Science.gov

Sample records for 3d polymer gel

  1. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification.

    PubMed

    Xu, Y; Wuu, Cheng-Shie; Maryanski, Marek J

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG 3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG 3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cm x 6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the "3%-or-2 mm" criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  2. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  3. The history and principles of chemical dosimetry for 3-D radiation fields: gels, polymers and plastics.

    PubMed

    Doran, Simon J

    2009-03-01

    Over recent decades, modern protocols of external beam radiotherapy have been developed that involve very steep dose gradients and are thus extremely sensitive to errors in treatment delivery. A recent credentialling study by the Radiological Physics Center at the MD Anderson Cancer Center (Texas, USA) has noted potentially significant inaccuracies in test treatments at a variety of institutions. 3-D radiation dosimetry (often referred to as "gel dosimetry") may have an important role in commissioning new treatment protocols, to help prevent this type of error. This article discusses the various techniques of 3-D radiation dosimetry, with a focus on the types of radiosensitive samples used and on the optical computed tomography readout technique.

  4. On the development of a VIPAR(nd) radiotherapy 3D polymer gel dosimeter.

    PubMed

    Kozicki, Marek; Jaszczak, Malwina; Maras, Piotr; Dudek, Mariusz; Cłapa, Marian

    2017-02-07

    This work presents an improvement of the VIPAR(nd) ('nd' stands for 'normoxic, double', or VIP) polymer gel dosimeter. The gel composition was altered by increasing the concentration of the monomeric components, N-vinylpyrrolidone (NVP) and N,N'-methylenebisacrylamide (MBA), in co-solvent solutions. The optimal composition (VIPAR(CT), where 'CT' stands for computed tomography, or VIC) comprised: 17% NVP, 8% MBA, 12% t-BuOH, 7.5% gelatine, 0.007% ascorbic acid, 0.0008% CuSO4  ×  5H2O and 0.02% hydroquinone. The following characteristics of VIC were achieved: (i) linear dose range of 0.9(_)30 Gy, (ii) saturation for radiation doses of over 50 Gy, (iii) threshold dose of about 0.5 Gy, (iv) dose sensitivity of 0.171 Gy(-1) s(-1), which is roughly 2.2 times higher than that of VIP (for nuclear magnetic resonance measurements). It was also found that VIC is dose- rate-independent, and its dose response does not alter if the radiation source is changed from electrons to photons for external beam radiotherapy. The gel responded similarly to irradiation with small changes in radiation energy but was sensitive to larger energy changes. The VIC gel retained temporal stability from 20 h until at least 10 d after irradiation, whereas spatial stability was retained from 20 h until at least 6 d after irradiation. The scheme adopted for VIC manufacturing yields repeatable gels in terms of radiation dose response. The VIC was also shown to perform better than VIP using x-ray computed tomography as a readout method; the dose sensitivity of VIC (0.397 HU Gy(-1)) was 1.5 times higher than that of VIP. Also, the dose resolution of VIC was better than that of VIP in the whole dose range examined.

  5. On the development of a VIPARnd radiotherapy 3D polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Jaszczak, Malwina; Maras, Piotr; Dudek, Mariusz; Cłapa, Marian

    2017-02-01

    This work presents an improvement of the VIPARnd (‘nd’ stands for ‘normoxic, double’, or VIP) polymer gel dosimeter. The gel composition was altered by increasing the concentration of the monomeric components, N-vinylpyrrolidone (NVP) and N,N‧-methylenebisacrylamide (MBA), in co-solvent solutions. The optimal composition (VIPARCT, where ‘CT’ stands for computed tomography, or VIC) comprised: 17% NVP, 8% MBA, 12% t-BuOH, 7.5% gelatine, 0.007% ascorbic acid, 0.0008% CuSO4  ×  5H2O and 0.02% hydroquinone. The following characteristics of VIC were achieved: (i) linear dose range of 0.9_30 Gy, (ii) saturation for radiation doses of over 50 Gy, (iii) threshold dose of about 0.5 Gy, (iv) dose sensitivity of 0.171 Gy-1 s-1, which is roughly 2.2 times higher than that of VIP (for nuclear magnetic resonance measurements). It was also found that VIC is dose- rate-independent, and its dose response does not alter if the radiation source is changed from electrons to photons for external beam radiotherapy. The gel responded similarly to irradiation with small changes in radiation energy but was sensitive to larger energy changes. The VIC gel retained temporal stability from 20 h until at least 10 d after irradiation, whereas spatial stability was retained from 20 h until at least 6 d after irradiation. The scheme adopted for VIC manufacturing yields repeatable gels in terms of radiation dose response. The VIC was also shown to perform better than VIP using x-ray computed tomography as a readout method; the dose sensitivity of VIC (0.397 HU Gy-1) was 1.5 times higher than that of VIP. Also, the dose resolution of VIC was better than that of VIP in the whole dose range examined.

  6. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  7. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  8. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production

  9. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  10. Photorefractive Polymers for Updateable 3D Displays

    DTIC Science & Technology

    2010-02-24

    Final Performance Report 3. DATES COVERED (From - To) 01-01-2007 to 11-30-2009 4. TITLE AND SUBTITLE Photorefractive Polymers for Updateable 3D ...ABSTRACT During the tenure of this project a large area updateable 3D color display has been developed for the first time using a new co-polymer...photorefractive polymers have been demonstrated. Moreover, a 6 inch × 6 inch sample was fabricated demonstrating the feasibility of making large area 3D

  11. SU-E-T-678: Response Calibration Using Electron Depth-Dose Data for MRI-Based 3D Polymer Gel Dosimetry

    SciTech Connect

    Watanabe, Y; Warmington, L; Gopishankar, N

    2015-06-15

    Purpose: To evaluate a calibration method using the depth-dose data of an electron beam for MRI-based polymer gel dosimetry. Methods: MAGAT was manufactured in-house to fill two 400mL-cylindrical phantoms and nine 22mL-glass vials. Phantom-A was irradiated along the cylinder axis with a 9MeV electron beam of 6 cm x 6 cm field size (FS). Phantom-B was irradiated with a 6MV photon beam of 3 cm x 3 cm FS by a 360-degree arc technique. Eight vials were irradiated in a water-bath to various doses with a 20 cm x 20 cm FS 6MV photon beam. All irradiated phantoms and one un-irradiated vial were scanned with a 3T MRI scanner to obtain the spin-spin relaxation rate (R2) distributions. By comparing the measured R2-to-depth data with the known depth-dose data for Phantom-A, R2-to-dose calibration data were obtained (e-beam method). Another calibration data were obtained from the 9 vials data (9-vial method). We tested two regression equations, i.e., third-order polynomial and tangent functions, and two dose normalization methods, i.e., one-point and two-point methods. Then, these two calibration methods were used to obtain the 3D dose distribution of Phantom-B and evaluated by comparing the measured data with the dose distribution from a treatment planning system. The comparison was made with gamma passing rate (2%/2mm criteria). Results: We did not observe a clear advantage of the e-beam method over the 9-vial method for the 3D dose comparison with the test case. Nevertheless, we found that the e-beam method required a smaller dose scaling for the dose comparison. Furthermore, the tangent function showed better data fitting than the polynomial function with smaller uncertainty of the estimated coefficients. Conclusions: Considering the overall superior performance, we recommend the e-beam method with the tangent function as the regression equation and one-point dose normalization for the MRI-based polymer gel dosimetry.

  12. On the reliability of 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Vandecasteele, J.

    2013-06-01

    Gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as it covers the whole treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. A major obstacle that has hindered the wider dissemination of polymer gel dosimetry in radiotherapy centres is the lack of confidence in the reliability of the measured dose. Discrepancies in dose response of small versus large polymer gel dosimeters have been reported and although several hypothesis for these discrepancies have been postulated, the actual contribution of these error sources to the overall inaccuracy of the dose maps has not been determined. Several gel dosimetry research groups have chosen to use an internal calibration of gel dosimeters. In this study, the inter-and intra-batch reproducibility of the current state-of-the-art 3D gel dosimeters has been assessed. It is demonstrated that with a carefully designed scanning set-up, the overall accuracy that can be obtained with an independent calibration is well within 5% of all pixels.

  13. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  14. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  15. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  16. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    SciTech Connect

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.

  17. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries.

    PubMed

    Lopatiuk-Tirpak, O; Langen, K M; Meeks, S L; Kupelian, P A; Zeidan, O A; Maryanski, M J

    2008-09-01

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.

  18. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  19. 3D jet printer of edible gels for food creation

    NASA Astrophysics Data System (ADS)

    Serizawa, Ryo; Shitara, Mariko; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Furukawa, Hidemitsu

    2014-03-01

    In recent years, aging is progressing in Japan. Elderly people can't swallow the food well. So, the need of soft food is increasing greatly with the aging of the population. There are so few satisfying foods for the elderly to enjoy a meal. An equipment of printing soft food gives the elderly a big dream and is promising. In this study, we aim at developing a 3D edible gel printer in order to make soft food for the elderly. We made a prototype of the 3D edible gel printer. The printer consists of syringe pump and dispenser. The syringe pump extrudes the solution. The dispenser allows to model threedimensional objects. We use agar solution as the ink to carry out the printing. Agar's gelation deeply depends on temperature. Therefore temperature control of the solution is important to mold optimal shapes because the physical crosslinking network of agar's solution is instable. We succeeded in making the gels and plate-shape gel using the 3D edible gel printer. Further more, in order to increase the gelation speed agar's solution, we changed the dispenser and the printing test is being done now. 4 kinds of soft food prepared from agar and gelatin were printed by the 3D edible gel printer. The compression tests of the printed soft food samples were done and their hardness is measured because the hardness is one of very important factors which influence the food texture greatly. In the future, the viscosity of the agar solution or other food ink should be adjusted to suitable for printing.

  20. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  1. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  2. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  3. 3D Gel Map of Arabidopsis Complex I

    PubMed Central

    Peters, Katrin; Belt, Katharina; Braun, Hans-Peter

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana. PMID:23761796

  4. Microfluidic vascular channels in gels using commercial 3D printers

    NASA Astrophysics Data System (ADS)

    Selvaganapathy, P. Ravi; Attalla, Rana

    2016-03-01

    This paper details the development of a three dimensional (3D) printing system with a modified microfluidic printhead used for the generation of complex vascular tissue scaffolds. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can easily be patterned using 3Dbioprinting techniques. This microfluidic design allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  5. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  6. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  7. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications.

  8. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  9. Diffusion of polymer gel implants.

    PubMed

    Davis, B K

    1974-08-01

    Crosslinked polyacrylamide and polyvinylpyrrolidone gels have been used to subcutaneously implant (125)I-labeled immunoglobulin, (125)I-labeled luteinizing hormone, (125)I-labeled bovine serum albumin, (125)I-labeled insulin, [(3)H]prostaglandin F(2alpha), and Na(125)I into hamsters. From the rates of absorption of the solutes, their diffusion coefficients were determined. The diffusion coefficients showed a logarithmic dependence on implant polymer concentration and solute molecular weight. Release of the solutes from gel preparations incubated 10 mM phosphate buffer (pH 7.2) at 37 degrees revealed a similar relationship between solute diffusion coefficient, molecular weight, and the concentration of polymer. A general equation was derived that gives the expected diffusion coefficient of a substance in a polymer gel from its molecular weight, diffusion coefficient in solvent, and polymer concentration of the gel.

