K. On the other hand, temperature-dependent X-ray powder diffraction suggests that these compounds are not stable. Furthermore, electronic structure calculations of almost 40 impurities (s- and p-block, 3d and 4d transition

  14. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    PubMed

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF. PMID:26258358

  15. Enhanced plane wave expansion analysis for the band structure of bulk modes in two-dimensional high-contrast solid-solid phononic crystals

    NASA Astrophysics Data System (ADS)

    Baboly, Mohammadhosein Ghasemi; Soliman, Yasser; Su, Mehmet F.; Reinke, Charles M.; Leseman, Zayd C.; El-Kady, Ihab

    2014-11-01

    Plane wave expansion analyses that use the inverse rule to obtain the Fourier coefficients of the elastic tensor instead of the more conventional Laurent's rule, exhibit faster convergence rates for solid-solid phononic crystals. In this work, the band structure convergence of calculations using the inverse rule is investigated and applied to the case of high acoustic impedance contrast solid-solid phononic crystals, previously known for convergence difficulties. Results are contrasted to those obtained with the conventional plane wave expansion method. The inverse rule is found to converge at a much rate for all ranges of impedance contrast, and the ratio between the computational times needed to obtain a convergent band structure for a high-contrast solid-solid phononic crystal with the conventional plane wave expansion method using 1369 reciprocal lattice vectors is as large as 6800:1. This ratio decreases for material sets with lower impedance contrast; however, the inverse rule is still faster for a given error threshold for even the lowest impedance contrast phononic crystals reported in the literature. This convergence enhancement is a major factor in reconsidering the plane wave expansion method as an important tool in obtaining propagating elastic modes in phononic crystals.

  16. Dynamics of confined cavity modes in a phononic crystal slab investigated by in situ time-resolved experiments

    NASA Astrophysics Data System (ADS)

    Marchal, R.; Boyko, O.; Bonello, B.; Zhao, J.; Belliard, L.; Oudich, M.; Pennec, Y.; Djafari-Rouhani, B.

    2012-12-01

    The confinement of elastic waves within a single defect in a phononic crystal slab is investigated both experimentally and theoretically. The structure is formed by a honeycomb lattice of air holes in a silicon plate with one hole missing in its center. The frequencies and polarizations of the localized modes in the first band gap are computed with a finite element method. A noncontact laser ultrasonic technique is used both to excite flexural Lamb waves and to monitor in situ the displacement field within the cavity. We report on the time evolution of confinement, which is distinct according to the symmetry of the eigenmode.

  17. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  18. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals.

    PubMed

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons. PMID:21971079

  19. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm3 crystals

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-01

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm3 cubic crystals, in contrast to our previous development using 3.0 mm3 cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm3 in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm2, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  20. Finite element analysis and experimental study of surface acoustic wave propagation through two-dimensional pillar-based surface phononic crystal

    NASA Astrophysics Data System (ADS)

    Yankin, S.; Talbi, A.; Du, Y.; Gerbedoen, J.-C.; Preobrazhensky, V.; Pernod, P.; Bou Matar, O.

    2014-06-01

    We study both theoretically and experimentally the interaction of surface elastic waves with 2D surface phononic crystal (PnC) on a piezoelectric substrate. A rigorous analysis based on 3D finite element method is conducted to calculate the band structure of the PnC and to analyze the transmission spectrum (module and phase). Interdigital transducers (IDTs) are considered for electrical excitation and detection, and absorbing boundary conditions are used to suppress wave's reflection from the edges. The PnCs are composed of an array of 20 Nickel cylindrical pillars arranged in a square lattice symmetry, and deposited on a LiNbO3 substrate (128°Y cut-X propagating) between two dispersive IDTs. We investigate by means of band diagrams and transmission spectrum the opening band-gaps originating from pillars resonant modes and from Bragg band-gap. The physical parameters that influence and determine their appearance are also discussed. Experimental validation is achieved through electrical measurement of the transmission characteristics, including amplitude and phase.

  1. Calculation of energy relaxation rates of fast particles by phonons in crystals

    SciTech Connect

    Prange, Micah P.; Campbell, Luke W.; Wu, Dangxin; Gao, Fei; Kerisit, Sebastien N.

    2015-03-01

    We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the mov- ing particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time- dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for CsI, an important scintillator whose performance is affected by electron thermal- ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates.

  2. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Zhang, Chuanzeng; Wang, Yuesheng; Sladek, Jan; Sladek, Vladimir

    2016-01-01

    In this paper, a meshfree or meshless local radial basis function (RBF) collocation method is proposed to calculate the band structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic crystals. Three new techniques are developed for calculating the normal derivative of the field quantity required by the treatment of the boundary conditions, which improve the stability of the local RBF collocation method significantly. The general form of the local RBF collocation method for a unit-cell with periodic boundary conditions is proposed, where the continuity conditions on the interface between the matrix and the scatterer are taken into account. The band structures or dispersion relations can be obtained by solving the eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone. The proposed local RBF collocation method is verified by using the corresponding results obtained with the finite element method. For different acoustic impedance ratios, various scatterer shapes, scatterer arrangements (lattice forms) and material properties, numerical examples are presented and discussed to show the performance and the efficiency of the developed local RBF collocation method compared to the FEM for computing the band structures of 2D phononic crystals.

  3. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Peng; Jiang, Ping; Chen, Tian-Ning; Zhu, Jian

    2015-10-01

    In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers' stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  4. Excitation of surface waves on one-dimensional solid–fluid phononic crystals and the beam displacement effect

    SciTech Connect

    Moiseyenko, Rayisa P.; Liu, Jingfei; Declercq, Nico F.; Benchabane, Sarah; Laude, Vincent

    2014-12-15

    The possibility of surface wave generation by diffraction of pressure waves on deeply corrugated one-dimensional phononic crystal gratings is studied both theoretically and experimentally. Generation of leaky surface waves, indeed, is generally invoked in the explanation of the beam displacement effect that can be observed upon reflection on a shallow grating of an acoustic beam of finite width. True surface waves of the grating, however, have a dispersion that lies below the sound cone in water. They thus cannot satisfy the phase-matching condition for diffraction from plane waves of infinite extent incident from water. Diffraction measurements indicate that deeply corrugated one-dimensional phononic crystal gratings defined in a silicon wafer are very efficient diffraction gratings. They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a beam of finite extent can be transferred to elastic waves guided at the surface of the grating. Their leakage to the specular direction along the grating surface explains the apparent beam displacement effect.

  5. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  6. Design, Synthesis, and X-ray Crystal Structures of 2,4-Diaminofuro[2,3-d]pyrimidines as Multireceptor Tyrosine Kinase and Dihydrofolate Reductase Inhibitors

    PubMed Central

    Gangjee, Aleem; Li, Wei; Lin, Lu; Zeng, Yibin; Ihnat, Michael; Warnke, Linda A.; Green, Dixy W.; Cody, Vivian; Pace, Jim; Queener, Sherry F.

    2009-01-01

    To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 Å and 1.4 Å respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5 Å) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 2–13 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8–C9 unsaturated compounds 2–7 and catalytic reduction gave the saturated 8–13. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-β were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs. PMID:19748785

  7. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures.

    PubMed

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  8. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  9. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  10. Light control in Ge2Sb2Te5-coated opaline photonic crystals mediated by interplay of Wood anomalies and 3D Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. B.; Poddubny, A. N.; Yakovlev, S. A.; Kurdyukov, D. A.; Golubev, V. G.

    2013-04-01

    We present experimental and theoretical study of light reflection spectra from hybrid structures formed by Ge2Sb2Te5 chalcogenide film on top of 3D opaline photonic crystal. We demonstrate the presence of diffraction anomalies (Wood anomalies) in the spectra. These anomalies are caused by the light scattering on the hybrid structure surface of hexagonal symmetry. To interpret the experimental results, we develop a qualitative theoretical model, taking into account the dispersion of quasi-waveguide modes supported by the surface layer of the hybrid structure. We consider the conditions for the coupling between the Bragg resonances associated with the diffraction of light on the 3D opal lattice and the resonances due to Wood anomalies.

  11. Design and Optimization of Phononic Crystals and Metamaterials for Flow Control and Other Applications

    NASA Astrophysics Data System (ADS)

    Bilal, Osama R.

    Transmission of everyday sound and heat can be traced back to a physical particle, or wave, called a "phonon". Understanding, analyzing and manipulating phonons across multiple scales/disciplines can be achieved using phononic materials. That is a class of material systems featuring a basic pattern that repeats spatially. Among many qualities, it exhibits distinct frequency characteristics such as band gaps, where vibrational waves of certain frequencies are prohibited from propagation. These properties can benefit a multitude of applications, ranging from vibration isolation and converting waste heat into electricity to exotic concepts like acoustic cloaking. Using unit-cell design and optimization, phononic materials/devices with extraordinary properties may be realized. Since many of these applications are based on band-gap utilization, a critical design objective is to widen band-gap size or precisely synthesize its characteristics. Approaching this problem at the unit cell level is advantageous in many aspects, mostly because it provides a complete picture of the intrinsic local dynamics which is often obscured when analyzing the structure as a whole. Moreover, it is computationally less expensive than designing an entire structure. Unit-cell dispersion engineering is also scale independent; an optimized unit cell may be used to manipulate waves ranging from a few Hz to GHz, or higher, with proper scaling. In order to keep the structure/device size as small as possible, the band-gap central frequency is tuned to be as low as possible. The objective of this thesis is to explore and advance unit-cell design and optimization of phononic materials in one, two and three-dimensions for a broad range of applications. In particular, an application for flow control is investigated where a phononic material is shown to manipulate and alter a flow field in a favorable manner. Results involving unit-cell design and coupled fluid-structure simulations (as part of a

  12. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  13. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    PubMed

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  14. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    NASA Astrophysics Data System (ADS)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan; Rouhani, Bahram Djafari; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid

    2016-03-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  15. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    NASA Astrophysics Data System (ADS)

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-09-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to `manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the `anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  16. Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals

    SciTech Connect

    Nostrand, M; Page, R; Payne, S; Schunemann, P; Isaenko, L

    2000-04-01

    Laser results are summarized for the low-phonon hosts KPb{sub 2}Cl{sub 5} and CaGa{sub 2}S{sub 4}. Radiative quantum efficiencies were determined in KPb{sub 2}Cl{sub 5}:Dy{sup 3+} directly from emission spectra in order to accurately determine its long-wavelength potential. The results indicate that room-temperature laser action should be possible to near 9 {micro}m in this host.

  17. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    NASA Astrophysics Data System (ADS)

    Gudyma, Iu.; Maksymov, A.; Spinu, L.

    2015-10-01

    The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems' bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  18. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea

  19. Electric transport in 3D photonic crystal intermediate reflectors for micromorph thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Üpping, J.; Bielawny, A.; Lee, S.; Knez, M.; Carius, R.; Wehrspohn, R. B.

    2009-08-01

    The progress of 3D photonic intermediate reflectors for micromorph silicon tandem cells towards a first prototype cell is presented. Intermediate reflectors enhance the absorption of spectrally-selected light in the top cell and decrease the current mismatch between both junctions. A numerical method to predict filter properties for optimal current matching is presented. Our device is an inverted opal structure made of ZnO and fabricated using self-organized nanoparticles and atomic layer deposition for conformal coating. In particular, the influence of ZnO-doping and replicated cracks during drying of the opal is discussed with respect to conductivity and optical properties. A first prototype is compared to a state-of-the-art reference cell.

  20. Study of crystal-field excitations and infrared active phonons in the multiferroic hexagonal DyMnO3

    NASA Astrophysics Data System (ADS)

    Jandl, S.; Mansouri, S.; Vermette, J.; Mukhin, A. A.; Ivanov, V. Yu; Balbashov, A.; Orlita, M.

    2013-11-01

    In hexagonal DyMnO3, Dy3+ crystal-field excitations are studied as a function of temperature and applied magnetic field. They are complemented with the measurements of infrared active phonon frequency shifts under applied magnetic field at T = 4.2 K. Between TN = 68 K and T = 10 K, the absence of Dy3+ Kramers doublet splittings at either the C3 or the C3v site symmetries indicates that the Mn3+ magnetic order effective exchange field has no component parallel to the c-axis at either site. Below T = 10 K, the ground state Kramers doublet splits under the Dy3+ internal effective field as well as the applied magnetic field. Also, relatively strong infrared active phonon energy shifts are observed in magneto-infrared reflectance measurements at T = 4.2 K, allowing the calculation of the induced electric polarization changes as a function of the applied magnetic field. Such changes are associated with a large magnetoelectric effect in DyMnO3, arising from a charge transfer between Dy3+ and apical oxygen ions.

  1. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    NASA Astrophysics Data System (ADS)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  2. Duality between the dynamics of line-like brushes of point defects in 2D and strings in 3D in liquid crystals.

    PubMed

    Digal, Sanatan; Ray, Rajarshi; Saumia, P S; Srivastava, Ajit M

    2013-10-01

    We analyze the dynamics of dark brushes connecting point vortices of strength ±1 formed in the isotropic-nematic phase transition of a thin layer of nematic liquid crystals, using a crossed polarizer set up. The evolution of the brushes is seen to be remarkably similar to the evolution of line defects in a three-dimensional nematic liquid crystal system. Even phenomena like the intercommutativity of strings are routinely observed in the dynamics of brushes. We test the hypothesis of a duality between the two systems by determining exponents for the coarsening of total brush length with time as well as shrinking of the size of an isolated loop. Our results show scaling behavior for the brush length as well as the loop size with corresponding exponents in good agreement with the 3D case of string defects. PMID:24026004

  3. A study of the impurity structure for 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystal

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed

    2012-02-01

    The local environment around 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystals has been investigated using superposition model (SPM) analysis. The zero-field splitting (ZFS) parameters (ZFSPs) D and E are modeled for the Cr 3+ and Mn 4+ ions at both the substitutional Ti sites with local symmetry orthorhombic D2h and the interstitial sites (ISs) with the same symmetry. Several model parameter sets are adopted so as to acquire the best agreement between the calculated ZFSPs and those measured by electron magnetic resonance (EMR). The feasible values of the structural distortions (Δ RY, Δ RXZ and Δ θ) resulting from dopant Cr 3+ and Mn 4+ ions are determined. As a result, it is confirmed that Mn 4+ ions substitute for Ti 4+ sites in rutile TiO 2 crystal; however, it is suggested that Cr 3+ ions may replace at not only Ti 4+ site but also IS.

  4. Mueller matrix ellipsometry studies of the optical phonons and crystal field excitations in multiferroic orthoferrites RFeO3 (R=Tb,Dy)

    NASA Astrophysics Data System (ADS)

    Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.

    Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.

  5. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-01

    Three new 1D to 3D complexes, namely, {[Ni(btec)(Himb)2(H2O)2]·6H2O}n (1), {[Cd(btec)0.5(imb)(H2O)]·1.5H2O}n (2), and {[Zn(btec)0.5(imb)]·H2O}n (3) (H4btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (53·62·7)(52·64). Complex 3 presents a 3D framework with a point symbol of (4·64·8)(42·62·82). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature.

  6. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; De Cremer, Gert; Kubarev, Alexey V; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-05-27

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  7. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    PubMed Central

    2015-01-01

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  8. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    PubMed

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. PMID:21428478

  9. Novel 1 × N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays

    NASA Astrophysics Data System (ADS)

    Zou, Qiushun; Yu, Tianbao; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua; Xu, Xuming

    2016-02-01

    We present an appropriate design and simulated results of novel 1 × N (N represents an integer larger than 1) ultrasonic power splitters based on self-imaging effect with symmetric interference of phononic crystal waveguide arrays. Such sonic devices with two and three output channels are discussed in detail as examples. The finite element method is used to calculate the distribution of total displacement field and evaluate the efficiency of these structures. Results show that these devices exhibit new and interesting characteristics, such as compact size, wide bandwidth, and high-transmission. The approach provides a novel method and compact model for exporting freely ultrasonic waves to N channels and can present practical applications in future acoustic wave circuits.

  10. Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars

    NASA Astrophysics Data System (ADS)

    Achaoui, Younes; Khelif, Abdelkrim; Benchabane, Sarah; Robert, Laurent; Laude, Vincent

    2011-03-01

    We report on the experimental study of the propagation of surface guided waves in a periodic arrangement of pillars on a semi-infinite medium. Samples composed of nickel pillars grown on a lithium niobate substrate were prepared and wide bandwidth transducers were used for the electrical generation of surface elastic waves. We identify a complete band gap for surface guided waves appearing at frequencies markedly lower than the Bragg band gap. Using optical measurements of the surface vibrations and by comparison with a finite element model, we argue that the low frequency band gap arises because of local resonances in the pillars. When resonance is reached, the acoustic energy is confined inside the pillars and transmission through the array is strongly reduced. At higher frequencies and inside the Bragg band gap, the incident surface elastic waves are almost completely reflected and the observed exponential decay of the transmission is similar to the case of phononic crystals made of holes in a substrate.

  11. Acoustic band gaps with diffraction gratings in a two-dimensional phononic crystal with a square lattice in water

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Kang, Hwi Suk; Yoon, Suk Wang

    2016-04-01

    The present work reports a combined experimental and theoretical study on the acoustic band gaps in a two-dimensional (2D) phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders with diameters of 1.0 mm and a lattice constant of 1.5 mm in water. The theoretical band structure of the 2D PC was calculated along the ΓX direction of the first Brillouin zone. The transmission and the reflection coefficients were obtained both experimentally and theoretically along the ΓX direction of the 2D PC. The 2D PC exhibited 5 band gaps at frequencies below 2.0 MHz, with the first Bragg gap being around a frequency of 0.5 MHz. To understand the band gaps in the 2D PC, we calculated the acoustic pressure fields at specific frequencies of interest for normal incidence, and we explained them from the perspective of acoustic diffraction gratings.

  12. All-electron LCAO calculations of the LiF crystal phonon spectrum: Influence of the basis set, the exchange-correlation functional, and the supercell size.

    PubMed

    Evarestov, R A; Losev, M V

    2009-12-01

    For the first time the convergence of the phonon frequencies and dispersion curves in terms of the supercell size is studied in ab initio frozen phonon calculations on LiF crystal. Helmann-Feynman forces over atomic displacements are found in all-electron calculations with the localized atomic functions (LCAO) basis using CRYSTAL06 program. The Parlinski-Li-Kawazoe method and FROPHO program are used to calculate the dynamical matrix and phonon frequencies of the supercells. For fcc lattice, it is demonstrated that use of the full supercell space group (including the supercell inner translations) enables to reduce essentially the number of the displacements under consideration. For Hartree-Fock (HF), PBE and hybrid PBE0, B3LYP, and B3PW exchange-correlation functionals the atomic basis set optimization is performed. The supercells up to 216 atoms (3 x 3 x 3 conventional unit cells) are considered. The phonon frequencies using the supercells of different size and shape are compared. For the commensurate with supercell k-points the best agreement of the theoretical results with the experimental data is found for B3PW exchange-correlation functional calculations with the optimized basis set. The phonon frequencies at the most non-commensurate k-points converged for the supercell consisting of 4 x 4 x 4 primitive cells and ensures the accuracy 1-2% in the thermodynamic properties calculated (the Helmholtz free energy, entropy, and heat capacity at the room temperature). PMID:19382176

  13. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  14. Low-concentration liquid sensing by an acoustic Mach-Zehnder interferometer in a two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    Salman, Aysevil; Adem Kaya, Olgun; Cicek, Ahmet; Ulug, Bulent

    2015-06-01

    Mach-Zehnder interferometer formed by liquid-filled linear defect waveguides in a two-dimensional phononic crystal is numerically realized for sensing low concentrations of an analyte. The waveguides in the square phononic crystal of void cylinders in steel, as well as their T branches and sharp bends are utilized to construct interferometer arms. Sensing low concentrations of ethanol on the order of 0.1% in a binary mixture with water is achieved by replacing the contents of a number of waveguide core cells on one arm of the interferometer with the analyte. Computations are carried out through the finite-element method in an approach that takes the solid-liquid interaction at the waveguide core cells into account. Band analyses reveal linear variation of the central frequency of the transmission band within a band gap for ethanol concentrations up to 3.0%. Phase difference due to the imbalance of the sample and reference arms of the interferometer also varies linearly with ethanol concentration, leading in turn to a cosine variation of the Fourier component of the temporal interferometer response at the central input-pulse frequency. The induced phase difference in the investigated configuration becomes a -0.78π and -0.65π per percent increase of ethanol concentration as calculated from the band-structure and transient data, respectively. This is confirmed by transient finite-element simulations where totally destructive interference occurs for a concentration of approximately 1.5%. The proposed scheme, which can easily be adopted to other binary mixtures, offers a compact implementation requiring small amounts of analyte.

  15. Birefringent phononic structures

    SciTech Connect

    Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.

    2014-12-15

    Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  16. Spin glass and semiconducting behavior in one-dimensional BaFe2-dSe3 (d~2) crystals

    SciTech Connect

    Saparov, Bayrammurad I; Calder, Stuart A; Sipos, Balazs; Cao, Huibo; Chi, Songxue; Singh, David J; Christianson, Andrew D; Lumsden, Mark D; Sefat, A. S.

    2011-01-01

    We investigate the physical properties and electronic structure of BaFe{sub 1.79(2)}Se{sub 3} crystals, which were grown out of tellurium flux. The crystal structure of the compound, an iron-deficient derivative of the ThCr{sub 2}Si{sub 2}-type, is built upon edge-shared FeSe{sub 4} tetrahedra fused into double chains. The semiconducting BaFe{sub 1.79(2)}Se{sub 3} ({rho}{sub 295K} = 0.18 {Omega} {center_dot} cm and E{sub g} = 0.30 eV) does not order magnetically; however, there is evidence for short-range magnetic correlations of spin glass type (T{sub f} {approx} 50 K) in magnetization, heat capacity, and neutron diffraction results. A one-third substitution of selenium with sulfur leads to a slightly higher electrical conductivity ({rho}{sub 295K } = 0.11 {Omega} {center_dot} cm and E{sub g} = 0.22 eV) and a lower spin glass freezing temperature (T{sub f} {approx} 15 K), corroborating with higher electrical conductivity reported for BaFe{sub 2}S{sub 3}. According to the electronic structure calculations, BaFe{sub 2}Se{sub 3} can be considered as a one-dimensional ladder structure with a weak interchain coupling.

  17. Crystal Structure of the Mycoplasma arthritidis-Derived Mitogen in Apo Form Reveals a 3D Domain-Swapped Dimer

    SciTech Connect

    Liu, L.; Li, Z; Guo, Y; VanVranken, S; Mourad, W; Li, H

    2010-01-01

    Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular V{beta} elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-{angstrom} resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the 'reconstituted' MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM{sub wt} molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.

  18. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  19. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    PubMed Central

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  20. An Artificial Ising System with Phononic Excitations

    NASA Astrophysics Data System (ADS)

    Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul

    Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.

  1. Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Tidu, Aurélien; Portier, François; Mosser, Gervaise; Schanne-Klein, Marie-Claire

    2016-07-11

    This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules. PMID:27410876

  2. Femtosecond laser-induced crystallization of amorphous N-doped Ge{sub 8}Sb{sub 92} films and in situ characterization by coherent phonon spectroscopy

    SciTech Connect

    Li, Zhongyu; Wen, Ting; Lai, Tianshu E-mail: jwzhai@tongji.edu.cn; Hu, Yifeng; Zhai, Jiwei E-mail: jwzhai@tongji.edu.cn

    2015-04-07

    Femtosecond laser-irradiation-induced phase change of amorphous N-doped Ge{sub 8}Sb{sub 92} films is in situ studied by coherent phonon spectroscopy. We have observed that a new coherent optical phonon (COP) mode occurs as laser irradiation fluence reaches certain thresholds, indicating laser-induced phase changes. Additionally, this new phonon mode has also been verified in heat-annealing-crystallized N-doped Ge{sub 8}Sb{sub 92} films, confirming the emergence of laser-irradiation-induced crystallization. By measuring the pump fluence dependence of COP dynamics in laser-crystallized N-doped Ge{sub 8}Sb{sub 92} films, we found that the frequency and lifetime of COP decrease with the increasing of pump fluence, which suggests good crystallinity in laser-crystallized N-doped Ge{sub 8}Sb{sub 92} films. It has also been observed that the crystallization temperature of amorphous N-doped Ge{sub 8}Sb{sub 92} films increases with N-doping content. Our results indicate promising applications of N-doped Ge{sub 8}Sb{sub 92} films in optical phase-change memory devices.

  3. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C. W.; Levitov, Leonid S.; Polini, Marco

    2015-08-01

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

  4. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C W; Levitov, Leonid S; Polini, Marco

    2015-08-21

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons. PMID:26340206

  5. Preface to special topic: Selected articles from phononics 2013: The second international conference on phononic crystals/metamaterials, phonon transport and optomechanics, 2-7 June 2013, Sharm El-Sheikh, Egypt

    DOE PAGESBeta

    Hussein, Mahmoud I.; El-Kady, Ihab; Li, Baowen; Sánchez-Dehesa, José

    2014-12-31

    “Phononics” is an interdisciplinary branch of physics and engineering that deals with the behavior of phonons, and more broadly elastic and acoustic waves in similar context, and their manipulation in solids and/or fluids to benefit technological applications. Compared to resembling disciplines, such as electronics and photonics, phononics is a youthful field. It is growing at a remarkable rate, especially when viewed liberally with no limiting constraints on any particular length scale, discipline or application.

  6. Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Saito, S.; Sasaki, K.; Goto, K.; Masui, T.; Yamaguchi, T.; Honda, T.; Kuramata, A.; Higashiwaki, M.

    2016-03-01

    Temperature-dependent exciton resonance energies Eexciton in β-Ga2O3 single crystals are studied by using polarized reflectance measurement. The Eexciton values exhibit large energy changes in the range of 179-268 meV from 5 to 300 K. The IR-active Au and Bu optical phonon modes are selectively observed in the IR spectroscopic ellipsometry spectra by reflecting the polarization selection rules. The longitudinal optical (LO) phonon energies can be divided into three ranges: ℏωLO = 35-48, 70-73, and 88-99 meV. The broadening parameters, which are obtained from the reflectance measurements, correspond to the lower two ranges of ℏωLO at low temperature and 75 meV above 150 K. The large Eexciton changes with temperature in β-Ga2O3 are found to be originated from the exciton-LO-phonon interaction.