  10. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration.

    PubMed

    Meghezi, Sébastien; Seifu, Dawit G; Bono, Nina; Unsworth, Larry; Mequanint, Kibret; Mantovani, Diego

    2015-06-16

    Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The "static bioreactor" provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.

  11. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry

    SciTech Connect

    Zhu Xuping; Reese, Timothy G.; Crowley, Elizabeth M.; El Fakhri, Georges

    2010-01-15

    Purpose: Polymer-based gel dosimeter (MAGIC type) is a preferable phantom material for PET range verification of proton beam therapy. However, improvement in elemental tissue equivalency (specifically O/C ratio) is very desirable to ensure realistic time-activity measurements. Methods: Glucose and urea was added to the original MAGIC formulation to adjust the O/C ratio. The dose responses of the new formulations were tested with MRI transverse relaxation rate (R2) measurements. Results: The new ingredients improved not only the elemental composition but also the sensitivity of the MAGIC gel. The O/C ratios of our new gels agree with that of soft tissue within 1%. The slopes of dose response curves were 1.6-2.7 times larger with glucose. The melting point also increased by 5 deg. C. Further addition of urea resulted in a similar slope but with an increased intercept and a decreased melting point. Conclusions: Our improved MAGIC gel formulations have higher sensitivity and better elemental tissue equivalency for 3D dosimetry applications involving nuclear reactions.

  12. Polymer-based mesh as supports for multi-layered 3D cell culture and assays.

    PubMed

    Simon, Karen A; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron D; Ngo, Philip M; Whitesides, George M

    2014-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.

  13. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  14. Holographic imaging of 3D objects on dichromated polymer systems

    NASA Astrophysics Data System (ADS)

    Lemelin, Guylain; Jourdain, Anne; Manivannan, Gurusamy; Lessard, Roger A.

    1996-01-01

    Conventional volume transmission holograms of a 3D scene were recorded on dichromated poly(acrylic acid) (DCPAA) films under 488 nm light. The holographic characterization and quality of reconstruction have been studied by varying the influencing parameters such as concentration of dichromate and electron donor, and the molecular weight of the polymer matrix. Ammonium and potassium dichromate have been employed to sensitize the poly(acrylic) matrix. the recorded hologram can be efficiently reconstructed either with red light or with low energy in the blue region without any post thermal or chemical processing.

  15. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  16. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  17. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density correlation functions which can be tested by experiments. Using replica field theory we calculate the mean field density in replica space and show that this solution contains statistical information about the behavior of individual chains in the network. The average monomer positions change affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of the mesh size. We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, the average monomer density and the imposed deformation. This state is characterized by the set of the average positions of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known example of equilibrium solids with no long-range order. We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomogeneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross

  18. Modeling the transparent shape memory gels by 3D printer Acculas

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroaki; Arai, Masanori; Gong, Jin; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In our group, highly transparent shape memory gels were successfully synthesized for the first time in the world. These gels have the high strength of 3MPs modulus even with the water content of 40wt% water and high transparency. We consider that these highly transparent and high strength gels can be applied to the optical devices such as intraocular-lenses and optical fibers. In previous research by our group, attempts were made to manufacture the gel intraocular-lenses using highly transparent shape memory gels. However, it was too difficult to print the intraocular-lens finely enough. Here, we focus on a 3D printer, which can produce objects of irregular shape. 3D printers generally we fused deposition modeling (FDM), a stereo lithography apparatus (SLA) and selective laser sintering (SLS). Because highly transparent shape memory gels are gelled by light irradiation, we used 3D printer with stereo lithography apparatus (SLA). In this study, we found the refractive index of highly transparent shape memory gels depend on monomer concentration, and does not depend on the cross-linker or initiator concentration. Furthermore, the cross-linker and initiator concentration can change the gelation progression rate. As a result, we have developed highly transparent shape memory gels, which can have a range of refractive indexes, and we defined the optimal conditions that can be modeling in the 3D printer by changing the cross-linker and initiator concentration. With these discoveries we were able to produce a gel intraocular-lens replica.

  19. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries.

    PubMed

    Shi, Ye; Zhang, Jun; Bruck, Andrea M; Zhang, Yiman; Li, Jing; Stach, Eric A; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S; Yu, Guihua

    2017-03-22

    This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3 O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total electrode mass, compared to current literature. This 3D nanostructured gel-based framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries.

  20. Water linked 3D coordination polymers: Syntheses, structures and applications

    NASA Astrophysics Data System (ADS)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  1. Basic radiological characteristics of a non-scattering gel dosimeter for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Hwan; Ji, Yunseo; Lee, Suk; Kim, Kwang Hyeon; Yang, Dae Sik; Lee, Jung Ae; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong; Cao, Yuanjie; Cho, Samju

    2016-12-01

    We used a spectrophotometer to compare the dosimetric properties of two non-scattering (radiochromic) gel dosimeters: a non-scattering gel dosimeter developed in-house and a PRESAGE™ gel dosimeter. We evaluated the dosimetric characteristics, including spectral absorption, dose linearity, reproducibility, and dose rate dependency of the two gel dosimeters. The non-scattering gel and the PRESAGE™ gel dosimeters showed peak sensitivity at wavelengths of 600 nm and 630 nm, respectively. Over a range of doses the best dose linearities of the non-scattering and the PRESAGE™ gel dosimeters resulted in R2 values of 0.99 at wavelengths of 600 nm and 630 nm, respectively. The reproducibility and dose-rate dependence of each of the two gel dosimeters were within the range of ±3 %. Our results revealed that the peak sensitivities of the two radiochromic gel dosimeters were significantly different; the in-house non-scattering gel dosimeter demonstrated peak sensitivity at a wavelength of 600 nm while the PRESAGE™ gel dosimeter had peak sensitivity at a wavelength of 630 nm. We confirmed that for 3D gel dosimetry, the in-house non-scattering gel dosimeter had a more stable dose response compared with a commercial non-scattering gel dosimeter.

  2. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  3. 3D scanning of internal structure in gel engineering materials with visual scanning microscopic light scattering

    NASA Astrophysics Data System (ADS)

    Watanabe, Yosuke; Gong, Jing; Masato, Makino; Kabir, M. Hasnat; Furukawa, Hidemitsu

    2014-04-01

    The 3D printing technology, causing much attention from the beginning of 2013, will be possibly an alternative method to fabricate the biological soft tissues. Recently our group of Yamagata University has developed the world-first 3D Gel Printer to fabricate the complicated gel-materials with high-strength and biocompatibility. However, there are no 3D scanners that collect the data from the internal structure of complicated gel objects such as eye lens. It means that a new system for scanning the internal structure is needed now. In this study, firstly, we have tried to investigate the gel network of synthetic and biological gel with scanning microscopic light scattering (SMILS). We calculated the Young's modulus of synthetic gels with the SMILS and with the tensile test, and precisely compared the results between them. The temperature dependences of the inside structure and the transparency are observed in the pig crystalline lens. The quantitative analysis indicates the importance of the internal structure of real object. Secondary, we show the new system named Gel-scanner that can provide the 2-dimentional data of the internal structure. From examining our findings, the scanning of internal structure will enable us to expect physical properties of the real object. We convince that the gelscanner will play major role in the various fields.

  4. New 3-D microarray platform based on macroporous polymer monoliths.

    PubMed

    Rober, M; Walter, J; Vlakh, E; Stahl, F; Kasper, C; Tennikova, T

    2009-06-30

    Polymer macroporous monoliths are widely used as efficient sorbents in different, mostly dynamic, interphase processes. In this paper, monolithic materials strongly bound to the inert glass surface are suggested as operative matrices at the development of three-dimensional (3-D) microarrays. For this purpose, several rigid macroporous copolymers differed by reactivity and hydrophobic-hydrophilic properties were synthesized and tested: (1) glycidyl methacrylate-co-ethylene dimethacrylate (poly(GMA-co-EDMA)), (2) glycidyl methacrylate-co-glycerol dimethacrylate (poly(GMA-co-GDMA)), (3) N-hydroxyphthalimide ester of acrylic acid-co-glycidyl methacrylate-co-ethylene dimethacrylate (poly(HPIEAA-co-GMA-co-EDMA)), (4) 2-cyanoethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-EDMA)), and (5) 2-cyanoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-HEMA-co-EDMA)). The constructed devices were used as platforms for protein microarrays construction and model mouse IgG-goat anti-mouse IgG affinity pair was used to demonstrate the potential of developed test-systems, as well as to optimize microanalytical conditions. The offered microarray platforms were applied to detect the bone tissue marker osteopontin directly in cell culture medium.

  5. Gamma Knife output factor measurements using VIP polymer gel dosimetry

    SciTech Connect

    Moutsatsos, A.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Georgiou, E.; Dardoufas, K.; Sandilos, P.; Torrens, M.; Pantelis, E.; Kantemiris, I.; Sakelliou, L.; Seimenis, I.

    2009-09-15

    Purpose: Water equivalent polymer gel dosimeters and magnetic resonance imaging were employed to measure the output factors of the two smallest treatment fields available in a Gamma Knife model C radiosurgery unit, those formed employing the 4 and 8 mm final collimator helmets. Methods: Three samples of the VIP normoxic gel formulation were prepared and irradiated so that a single shot of the field whose output factor is to be measured and a single shot of the reference 18 mm field were delivered in each one. Emphasis is given to the development and benchmarking of a refined data processing methodology of reduced uncertainty that fully exploits the 3D dose distributions registered in the dosimeters. Results: Polymer gel results for the output factor of the 8 mm collimator helmet are found to be in close agreement with the corresponding value recommended by the vendor (0.955{+-}0.007 versus 0.956, respectively). For the 4 mm collimator helmet, however, polymer gel results suggest an output factor 3% lower than the value recommended by the vendor (0.841{+-}0.009 versus 0.870, respectively). Conclusions: A comparison with corresponding measurements published in the literature indicates that output factor results of this work are in agreement with those obtained using dosimetric systems which, besides fine spatial resolution and lack of angular and dose rate dependence of the dosimeter's response, share with polymer gels the favorable characteristic of minimal radiation field perturbation.

  6. Radiological properties of normoxic polymer gel dosimeters

    SciTech Connect

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.; Baldock, C.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% higher than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.

  7. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  8. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  9. Mechanosensing of cells in 3D gel matrices based on natural and synthetic materials.

    PubMed

    Shan, Jieling; Chi, Qingjia; Wang, Hongbing; Huang, Qiping; Yang, Li; Yu, Guanglei; Zou, Xiaobing

    2014-11-01

    Cells in vivo typically are found in 3D matrices, the mechanical stiffness of which is important to the cell and tissue-scale biological processes. Although it is well characterized that as to how cells sense matrix stiffness in 2D substrates, the scenario in 3D matrices needs to be explored. Thus, materials that can mimic native 3D environments and possess wide, physiologically relevant elasticity are highly desirable. Natural polymer-based materials and synthetic hydrogels could provide an better 3D platforms to investigate the mechano-response of cells with stiffness comparable to their native environments. However, the limited stiffness range together with interdependence of matrix stiffness and adhesive ligand density are inherent in many kinds of materials, and hinder efforts to demonstrate the true effects contributed by matrix stiffness. These problems have been addressed by the recently emerging exquisitely designed materials based on native matrix components, designer matrices, and synthetic polymers. In this review, a variety of materials with a wide stiffness range that mimic the mechanical environment of native 3D matrices and the independent affection of stiffness for cellular behavior and tissue-level processes are discussed.