  7. Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji; Caillat, Thierry; Brummerstedt Iversen, Bo

    2004-01-01

    By converting waste heat into electricity, thermoelectric generators could be an important part of the solution to today's energy challenges. The compound Zn4Sb3 is one of the most efficient thermoelectric materials known. Its high efficiency results from an extraordinarily low thermal conductivity in conjunction with the electronic structure of a heavily doped semiconductor. Previous structural studies have been unable to explain this unusual combination of properties. Here, we show through a comprehensive structural analysis using single-crystal X-ray and powder-synchrotron-radiation diffraction methods, that both the electronic and thermal properties of Zn4Sb3 can be understood in terms of unique structural features that have been previously overlooked. The identification of Sb3- ions and Sb-2(4-) dimers reveals that Zn4Sb3 is a valence semiconductor with the ideal stoichiometry Zn13Sb10. In addition, the structure contains significant disorder, with zinc atoms distributed over multiple positions. The discovery of glass-like interstitial sites uncovers a highly effective mechanism for reducing thermal conductivity. Thus Zn4Sb3 is in many ways an ideal 'phonon glass, electron crystal' thermoelectric material.

  8. Syntheses, crystal structures and properties of two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers

    SciTech Connect

    Fan Leqing; Wu Jihuai; Huang Yunfang

    2011-09-15

    Two unusual pillared-layer 3d-4f Ln-Cu heterometallic coordination polymers, {l_brace}[Ln{sub 2}Cu{sub 5}Br{sub 4}(IN){sub 7}(H{sub 2}O){sub 6}].H{sub 2}O{r_brace}{sub n} (Ln=Eu (1) and Gd (2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. The structure determination reveals that 1 and 2 are isostructural and feature a novel three-dimensional pillared-layer hetrometallic structure built upon the linkages of one-dimensional (1D) linear Ln-carboxylate chains, zero-dimensional (0D) Ln-carboxylate Ln{sub 2}(IN){sub 8} dimers, rare 1D zigzag [Cu{sub 5}Br{sub 4}]{sub n} inorganic chains and IN{sup -} pillars. In both 3D structures, there are Ln-carboxylate layers resulted from the connections of 1D Ln-carboxylate chains and 0D Ln{sub 2}(IN){sub 8} dimers through O-H...O hydrogen bondings. The luminescent properties of 1 have been investigated. The magnetic properties of 1 and 2 have also been studied. - Graphical abstract: Two unusual pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been hydrothermally synthesized. The luminescent properties of Eu-Cu compound and magnetic properties of both compounds are investigated. Highlights: > Two unusual 3D pillared-layer Eu (Gd)-Cu heterometallic coordination polymers have been synthesized. > 1D and 0D Ln-carboxylate motifs construct layers by O-H...O hydrogen bondings. > In both the structures, there are rare 1D zigzag Cu/Br inorganic chains. > Luminescent properties of Eu-Cu compound and magnetic properties of both the compounds are investigated.

  9. A new 3D Co(II)–organic framework with acylamide-containing tetracarboxylate ligand: Solvothermal synthesis, crystal structure, gas adsorption and magnetic property

    SciTech Connect

    Zhang, Qingfu Zhang, Haina; Geng, Aijing; Wang, Suna; Zhang, Chong

    2014-04-01

    A new cobalt(II)–organic framework, [Co{sub 2}(L)(py){sub 2}(DMSO)]{sub n}• 0.5nDMF• 2nDMSO (1) [H{sub 4}L=5,5'-((naphthalene-2,6-dicarbonyl)bis(azanediyl))diisophthalic acid, py=pyridine, DMSO=dimethyl sulfoxide, DMF=N,N-dimethylformamide], has been solvothermally synthesized and characterized by elemental analysis, IR, TGA, PXRD and single-crystal X-ray crystallography. The structural analysis reveals that complex 1 is a 3D framework built from nanosized acylamide-containing tetracarboxylate ligands (L{sup 4−}) and dinuclear [Co{sub 2}(CO{sub 2}){sub 4}] secondary building units (SBUs), exhibiting a uninodal (4,4)-connected crb topology with the Schläfli symbol of (4• 6{sup 5}). The desolvated complex (1a) displays higher adsorption capability for CO{sub 2} than N{sub 2}, which may be due to the relatively strong binding affinity between the CO{sub 2} molecules and acylamide groups in the framework. The magnetic investigation shows that the dominant antiferromagnetic interaction is observed in complex 1. - Graphical abstract: A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand was solvothermally synthesized and structurally characterized, its thermal stability, gas adsorption and magnetic property were studied. - Highlights: • A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand has been solvothermally synthesized and characterized. • Complex 1 exhibits a uninodal (4,4)-connected crb topology. • The thermal stability, gas adsorption and magnetic property were studied.

  10. 2H and 133Cs nuclear magnetic resonance study of Cs3D(SO4)2 single crystals in laboratory and rotating frames

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Kim, Sun Ha; Jeong, Se-Young

    2013-01-01

    To understand the physical properties of Cs3D(SO4)2 single crystals, in which deuterium replaces hydrogen, the temperature dependence of the NMR spectrum and the spin-lattice relaxation times in the laboratory frame, T1, and in the rotating frame, T1ρ, for 2H and 133Cs are investigated using Fourier transform nuclear magnetic resonance spectrometry. Our results for the 2H and 133Cs relaxation times provide no evidence of a phase transition. The strong temperature dependence of the 2H resonance lines is associated with deformation of the H(SO4)2- tetrahedra. Further, T1 and T1ρ for the 2H and 133Cs nuclei are governed by different mechanisms, which we discuss in terms of fast and slow motion.

  11. Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy.

    PubMed

    Hsu, Sen-Ming; Chang, Hung-Chun

    2007-11-26

    A full-vectorial finite element method based eigenvalue algorithm is developed to analyze the band structures of two-dimensional (2D) photonic crystals (PCs) with arbitray 3D anisotropy for in-planewave propagations, in which the simple transverse-electric (TE) or transverse-magnetic (TM) modes may not be clearly defined. By taking all the field components into consideration simultaneously without decoupling of the wave modes in 2D PCs into TE and TM modes, a full-vectorial matrix eigenvalue equation, with the square of the wavenumber as the eigenvalue, is derived. We examine the convergence behaviors of this algorithm and analyze 2D PCs with arbitrary anisotropy using this algorithm to demonstrate its correctness and usefulness by explaining the numerical results theoretically. PMID:19550864

  12. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    SciTech Connect

    Campi, Davide; Bernasconi, Marco; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg

    2015-01-07

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  13. Electron-phonon interaction and thermal boundary resistance at the crystal-amorphous interface of the phase change compound GeTe

    NASA Astrophysics Data System (ADS)

    Campi, Davide; Donadio, Davide; Sosso, Gabriele C.; Behler, Jörg; Bernasconi, Marco

    2015-01-01

    Phonon dispersion relations and electron-phonon coupling of hole-doped trigonal GeTe have been computed by density functional perturbation theory. This compound is a prototypical phase change material of interest for applications in phase change non-volatile memories. The calculations allowed us to estimate the electron-phonon contribution to the thermal boundary resistance at the interface between the crystalline and amorphous phases present in the device. The lattice contribution to the thermal boundary resistance has been computed by non-equilibrium molecular dynamics simulations with an interatomic potential based on a neural network scheme. We find that the electron-phonon term contributes to the thermal boundary resistance to an extent which is strongly dependent on the concentration and mobility of the holes. Further, for measured values of the holes concentration and electrical conductivity, the electron-phonon term is larger than the contribution from the lattice. It is also shown that the presence of Ge vacancies, responsible for the p-type degenerate character of the semiconductor, strongly affects the lattice thermal conductivity of the crystal.

  14. Manipulation of thermal phonons

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Hao

    Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices --- such as silicon --- is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials --- phononic crystals --- might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor's expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch's theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves

  15. Phonon density of states of single-crystal SrF e2A s2 across the collapsed phase transition at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Lu, P. C.; Wu, J. J.; Liu, J.; Wang, X. C.; Zhao, J. Y.; Bi, W.; Alp, E. E.; Park, C. Y.; Popov, D.; Jin, C. Q.; Sun, J.; Lin, J. F.

    2016-07-01

    To help our understanding of the structural and superconducting transitions in ferropnictides, partial phonon density of states (PDOS) of iron in a single-crystal SrF e2A s2 pnictide have been investigated from both out-of-plane and in-plane polarizations with respect to the basal plane of the crystal structure using nuclear resonant inelastic x-ray scattering in a high-pressure diamond anvil cell at ambient temperature. The partial PDOS of iron in the pnictide crystal changes dramatically at approximately 8 GPa, which can be associated with the tetragonal (T) to collapsed tetragonal (CT) isostructural transition as evidenced in high-pressure x-ray diffraction measurements and theoretical calculations. Across the T-CT phase transition, analysis of the PDOS spectra shows a rapid stiffening of the optical phonon modes and a dramatic increase of the Lamb-Mössbauer factor (fLM) and mean force constant which can be associated with the rapid decrease of the c axis and the anomalous expansion of the a axis. Theoretically calculated Fe partial PDOS and lattice parameters of SrF e2A s2 further reveal the strong correlation between the lattice parameters and phonons. Our results show that the T-CT transition can induce significant changes in the vibrational, elastic, and thermodynamic properties of SrF e2A s2 single crystal at high pressure.

  16. Design of crystal-like aperiodic solids with selective disorder–phonon coupling

    PubMed Central

    Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.

    2016-01-01

    Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772

  17. Design of crystal-like aperiodic solids with selective disorder-phonon coupling.

    PubMed

    Overy, Alistair R; Cairns, Andrew B; Cliffe, Matthew J; Simonov, Arkadiy; Tucker, Matthew G; Goodwin, Andrew L

    2016-01-01

    Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic 'procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood 'waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772

  18. Design of crystal-like aperiodic solids with selective disorder-phonon coupling

    NASA Astrophysics Data System (ADS)

    Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.

    2016-02-01

    Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic `procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood `waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics.

  19. [Synthesis, crystal structure and spectral properties study of a 3D netlike coordination polymer [Zn(HBIDC) x H2O]n].

    PubMed

    Dong, Yu-Wei; Fan, Rui-Qing; Wang, Ping; Wang, Li-Yuan; Yang, Yu-Lin

    2013-02-01

    The 3D netlike coordination polymer of Zn II with benzimidazole-5,6-dicarboxylic acid (H3BIDC), [Zn(HBIDC) x H2O]n was synthesized by the hydrothermal method through self-assembling. The crystal structure of complex 1 was characterized by single-crystal X-ray diffraction, elemental analysis and IR spectra, and we also studied the fluorescence properties of complex 1 in DMSO and in the solid state with UV-Vis absorption spectra, fluorescence spectra and fluorescence lifetime. Complex 1 has blue luminescence in solutions of DMSO with emission band at 481 nm; and has blue luminescence in the solid state at room temperature with a strong emission band at 493 nm, and these all can be attributed to the pi* --> pi transition based on the benzimidazole-5,6-dicarboxy acid. The experimental results indicate that complex 1 displays higher fluorescence quantum efficiency and can be used as a potential blue luminescence material. PMID:23697137

  20. High-frequency homogenization of zero-frequency stop band photonic and phononic crystals

    NASA Astrophysics Data System (ADS)

    Antonakakis, T.; Craster, R. V.; Guenneau, S.

    2013-10-01

    We present an accurate methodology for representing the physics of waves, in periodic structures, through effective properties for a replacement bulk medium: this is valid even for media with zero-frequency stop bands and where high-frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low-frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media; the various parameters come from asymptotic analysis relying upon the ratio of the array pitch to the wavelength being sufficiently small. However, such classical homogenization theories break down in the high-frequency or stop band regime whereby the wavelength to pitch ratio is of order one. Furthermore, arrays of inclusions with Dirichlet data lead to a zero-frequency stop band, with the salient consequence that classical homogenization is invalid. Higher-frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibres), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions) and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves and associated Floquet-Bloch eigenfields: it is capable of accurately representing zero-frequency stop band structures. The homogenized equations are partial differential equations with a dispersive anisotropic homogenized tensor that characterizes the effective medium. We apply HFH to metamaterials, exploiting the subtle features of Bloch dispersion curves such as Dirac-like cones, as well as zero and negative group velocity near stop bands in order to achieve exciting physical phenomena such as cloaking, lensing and endoscope effects. These are simulated numerically using finite elements and compared to predictions

  1. Phonon engineering for nanostructures.

    SciTech Connect

    Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  2. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    PubMed

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)). PMID:26623495

  3. Propagation of large-wavevector acoustic phonons new perspectives from phonon imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, James P.

    Within the last decade a number of attempts have been made to observe the ballistic propagation of large wavevector acoustic phonons in crystals at low temperatures. Time-of-flight heat-pulse methods have difficulty in distinguishing between scattered phonons and ballistic phonons which travel dispersively at subsonic velocities. Fortunately, ballistic phonons can be identified by their highly anisotropic flux, which is observed by phonon imaging techniques. In this paper, several types of phonon imaging experiments are described which reveal the dispersive propagation of large-wavevector phonons and expose interesting details of the phonon scattering processes.

  4. Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions

    NASA Astrophysics Data System (ADS)

    Ting, Wang; Hui, Wang; Mei-Ping, Sheng; Qing-Hua, Qin

    2016-04-01

    A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency. Project supported by the China Scholarship Council.

  5. Towards low-loss, infrared and THz nanophotonics and metamaterials: surface phonon polariton modes in polar dielectric crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Caldwell, Joshua D.; Lindsey, Lucas; Giannini, Vincenzo; Vurgaftman, Igor; Reinecke, Thomas L.; Maier, Stefan A.; Glembocki, Orest J.

    2015-09-01

    The field of nanophotonics is based on the ability to confine light to sub-diffractional dimensions. Up until recently, research in this field has been primarily focused on the use of plasmonic metals. However, the high optical losses inherent in such metal-based surface plasmon materials has led to an ever-expanding effort to identify, low-loss alternative materials capable of supporting sub-diffractional confinement. One highly promising alternative are polar dielectric crystals whereby sub-diffraction confinement of light can be achieved through the stimulation of surface phonon polaritons within an all-dielectric, and thus low loss material system. Both SiC and hexagonal BN are two exemplary SPhP systems, which along with a whole host of alternative materials promise to transform nanophotonics and metamaterials in the mid-IR to THz spectral range. In addition to the lower losses, these materials offer novel opportunities not available with traditional plasmonics, for instance hyperbolic optical behavior in natural materials such as hBN, enabling super-resolution imaging without the need for complex fabrication. This talk will provide an overview of the SPhP phenomenon, a discussion of what makes a `good' SPhP material and recent results from SiC and the naturally hyperbolic material, hBN from our research group.

  6. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    PubMed

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. PMID:27179141

  7. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption. PMID:25215842

  8. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Tournat, V.; Gusev, V.

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  9. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    SciTech Connect

    Aliev, Gazi N. Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  10. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations.

    PubMed

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-02-01

    Phononic crystals (PnCs) have attracted considerable interest due to their unique and outstanding band-gap characteristics. In many applications, it is desirable to have a unit cell with specific band-gaps. The distribution of elastic materials within a unit cell has significant effect on the band-gaps, which is extremely difficult to be determined without systematic synthesis method. In this paper, topology optimization techniques are utilized to obtain two-dimensional (2D) square lattice PnCs with maximized relative band-gaps between multiple consecutive bands. The optimization follows two-stage design process using Genetic algorithms (GAs) in combination with finite element method (FEM). Three numerical examples are given to optimize 2D steel/epoxy PnCs in one-eighth symmetry for coupled mode, shear mode and mixed mode respectively. The results show that the optimized PnCs with different band-gaps, which can easily be found by the developed method, have different materials layout, and the PnCs with the lowest order band-gap are simple lattice and have the highest value of application in noise reduction and vibration isolation. Some optimized PnCs with higher order band-gaps have the same lattice as those with the lowest order band-gap, and whose absolute band-gaps are inversely proportional to the minimum feature size of primitive cells. PMID:26456279

  11. Density functional study of fullerene-based solids: Crystal structure, doping, and electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Romero, Nichols Anthony

    Two decades after the discovery of C60, fullerenes continue to be intensely studied for their diverse properties, not the least of which is their unusually high superconducting transition temperature T c (up to 40 K in Cs3C60). Ab initio electronic structure methods are able to contribute to our understanding of these materials by providing electron densities, band structures, density-of-states, binding energies, and even the electron-phonon coupling. Because of the increasing computational feasibility of these large-scale calculations, these methods now play a prominent role in verifying and guiding experimental investigation of new materials. This dissertation presents results of a theoretical investigation of several scenarios where Tc enhancement exceeding those found in the alkali-doped fullerides could be exhibited: (1) field-effect doping of C60 layers, (2) C28-derived molecular solids and (3) covalently bonded C28 solids. The method employed is the Kohn-Sham formulation of density functional theory. Simpler tight-binding calculations are also used when appropriate. The study of field-effect doping was stimulated by the reports of large Tc enhancements by Schon et al., which were later retracted and found to be falsified. Even before the legitimacy of these reports came into question, we concluded that our calculations did not substantiate their claims. We present our electronic structure calculations and conclusions which are independent and potentially useful for future work on field-effect devices. The main part of this dissertation is a separate study on C28-based solids motivated by theoretical arguments suggesting that solids based on smaller fullerenes could exhibit a Tc enhancement. Among many molecular solids formed from closed-shell C28-derived molecules, we have found that solid C28H4 binds weakly and exhibit many of the salient features of solid C60, with an estimated Tc of 58 K. In this same spirit, we also study covalent solids based on

  12. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  13. Crystal transformation synthesis of a highly stable fluorescent 3D indium-tetranuclear {In4(μ2-OH)3} building block based metal organic framework through a dinuclear complex.

    PubMed

    Wang, Xin-Ming; Fan, Rui-Qing; Qiang, Liang-Sheng; Wang, Ping; Yang, Yu-Lin; Wang, Yu-Lei

    2014-11-21

    A rare 3D tetranuclear {In4(μ2-OH)3} building block based MOF {[In4/3(μ2-OH)(2,6-pydc)(1,4-bda)0.5(H2O)]·2H2O}n (2) was obtained through a crystal transformation from a dimeric complex In3(2,6-pydc)3(1,4-bda)1.5(H2O)6 (1). With a 2D + 3D3D compact structure, 2 retains crystallinity in boiling water and organic solvents, exhibiting exceptional fluorescence quenching behaviour for the DMSO molecule. PMID:25135576

  14. Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal defect layer

    NASA Astrophysics Data System (ADS)

    Wang, Yuling; Song, Wei; Sun, Enwei; Zhang, Rui; Cao, Wenwu

    2014-06-01

    Longitudinal acoustic wave propagation in one-dimensional phononic crystal containing a 0.2 mol% Fe-doped relaxor-based ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-0.38PT) single crystal defect layer is theoretically studied using the transfer matrix method. A passband can be produced in the stopband when the inserted PMN-0.38PT layer with thickness around its half wavelength. The frequency of the passband is closely dependent on the PMN-PT strain coefficient, suggesting that the band structure of phononic crystal is tunable by applying external electric field onto the piezoelectric crystal. Also, we investigated the influence of acoustic impedance of periodic constitutive materials (layers A and B) on the passband, where the bandwidth of the new passband becomes narrower as the acoustic impedance ratio of layer A and B (ZA/ZB) increase. The simulated results provide valuable guidance for designing tunable acoustic filters and switches made of phononic crystal consisting of the piezoelectric defect layer.

  15. Crystal Structure of Pim1 Kinase in Complex with a Pyrido[4,3-D]Pyrimidine Derivative Suggests a Unique Binding Mode

    PubMed Central

    Cho, Jea-Won; Choi, Jang-Sik; Lee, Jaekyoo; Song, Ho-Juhn; Koh, Jong Sung; Lee, Byung Il

    2013-01-01

    Human Pim1 kinase is a serine/threonine protein kinase that plays important biological roles in cell survival, apoptosis, proliferation, and differentiation. Moreover, Pim1 is up-regulated in various hematopoietic malignancies and solid tumors. Thus, Pim1 is an attractive target for cancer therapeutics, and there has been growing interest in developing small molecule inhibitors for Pim1. Here, we describe the crystal structure of Pim1 in complex with a newly developed pyrido[4,3-d]pyrimidine-derivative inhibitor (SKI-O-068). Our inhibitor exhibits a half maximum inhibitory concentration (IC50) of 123 (±14) nM and has an unusual binding mode in complex with Pim1 kinase. The interactions between SKI-O-068 and the Pim1 active site pocket residue are different from those of other scaffold inhibitor-bound structures. The binding mode analysis suggests that the SKI-O-068 inhibitor can be improved by introducing functional groups that facilitate direct interaction with Lys67, which aid in the design of an optimized inhibitor. PMID:23936194

  16. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  17. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  18. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.

    PubMed

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad

    2015-03-01

    The optimum topology of bimaterial phononic crystal (PhCr) plates with one-dimensional (1D) periodicity to attain maximum relative bandgap width of low order Lamb waves is computationally investigated. The evolution of optimized topology with respect to filling fraction of constituents, alternatively stiff scattering inclusion, is explored. The underlying idea is to develop PhCr plate structures with high specific bandgap efficiency at particular filling fraction, or further with multiscale functionality through gradient of optimized PhCr unitcell all over the lattice array. Multiobjective genetic algorithm (GA) is employed in this research in conjunction with finite element method (FEM) for topology optimization of silicon-tungsten PhCr plate unitcells. A specialized FEM model is developed and verified for dispersion analysis of plate waves and calculation of modal response. Modal band structure of regular PhCr plate unitcells with centric scattering layer is studied as a function of aspect ratio and filling fraction. Topology optimization is then carried out for a few aspect ratios, with and without prescribed symmetry, over various filling fractions. The efficiency of obtained solutions is verified as compared to corresponding regular centric PhCr plate unitcells. Moreover, being inspired by the obtained optimum topologies, definite and easy to produce topologies are proposed with enhanced bandgap efficiency as compared to centric unitcells. Finally a few cases are introduced to evaluate the frequency response of finite PhCr plate structures produced by achieved topologies and also to confirm the reliability of calculated modal band structures. Cases made by consecutive unitcells of different filling fraction are examined in order to attest the bandgap efficiency and multiscale functionality of such graded PhCr plate structures. PMID:25468146

  19. Relaxation of a hot-electron-two-mode-phonon system in highly excited CdS1-xSex crystals

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Juršėnas, S.

    1995-02-01

    An investigation of the electron-hole-plasma effective-temperature relaxation in highly excited CdS1-xSex mixed crystals is presented. The slow (~100-ps) relaxation stage, attributed to the depopulation of the fragments (decay products) of the initially produced nonequilibrium LO phonons, is examined with variation of the alloy composition. The relevant relaxation time dependence on x exhibiting a remarkable drop at small CdSe mole fractions is analyzed in terms of a two-route energy relaxation model considering hot-carrier plasma and two generations of nonequilibrium phonons each originating from both pure constituents of the alloy. The disorder-enhanced cross relaxation between two sublattices of the alloy is inferred to account for the experimental results.

  20. Effect of periodic number of [Si/Sb80Te20]x multilayer film on its laser-induced crystallization studied by coherent phonon spectroscopy

    PubMed Central

    2012-01-01

    The periodic number dependence of the femtosecond laser-induced crystallization threshold of [Si(5nm)/Sb80Te20(5nm)]x nanocomposite multilayer films has been investigated by coherent phonon spectroscopy. Coherent optical phonon spectra show that femtosecond laser-irradiated crystallization threshold of the multilayer films relies obviously on the periodic number of the multilayer films and decreases with the increasing periodic number. The mechanism of the periodic number dependence is also studied. Possible mechanisms of reflectivity and thermal conductivity losses as well as the effect of the glass substrate are ruled out, while the remaining superlattice structure effect is ascribed to be responsible for the periodic number dependence. The sheet resistance of multilayer films versus a lattice temperature is measured and shows a similar periodic number dependence with one of the laser irradiation crystallization power threshold. In addition, the periodic number dependence of the crystallization temperature can be fitted well with an experiential formula obtained by considering coupling exchange interactions between adjacent layers in a superlattice. Those results provide us with the evidence to support our viewpoint. Our results show that the periodic number of multilayer films may become another controllable parameter in the design and parameter optimization of multilayer phase change films. PMID:23173850

  1. Peculiarities in the transport characteristics of phonons in glasses and glass-like crystals at helium temperatures

    SciTech Connect

    Salamatov, E. I.; Taranov, A. V.; Khazanov, E. N.

    2015-08-15

    Peculiarities in the transport characteristics of thermal-frequency phonons are analyzed in the region of transition to the thermal conductivity plateau in fused quartz, F-1 glass, glassed based on pentaphosphates of rare-earth metals, and a number of ferroelectrics (relaxors). It is shown that the formation of the plateau region in the temperature dependence of thermal conductivity at T < 10 K for these materials can be associated with the occurrence of a gap in the spectrum of phonon states.

  2. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  3. Elastic wave band gaps tuned by configuring radii of rods in two-dimensional phononic crystals with a hybrid square-like lattice

    NASA Astrophysics Data System (ADS)

    Liu, Rongqiang; Zhao, Haojiang; Zhang, Yingying; Guo, Honghwei; Deng, Zongquan

    2015-12-01

    The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.

  4. Sound and heat revolutions in phononics.

    PubMed

    Maldovan, Martin

    2013-11-14

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics. PMID:24226887

  5. Sound and heat revolutions in phononics

    NASA Astrophysics Data System (ADS)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  6. Phonon softening and superconductivity triggered by spin-orbit coupling in simple-cubic α-polonium crystals

    NASA Astrophysics Data System (ADS)

    Kang, Chang-Jong; Kim, Kyoo; Min, B. I.

    2012-08-01

    We have investigated the mechanism of stabilizing the simple-cubic (sc) structure in polonium (α-Po), based on the phonon dispersion calculations using the first-principles all-electron band method. We have demonstrated that the stable sc structure results from the suppression of the Peierls instability due to the strong spin-orbit coupling (SOC) in α-Po. We have also discussed the structural chirality realized in β-Po, as a consequence of the phonon instability. Further, we have explored the possible superconductivity in α-Po, and predicted that it becomes a superconductor with Tc˜4 K. The transverse soft phonon mode at q≈(2)/(3)R, which is greatly influenced by the SOC, plays an important role both in the structural stability and the superconductivity in α-Po.