  10. Conducting polymer electrodes for gel electrophoresis.

    PubMed

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  11. Rapid 3D Printing of Multifunctional Calcium Alginate Gel Pipes using Coaxial Jet Extruder

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Damle, Viraj

    2014-11-01

    Calcium alginate (CA) forms when solution containing sodium alginate (SA) comes in contact with a CaCl2 solution. The resulting gel is biocompatible as well as edible and is used in production of bio-scaffolds, artificial plant seeds, and edible substances. In the latter application, referred to in the culinary world as ``spherification,'' flavored liquids are mixed with the SA and dripped into CaCl2 solution to form gel encapsulated flavored ``marbles.'' Previously, crude 3D printing of CA structures has been achieved by stacking of such flavored liquid filled marbles. In turn, solid CA rods have been fabricated by properly mixing flow of the two solutions using a microfluidic device. Here we show that by using two circular cross-section coaxial nozzles to produce coaxial jets of the SA and CaCl2 solutions, liquid filled CA micro-to-mili scale gel pipes can be produced at speeds around ~ 150 mm/s. Such extrusion rate is compatible with most commercially available 3D printers, facilitating adoption of the CA pipe coaxial jet extruder. Here, the impact of inner and outer liquid properties and flow speeds on the gel pipe extrusion process is discussed. KR acknowledges startup funding from ASU.

  12. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  13. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  14. Updateable 3D Display Using Large Area Photorefractive Polymer Devices

    DTIC Science & Technology

    2013-04-01

    2011.  C. W. Christenson, et al., " Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer", Optics Letters, Vol...researcher to tailor the flow of electrons between the electrodes and acts as an insulator to minimize the opportunities for electrical breakdown

  15. Infrared imaging of the polymer 3D-printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Kunc, Vlastimil; Lindal, John M.; Post, Brian; Smith, Rachel J.; Love, Lonnie; Duty, Chad E.

    2014-05-01

    Both mid-wave and long-wave IR cameras are used to measure various temperature profiles in thermoplastic parts as they are printed. Two significantly different 3D-printers are used in this study. The first is a small scale commercially available Solidoodle 3 printer, which prints parts with layer thicknesses on the order of 125μm. The second printer used is a "Big Area Additive Manufacturing" (BAAM) 3D-printer developed at Oak Ridge National Laboratory. The BAAM prints parts with a layer thicknesses of 4.06 mm. Of particular interest is the temperature of the previously deposited layer as the new hot layer is about to be extruded onto it. The two layers are expected have a stronger bond if the temperature of the substrate layer is above the glass transition temperature. This paper describes the measurement technique and results for a study of temperature decay and substrate layer temperature for ABS thermoplastic with and without the addition of chopped carbon fibers.

  16. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits.

  17. Polymer physics of chromosome large-scale 3D organisation.

    PubMed

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-13

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  18. Polymer physics of chromosome large-scale 3D organisation

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  19. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  20. Optical absorption enhancement in 3D nanofibers coated on polymer substrate for photovoltaic devices.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2015-06-01

    Recent research in the field of photovoltaics has shown that polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy. In this paper, we propose a new method for the generation of three-dimensional nanofibers coated on polymer substrate induced by femtosecond laser pulses. In this new method, a thin layer of polymer is irradiated by megahertz femtosecond laser pulses under ambient conditions, and a thin fibrous layer is generated on top of the polymer substrate. This method is single step; no additional materials are added, and the layers of the three-dimensional (3D) polymer nanofibrous structures are grown on top of the substrate after laser irradiation. Light spectroscopy results show significant enhancement of light absorption in the generated 3D nanofibrous layers of polymer. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofiber cells by optimizing the laser parameters.

  1. 3D amino-induced electroless plating: a powerful toolset for localized metallization on polymer substrates.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Jégou, Pascale; Palacin, Serge

    2011-11-18

    The "3D amino-induced electroless plating" (3D-AIEP) process is an easy and cost-effective way to produce metallic patterns onto flexible polymer substrates with a micrometric resolution and based on the direct printing of the mask with a commercial printer. Its effectiveness is based on the covalent grafting onto substrates of a 3D polymer layer which presents the ability to entrap Pd species. Therefore, this activated Pd-loaded and 3D polymer layer acts both as a seed layer for electroless metal growth and as an interdigital layer for enhanced mechanical properties of the metallic patterns. Consequently, flexible and transparent poly(ethylene terephtalate) (PET) sheets were selectively metalized with nickel or copper patterns. The electrical properties of the obtained metallic patterns were also studied.

  2. Gel Permeation Chromatography of Fluoroether Polymers

    NASA Technical Reports Server (NTRS)

    Korus, Roger A.; Rosser, Robert W.

    1978-01-01

    A Method is described for determining the molecular weight distribution of fluorinated polymers by gel permeation chromatography. Porous silica-packed columns are used with Freon 113 as the chromatographic solvent. Fluoroether oligomers are used for column calibration in the molecular weight range of 1400 to 12000.

  3. Synthesis, structure and properties of a 3D acentric coordination polymer with noninterpenetrated (10,3)-d topology

    NASA Astrophysics Data System (ADS)

    Lun, Huijie; Li, Xuefei; Wang, Xiao; Li, Haiyan; Li, Yamin; Bai, Yan

    2017-01-01

    A new coordination polymer, {[Mn(HPIDC)(H2O)]·2H2O}n (1) (H3PIDC = 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid), has been obtained by hydrothermal method and structurally characterized by X-ray single crystal diffraction, elemental analysis and thermogravimetric analysis (TGA). X-ray single crystal diffraction reveals that compound 1 crystallizing in acentric Pna21 space group, exhibits an ultimate racemic three-dimension framework with rare noninterpenetrated (10,3)-d (or utp) topology due to the alternate array of left- and right-handed helixes. Moreover, compound 1 also features ferroelectric, nonlinear optical (NLO) and antiferromagnetic behaviors.

  4. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.

  5. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  6. Porosity Governs Normal Stresses in Polymer Gels.

    PubMed

    de Cagny, Henri C G; Vos, Bart E; Vahabi, Mahsa; Kurniawan, Nicholas A; Doi, Masao; Koenderink, Gijsje H; MacKintosh, F C; Bonn, Daniel

    2016-11-18

    When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

  7. Porosity Governs Normal Stresses in Polymer Gels

    NASA Astrophysics Data System (ADS)

    de Cagny, Henri C. G.; Vos, Bart E.; Vahabi, Mahsa; Kurniawan, Nicholas A.; Doi, Masao; Koenderink, Gijsje H.; MacKintosh, F. C.; Bonn, Daniel

    2016-11-01

    When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

  8. Electroacoustics of Particles Dispersed in Polymer Gel

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-27

    This study examines the acoustic electrophoresis of particles dispersed in polymer hydrogels, with the particle size either less than or greater than the gel mesh size. When the particles are smaller than the gel mesh size, their acoustic vibration is resisted by only the background water medium, and the measured dynamic electrophoretic mobility, μd (obtained in terms of colloid vibration current, CVI), is the same as in water. For the case of particles larger than the gel mesh size, μd is decreased due to trapping, and the net decrease depends on the viscoelastic properties of the gel. The gel mesh size was varied by varying its crosslink density, the latter being characterized as the storage modulus, G’. The dependence of mobility on G’, for systems of a given particle size, and on particle size, for gels of a given G’, are investigated. The measured mobility remains constant as G’ is increased (i.e., mesh size is decreased) up to a value of approximately 300 Pa, beyond which it decreases. In the second set of measurements, the trapped particle size was increased in a gel medium of constant mesh size, with G’ approximately 100 Pa. In this case, the measured μd is found to be effectively constant over the particle size range studied (14-120 nm), i.e., it is independent of the degree of trapping as expressed by the ratio of the particle size to the mesh size.

  9. Gamma Knife 3-D dose distribution near the area of tissue inhomogeneities by normoxic gel dosimetry

    SciTech Connect

    Isbakan, Fatih; Uelgen, Yekta; Bilge, Hatice; Ozen, Zeynep; Agus, Onur; Buyuksarac, Bora

    2007-05-15

    The accuracy of the Leksell GammaPlan registered , the dose planning system of the Gamma Knife Model-B, was evaluated near tissue inhomogeneities, using the gel dosimetry method. The lack of electronic equilibrium around the small-diameter gamma beams can cause dose calculation errors in the neighborhood of an air-tissue interface. An experiment was designed to investigate the effects of inhomogeneity near the paranosal sinuses cavities. The homogeneous phantom was a spherical glass balloon of 16 cm diameter, filled with MAGIC gel; i.e., the normoxic polymer gel. Two hollow PVC balls of 2 cm radius, filled with N{sub 2} gas, represented the air cavities inside the inhomogeneous phantom. For dose calibration purposes, 100 ml gel-containing vials were irradiated at predefined doses, and then scanned in a MR unit. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. Dose distributions are the results of a single shot of irradiation, obtained by collimating all 201 cobalt sources to a known target in the phantom. Both phantoms were irradiated at the same dose level at the same coordinates. Stereotactic frames and fiducial markers were attached to the phantoms prior to MR scanning. The dose distribution predicted by the Gamma Knife planning system was compared with that of the gel dosimetry. As expected, for the homogeneous phantom the isodose diameters measured by the gel dosimetry and the GammaPlan registered differed by 5% at most. However, with the inhomogeneous phantom, the dose maps in the axial, coronal and sagittal planes were spatially different. The diameters of the 50% isodose curves differed 43% in the X axis and 32% in the Y axis for the Z=90 mm axial plane; by 44% in the X axis and 24% in the Z axis for the Y=90 mm coronal plane; and by 32% in the Z axis and 42% in the Y axis for the X=92 mm sagittal plane. The lack of ability of the GammaPlan registered to predict the rapid dose fall off, due

  10. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P. M.

    2016-02-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.

  11. Concentric gel system to study the biophysical role of matrix microenvironment on 3D cell migration.

    PubMed

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-04-03

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell's mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration.

  12. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    PubMed Central

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  13. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography.

    PubMed

    Fichou, Dimitri; Morlock, Gertrud E

    2017-02-07

    On the basis of open-source packages, 3D printing of thin silica gel layers is demonstrated as proof-of-principle for use in planar chromatography. A slurry doser was designed to replace the plastic extruder of an open-source Prusa i3 printer. The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes. The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro. This approach demonstrated not only the potential of the 3D printing environment in planar chromatography but also opened new avenues and new perspectives for tailor-made plates, not only with regard to layer materials and their combinations (gradient plates) but also with regard to different layer shapes and patterns. As such an example, separations on a printed plane layer were compared with those obtained from a printed channeled layer. For the latter, 40 channels were printed in parallel on a 10 cm × 10 cm format for the separation of 40 samples. For producing such a channeled plate, the running costs were below 0.04 Euro and the printing process took only 2 min. All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology. By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.

  14. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  15. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  16. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts.