  7. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    SciTech Connect

    Addouche, Mahmoud Al-Lethawe, Mohammed A. Choujaa, Abdelkrim Khelif, Abdelkrim

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 , overcoming the Rayleigh diffraction limit.

  8. Independent and arbitrary generation of spots in the 3D space domain with computer generated holograms written on a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Jian; Xia, Yang; Wang, Hao

    2012-10-01

    An improved multiple independent iterative plane algorithm, based on a projection optimization idea, is proposed for the independent and arbitrary generation of one spot or multiple spots in a speckle-suppressed 3D work-area. Details of the mathematical expressions of the algorithm are given to theoretically show how it is improved for 3D spot generation. Both simulations and experiments are conducted to investigate the performance of the algorithm for independent and arbitrary 3D spot generation in several different cases. Simulation results agree well with experimental results, which validates the effectiveness of the algorithm proposed. Several additional experiments are demonstrated for fast and independent generation of four or more spots in the 3D space domain, which confirms the capabilities and practicalities of the algorithm further.

  9. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  10. Probing the lower limit of lattice thermal conductivity in an ordered extended solid: Gd117Co56Sn112, a phonon glass-electron crystal system.

    PubMed

    Schmitt, Devin C; Haldolaarachchige, Neel; Xiong, Yimin; Young, David P; Jin, Rongying; Chan, Julia Y

    2012-04-01

    The discovery of novel materials with low thermal conductivity is paramount to improving the efficiency of thermoelectric devices. As lattice thermal conductivity is inversely linked to unit cell complexity, we set out to synthesize a highly complex crystalline material with glasslike thermal conductivity. Here we present the structure, transport properties, heat capacity, and magnetization of single-crystal Gd(117)Co(56)Sn(112), a complex material with a primitive unit cell volume of ~6858 Å(3) and ~285 atoms per primitive unit cell (1140 atoms per face-centered cubic unit cell). The room temperature lattice thermal conductivity of this material is κ(L) = 0.28 W/(m·K) and represents one of the lowest ever reported for a nonglassy or nonionically conducting bulk solid. Furthermore, this material exhibits low resistivity at room temperature, and thus represents a true physical system that approaches the ideal phonon glass-electron crystal. PMID:22375963

  11. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  12. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  13. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.

    PubMed

    Liu, Jing; Xu, Zaoli; Cheng, Zhe; Xu, Shen; Wang, Xinwei

    2015-12-16

    Crystalline ultrahigh molecular weight polyethylene (UHMWPE) has the highest reported thermal conductivity at room temperature: 104 W/(m·K), while theoretical predictions proposed an even higher value of 300 W/(m·K). Defects and amorphous fraction in practical UHMWPE fibers significantly reduces the thermal conductivity from the ideal value. Although the amorphous effect can be readily analyzed based on the effective medium theory, the defect effects are poorly understood. This work reports on the temperature-dependent behavior (down to 22 K) of thermal diffusivity and conductivity of UHMWPE fibers in anticipation of observing the reduction in phonon density and scattering rate against temperature and of freezing out high-momentum phonons to clearly observe the defect effects. By studying the temperature-dependent behavior of thermal reffusivity (Θ, inverse of thermal diffusivity) of UHMWPE fibers, we are able to quantify the defect effects on thermal conductivity. After taking out the amorphous region's effect, the residual thermal reffusivities (Θ0) for the studied two samples at the 0 K limit are determined as 3.45 × 10(4) and 2.95 × 10(4) s/m(2), respectively. For rare-/no-defects crystalline materials, Θ0 should be close to zero at the 0 K limit. The defect-induced low-momentum phonon mean free paths are determined as 8.06 and 9.42 nm for the two samples. They are smaller than the crystallite size in the (002) direction (19.7 nm) determined by X-ray diffraction. This strongly demonstrates the diffuse phonon scattering at the grain boundaries. The grain boundary thermal conductance (G) can be evaluated as G ≈ βρc(p)v with sound accuracy. At room temperature, G is around 3.73 GW/(m(2)·K) for S2, comparable to that of interfaces with tight atomic bonding. PMID:26593380

  14. Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hajj Hussein, R.; Pagès, O.; Polian, A.; Postnikov, A. V.; Dicko, H.; Firszt, F.; Strzałkowski, K.; Paszkowicz, W.; Broch, L.; Ravy, S.; Fertey, P.

    2016-05-01

    Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the ‘phonon–polariton’ transverse optical modes (with mixed electrical–mechanical character) of the II–VI ZnSe1‑x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn–S Raman doublet of the three oscillator [1  ×  (Zn–Se), 2  ×  (Zn–S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende  →  rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn–S sub-mode of ZnSe0.68S0.32, due to Zn–S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn–S sub-mode, due to Zn–S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar ‘phonon freezing’ was earlier evidenced with the well-resolved percolation-type Be–Se doublet of Zn1‑x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition.

  15. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  16. GHz spurious mode free AlN lamb wave resonator with high figure of merit using one dimensional phononic crystal tethers

    NASA Astrophysics Data System (ADS)

    Wu, Guoqiang; Zhu, Yao; Merugu, Srinivas; Wang, Nan; Sun, Chengliang; Gu, Yuandong

    2016-07-01

    This letter reports a spurious mode free GHz aluminum nitride (AlN) lamb wave resonator (LWR) towards high figure of merit (FOM). One dimensional gourd-shape phononic crystal (PnC) tether with large phononic bandgaps is employed to reduce the acoustic energy dissipation into the substrate. The periodic PnC tethers are based on a 1 μm-thick AlN layer with 0.26 μm-thick Mo layer on top. A clean spectrum over a wide frequency range is obtained from the measurement, which indicates a wide-band suppression of spurious modes. Experimental results demonstrate that the fabricated AlN LWR has an insertion loss of 5.2 dB and a loaded quality factor (Q) of 1893 at 1.02 GHz measured in air. An impressive ratio of the resistance at parallel resonance (Rp) to the resistance at series resonance (Rs) of 49.8 dB is obtained, which is an indication of high FOM for LWR. The high Rp to Rs ratio is one of the most important parameters to design a radio frequency filter with steep roll-off.

  17. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  18. Phonon dispersion in thalous halides

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    1984-07-01

    The phonon dispersion relations, phonon density of states, g( v), and Debye-characteristic temperature, θ D, of TlCl and TlBr have been studied. The theoretical model adopted for this purpose is a 9-parameter bond-bending force model (BBFM) which was recently developed and successfully applied to study the crystal dynamics of CsCl-structure crystals. The theoretical results compare well with the available measurements for phonon dispersion in the high symmetry directions. The discrepancy between calculated and experimental values of θ D, particularly at higher temperatures, is reasonably attributed to the predominating anharmonic effects. The values of the compressibilities (χ), calculated using the Brout sum rule, are in a reasonably good agreement with the existing observed values. A critical-point-phonon analysis has also been performed to interpret the observed infrared (IR) and Raman peaks.

  19. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    NASA Astrophysics Data System (ADS)

    Rhyner, Reto; Luisier, Mathieu

    2013-12-01

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations ⟨100⟩, ⟨110⟩, and ⟨111⟩. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  20. Research on the vibration band gaps of isolators applied to ship hydraulic pipe supports based on the theory of phononic crystals

    NASA Astrophysics Data System (ADS)

    Wei, Zhendong; Li, Baoren; Du, Jingmin; Yang, Gang

    2016-04-01

    According to the theory of phononic crystals, a new isolator applied to ship hydraulic pipe-support with a one-dimensional periodic composite structure is designed, which is composed of metal and rubber. The vibration of the ship hydraulic pipeline can be suppressed by the band gaps (BGs) of the isolator. The band structure and frequency response function of the isolator is figured out by the transfer matrix method and the finite element method respectively. The frequency ranges and width of the BGs can be modulated to obtain the best structure of the isolator by changing the geometrical parameters. The experimental results provide an attenuation of over 20 dB in the frequency range of the BGs, and the results show good agreement with those of the numeric calculations. The research provides an effective way to control the vibration of ship hydraulic pipelines.

  1. Experimental evidence of zero-angle refraction and acoustic wave-phase control in a two-dimensional solid/solid phononic crystal

    NASA Astrophysics Data System (ADS)

    Vasseur, J. O.; Morvan, B.; Tinel, A.; Swinteck, N.; Hladky-Hennion, A.-C.; Deymier, P. A.

    2012-10-01

    The square symmetry of the equifrequency contour of longitudinal waves in a solid/solid two-dimensional phononic crystal (PC) is shown through numerical calculations and experiments to lead to peculiar propagation phenomena. A slab of steel/epoxy PC immersed in water refracts incident longitudinal waves by an angle of zero degrees. The waves propagate along the shortest path between the slab faces. This characteristic enables the superposition within the same volume of the PC of waves with different incidence angles. Two incident waves with symmetrical incident angles can interfere constructively or destructively inside the PC depending on their initial phase difference. This phase difference is shown to enable control of wave propagation through the PC.

  2. Band structure of cavity-type hypersonic phononic crystals fabricated by femtosecond laser-induced two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Rakhymzhanov, A. M.; Gueddida, A.; Alonso-Redondo, E.; Utegulov, Z. N.; Perevoznik, D.; Kurselis, K.; Chichkov, B. N.; El Boudouti, E. H.; Djafari-Rouhani, B.; Fytas, G.

    2016-05-01

    The phononic band diagram of a periodic square structure fabricated by femtosecond laser pulse-induced two photon polymerization is recorded by Brillouin light scattering (BLS) at hypersonic (GHz) frequencies and computed by finite element method. The theoretical calculations along the two main symmetry directions quantitatively capture the band diagrams of the air- and liquid-filled structure and moreover represent the BLS intensities. The theory helps identify the observed modes, reveals the origin of the observed bandgaps at the Brillouin zone boundaries, and unravels direction dependent effective medium behavior.

  3. Optimum design of phononic crystal perforated plate structures for widest bandgap of fundamental guided wave modes and maximized in-plane stiffness

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, Mohammad; Ng, Ching-Tai

    2016-04-01

    This paper presents a topology optimization of single material phononic crystal plate (PhP) to be produced by perforation of a uniform background plate. The primary objective of this optimization study is to explore widest exclusive bandgaps of fundamental (first order) symmetric or asymmetric guided wave modes as well as widest complete bandgap of mixed wave modes (symmetric and asymmetric). However, in the case of single material porous phononic crystals the bandgap width essentially depends on the resultant structural integration introduced by achieved unitcell topology. Thinner connections of scattering segments (i.e. lower effective stiffness) generally lead to (i) wider bandgap due to enhanced interfacial reflections, and (ii) lower bandgap frequency range due to lower wave speed. In other words higher relative bandgap width (RBW) is produced by topology with lower effective stiffness. Hence in order to study the bandgap efficiency of PhP unitcell with respect to its structural worthiness, the in-plane stiffness is incorporated in optimization algorithm as an opposing objective to be maximized. Thick and relatively thin Polysilicon PhP unitcells with square symmetry are studied. Non-dominated sorting genetic algorithm NSGA-II is employed for this multi-objective optimization problem and modal band analysis of individual topologies is performed through finite element method. Specialized topology initiation, evaluation and filtering are applied to achieve refined feasible topologies without penalizing the randomness of genetic algorithm (GA) and diversity of search space. Selected Pareto topologies are presented and gradient of RBW and elastic properties in between the two Pareto front extremes are investigated. Chosen intermediate Pareto topology, even not extreme topology with widest bandgap, show superior bandgap efficiency compared with the results reported in other works on widest bandgap topology of asymmetric guided waves, available in the literature

  4. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Marshall, Christopher D.

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  5. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  6. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    SciTech Connect

    Marchewka, M. Woźny, M.; Polit, J.; Sheregii, E. M.; Kisiel, A.; Robouch, B. V.; Marcelli, A.

    2014-03-21

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

  7. ThermoPhonon

    SciTech Connect

    Zarkevich, Nikolai

    2014-11-24

    ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.

  8. ThermoPhonon

    2014-11-24

    ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces formore » a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.« less

  9. Crystal structure of (E)-9-(4-nitro-benzyl-idene)-8,9-di-hydro-pyrido[2,3-d]pyrrolo-[1,2-a]pyrimidin-5(7H)-one.

    PubMed

    Khodjaniyazov, Khamid U; Ashurov, Jamshid M

    2016-04-01

    The title compound, C17H12N4O3, a pyrido-pyrrolo-pyrimidine derivative, is almost planar. The nitro-benzene ring is inclined to the mean plane of the 8,9-di-hydro-pyrido[2,3-d]pyrrolo-[1,2-a]pyrimidin-5(7H)-one moiety (r.m.s. deviation = 0.023 Å) by 6.8 (1)°. In the crystal, mol-ecules are linked via C-H⋯O and C-H⋯N hydrogen bonds, forming layers parallel to (101). PMID:27375862

  10. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    SciTech Connect

    Ma, Xue; Tian, Jing; Yang, Hong-Y.; Zhao, Kai; Li, Xia

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  11. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. 3D Petrography - Serendipitous Discovery of Magmatic Vapor Deposition of Anhydrite at Mount Pinatubo by SEM Imaging of Outer Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Fournelle, J. H.; Jakubowski, R. T.; Welch, S.; Swope, R. J.