    PubMed

    McBeth, Christine; Lauer, Jasmin; Ottersbach, Michael; Campbell, Jennifer; Sharon, Andre; Sauer-Budge, Alexis F

    2017-01-10

    Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts. While many factors contribute to differentiation, the relative importance of the various cues is unclear. To substantially improve osseointegration of titanium implants, we generated a gelatin methacryloyl (GelMA) scaffold, using an extrusion-based 3D bioprinter, which can be directly printed on and grafted to the titanium implant surface. We demonstrate that this scaffold is able to trigger mineral deposition of both MG63 osteoblasts and primary normal human osteoblasts in the absence of any exogenous osteogenic factors. Films of the same formulation failed to promote mineral deposition suggesting that the three dimensional scaffold was able to tip the balance in favor of differentiation despite other potentially unfavorable differentiation cues of the material. We further show that these GelMA lattices can be directly grafted to titanium alloy and are secure in vitro over a period of seven weeks. When grafted within a groove system, the GelMA hydrogel is protected from shearing forces in a marrow implantation model. This prepares the way for osteogenic coatings to be directly manufactured on the implant surface and packaged for surgery.

  17. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts.

    PubMed

    McBeth, Christine; Lauer, Jasmin; Ottersbach, Michael; Campbell, Jennifer; Sharon, Andre; Sauer-Budge, Alexis

    2016-12-14

    Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts. While many factors contribute to differentiation, the relative importance of the various cues is unclear. To substantially improve osseointegration of titanium implants, we generated a gelatin methacryloyl (GelMA) scaffold, using an extrusion-based 3D bioprinter, which can be directly printed on and grafted to the titanium implant surface. We demonstrate that this scaffold is able to trigger mineral deposition of both MG63 osteoblasts and normal human primary osteoblasts in the absence of any exogenous osteogenic factors. Films of the same formulation failed to promote mineral deposition suggesting that the three dimensional scaffold was able to tip the balance in favor of differentiation despite other potentially unfavorable differentiation cues of the material. We further show that these GelMA lattices can be directly grafted to titanium alloy and are secure in vitro over a period of seven weeks. When grafted within a groove system, the GelMA hydrogel is protected from shearing forces in a marrow implantation model. This prepares the way for osteogenic coatings to be directly manufactured on the implant surface and packaged for surgery.

  18. Suppression of electron-hole correlations in 3D polymer materials.

    PubMed

    Puschnig, Peter; Ambrosch-Draxl, Claudia

    2002-07-29

    We present an ab initio study of the optical absorption spectra of isolated as well as crystalline trans-polyacetylene. We include excitonic effects by solving the Bethe-Salpeter equation for the electron-hole two-particle correlation function. We observe that the strength of the electron-hole interactions drastically reduces when going from an isolated polymer chain to a crystalline arrangement. This is not only a result of enhanced screening in the 3D material, but also of the increased spatial extent of the exciton perpendicular to the polymer chains. We point out that these findings apply to crystalline phases of conjugated polymers and molecular crystals in general.

  19. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  20. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad

    2012-11-01

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.

  1. 3D porous sol-gel matrix incorporated microdevice for effective large volume cell sample pretreatment.

    PubMed

    Lee, Chan Joo; Jung, Jae Hwan; Seo, Tae Seok

    2012-06-05

    In this study, we demonstrated an effective sample pretreatment microdevice that could perform the capture, purification, and release of pathogenic bacteria with a large-volume sample and at a high speed and high-capture yield. We integrated a sol-gel matrix into the microdevice which forms three-dimensional (3D) micropores for the cell solution to pass through and provides a large surface area for the immobilization of antibodies to capture the target Staphylococcus aureus (S. aureus) cells. The antibody was linked to the surface of the sol-gel via a photocleavable linker, allowing the cell-captured antibody moiety to be released by UV irradiation. In addition to the optimization of the antibody immobilization and UV cleavage processes, the cell-capture efficiency was maximized by controlling the sample flow rate with a pumping scheme (3 steps, 5 steps: 3 steps with one flutter step, 7 steps: 3 steps with two flutter steps) and the pumping time (100, 200, and 300 ms). A quantitative capture analysis was performed by targeting a specific gene site of protein A of S. aureus in real-time PCR (RT-PCR). While the 3-step process with an actuation time of 100 ms showed the fastest flow rate (1 mL sample processing time in 10 min), the pumping scheme with the 7-step process and the 300 ms actuation time revealed the highest cell-capture efficiency. A limit of detection study with the 7-step and the 300 ms pumping scheme demonstrated that 100 cells per 100 μL were detected with a 70% yield, and even a single cell could be analyzed via on-chip sample preparation. Thus, our novel sol-gel based microdevice was proven more cost-effective, simple, and efficient in terms of its sample pretreatment ability compared to the use of a conventional 2D flat microdevice. This proposed sample pretreatment device can be further incorporated to an analytical functional unit to realize a micrototal analysis system (μTAS) with sample-in-answer-out capability in the fields of biomedical

  2. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  3. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  4. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    SciTech Connect

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur

    2012-11-15

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.

  5. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites.

  6. Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Shen; Lin, I.-Kuan; Ko, Fu-Hsang

    2005-10-01

    Recently, with the advancement in bio-MEMS and micro optoelectromechanical systems (MOEMS), 3D microstructures have become increasingly important and efficient fabrication processes are currently being sought. In this paper, a novel 3D fabrication process has been proposed by utilizing the proximity effect of electron beam lithography (EBL) to create 3D microstructures on negative photoresists as the primary molds, which are subsequently transferred to their corresponding negative molds using nanoimprinting lithography (NIL), and to form the final replicas by either electroforming or polymer spin casting to reduce cost. The effect of electron backscattering on the 3D topography is firstly investigated and the relationship among the spatial distribution of electron beam irradiation, the spot size and the dosage level of irradiation is experimentally characterized in SU-8 to establish a dosage kernel distribution function. A mathematical procedure based on linear operation of this kernel function is then proposed to mimic the EBL fabrication process. The subsequent experiments indicate that the predicted surface profiles agree with the experimental results to large extent and the proposed mathematical operations are valid for the purpose of designing the fabrication process. Finally, the SU-8 primary molds are transferred to NEB to form secondary molds via the nanoimprinting process. It shows that the nanoimprinting process can essentially reproduce the shape and geometry of the primary molds. However, due to the nature of polymer-to-polymer contact printing, the elastic restitution of materials induces a slight deviation of the final device size and a further study should be made in the future to minimize such types of error. Although the above problems are reported, nevertheless, the primary experimental results indicate that this proposed fabrication process is capable of creating 3D shape microstructure in the order of 1 µm and should be useful for related

  7. Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers.

    PubMed

    Shin, James; Sandhu, Ranjit S; Shih, George

    2017-02-06

    Clinical applications of 3D printing are increasingly commonplace, likewise the frequency of inclusion of 3D printed objects on imaging studies. Although there is a general familiarity with the imaging appearance of traditional materials comprising common surgical hardware and medical devices, comparatively less is known regarding the appearance of available 3D printing materials in the consumer market. This work detailing the CT appearance of a selected number of common filament polymer classes is an initial effort to catalog these data, to provide for accurate interpretation of imaging studies incidentally or intentionally including fabricated objects. Furthermore, this information can inform the design of image-realistic tissue-mimicking phantoms for a variety of applications, with clear candidate material analogs for bone, soft tissue, water, and fat attenuation.

  8. Development of gel materials with high transparency and mechanical strength for use with a 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Tase, Taishi; Okada, Koji; Takamatsu, Kyuichiro; Saito, Azusa; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Medical doctors use artificial blood vessels and organ models, which are usually made of plastic, to explain operations to students, or patients awaiting treatment. However, there are some problems such as the high cost of making the model and there is not a realistic feel because the model is hard. These problems can be solved using soft and wet material for instance gel. Gels are materials with unique properties such as transparency, biocompatibility, and low friction. In recent years, high strength gel has been developed and is expected to be applied in medical fields in the future. Artificial models of gel can be produced by 3D gel printers. Our group has been developing a 3D gel printer with 1mm precision in printing, but the shape, size and mechanical strength are not sufficient for medical models. In this study, we overcome these problems and make a gel model which is transparent, mechanically strong with a fine shape. The strength and molding accuracy is improved by changing and preparing the cross linker and ultraviolet absorber. We conducted mechanical and molding tests to confirm that the gel material properties improved.

  9. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  10. The role of phosphoinositide 3-kinases in neutrophil migration in 3D collagen gels.

    PubMed

    Martin, Kayleigh J S; Muessel, Michelle J; Pullar, Christine E; Willars, Gary B; Wardlaw, Andrew J

    2015-01-01

    The entry of neutrophils into tissue has been well characterised; however the fate of these cells once inside the tissue microenvironment is not fully understood. A variety of signal transduction pathways including those involving class I PI3 Kinases have been suggested to be involved in neutrophil migration. This study aims to determine the involvement of PI3 Kinases in chemokinetic and chemotactic neutrophil migration in response to CXCL8 and GM-CSF in a three-dimensional collagen gel, as a model of tissue. Using a three-dimensional collagen assay chemokinetic and chemotactic migration induced by CXCL8 was inhibited with the pan PI3 Kinase inhibitor wortmannin. Analysis of the specific Class I PI3 Kinase catalytic isoforms alpha, delta and gamma using the inhibitors PIK-75, PIK-294 and AS-605240 respectively indicated differential roles in CXCL8-induced neutrophil migration. PIK-294 inhibited both chemokinetic and chemotactic CXCL8-induced migration. AS-605240 markedly reduced CXCL8 induced chemokinetic migration but had no effect on CXCL8 induced chemotactic migration. In contrast PIK-75 inhibited chemotactic migration but not chemokinetic migration. At optimal concentrations of GM-CSF the inhibitors had no effect on the percentage of neutrophil migration in comparison to the control however at suboptimal concentrations wortmannin, AS-605240 and PIK-294 inhibited chemokinesis. This study suggests that PI3 Kinase is necessary for CXCL8 induced migration in a 3D tissue environment but that chemokinetic and chemotactic migration may be controlled by different isoforms with gamma shown to be important in chemokinesis and alpha important in chemotaxis. Neutrophil migration in response to suboptimal concentrations of GM-CSF is dependent on PI3 Kinase, particularly the gamma and delta catalytic isoforms.

  11. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    NASA Astrophysics Data System (ADS)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  12. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    PubMed

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  13. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    PubMed

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  14. The fabrication of polymer-nanocone-based 3D Au nanoparticle array and its SERS performance

    NASA Astrophysics Data System (ADS)

    Zhao, Wenning; Wu, Yiyao; Liu, Xiaoguang; Xu, Yebin; Wang, Shuangbao; Xu, Zhimou

    2017-01-01

    By combining conical-pore-AAO template and NIL technology, we realized the transfer of three-dimensional nanoparticle array to polymer materials. Au nanoparticles were deposited on the surface of conical-pore-AAO template, then the nanostructure was duplicated onto the polymer wafer via NIL method and the nanoparticles were inlaid onto the nanocones. Polymer-nanocone-based 3D Au nanoparticle array was obtained. The product possesses excellent flexibility and transparency in visual and infrared range. As a new class of SERS substrate, the product exhibits excellent sensitivity and reproducibility. Compared with the traditional SERS substrates, it provides unique advantages, such as being flexible, transparent, lightweight, portable, easily handled and low cost.

  15. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  16. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques.

  17. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  18. Investigating potential physicochemical errors in polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Sedaghat, Mahbod; Bujold, Rachel; Lepage, Martin

    2011-09-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  19. 3D printed polymers toxicity profiling: a caution for biodevice applications

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-12-01

    A recent revolution in additive manufacturing technologies and access to 3D Computer Assisted Design (CAD) software has spurred an explosive growth of new technologies in biomedical engineering. This includes biomodels for diagnosis, surgical training, hard and soft tissue replacement, biodevices and tissue engineering. Moreover, recent developments in high-definition additive manufacturing systems such as Multi-Jet Modelling (MJM) and Stereolithography (SLA), capable of reproducing feature sizes close to 100 μm, promise brand new capabilities in fabrication of optical-grade biomicrofluidic Lab-on-a-Chip and MEMS devices. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in PMMA, SLA and MJM systems can enable user-friendly production of prototypes, superior feature reproduction quality and comparable levels of optical transparency. Prospectively they can revolutionize fabrication of microfluidic devices with complex geometric features and eliminate the need to use clean room environment and conventional microfabrication techniques. In this work we demonstrate preliminary data on toxicity profiling of a panel of common polymers used in 3D printing applications. The main motivation of our work was to evaluate toxicity profiles of most commonly used polymers using standardized biotests according to OECD guidelines for testing of chemic risk assessment. Our work for the first time provides a multispecies view of potential dangers and limitation for building biocompatible devices using FDM, SLA and MJM additive manufacturing systems. Our work shows that additive manufacturing holds significant promise for fabricating LOC and MEMS but requires caution when selecting systems and polymers due to toxicity exhibited by some 3D printing polymers.

  20. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.

    PubMed

    Xie, Zhuang; Chen, Chaojian; Zhou, Xuechang; Gao, Tingting; Liu, Danqing; Miao, Qian; Zheng, Zijian

    2014-08-13

    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of poly(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm × 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput "bench-top" serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies.

  1. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  2. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    PubMed Central

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-01-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites. PMID:26940381

  3. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    NASA Astrophysics Data System (ADS)

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-03-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  4. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites.

    PubMed

    Castles, F; Isakov, D; Lui, A; Lei, Q; Dancer, C E J; Wang, Y; Janurudin, J M; Speller, S C; Grovenor, C R M; Grant, P S

    2016-03-04

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity-which are required in important technology sectors such as electronics and communications-may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6-8.7 and loss tangents in the range 0.005-0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  5. 3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite.

    PubMed

    Misra, Santosh K; Ostadhossein, Fatemeh; Babu, Ramya; Kus, Joseph; Tankasala, Divya; Sutrisno, Andre; Walsh, Kathleen A; Bromfield, Corinne R; Pan, Dipanjan

    2017-03-21

    Patients with percutaneous coronary intervention generally receive either bare metal stents or drug-eluting stents to restore the normal blood flow. However, due to the lack of stent production with an individual patient in mind, the same level of effectiveness may not be possible in treating two different clinical scenarios. This study introduces for the first time the feasibility of a patient-specific stenting process constructed from direct 3D segmentation of medical images using direct 3D printing of biodegradable polymer-graphene composite with dual drug incorporation. A biodegradable polymer-carbon composite is prepared doped with graphene nanoplatelets to achieve controlled release of combinatorics as anticoagulation and antirestenosis agents. This study develops a technology prototyped for personalized stenting. An in silico analysis is performed to optimize the stent design for printing and its prediction of sustainability under force exerted by coronary artery or blood flow. A holistic approach covering in silico to in situ-in vivo establishes the structural integrity of the polymer composite, its mechanical properties, drug loading and release control, prototyping, functional activity, safety, and feasibility of placement in coronary artery of swine.

  6. Mesoscale 3D manufacturing: varying focusing conditions for efficient direct laser writing of polymers

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Malinauskas, Mangirdas

    2014-05-01

    In this paper, we report a novel approach for efficient fabrication of mesoscale polymer 3D microstructures. It is implemented by direct laser writing varying exposure beam focusing conditions. By carefully optimizing the fabrication parameters (laser intensity, scanning velocity/exposure time, changing objective lens) complex 3D geometries of the microstructures can be obtained rapidly. Additionally, we demonstrate this without the use of the photoinitiator as photosensitizer doped in the pre-polymer material (SZ2080). At femtosecond pulsed irradiation ~TW/cm² intensities the localized free radical polymerization is achieved via avalanche induced bond braking. Such microstructures have unique biocompatibility and optical transparency as well as optical damage threshold value. By creating the bulk part of the structure using low-NA (0.45) objective and subsequently fabricating the fine features using oil immersion high-NA (1.4) objective the manufacturing time is reduced dramatically (30x is demonstrated). Using this two objective method a prototype of functional microdevice was produced: 80 and 85 µm diameter microfluidic tubes with the fine filter consisting of 4 µm period grating structure that has 400 nm wide threads, which corresponds to a feature precision aspect ratio of ~200. Therefore, such method has great potential as a polymer fabrication tool for mesoscale optical, photonic and biomedical applications as well as highly integrated 3D µ-systems. Furthermore, the proposed approach is not limited to lithography and can be implemented in a more general type of laser writing, such as inscription within transparent materials or substractive manufacturing by ablation.

  7. Design and Construction of an Optical Computed Tomography Scanner for Polymer Gel Dosimetry Application

    PubMed Central

    Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid

    2014-01-01

    Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377

  8. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  9. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  10. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-09-08

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  11. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  12. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    SciTech Connect

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  13. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  14. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    PubMed

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-05-22

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells.

  15. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  16. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  17. Fabrication of 3D embedded hollow structures inside polymer dielectric PMMA with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Chen, Tao; Hu, Anming; Liu, Shibing; Li, Junwei

    2016-11-01

    Recent progresses in femtosecond laser (fs) manufacturing have already proved that fs laser is a powerful tool in three dimensional internal structure fabrications. However, most studies are mainly focused on realize such structures in inorganic transparent dielectric, such as photosensitive glass and fused silica, etc. In this study, we present two methods to fabricate embedded internal 3D structures in a polymer dielectric material polymethyl methacrylate (PMMA). Both continuous hollow structure such as microfluidic channels and discrete hollow structures such as single microcavities are successfully fabricated with the help of femtosecond lasers. Among them, complicated 3D microchannel with a total length longer than 10mm and diameters around 80μm to 200μm are fabricated with a low repetition rate Ti: sapphire femtosecond laser by direct laser writing at a speed ranging from 25μm/s to 2000μm/s microcavities which function as concave microball lenses (CMBLs) and can be applied in super-wide-angle imaging are fabricated with a high repetition rate femtosecond fiber laser due to the distinct heat accumulation effect after 5s irradiation with the tightly focused fs laser beam. These new approaches proved that femtosecond laser direct writing technology has great application potential in 3D integrated devices manufacturing in the future.

  18. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  19. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

    PubMed

    Attalla, R; Ling, C; Selvaganapathy, P

    2016-02-01

    The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.

  20. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications

    PubMed Central

    Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N

    2017-01-01

    Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development.

  1. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-01

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N‧-donor ligands yielded three new coordination polymers as [Cu4(fph)2(bpe)3(H2O)2]·2H2O (fph=4,4‧-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co2(fph)(bpa)2(H2O)2]·3H2O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H2O)(H2oph)(bpa)] (oph=4,4‧-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu2+ ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co2+ ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1-3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors.

  2. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  3. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials.

    PubMed

    Moughames, J; Jradi, S; Chan, T M; Akil, S; Battie, Y; Naciri, A En; Herro, Z; Guenneau, S; Enoch, S; Joly, L; Cousin, J; Bruyant, A

    2016-10-04

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ(3), slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  4. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    PubMed Central

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  5. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    NASA Astrophysics Data System (ADS)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-10-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  6. In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models?

    PubMed

    Brown, Robert A

    2013-10-01

    In the 40 years since Elsdale and Bard's analysis of fibroblast culture in collagen gels we have moved far beyond the concept that such 3D fibril network systems are better models than monolayer cultures. This review analyses key aspects of that progression of models, against a background of what exactly each model system tries to mimic. This story tracks our increasing understanding of fibroblast responses to soft collagen gels, in particularly their cytoskeletal contraction, migration and integrin attachment. The focus on fibroblast mechano-function has generated models designed to directly measure the overall force generated by fibroblast populations, their reaction to external loads and the role of the matrix structure. Key steps along this evolution of 3D collagen models have been designed to mimic normal skin, wound repair, tissue morphogenesis and remodelling, growth and contracture during scarring/fibrosis. As new models are developed to understand cell-mechanical function in connective tissues the collagen material has become progressively more important, now being engineered to mimic more complex aspects of native extracellular matrix structure. These have included collagen fibril density, alignment and hierarchical structure, controlling material stiffness and anisotropy. But of these, tissue-like collagen density is key in that it contributes to control of the others. It is concluded that across this 40 year window major progress has been made towards establishing a family of 3D experimental collagen tissue-models, suitable to investigate normal and pathological fibroblast mechano-functions.

  7. Hierarchical PEG-Based 3D Patterns Grafting from Polymer Substrate by Surface Initiated Visible Light Photolithography.

    PubMed

    Zhao, Changwen; He, Bin; Wang, Guan; Ma, Yuhong; Yang, Wantai

    2016-10-01

    The precise construction of a hierarchical complex pattern on substrates is required for numerous applications. Here, a strategy to fabricate well-defined hierarchical three dimensional (3D) patterns on polymer substrate is developed. This technique, which combines photolithography and visible light-induced surface initiated living graft crosslinking polymerization (VSLGCP), can effectively graft 3D patterns onto polymer substrate with high fidelity and controllable height. Owing to the living nature of VSLGCP, hierarchical 3D patterns can be prepared when a sequential living graft crosslinking process is performed on the first formed patterns. As a proof-of-concept, a reactive two layer 3D pattern with a morphology of lateral stripe on vertical stripe is prepared and employed to separately immobilize model biomolecules, e.g., biotin and IgG. This two component pattern can specifically interact with corresponding target proteins successfully, indicating that this strategy has potential applications in the fabrication of polymer-based multicomponent biomolecule microarrays.

  8. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.

    2013-06-01

    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  9. Shear induced alignment of short nanofibers in 3D printed polymer composites

    NASA Astrophysics Data System (ADS)

    Erdem Yunus, Doruk; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-01

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material’s tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  10. Shear induced alignment of short nanofibers in 3D printed polymer composites.

    PubMed

    Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-09

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  11. A 3D Polymer Based Printed Two-Dimensional Laser Scanner

    NASA Astrophysics Data System (ADS)

    Oyman, H. A.; Gokdel, Y. D.; Ferhanoglu, O.; Yalcinkaya, A. D.

    2016-10-01

    A two-dimensional (2D) polymer based scanning mirror with magnetic actuation is developed for imaging applications. Proposed device consists of a circular suspension holding a rectangular mirror and can generate a 2D scan pattern. Three dimensional (3D) printing technology which is used for implementation of the device, offers added flexibility in controlling the cross-sectional profile as well as the stress distribution compared to the traditional planar process technologies. The mirror device is developed to meet a portable, miniaturized confocal microscope application in mind, delivering 4.5 and 4.8 degrees of optical scan angles at 111 and 267 Hz, respectively. As a result of this mechanical performance, the resulting microscope incorporating the mirror is estimated to accomplish a field of view (FOV) of 350 µm × 350 µm.