    2003-12-01

    A standard petrographic technique focuses upon examination of surfaces or planes cut through rock samples, with one approach studying chemical variations in a core to rim traverse using various microprobes, and more recently, another determining the distribution of crystal sizes to obtain information about nucleation and growth. We show that another mineral domain deserves petrographic attention: the outer surfaces of crystals, which are normally relegated to nearly invisible thin lines in a cut section. In studying anhydrite phenocrysts from the 1991 climactic eruption of Mt. Pinatubo, SEM examination of "raw" pumice fragments showed the existence of a Ca-sulfur-rich phase with hexagonal morphology residing upon plagioclase phenocryst surfaces in vesicles (Fournelle et al,1996, Fig 9). In 1992, Terry Gerlach suggested that the Pinatubo anhydrite phenocrysts should be evaluated with XRD to determine if they were indeed orthorhombic anhydrite (β -CaSO4), and not a lower temperature polymorph (i.e., α or γ ). In 1998, we recommenced this project, mounting several dozen 100-200 micron-size phenocrysts of the proper density fraction on tape (minerals had been separated from the pumices using standard techniques). They were examined by low resolution SEM with EDS to distinguish the anhydrite from apatite, prior to single-crystal XRD. We were surprised to find that many of the anhydrite surfaces were decorated with small mounds, which upon examination by high resolution SEM turned out to be micron and smaller pyramids, with some surfaces bearing hundreds. Single-crystal XRD verified that the phenocrysts were orthorhombic anhydrite, and EBSD verified that the small pyramids were the same. Eventually we found that these surface pyramids are common phenomena in experimental or industrial chemical vapor deposition processes when nucleation overwhelms growth. Textural relations were consistent with these pyramids being deposited in situ, within the Pinatubo magma chamber

  13. Preface: Phonons 2007

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    2007-06-01

    phonons can help tracking dark matter. These 328 presentations gave rise to 185 articles published in the present proceedings. The traditional topics of this conference series (phonons in superconductors and new materials, lattice dynamics, phonons in glasses and disordered materials, phase transitions, light, neutrons and x-ray inelastic scattering) were still very important in the scientific program but an increasing number of contributions occurred in the fields of coherent phonon generation, phonons in nanoscaled structures and nano/micro thermal phonon transport, expressing the growing involvement of condensed matter physicists in nanosciences. Areas like acoustic solitons and phononic crystals are now well established. Two noteworthy contributions have been brought in the long term quest for an operational SASER : one by Harold De Wijn's group from Utrecht in the classical ruby system and another one by Anthony Kent's group from Nottingham, who used semiconductor nanodevices to realize both an amplifying medium and a cavity. With these semiconductor devices the possibility for engineering, generation and detection of THz acoustic phonons are now imminent. By tradition, a prize is awarded every three years at the International Conference on Phonon Scattering in Condensed Matter to honour a scientist for his outstanding contributions to the field of phonon physics. For this twelfth edition, Humphrey Maris has been honoured for his numerous breakthroughs in the physics of phonons and quantum fluids. According to the words of James Wolfe 'Humphrey Maris has delighted and innovated the members of our phonon community with an entertaining style and challenging wit'. Prizes were also awarded for the best presentations during the poster sessions. The two winners were Peter van Capel from Utrecht, Netherlands, ('Simulations of acoustic soliton-induced chirping of exciton resonances') and Patrick Emery from Lille, France, ('Acoustic attenuation in silica in the 100-250 GHz

  14. Enhancement of phonon backscattering due to confinement of ballistic phonon pathways in silicon as studied with a microfabricated phonon spectrometer

    SciTech Connect

    Otelaja, O. O.; Robinson, R. D.

    2015-10-26

    In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.

  15. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  16. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors

    PubMed Central

    Zhang, Xin; Zhou, Xilin; L.Kisliuk, Roy; Piraino, Jennifer; Cody, Vivian

    2011-01-01

    Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH3 substituents inhibited human (h) TS (IC50 = 0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH3 with a 2-NH2 increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC50 = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate. PMID:21550809

  17. Low-phonon PbF2:Tm3+-doped crystal for 1.9 µm lasing

    NASA Astrophysics Data System (ADS)

    Zhang, Peixiong; Wan, Youbao; Yin, Jigang; Zhang, Lianhan; Liu, Youchen; Hong, Jiaqi; Ning, Kaijie; Chen, Zhi; Wang, Xianyong; Shi, Chunjun; Hang, Yin

    2014-11-01

    Tm-doped PbF2 crystal is successfully grown in a home-made Bridgman furnace. The laser properties of Tm3+ in PbF2 crystal at around 1900 nm are then evaluated based on the absorption and emission cross-section. Laser operation in Tm:PbF2 single crystal at 1900 nm with laser-diode pumping is demonstrated for the first time. With a 2 mol. % Tm3+ -doped sample, a maximum output power of 1.17 W is realized at a wavelength of 1900 nm for 6.8 W of absorbed pump power with a slope efficiency of 26%. We propose that the Tm:PbF2 crystal may be a promising new material for 1900 nm high peak power laser applications.

  18. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  19. Characterization of the non-collinear acousto-optical cell based on calomel (Hg2Cl2) crystal and operating within the two-phonon light scattering

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan O.

    2016-03-01

    Performances of any system for data processing based on acousto-optical technique are mainly determined by parameters of the acousto-optical cell (AOC) exploited within the schematic arrangement. Here, basic properties of the AOC, involved into a novel processor for precise optical spectrum analysis dedicated to modern astrophysical applications, are considered. Because potential applications of this processor will be focused on investigations in extra-galactic astronomy as well as studies of extra-solar planets, an advanced regime of the non-collinear two-phonon light scattering has been elaborated for spectrum analysis with significantly improved spectral resolution. Under similar uprated requirements, the AOC, based on that specific regime in the calomel (Hg2Cl2) crystal, had been chosen, and its parameters were analyzed theoretically and verified experimentally. Then, the adequate approach to estimating the frequency/spectral bandwidth and spectral resolution had been developed. The bandwidth was calculated and experimentally realized with the additionally involved tilt angle of light incidence, allowing variations for acoustic frequencies. The resolution was characterized taking into account its doubling peculiar to the nonlinear two-phonon mechanism of light scattering. Proof-of-principle experiments were performed with the calomel AOC of 52 mm optical aperture, providing ~94% efficiency in the transmitted light due to the slow-shear acoustic mode of finite amplitude (the acoustic power density ~150 mW/mm2) with the velocity of 0.347×105 cm/s at the radio-wave acoustic frequency ~71 MHz. As a result, we have obtained the spectral resolution <0.235 Å within the spectral bandwidth <290 Å that looks as the best one can mention at the moment in acousto-optics.

  20. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    PubMed

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-01

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB. PMID:21690828

  1. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    PubMed

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  2. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    PubMed Central

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  3. Mono- and binuclear Pd(II) complexes with 2-(5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarbothioamide: Synthesis, crystal structure and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Repich, Hlib; Orysyk, Svitlana; Bon, Volodymyr; Savytskyi, Pavlo; Pekhnyo, Vasyl

    2015-12-01

    Two novel Pd2+ mononuclear [Pd(HL)PPh3Cl]·nDMF (1) (n = 1, 2) and binuclear [Pd2(L)2(PPh3)2]·SPPh3·3DMF (2) complexes have been synthesized by reaction of [Pd(PPh3)2Cl2] with 2-(5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarbothioamide and characterized by single-crystal X-ray diffraction. Complex 1 has been additionally characterized by 1H NMR, IR and UV-Vis spectroscopy. For the complex 1, two crystalline polymorphic modifications have been found: monoclinic (1a) and more stable triclinic (1b) one, which crystal structure differs by different crystal packing and number of lattice solvent molecules. In both polymorphs, the ligand molecules are coordinated as monoanion in thiol tautomeric form with transferring of thiosemicarbazide proton to nitrogen atom of thienopyrimidine moiety. In the case of complex 2, additional deprotonation of thienopyrimidine nitrogen atom leads to coordination of the ligand as dianion. The crystal structure of 2 also contains one molecule of triphenylphosphine sulfide formed by side reaction. In both complexes "soft" phosphorus atoms of triphenylphosphine molecules are coordinated in trans-positions to more "hard" nitrogen atoms.

  4. Synthesis, crystal structure and properties of a new 3D supramolecular unsymmetrical tetradentate Schiff bases copper (II) framework with stable tunnels

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.

    2016-12-01

    Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.

  5. Pressure Dependence of the Infrared-Active Phonons in the Mixed Crystal System KCl(1-x)Br(x).

    PubMed

    Ferraro, J R; Postmus, C; Mitra, S S; Hoskins, C J

    1970-01-01

    The mixed crystal system KCl(1-x)Br(x) shows a one-mode type behavior. The variation of the long-wavelength transverse optical (TO) mode frequency at 1 atm pressure can be understood in terms of the virtual crystal model. The variation of the frequency with pressure or the mole fraction x can be expressed in terms of volume change alone. The slopes of the vTO mode vs P are highest for the end numbers, and are less for intermediate values of x, and may be understood in terms of a nonlinear variation of the compressibility with x. PMID:20076127

  6. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges. PMID:24901707

  7. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.

    PubMed

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-01-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g(-1) at 100 mA g(-1) after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g(-1) at 1 Ag(-1)). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface. PMID:26439102

  8. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g-1 at 100 mA g-1 after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g-1 at 1 Ag-1). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.

  9. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries

    PubMed Central

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-01-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g−1 at 100 mA g−1 after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g−1 at 1 Ag−1). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface. PMID:26439102

  10. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  11. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  12. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  13. Topologically protected elastic waves in phononic metamaterials

    PubMed Central

    Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng

    2015-01-01

    Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426

  14. Wide-Stopband Aperiodic Phononic Filters

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.

    2016-01-01

    We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.

  15. Wide-stopband aperiodic phononic filters

    NASA Astrophysics Data System (ADS)

    Rostem, K.; Chuss, D. T.; Denis, K. L.; Wollack, E. J.

    2016-06-01

    We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6–10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.

  16. Topologically protected elastic waves in phononic metamaterials.

    PubMed

    Mousavi, S Hossein; Khanikaev, Alexander B; Wang, Zheng

    2015-01-01

    Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin-orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426

  17. Investigarion of the effects of a quantum dot crystal geometry on its brillouin spectrum

    NASA Technical Reports Server (NTRS)

    Balandin, O.; Lazarenkova, A. A.

    2003-01-01

    We develop a theoretical model and carry out simulation of Brillouin spectrum of three-dimensional (3D) quantum dot (QD) arrays with a high order of 3D periodicity, i.e. quantum dot crystals (QDC). The phonon spectrum of Ge/Si QDC is found from the numerical solution of the elasticity equation for the whole structure. The developed approach is valid for any QD shape and regimentation and allows to include disorder in consider at ion.

  18. Crystal structure and phonon properties of noncentrosymmetric LiNaB{sub 4}O{sub 7}

    SciTech Connect

    Maczka, M. Waskowska, A.; Majchrowski, A.; Zmija, J.; Hanuza, J.; Keszler, D.A.

    2007-02-15

    A new borate, LiNaB{sub 4}O{sub 7}, has been synthesized and characterized by single-crystal X-ray structure determination. The material crystallizes in the orthorhombic system, noncentrosymmetric space group Fdd2, with unit cell dimensions a=13.325(2), b=14.099(2), c=10.243(2)A, Z=16, and V=1924.3(7)A{sup 3}. Like Li{sub 2}B{sub 4}O{sub 7}, the structure is built of two symmetrically independent, interpenetrating (B{sub 4}O{sub 7}){sub {approx}}{sup 3} polyanionic frameworks built from condensation of the B{sub 4}O{sub 9} fundamental building block, which is comprised of two distorted BO{sub 4} tetrahedra and two BO{sub 3} triangles. The interpenetrating frameworks produce distinct tunnels that are selectively occupied by the Li and Na atoms. Large single crystals exhibiting an optical absorption edge with {lambda}<180nm have been grown via the top-seeded-solution-growth method. The SHG signal (0.15x potassium dihydrogen phosphate (KDP)) is consistent with the calculated components of the SHG tensor and the approximate centrosymmetric disposition of the independent and interpenetrating (B{sub 4}O{sub 7}){sub {approx}}{sup 3} frameworks. A complete analysis of polarized IR and Raman spectra confirms a close relationship between the title compound and Li{sub 2}B{sub 4}O{sub 7}.

  19. Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: A comparison between ball-on-ring and micro-indentation methods

    NASA Astrophysics Data System (ADS)

    Miyatake, Takahiro; Pezzotti, Giuseppe

    2011-11-01

    Of main interest in the present work is a quantitative comparison between the phonon deformation potential (PDP) values determined for silicon single crystals by two different calibration methods: (i) a macroscopic method exploiting the stress field developed in a ball-on-ring (biaxial) bending configuration; and (ii) a microscopic method using the residual stress field stored around an indentation print. A comparison between the two methods helps to establish the reliability limits for experimental stress analyses in the (001), (011), and (111) planes of silicon devices by means of polarized Raman spectroscopy. Emphasis is also placed on evaluating the degree of precision involved with using a closed-form equation (i.e., as proposed by other authors), which describes the stress state when different crystallographic planes of the Si sample are loaded in the ball-on- ring jig. A comparison between stress profiles obtained by such equations and those computed by the finite element method (FEM) in the loaded disk reveals a clear discrepancy for the (011) plane. Such a discrepancy could be attributed to elastic coupling and anisotropic effects (particularly relevant along the <011> direction), which can lead to errors up to 15% in computing the stress field stored in the silicon lattice.

  20. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    NASA Astrophysics Data System (ADS)

    Li, Suobin; Chen, Tianning; Wang, Xiaopeng; Li, Yinggang; Chen, Weihua

    2016-06-01

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the "analogous rigid mode" of the stub and the anti-symmetric Lamb modes of the plate. The "analogous rigid mode" of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The "analogous rigid mode" of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear.

  1. Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs

    NASA Astrophysics Data System (ADS)

    Yu, Kunpeng; Chen, Tianning; Wang, Xiaopeng

    2013-05-01

    In this paper, the numerical investigation of elastic wave propagation in two-dimensional phononic crystals composed of an array of steel stepped resonators on a thin rubber slab is presented. For the first time the rubber material is used as the matrix of the PCs. With the finite-element method, the dispersion relations of this novel PCs structure and some factors of the band structure are studied. Results show that, with the rubber material as matrix, the PC structures exhibit extremely low-frequency band gaps, in the frequency range of hundreds of Hz or even tens of Hz; the geometrical parameters and the material parameters can modulate the band gaps to different extents. Furthermore, to understand the low-frequency band gaps caused by this new structure, some resonance eigenmodes of the structure are calculated. Results show that the vibration of the unit cell of the structure can be seen as several mass-spring systems, in which the vibration of the steel stepped resonator decides the lower boundary of the first band gap and the vibration of the rubber that is not in contact with the resonator decides the upper boundary.

  2. Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2016-05-01

    We study electrical and thermal conductivities of degenerate electrons emitting and absorbing phonons in a strongly magnetized crystalline neutron star crust. We take into account modification of the phonon spectrum of a Coulomb solid of ions caused by a strong magnetic field. Boltzmann transport equation is solved using a generalized variational method. The ensuing 3D integrals over the transferred momenta are evaluated by two different numerical techniques, the Monte Carlo method and a regular integration over the first Brillouin zone. The results of the two numerical approaches are shown to be in a good agreement. An appreciable growth of electrical and thermal resistivities is reported at quantum and intermediate temperatures T ≲ 0.1Tp (Tp is the ion plasma temperature) in a wide range of chemical compositions and mass densities of matter even for moderately magnetized crystals ωB ˜ ωp (ωB and ωp are the ion cyclotron and plasma frequencies). This effect is due to an appearance of a soft (ω ∝ k2) phonon mode in the magnetized ion Coulomb crystal, which turns out to be easier to excite than acoustic phonons characteristic of the field-free case. These results are important for modelling magneto-thermal evolution of neutron stars.

  3. Holographic Interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models

    NASA Astrophysics Data System (ADS)

    Thizy, C.; Eliot, F.; Ballhause, D.; Olympio, K. R.; Kluge, R.; Shannon, A.; Laduree, G.; Logut, D.; Georges, M. P.

    2013-04-01

    Thermo-elastic distortions of composite structures have been measured by a holographic camera using a BSO photorefractive crystal as the recording medium. The first test campaign (Phase 1) was performed on CFRP struts with titanium end-fittings glued to the tips of the strut. The samples were placed in a vacuum chamber. The holographic camera was located outside the chamber and configured with two illuminations to measure the relative out-of-plane and in-plane (in one direction) displacements. The second test campaign (Phase 2) was performed on a structure composed of a large Silicon Carbide base plate supported by 3 GFRP struts with glued Titanium end-fittings. Thermo-elastic distortions have been measured with the same holographic camera used in phase 1, but four illuminations, instead of two, have been used to provide the three components of displacement. This technique was specially developed and validated during the phase 2 in CSL laboratory. The system has been designed to measure an object size of typically 250x250 mm2; the measurement range is such that the sum of the largest relative displacements in the three measurement directions is maximum 20 μm. The validation of the four-illuminations technique led to measurement uncertainties of 120 nm for the relative in-plane and out-of-plane displacements, 230 nm for the absolute in-plane displacement and 400 nm for the absolute out-of-plane displacement. For both campaigns, the test results have been compared to the predictions obtained by finite element analyses and the correlation of these results was good.

  4. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  5. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  6. Understanding the atomic-level Green-Kubo stress correlation function for a liquid through phonons in a model crystal

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2014-11-01

    In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.

  7. Nd3+ sensitized upconversion luminescence of Nd3+/Pr3+ codoped KPb2Cl5 low phonon crystal

    NASA Astrophysics Data System (ADS)

    Balda, R.; Al-Saleh, M.; Arriandiaga, M. A.; Garcia-Revilla, S.; Fernández, J.

    2011-03-01

    In this work, we report the upconversion emission from Pr3+ and Nd3+ ions in potassium lead chloride crystal KPb2Cl5after excitation in the 4F5/2,3/2 levels of Nd3+ ions. We have observed violet, blue, green, orange, and red emissions at room temperature. Blue emission from Pr3+ ions is induced by near infrared laser excitation of Nd3+ through energy transfer from Nd3+ to Pr3+ ions. The mechanisms leading to the visible emissions have been investigated by studying the dependence of the upconversion luminescence on the excitation wavelength and intensity of the IR pump light.

  8. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  9. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  10. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  11. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  12. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  13. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  14. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  16. Identification of specific phonon contributions in BCS-type superconductivity of boride-carbide crystals with a layer-like structure

    NASA Astrophysics Data System (ADS)

    Uzunok, H. Y.; Tütüncü, H. M.; Özer, S.; Ugˇur, Ş.; Srivastava, G. P.

    2015-03-01

    We report on an ab initio study of the BCS-type superconductivity in the intermetallic borocarbides YPd2B2C, YPt2B2C and LaPt2B2C with a layer-like structure. The largest contribution to the electron-phonon coupling constant λ is identified to come from transverse acoustic phonons at a zone-edge, arising from the atomic vibrations in the boron-transition metal layer. A detailed examination of the atomic geometry in the boron-transition metal layer, the electron-phonon coupling constant λ, and the logarithmically averaged phonon frequency ωln helps explain the relatively higher superconducting temperature Tc of YPd2B2C (20.6 K) compared to that of YPt2B2C (11.3 K) and LaPt2B2C (10.40 K).

  17. Insights into the DNA stabilizing contributions of a bicyclic cytosine analogue: crystal structures of DNA duplexes containing 7,8-dihydropyrido [2,3-d]pyrimidin-2-one

    PubMed Central

    Magat Juan, Ella Czarina; Shimizu, Satoru; Ma, Xiao; Kurose, Taizo; Haraguchi, Tsuyoshi; Zhang, Fang; Tsunoda, Masaru; Ohkubo, Akihiro; Sekine, Mitsuo; Shibata, Takayuki; Millington, Christopher L.; Williams, David M.; Takénaka, Akio

    2010-01-01

    The incorporation of the bicyclic cytosine analogue 7,8-dihydropyrido[2,3-d]pyrimidin-2-one (X) into DNA duplexes results in a significant enhancement of their stability (3–4 K per modification). To establish the effects of X on the local hydrogen-bonding and base stacking interactions and the overall DNA conformation, and to obtain insights into the correlation between the structure and stability of X-containing DNA duplexes, the crystal structures of [d(CGCGAATT-X-GCG)]2 and [d(CGCGAAT-X-CGCG)]2 have been determined at 1.9–2.9 Å resolutions. In all of the structures, the analogue X base pairs with the purine bases on the opposite strands through Watson–Crick and/or wobble type hydrogen bonds. The additional ring of the X base is stacked on the thymine bases at the 5′-side and overall exhibits greatly enhanced stacking interactions suggesting that this is a major contribution to duplex stabilization. PMID:20554855

  18. Inclined nanoimprinting lithography-based 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Liu, Zhan; Bucknall, David G.; Allen, Mark G.

    2011-06-01

    We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.

  19. Phononic plate waves.

    PubMed

    Wu, Tsung-Tsong; Hsu, Jin-Chen; Sun, Jia-Hong

    2011-10-01

    In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers. Theoretical and experimental studies of Lamb waves in 2-D PC plate structures are covered. On the theoretical side, analyses of Lamb waves in 2-D PC plates using the plane wave expansion (PWE) method, finite-difference time-domain (FDTD) method, and finite-element (FE) method are addressed. These methods were applied to study the complete band gaps of Lamb waves, characteristics of the propagating and localized wave modes, and behavior of anomalous refraction, called negative refraction, in the PC plates. The theoretical analyses demonstrated the effects of PC-based negative refraction, lens, waveguides, and resonant cavities. We also discuss the influences of geometrical parameters on the guiding and resonance efficiency and on the frequencies of waveguide and cavity modes. On the experimental side, the design and fabrication of a silicon-based Lamb wave resonator which utilizes PC plates as reflective gratings to form the resonant cavity are discussed. The measured results showed significant improvement of the insertion losses and quality factors of the resonators when the PCs were applied. PMID:21989878

  20. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  1. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  2. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  3. Calcium dithionate tetrahydrate, CaS2O6ṡ4H2O, a novel SRS-active crystal for octave-spanning many-phonon Stokes and anti-Stokes combs

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Haussühl, E.; Haussühl, S.; Lux, O.; Hanuza, J.; Rhee, H.; Kaltenbach, A.; Eichler, H. J.; Yoneda, H.; Shirakawa, A.; Ueda, K.

    2013-09-01

    This paper introduces a novel SRS-active crystal, hexagonal CaS2O6ṡ4H2O, which was found to be an attractive Raman gain material and a suitable subject for the study of numerous nonlinear lasing effects. Under picosecond laser pumping in the UV, visible and near-IR spectral region we observed various manifestations of Raman induced nonlinear interactions. All registered Stokes and anti-Stokes components are identified and attributed to the participating χ(3)-promoting phonon modes. In the appendix, we present new data on the SRS properties of another dithionate, Na2S2O6ṡ2H2O.

  4. MREI-model calculations of optical phonons in layered mixed crystals of 2H-polytype of the series SnS 2-xSe x (0⩽ x⩽2)

    NASA Astrophysics Data System (ADS)

    Chanchal; Garg, A. K.

    2006-09-01

    Optical phonon frequencies have been calculated for 2H-polytype of layered mixed crystals in the series SnS 2-xSe x (0⩽ x⩽2), using MREI-model. The model was modified to make it applicable in this type of series. Various force constants and the values of local and gap modes have been reported. The model successfully confirms the two-mode behavior exhibited by the series and the calculated values agree very well with experimentally observed values, reported earlier.

  5. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  6. Timescales of quartz crystallization estimated from glass inclusion faceting using 3D propagation phase-contrast x-ray tomography: examples from the Bishop (California, USA) and Oruanui (Taupo Volcanic Zone, New Zealand) Tuffs

    NASA Astrophysics Data System (ADS)

    Pamukcu, A.; Gualda, G. A.; Anderson, A. T.

    2012-12-01

    Compositions of glass inclusions have long been studied for the information they provide on the evolution of magma bodies. Textures - sizes, shapes, positions - of glass inclusions have received less attention, but they can also provide important insight into magmatic processes, including the timescales over which magma bodies develop and erupt. At magmatic temperatures, initially round glass inclusions will become faceted (attain a negative crystal shape) through the process of dissolution and re-precipitation, such that the extent to which glass inclusions are faceted can be used to estimate timescales. The size and position of the inclusion within a crystal will influence how much faceting occurs: a larger inclusion will facet more slowly; an inclusion closer to the rim will have less time to facet. As a result, it is critical to properly document the size, shape, and position of glass inclusions to assess faceting timescales. Quartz is an ideal mineral to study glass inclusion faceting, as Si is the only diffusing species of concern, and Si diffusion rates are relatively well-constrained. Faceting time calculations to date (Gualda et al., 2012) relied on optical microscopy to document glass inclusions. Here we use 3D propagation phase-contrast x-ray tomography to image glass inclusions in quartz. This technique enhances inclusion edges such that images can be processed more successfully than with conventional tomography. We have developed a set of image processing tools to isolate inclusions and more accurately obtain information on the size, shape, and position of glass inclusions than with optical microscopy. We are studying glass inclusions from two giant tuffs. The Bishop Tuff is ~1000 km3 of high-silica rhyolite ash fall, ignimbrite, and intracaldera deposits erupted ~760 ka in eastern California (USA). Glass inclusions in early-erupted Bishop Tuff range from non-faceted to faceted, and faceting times determined using both optical microscopy and x

  7. Toward quantitative modeling of silicon phononic thermocrystals

    NASA Astrophysics Data System (ADS)

    Lacatena, V.; Haras, M.; Robillard, J.-F.; Monfray, S.; Skotnicki, T.; Dubois, E.

    2015-03-01

    The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of "thermocrystals" or "nanophononic crystals" that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known "electron crystal-phonon glass" dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.

  8. Toward quantitative modeling of silicon phononic thermocrystals

    SciTech Connect

    Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.

    2015-03-16

    The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.

  9. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures

    PubMed Central

    Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador

    2015-01-01

    Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144

  10. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  13. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  14. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  15. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  16. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  18. Investigation of the formation process of zeolite-like 3D frameworks constructed with ε-Keggin-type polyoxovanadomolybdates with binding bismuth ions and preparation of a nano-crystal.