  12. Photophysical and photochemical processes in 3D self-assembled gels as confined microenvironments.

    PubMed

    Pérez-Ruiz, Raúl; Díaz Díaz, David

    2015-07-14

    Numerous challenging transformations take place in nature with high efficiency within confined and compartmented environments. This has inspired scientists to develop spatially micro- and nanoreactors by 'bottom-up' approaches in order to improve different processes in comparison to solution, in terms of kinetics, selectivity or processability. In this respect, investigation of photophysical and photochemical processes in soft gel materials has recently emerged as a new and promising research field oriented towards expanding their applications in important areas such as photovoltaics, photocatalysis and phototherapy. Herein, we summarize the few examples dealing with intragel photo-induced physical and chemical processes involving embedded reactants that do not participate in the assembly of the gel network.

  13. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole

    2016-04-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

  14. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Charles-Edwards, E.; Partridge, M.; Flux, G. D.

    2011-11-01

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  15. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study.

    PubMed

    Gear, J I; Charles-Edwards, E; Partridge, M; Flux, G D

    2011-11-21

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  16. Polymer-Mediated Melting in Ultrasoft Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Stiakakis, E.; Vlassopoulos, D.; Likos, C. N.; Roovers, J.; Meier, G.

    2002-10-01

    Star polymers with a high number of arms, f=263, become kinetically trapped when dispersed in an athermal solvent at concentrations above the overlapping one, forming physical gels. We show that the addition of linear chains at different concentrations and molecular weights reduces the modulus of the gel, eventually melting it. We explain this linear polymer-induced gel-liquid transition in terms of effective interactions and star depletion. In the limit of very high linear-chain molecular weight a ``reentrant gelation'' is detected and attributed to bridging flocculation, analogous to that observed in colloidal dispersions.

  17. Dose evaluation of an NIPAM polymer gel dosimeter using gamma index

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Jen; Lin, Jing-Quan; Hsieh, Bor-Tsung; Yao, Chun-Hsu; Chen, Chin-Hsing

    2014-11-01

    An N-isopropylacrylamide (NIPAM) polymer gel dosimeter has great potential in clinical applications. However, its three-dimensional dose distribution must be assessed. In this work, a quantitative evaluation of dose distributions was performed to evaluate the NIPAM polymer gel dosimeter using gamma analysis. A cylindrical acrylic phantom filled with NIPAM gel measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by a 4×4 cm2 square light field. The irradiated gel phantom was scanned using an optical computed tomography (optical CT) scanner (OCTOPUS™, MGS Research, Inc., Madison, CT, USA) at 1 mm resolution. The projection data were transferred to an image reconstruction program, which was written using MATLAB (The MathWorks, Natick, MA, USA). The program reconstructed the image of the optical density distribution using the algorithm of a filter back-projection. Three batches of replicated gel phantoms were independently measured. The average uncertainty of the measurements was less than 1%. The gel was found to have a high degree of spatial uniformity throughout the dosimeter and good temporal stability. A comparison of the line profiles of the treatment planning system and of the data measured by optical CT showed that the dose was overestimated in the penumbra region because of two factors. The first is light scattering due to changes in the refractive index at the edge of the irradiated field. The second is the edge enhancement caused by free radical diffusion. However, the effect of edge enhancement on the NIPAM gel dosimeter is not as significant as that on the BANG gel dosimeter. Moreover, the dose uncertainty is affected by the inaccuracy of the gel container positioning process. To reduce the uncertainty of 3D dose distribution, improvements in the gel container holder must be developed.

  18. Dose calibration optimization and error propagation in polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.

    2014-02-01

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters.

  19. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  20. Coordination polymer gels with important environmental and biological applications.

    PubMed

    Jung, Jong Hwa; Lee, Ji Ha; Silverman, Julian R; John, George

    2013-02-07

    Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.

  1. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application.

    PubMed

    Hu, Chih-Fan; Wang, Jhih-Yu; Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun

    2013-11-08

    This study reports a novel approach to the implementation of 3D carbon nanotube (CNT) interdigitated finger electrodes on flexible polymer, and the detection of strain, bending curvature, tactile force and proximity distance are demonstrated. The merits of the presented CNT-based flexible sensor are as follows: (1) the silicon substrate is patterned to enable the formation of 3D vertically aligned CNTs on the substrate surface; (2) polymer molding on the silicon substrate with 3D CNTs is further employed to transfer the 3D CNTs to the flexible polymer substrate; (3) the CNT-polymer composite (~70 μm in height) is employed to form interdigitated finger electrodes to increase the sensing area and initial capacitance; (4) other structures such as electrical routings, resistors and mechanical supporters are also available using the CNT-polymer composite. The preliminary fabrication results demonstrate a flexible capacitive sensor with 50 μm high CNT interdigitated electrodes on a poly-dimethylsiloxane substrate. The tests show that the typical capacitance change is several dozens of fF and the gauge factor is in the range of 3.44-4.88 for strain and bending curvature measurement; the sensitivity of the tactile sensor is 1.11% N(-1); a proximity distance near 2 mm away from the sensor can be detected.

  2. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application

    NASA Astrophysics Data System (ADS)

    Hu, Chih-Fan; Wang, Jhih-Yu; Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun

    2013-11-01

    This study reports a novel approach to the implementation of 3D carbon nanotube (CNT) interdigitated finger electrodes on flexible polymer, and the detection of strain, bending curvature, tactile force and proximity distance are demonstrated. The merits of the presented CNT-based flexible sensor are as follows: (1) the silicon substrate is patterned to enable the formation of 3D vertically aligned CNTs on the substrate surface; (2) polymer molding on the silicon substrate with 3D CNTs is further employed to transfer the 3D CNTs to the flexible polymer substrate; (3) the CNT-polymer composite (˜70 μm in height) is employed to form interdigitated finger electrodes to increase the sensing area and initial capacitance; (4) other structures such as electrical routings, resistors and mechanical supporters are also available using the CNT-polymer composite. The preliminary fabrication results demonstrate a flexible capacitive sensor with 50 μm high CNT interdigitated electrodes on a poly-dimethylsiloxane substrate. The tests show that the typical capacitance change is several dozens of fF and the gauge factor is in the range of 3.44-4.88 for strain and bending curvature measurement; the sensitivity of the tactile sensor is 1.11% N-1 a proximity distance near 2 mm away from the sensor can be detected.

  3. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    SciTech Connect

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique; Gatto, Claudia Cristina; Bezerra da Costa, Nivan; Oliveira Freire, Ricardo; Chojnacki, Jarosław; Alves Júnior, Severino

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  4. Tour of the World’s Largest 3D Printed Polymer Structure on Display at IBS 2016

    SciTech Connect

    Green, Johney

    2016-01-22

    ORNL’s Johney Green guides a Periscope tour of the 3D printed house and vehicle demonstration called AMIE (Additive Manufacturing Integrated Energy) during the International Builders’ Show 2016 in Las Vegas. See the world’s largest 3D printed polymer structure – made with carbon fiber reinforced ABS plastic, insulated with next-generation vacuum insulation panels, and outfitted with a micro-kitchen by GE Appliances – that was designed to be powered by a 3D printed utility vehicle using bidirectional wireless power technology. Learn more about AMIE at https://www.youtube.com/watch?v=RCkQB... and http://www.ornl.gov/amie.

  5. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    PubMed

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents.

  6. Simulation of Polymer Physical Gel With Platelet Fillers

    NASA Astrophysics Data System (ADS)

    Xu, Di; Gerssape, Dilip

    Platelet filler such as clays have superior effects on the properties of polymer gels. We used molecular dynamic simulations to study platelet filled composite gels system, in which small hexagonal disks simulate the platelets and gelation is due to short-range attraction between end-monomers and platelets. The properties of platelet filled composites are studied as a function of filler concentration. The mechanism of gelation was found similar to those of pure polymer gels; the polymers and platelets formed organic-inorganic networks, which percolate at high enough filler concentration. It was observed platelets aggregated into local intercalation structure, which significantly differs from typical spherical fillers. This unique intercalation structure is examined by radial distribution function and ordering parameters. We discussed how intercalation would affect the properties of the platelet composites by comparing them with spherical fillers.

  7. Electrocatalysis of CO2 Reduction in Brush Polymer Ion Gels.

    PubMed

    McNicholas, Brendon J; Blakemore, James D; Chang, Alice B; Bates, Christopher M; Kramer, Wesley W; Grubbs, Robert H; Gray, Harry B

    2016-09-07

    The electrochemical characterization of brush polymer ion gels containing embedded small-molecule redox-active species is reported. Gels comprising PS-PEO-PS triblock brush polymer, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm-TFSI), and some combination of ferrocene (Fc), cobaltocenium (CoCp2(+)), and Re(bpy)(CO)3Cl (1) exhibit diffusion-controlled redox processes with diffusion coefficients approximately one-fifth of those observed in neat BMIm-TFSI. Notably, 1 dissolves homogeneously in the interpenetrating matrix domain of the ion gel and displays electrocatalytic CO2 reduction to CO in the gel. The catalytic wave exhibits a positive shift versus Fc(+/0) compared with analogous nonaqueous solvents with a reduction potential 450 mV positive of onset and 90% Faradaic efficiency for CO production. These materials provide a promising and alternative approach to immobilized electrocatalysis, creating numerous opportunities for application in solid-state devices.

  8. The use of gel dosimetry to measure the 3D dose distribution of a 90Sr/90Y intravascular brachytherapy seed.

    PubMed

    Massillon-Jl, G; Minniti, R; Mitch, M G; Maryanski, M J; Soares, C G

    2009-03-21

    Absorbed dose distributions in 3D imparted by a single (90)Sr/(90)Y beta particle seed source of the type used for intravascular brachytherapy were investigated. A polymer gel dosimetry medium was used as a dosemeter and phantom, while a special high-resolution laser CT scanner with a spatial resolution of 100 microm in all dimensions was used to quantify the data. We have measured the radial dose function, g(L)(r), observing that g(L)(r) increases to a maximum value and then decreases as the distance from the seed increases. This is in good agreement with previous data obtained with radiochromic film and thermoluminescent dosemeters (TLDs), even if the TLDs underestimate the dose at distances very close to the seed. Contrary to the measurements, g(L)(r) calculated through Monte Carlo simulations and reported previously steadily decreases without a local maximum as a function of the distance from the seed. At distances less than 1.5 mm, differences of more than 20% are observed between the measurements and the Monte Carlo calculations. This difference could be due to a possible underestimation of the energy absorbed into the seed core and encapsulation in the Monte Carlo simulation, as a consequence of the unknown precise chemical composition of the core and its respective density for this seed. The results suggest that g(L)(r) can be measured very close to the seed with a relative uncertainty of about 1% to 2%. The dose distribution is isotropic only at distances greater than or equal to 2 mm from the seed and is almost symmetric, independent of the depth. This study indicates that polymer gel coupled with the special small format laser CT scanner are valid and accurate methods for measuring the dose distribution at distances close to an intravascular brachytherapy seed.

  9. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  10. 3D printing for the design and fabrication of polymer-based gradient scaffolds.

    PubMed

    Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P

    2017-03-22

    To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them.