    PubMed

    Zhang, Zhenxin; Sadakane, Masahiro; Murayama, Toru; Ueda, Wataru

    2014-09-28

    Reaction conditions for the synthesis of an ε-Keggin-type polyoxometalate-based 3D framework, (NH4)2.8H0.9[ε-VMo9.4V2.6O40Bi2]·7.2H2O (denoted as Mo-V-Bi oxide), are studied. It is found that the reaction time, temperature, pH of the solution, and starting compounds affect the production of Mo-V-Bi oxide. The crystal size of Mo-V-Bi oxide is controllable by changing bismuth compounds. Nanometer-sized Mo-V-Bi oxide is produced using a water-soluble bismuth compound, Bi(NO3)3·5H2O, whereas micrometer to submicrometer-sized Mo-V-Bi oxide is produced using Bi(OH)3, which is less soluble in water. The particle size of the material affects the properties of the material, such as surface area and catalysis. The investigation of the formation process of the material is carried out with Raman spectroscopy, which indicates that mixing (NH4)6Mo7O24·4H2O, VOSO4·5H2O, and bismuth ions in water produces the ε-Keggin polyoxovanadomolybdate together with a ball-shaped polyoxovanadomolybdate, [Mo72V30O282(H2O)56(SO4)12](36-) (denoted as {Mo72V30}). By heating the reaction mixture, the ε-Keggin polyoxovanadomolybdate assembles with bismuth ions to form Mo-V-Bi oxide, whereas {Mo72V30} assembles with other vanadium and molybdenum ions to form orthorhombic Mo-V oxide. PMID:25096969

  19. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  20. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  2. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  3. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  4. Crack interaction with 3-D dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    CRACKS in a solid often interact with other crystal defects such as dislocation loops. The interaction effects are of 3-D character yet their analytical treatment has been mostly limited to the 2-D regime due to mathematical complications. This paper shows that distribution of the stress intensity factors along a crack front due to arbitrary dislocation loops may be expressed as simple line integrals along the loop contours. The method of analysis is based on the 3-D Bueckner-Rice weight function theory for elastic crack analysis. Our results have significantly simplified the calculations for 3-D dislocation loops produced in the plastic processes at the crack front due to highly concentrated crack tip stress fields. Examples for crack-tip 3-D loops and 2-D straight dislocations emerging from the crack tip are given to demonstrate applications of the derived formulae. The results are consistent with some previous analytical solutions existing in the literature. As further applications we also analyse straight dislocations that are parallel or perpendicular to the crack plane but are not parallel to the crack front.

  5. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  6. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  7. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  8. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  9. Pressure-enabled phonon engineering in metals.

    PubMed

    Lanzillo, Nicholas A; Thomas, Jay B; Watson, Bruce; Washington, Morris; Nayak, Saroj K

    2014-06-17

    We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston-cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron-phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron-phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties. PMID:24889627

  10. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  11. Spins, phonons, and hardness

    SciTech Connect

    Gilman, J.J.

    1996-12-31

    In crystals (and/or glasses) with localized sp{sup 3} or spd-bonding orbitals, dislocations have very low mobilities, making the crystals very hard. Classical Peierls-Nabarro theory does not account for the low mobility. The breaking of spin-pair bonds which creates internal free-radicals must be considered. Therefore, a theory based on quantum mechanics has been proposed (Science, 261, 1436 (1993)). It has been applied successfully to diamond, Si, Ge, SiC, and with a modification to TiC and WC. It has recently been extended to account for the temperature independence of the hardness of silicon at low temperatures together with strong softening at temperatures above the Debye temperature. It is quantitatively consistent with the behaviors of the Group 4 elements (C, Si, Ge, Sn) when their Debye temperatures are used as normalizing factors; and appears to be consistent with data for TiC if an Einstein temperature for carbon is used. Since the Debye temperature marks the approximate point at which phonons of atomic wavelengths become excited (as contrasted with collective acoustic waves), this confirms the idea that the process which limits dislocation mobility is localized to atomic dimensions (sharp kinks).

  12. Revision of the statistical mechanics of phonons to include phonon line widths

    SciTech Connect

    Overton, W.C. Jr.

    1983-01-01

    Zubarev in 1960 obtained the smeared Bose-Einstein (B-E) function in order to take into account the fact that the eigenenergy associated with a fixed phonon wave vector q and fixed polarization index j is not precisely defined but instead, is smeared by phonon-phonon and phonon-electron interactions. The ratio GAMMA(qj)/..omega..(qj) is often quite small, i.e., of the order of 0.01 or less, where GAMMA is the phonon linewidth and h-bar ..omega.. is the eigenenergy. However, in strongly anharmonic crystals GAMMA/..omega.. may be as large as 0.3 at certain points of the Brillouin zone. In such dramatic cases one would suspect that such phonon linewidths would have some observable effect on the thermodynamic properties. The purpose of this work is to derive the expression for the average free energy per mode for a crystal having large phonon linewidths and to test the properties of the thermodynamic functions derivable from the average free energy per mode. (WHK)

  13. Spectral challenges of individual wavelength-scale particles: strong phonons and their distorted lineshapes.

    PubMed

    Ravi, Aruna; Malone, Marvin A; Luthra, Antriksh; Lioi, David; Coe, James V

    2013-07-01

    Beyond our own interest in airborne particulate matter, the prediction of extinction and absorption spectra of single particles of mixed composition has wide use in astronomy, geology, atmospheric sciences, and nanotechnology. Single particle spectra present different challenges than traditional spectroscopic approaches. To quantify the amount of a material in a bulk sample (molecules in solution or the gas phase), one might employ the Beer-Lambert law assuming a simple slab-type assay geometry and averaging over orientation, whereas with single particles one might have a specific orientation and require a nonlinear, Mie-like particle theory. The complicating single particle issues include: strong and broad scattering at wavelengths similar to the particle size, phonon lineshape phase shifting, particle shape effects, distortion of transition lineshapes by strong vibrational bands, bi- and trirefringence, crystal orientation effects including dispersion, and composition mixtures. This work uses a combination of three-dimensional finite difference time domain (3D-FDTD) calculations and experimental infrared spectra on single, crystalline quartz particles to illustrate some of the challenges--in particular the distortion of lineshapes by strong phonons that lie within a range of strong scattering. It turns out that many mineral dust components in the inhalable size range have strong phonons. A Mie-Bruggeman model for single particle spectra is presented to isolate the effects of strong phonons on lineshapes which has utility for analysing the spectra of single, mixed-composition particles. This model will ultimately enable the determination of volume fractions of components in single particles that are mixtures of many materials with strong phonons, as are the dust particles breathed into people's lungs. PMID:23703537

  14. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  15. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  16. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  17. Lifetime of the phonons in the PLT ceramic

    SciTech Connect

    Barba-Ortega, J. Joya, M. R.; Londoño, F. A.

    2014-11-05

    The lifetimes at higher temperatures on lanthanum-modified lead titanate (PLT) are mainly due to the anharmonic decay of optical phonons into low-energy phonons. The temperature-independent contributions from inherent crystal defects and from boundary scattering become comparable to the phonon scattering contribution at lower temperatures. The thermal interaction is large at higher temperatures which decreases the phonon mean free path, and so the decay lifetime decreases as the temperature of the system is increased. This leads to the increased line width at higher temperatures. We made an estimate of the lifetimes for different concentrations and temperatures in PLT.

  18. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  19. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  20. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  1. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  2. Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics

    NASA Astrophysics Data System (ADS)

    Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.

    Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.

  3. Raman phonon spectra of pentacene polymorphs

    NASA Astrophysics Data System (ADS)

    Brillante, A.; Della Valle, R. G.; Farina, L.; Girlando, A.; Masino, M.; Venuti, E.

    2002-05-01

    We report for the first time lattice phonon Raman spectra of pentacene measured by means of a Raman microprobe technique. We experimentally prove the existence of two polymorphs, as expected from recent structural studies. A comparison with Quasi Harmonic Lattice Dynamics calculations, previously performed starting from the available X-ray data, help us in identifying the phase to which each crystal belongs.

  4. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  5. Phonon-based scalable quantum computing and sensing (Presentation Video)

    NASA Astrophysics Data System (ADS)

    El-Kady, Ihab

    2015-04-01

    Quantum computing fundamentally depends on the ability to concurrently entangle and individually address/control a large number of qubits. In general, the primary inhibitors of large scale entanglement are qubit dependent; for example inhomogeneity in quantum dots, spectral crowding brought about by proximity-based entanglement in ions, weak interactions of neutral atoms, and the fabrication tolerances in the case of Si-vacancies or SQUIDs. We propose an inherently scalable solid-state qubit system with individually addressable qubits based on the coupling of a phonon with an acceptor impurity in a high-Q Phononic Crystal resonant cavity. Due to their unique nonlinear properties, phonons enable new opportunities for quantum devices and physics. We present a phononic crystal-based platform for observing the phonon analogy of cavity quantum electrodynamics, called phonodynamics, in a solid-state system. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables strong coupling of the phonon modes to the energy levels of the atom. A qubit is then created by entangling a phonon at the resonance frequency of the cavity with the atomic acceptor states. We show theoretical optimization of the cavity design and excitation waveguides, along with estimated performance figures of the phoniton system. Qubits based on this half-sound, half-matter quasi-particle, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  6. Moment model and boundary conditions for energy transport in the phonon gas

    NASA Astrophysics Data System (ADS)

    Fryer, Michael J.; Struchtrup, Henning

    2014-09-01

    Heat transfer in solids is modeled in the framework of kinetic theory of the phonon gas. The microscopic description of the phonon gas relies on the phonon Boltzmann equation and the Callaway model for phonon-phonon interaction. A simple model for phonon interaction with crystal boundaries, similar to the Maxwell boundary conditions in classical kinetic theory, is proposed. Macroscopic transport equation for an arbitrary set of moments is developed and closed by means of Grad's moment method. Boundary conditions for the macroscopic equations are derived from the microscopic model and the Grad closure. As example, sets with 4, 9, 16, and 25 moments are considered and solved analytically for one-dimensional heat transfer and Poiseuille flow of phonons. The results show the influence of Knudsen number on phonon drag at solid boundaries. The appearance of Knudsen layers reduces the net heat conductivity of solids in rarefied phonon regimes.

  7. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  8. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  9. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  10. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  11. Time domain topology optimization of 3D nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.

    2014-02-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.

  12. Exciton-phonon interaction and Raman spectra of [(CH3)2NH2]5Cd2CuCl11 crystals

    NASA Astrophysics Data System (ADS)

    Kapustianik, V.; Batiuk, A.; Czapla, Z.; Podsiada, D.; Czupiski, O.; Eliyachevskyy, Yu.; Rudyk, V.

    2004-09-01

    Temperature evolution of the exciton-phonon interaction (EPI) in ((CH3)2NH2)5Cd2CuCl11 solid solution was studied on the basis of absorption spectroscopy data. The obtained values of effective phonon energies were compared with the data of Raman spectroscopy. It is shown that the (T) and E parameters of Urbach's rule show the continuous anomalous change characteristic of the second-order phase transition at T1 = 176 K. The anomalous behaviour of the EPI and other spectral parameters at T0 = 310-315 K was related to the complex co-operative effect involving weakening of the hydrogen bonds and variation of the Jahn-Teller distortion of metal-halogen polyhedra with temperature. This process takes place only within the copper-chlorine sublattice and due to this would be hardly related to the usual phase transition. At the same time, the considered temperature change of the tetragonal distortion of the metal-halogen octahedra is followed by nonfulfillment of Urbach's rule in the temperature range T T0.

  13. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  14. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  15. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  16. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  17. Effects of time reversal symmetry on phonons in sapphire substrate for ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Kunert, H. W.; Hoffmann, A.; Machatine, A. G. J.; Malherbe, J.; Barnas, J.; Kaczmarczyk, G.; Haboeck, U.; Seguin, R.

    2007-07-01

    Vibrational states in a crystal are classified according to the irreducible representations (irreps) of the corresponding factor group G0k/T. The wave vector k runs over the entire Brillouin zone (BZ). For trigonal BZs, the factor groups are determined by the symmetry points Γ, F, L, T, and the symmetry lines Λ, Σ, Y. When the irreps are complex, the time reversal symmetry has to be taken into account. Using the Frobenuis-Schur criterion adapted to space groups with real and complex irreps, we have investigated high symmetry points and lines of the phonons in trigonal crystals: Cr 2O 3,Fe 2O 3,Ti 2O 3,V 2O 3,FeCO 3,CaCO 3,CdCO 3,MgCO 3,MnCO 3,NaCO 3 and ZnCO 3, with the common space group D3d6( R3¯c). We have found several phonons which are influenced by the time reversal symmetry. Therefore, an extra degeneracy of phonons arises. The theoretical results are also compared with available experimental data.

  18. Symmetry-adapted phonon analysis of nanotubes

    NASA Astrophysics Data System (ADS)

    Aghaei, Amin; Dayal, Kaushik; Elliott, Ryan S.

    2013-02-01

    The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling; and third, unlike crystals where phonon stability does not provide information on stability with respect to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability with respect to all perturbations that do not involve structural modes. Our finding of characteristic

  19. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  20. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.