  11. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  12. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    NASA Astrophysics Data System (ADS)

    Hoshi, Toru; Matsuno, Ryosuke; Sawaguchi, Takashi; Konno, Tomohiro; Takai, Madoka; Ishihara, Kazuhiko

    2008-11-01

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties.

  13. Application of polymer-gel dosimetry in stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Novotny, J., Jr.; Spevacek, V.; Dvorak, P.; Hrbacek, J.; Novotny, J.; Tlachacova, D.; Schmitt, M.; Vymazal, J.; Tintera, J.; Cechak, T.

    2004-01-01

    Stereotactic irradiation with the Leksell gamma knife (Elekta Instrument AB, Stockholm, Sweden) is one of the primary methods used for the stereotactic radiosurgery treatment of intracranial lesions. To assure the quality of the whole treatment procedure a proper dosimetric system is required. The polymer-gel dosimeter evaluated by nuclear magnetic resonance (NMR) is a promising tool to satisfy this requirement. The purpose of this study was to investigate the use of polymer-gel dosimeter as a dosimetric tool for the quality control of stereotactic radiosurgery procedures performed by the Leksell gamma knife.

  14. Tensin 2 modulates cell contractility in 3D collagen gels through the RhoGAP DLC1.

    PubMed

    Clark, Katherine; Howe, Jonathan D; Pullar, Christine E; Green, J Angelo; Artym, Vira V; Yamada, Kenneth M; Critchley, David R

    2010-03-01

    Cytoskeletal proteins of the tensin family couple integrins to the actin cytoskeleton. They are found in both focal adhesions and the fibrillar adhesions formed between cells and the fibronectin matrix. There are four tensin genes which encode three large (approximately 200 kDa) tensin isoforms (tensin 1, 2, 3) and one short isoform (cten). However, the subcellular localization and function of the individual isoforms is poorly understood. Using human foreskin fibroblasts (HFFs), and imaging on both fixed and live cells, we show that GFP-tensin 2 is enriched in dynamic focal adhesions at the leading edge of the cell, whereas GFP-tensin 3 translocates rearward, and is enriched in fibrillar adhesions. To investigate the possible role of tensins in cell-matrix remodeling, we used siRNAs to knockdown each tensin isoform. We discovered that tensin 2 knockdown significantly reduced the ability of HFFs to contract 3D collagen gels, whilst no effect on fibronectin fibrillogenesis was observed. This inhibition of collagen gel contraction was associated with a substantial reduction in Rho activity, and it was reversed by depletion of DLC1, a RhoGAP that binds to tensin in focal adhesions. These findings suggest that focal adhesion-localized tensin 2 negatively regulates DLC1 to permit Rho-mediated actomyosin contraction and remodeling of collagen fibers.

  15. Conformational Properties of Polymers and Gels

    NASA Astrophysics Data System (ADS)

    Majid, Imtiaz

    A wide range of connectivity problems in critical phenomena are studied by Monte Carlo and Series Expansion methods. In particular we focus on the conformational properties of linear and branched polymers, modelling these systems by self-avoiding walks and lattice animals respectively. We incorporate corrections to leading scaling behavior and thereby obtain very accurate estimates of the correlation length exponent of the above models in two and three dimensions. Specifically, we identify problems in series analysis experienced by previous researchers in the field and resolve several controversies concerning the values of the critical exponents. Furthermore, we introduce a new model for linear polymer growth that describes more appropriately than the self-avoiding walk model, the growth of a linear polymer chain. For this model, we construct a mean field theory of the Flory type and carry out extensive Monte Carlo and series enumeration studies confirming, roughly, the prediction of the Flory theory. Finally we show, subject to plausible assumptions, that such a model corresponds to the problem of a linear polymer at its theta point. Monte Carlo simulations indicate that data are indeed consistent with such a picture.

  16. Rheology and Relaxation Timescales of ABA Triblock Polymer Gels

    NASA Astrophysics Data System (ADS)

    Peters, Andrew; Lodge, Timothy

    When dissolved in a midblock selective solvent, ABA polymers form gels composed of aggregated end block micelles bridged by the midblocks. While much effort has been devoted to the study of the structure of these systems, the dynamics of these systems has received less attention. We examine the underlying mechanism of shear relaxation of ABA triblock polymer gels, especially as a function of chain length, composition, and concentration. Recent work using time-resolved small-angle neutron scattering of polystyrene (PS)-block-poly(ethylene-alt-propylene) (PEP) in squalane has elucidated many aspects of the dynamics of diblock chain exchange. By using rheology to study bulk relaxation phenomena of the triblock equivalent, PS-PEP-PS, we apply the knowledge gained from the chain exchange studies to bridge the gap between the molecular and macroscopic relaxation phenomena in PS-PEP-PS triblock gels.

  17. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  18. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  19. Creating Reconfigurable Materials Using ``Colonies'' of Oscillating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna

    2013-03-01

    Species ranging from single-cell organisms to social insects can undergo auto-chemotaxis, where the entities move towards a chemo-attractant that they themselves emit. This mode of signaling allows the organisms to form large-scale structures. Using computational modeling, we show that millimeter-sized polymer gels can display similar auto-chemotaxis. In particular, we demonstrate that gels undergoing the self-oscillating Belousov-Zhabotinsky (BZ) reaction not only respond to a chemical signal from the surrounding solution, but also emit this signal and thus, multiple gel pieces can spontaneously self-aggregate. We focus on the collective behavior of ``colonies'' of BZ gels and show that communication between the individual pieces critically depends on all the neighboring gels. We isolate the conditions at which the BZ gels can undergo a type of self-recombining: if a larger gel is cut into distinct pieces that are moved relatively far apart, then their auto-chemotactic behavior drives them to move and autonomously recombine into a structure resembling the original, uncut sample. These findings reveal that the BZ gels can be used as autonomously moving building blocks to construct multiple structures and thus, provide a new route for creating dynamically reconfigurable materials.

  20. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  1. Counting primary loops in polymer gels

    PubMed Central

    Zhou, Huaxing; Woo, Jiyeon; Cok, Alexandra M.; Wang, Muzhou; Olsen, Bradley D.; Johnson, Jeremiah A.

    2012-01-01

    Much of our fundamental knowledge related to polymer networks is built on an assumption of ideal end-linked network structure. Real networks invariably possess topological imperfections that negatively affect mechanical properties; modifications of classical network theories have been developed to account for these defects. Despite decades of effort, there are no known experimental protocols for precise quantification of even the simplest topological network imperfections: primary loops. Here we present a simple conceptual framework that enables primary loop quantification in polymeric materials. We apply this framework to measure the fraction of primary loop junctions in trifunctional PEG-based hydrogels. We anticipate that the concepts described here will open new avenues of theoretical and experimental research related to polymer network structure. PMID:23132947

  2. Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.

    PubMed

    Yan, Liang; Yin, Yuli; Lv, Piaopiao; Zhang, Zhaohui; Wang, Jing; Long, Fang

    2016-04-20

    A novel three-dimensional (3D) magnetic chlorogenic acid (CGA) imprinted polymer (MMIP) was prepared with novel carbon hybrid nanocomposite as the carrier, chlorogenic acid as the template molecule, and methacrylic acid as the functional monomer. The 3D MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, and UV spectrometry in detail. The results showed that the imprinted layer was attached successfully on the surface of a 3D magnetic carbon hybrid nanocomposite. The adsorption performance of the 3D MMIPs was investigated, and the results showed that the 3D MMIPs exhibited high adsorption capacity and fast adsorption rate toward CGA with a maximum adsorption capacity of 10.88 mg g(-1). The extraction conditions involving washing solvent, the pH of eluent solvent, elution volume, and desorption time were also investigated in detail. Combined with high-performance liquid chromatography, the 3D MMIPs have been applied to successfully extract CGA from Eucommia leaf extract samples.

  3. Supramolecular self-assembly of 1D and 3D heterometallic coordination polymers with triruthenium building blocks.

    PubMed

    Chan, Sharon Lai-Fung; Gao, Song; Chui, Stephen Sin-Yin; Shek, Lam; Huang, Jie-Sheng; Che, Chi-Ming

    2012-09-03

    Ru(3)(TSA)(6) (1; H(2)TSA=2-thiosalicylic acid), which bears six peripheral carboxylate groups and was isolated in the form [NEt(4)](1.5)[Ru(3)(HTSA)(2)(TSA)(4)](OAc)(0.5)·3.5H(2)O, serves as a building block for assembly of heterometallic coordination polymers. Treatment of 1 with [Fe(acac)(3)] (acac=acetylacetonate) in EG/H(2)O (EG=ethylene glycol) afforded 1D Ru(3)-Fe coordination polymer 2 by means of the connection of the building block 1 through iron centers. Treatment of 1 with MnCl(2) in EG resulted in the formation of 1D Ru(3)-Mn(3) coordination polymer 3, which features self-assembled polynuclear linking units Mn(3)(OCH(2)CH(2)O)(3), each of which contains a planar Mn(3)O(3) ring. By treating 1 with Gd(NO(3))(3) and NaHCO(3) in EG, a 3D Ru(3)-Gd(6) coordination polymer 4 was obtained; this 3D coordination polymer features unprecedented Gd(6)(μ(3)-CO(3))(4) units. The magnetic properties of 1-4, along with DFT calculations on the electronic structure of 1, are also described.

  4. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  5. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  6. Structure and Properties of Polysaccharide Based BioPolymer Gels

    NASA Astrophysics Data System (ADS)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  7. Tour of the World’s Largest 3D Printed Polymer Structure on Display at IBS 2016

    ScienceCinema

    Green, Johney

    2016-07-12

    ORNL’s Johney Green guides a Periscope tour of the 3D printed house and vehicle demonstration called AMIE (Additive Manufacturing Integrated Energy) during the International Builders’ Show 2016 in Las Vegas. See the world’s largest 3D printed polymer structure – made with carbon fiber reinforced ABS plastic, insulated with next-generation vacuum insulation panels, and outfitted with a micro-kitchen by GE Appliances – that was designed to be powered by a 3D printed utility vehicle using bidirectional wireless power technology. Learn more about AMIE at https://www.youtube.com/watch?v=RCkQB... and http://www.ornl.gov/amie.

  8. Branched Polymers for Enhancing Polymer Gel Strength and Toughness

    DTIC Science & Technology

    2013-02-01

    casualty care; prosthetics; bio- inspired materials; responsive coatings; and tissue simulants for ballistics testing. In particular, we have focused on...represent bio- inspired surrogates for these biotissues and are typically very soft elastomers composed of physically or chemically crosslinked polymer...robotics, textiles, sensors, membranes, and prosthetics; bio- inspired materials; and soft tissue surrogates for ballistics testing. While the potential

  9. All-solid-state proton battery using gel polymer electrolyte

    SciTech Connect

    Mishra, Kuldeep; Pundir, S. S.; Rai, D. K.

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10−4 S cm{sup −1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}⋅7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg−1 for low current drain.

  10. 3D printing of mineral-polymer bone substitutes based on sodium alginate and calcium phosphate.

    PubMed

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Komlev, Vladimir S; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the "ink"). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

  11. 3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

    PubMed Central

    Egorov, Aleksey A; Fedotov, Alexander Yu; Mironov, Anton V; Popov, Vladimir K; Zobkov, Yury V

    2016-01-01

    We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the “ink”). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 μm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions. PMID:28144529

  12. Optical laser scanning of a leucodye micelle gel: preliminary results of a 3D dose verification of an IMRT treatment for a brain tumor

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; De Deene, Y.

    2013-06-01

    In the present study an in-house developed leucodye micelle gel was used in combination with an in-house developed optical laser scanner for the 3D dose verification of an IMRT treatment of a pituitary adenoma. In an initial prospective study, a gel measured depth dose distribution of a square 6 MV photon beam was compared with an ion chamber measurement. In a second experiment, the gel and scanner were used to verify a clinical dose distribution on a recently installed linear accelerator. The calibration procedure is identified as the major source of dose deviations.

  13. Fabrication of a polymer battery based on polypyrrole electrodes and a polymer gel electrolyte

    SciTech Connect

    Killian, J.G.; Coffey, B.M.; Poehler, T.O.; Searson, P.C.

    1995-12-31

    The electronic conductivity and redox behavior of conjugated polymers make them suitable for charge storage applications. The authors present preliminary results for an all polymer system consisting of a p-doped polypyrrole cathode and pseudo n-doped polypyrrole/polystyrenesulfonate anode. Using a thin film construction technique, electrodes were assembled into cells using a polymer gel electrolyte based on polyacrylonitrile, which has a high room temperature conductivity. Charge capacities of 13 mAh g{sup {minus}1} based on the mass of the electroactive polymer in the cathode have been obtained for over 100 cycles.

  14. A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator

    NASA Astrophysics Data System (ADS)

    Alblalaihid, Khalid; Overton, James; Lawes, Simon; Kinnell, Peter

    2017-04-01

    This paper presents a simple fabrication process that allows for isolated metal tracks to be easily defined on the surface of 3D printed micro-scale polymer components. The process makes use of a standard low cost conformal sputter coating system to quickly deposit thin film metal layers on to the surface of 3D printed polymer micro parts. The key novelty lies in the inclusion of inbuilt masking features, on the surface of the polymer parts, to ensure that the conformal metal layer can be effectively broken to create electrically isolated metal features. The presented process is extremely flexible, and it is envisaged that it may be applied to a wide range of sensor and actuator applications. To demonstrate the process a polymer micro-scale gripper with an inbuilt thermal actuator is designed and fabricated. In this work the design methodology for creating the micro-gripper is presented, illustrating how the rapid and flexible manufacturing process allows for fast cycle time design iterations to be performed. In addition the compatibility of this approach with traditional design and analysis techniques such as basic finite element simulation is also demonstrated with simulation results in reasonable agreement with experimental performance data for the micro-gripper.

  15. 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films.

    PubMed

    Giselbrecht, S; Gietzelt, T; Gottwald, E; Trautmann, C; Truckenmüller, R; Weibezahn, K F; Welle, A

    2006-09-01

    We describe a new technology based on thermoforming as a microfabrication process. It significantly enhances the tailoring of polymers for three dimensional tissue engineering purposes since for the first time highly resolved surface and bulk modifications prior to a microstructuring process can be realised. In contrast to typical micro moulding techniques, the melting phase is avoided and thus allows the forming of pre-processed polymer films. The polymer is formed in a thermoelastic state without loss of material coherence. Therefore, previously generated modifications can be preserved. To prove the feasibility of our newly developed technique, so called SMART = Substrate Modification And Replication by Thermoforming, polymer films treated by various polymer modification methods, like UV-based patterned films, and films modified by the bombardment with energetic heavy ions, were post-processed by microthermoforming. The preservation of locally applied specific surface and bulk features was demonstrated e.g. by the selective adhesion of cells to patterned microcavity walls.

  16. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  17. Morphological changes of gel-type functional polymers after intermatrix synthesis of polymer stabilized silver nanoparticles.

    PubMed

    Bastos-Arrieta, Julio; Muñoz, Maria; Ruiz, Patricia; Muraviev, Dmitri N

    2013-05-29

    This paper reports the results of intermatrix synthesis (IMS) of silver metal nanoparticles (Ag-MNPs) in Purolite C100E sulfonic ion exchange polymer of the gel-type structure. It has been shown that the surface morphology of the initial MNP-free polymer is absolutely smooth, but it dramatically changes after the kinetic loading of Ag on the polymer and then IMS of Ag-MNPs. These morphological changes can be explained by the interaction of Ag-NPs with the polymer chains, leading to a sort of additional cross-linking of the polymer. As a result, the modification of the gel-type matrix with Ag-MNPs leads to the increase of the matrix cross-linking, which results in the increase of its surface area and the appearance of nanoporosity in the polymer gel. Ag-MNPs are located near the polymer surface and do not form any visible agglomerations. All these features of the nanocomposites obtained are important for their practical applications in catalysis, sensor applications, and bactericide water treatment.

  18. Structural and cooperative length scales in polymer gels.

    PubMed

    Géraud, Baudouin; Jørgensen, Loren; Ybert, Christophe; Delanoë-Ayari, Hélène; Barentin, Catherine

    2017-01-01

    Understanding the relationship between the material structural details, the geometrical confining constraints, the local dynamical events and the global rheological response is at the core of present investigations on complex fluid properties. In the present article, this problem is addressed on a model yield stress fluid made of highly entangled polymer gels of Carbopol which follows at the macroscopic scale the well-known Herschel-Bulkley rheological law. First, performing local rheology measurements up to high shear rates ([Formula: see text] s(-1))and under confinement, we evidence unambiguously the breakdown of bulk rheology associated with cooperative processes under flow. Moreover, we show that these behaviors are fully captured with a unique cooperativity length [Formula: see text] over the whole range of experimental conditions. Second, we introduce an original optical microscopy method to access structural properties of the entangled polymer gel in the direct space. Performing image correlation spectroscopy of fluorophore-loaded gels, the characteristic size D of carbopol gels microstructure is determined as a function of preparation protocol. Combining both dynamical and structural information shows that the measured cooperative length [Formula: see text] corresponds to 2-5 times the underlying structural size D, thus providing a strong grounding to the "Shear Transformation Zones" modeling approach.

  19. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  20. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application.

    PubMed

    Peng, Qingyu; Wei, Hongqiu; Qin, Yuyang; Lin, Zaishan; Zhao, Xu; Xu, Fan; Leng, Jinsong; He, Xiaodong; Cao, Anyuan; Li, Yibin

    2016-10-27

    Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.6 MPa) during shape recovery. We further studied the construction of a double-layer composite structure for bidirectional actuation, in which the shape change is dominated by the temperature-dependent exerting force from the top and bottom layer, alternately. An inchworm-type robot is demonstrated whose locomotion is realized by such bidirectional shape memory. Our large stroke shape-memory nanocomposites have promising applications in many areas including artificial muscles and bionic robots.

  1. Adaptive mean filtering for noise reduction in CT polymer gel dosimetry

    SciTech Connect

    Hilts, Michelle; Jirasek, Andrew

    2008-01-15

    X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR {approx}20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR {approx}5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.

  2. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    PubMed

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  3. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  4. Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Danilevičius, P.; Žukauskas, A.; Bičkauskaitė, G.; Purlys, V.; Rutkauskas, M.; Gertus, T.; Paipulas, D.; Matukaitė, J.; Baltriukienė, D.; Malinauskas, M.

    2011-01-01

    A multi-photon polymerization system has been designed based on a pulsed irradiation light source (diode-pumped solid state femtosecond laser Yb:KGW, 300 fs, 1030 nm, 1-200 kHz) in combination with large working area and high precision linear motor driven stages (100×100×50 mm3). The system is intended for high resolution and throughput 3D micro- and nanofabrication and enables manufacturing the polymeric templates up to 1 cm2 areas with sub-micrometer resolution. These can be used for producing 3D artificial polymeric scaffolds to be applied for growing cells, specifically, in the tissue engineering. The bio-compatibility of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials is evaluated experimentally in vitro. Variously sized and shaped polymeric scaffolds of biocompatible photopolymers with intricate 3D geometry were successfully fabricated. Proliferation tests for adult rabbit myogenic stem cells have shown the applicability of artificial scaffolds in biomedicine practice.

  5. Gel and free solution electrophoresis of variably charged polymers.

    PubMed

    Hoagland, D A; Smisek, D L; Chen, D Y

    1996-06-01

    To assess the role of charge density on polyelectrolyte mobility, both gel and free solution electrophoresis experiments are performed on poly(acrylic acid) and acrylic acid/acrylamide copolymers. Control of charge density for poly-(acrylic acid) is achieved through solution pH, while control for acrylic acid/ acrylamide copolymers is obtained through chain composition. In either approach, the effective fraction of charged repeat units can be varied from 0 to 100% without a major interruption of solvent quality. Polyelectrolyte mobility in the presence of a monovalent counterion is observed to rise linearly with charge density when this density is low. A transition to charge density independence then occurs over a surprisingly narrow window of charge density. For vinyl polymers of the sort examined here, the transition occurs when 35-40% of the repeat units are charged. These observations are qualitatively consistent with the free solution electrophoresis model proposed by Manning and several previous data sets. An unexpected overlap of normalized gel and free solution data reveals that the charge density exerts a comparable influence in either environment. Results from the present study help define the experimental conditions in which electrophoresis can provide polymer separation by charge density and those in which the method can provide polymer separation by molecular weight.

  6. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration

    PubMed Central

    Yin, Bo; Ma, Pei; Chen, Jun; Wang, Hai; Wu, Gui; Li, Bo; Li, Qiang; Huang, Zhifeng; Qiu, Guixing; Wu, Zhihong

    2016-01-01

    Porous titanium is a kind of promising material for bone substitution, while its bio-inert property results in demand of modifications to improve the osteointegration capacity. In this study, gelatin (Gel) and nano-hydroxyapatite (nHA) were used to construct 3D micro-scaffolds in the pores of porous titanium in the ratios of Gel:nHA = 1:0, Gel:nHA = 1:1, and Gel:nHA = 1:3, respectively. Cell attachment and proliferation, and gene and protein expression levels of osteogenic markers were evaluated in MC3T3-E1 cells, followed by bone regeneration assessment in a rabbit radius defect model. All hybrid scaffolds with different composition ratio were found to have significant promotional effects in cell adhesion, proliferation and differentiation, in which the group with Gel:nHA = 1:1 showed the best performance in vitro, as well as the most bone regeneration volume in vivo. This 3D micro-scaffolds modification may be an innovative method for porous titanium ornamentation and shows potential application values in clinic. PMID:27092492

  7. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  8. Fracture energy of polymer gels with controlled network structures

    NASA Astrophysics Data System (ADS)

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-01

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  9. Fracture energy of polymer gels with controlled network structures.

    PubMed

    Akagi, Yuki; Sakurai, Hayato; Gong, Jian Ping; Chung, Ung-il; Sakai, Takamasa

    2013-10-14

    We have investigated the fracture behaviors of tetra-arm polyethylene glycol (Tetra-PEG) gels with controlled network structures. Tetra-PEG gels were prepared by AB-type crosslink-coupling of mutually reactive tetra-arm prepolymers with different concentrations and molecular weights. This series of controlled network structures, for the first time, enabled us to quantitatively examine the Lake-Thomas model, which is the most popular model predicting fracture energies of elastomers. The experimental data showed good agreement with the Lake-Thomas model, and indicated a new molecular interpretation for the displacement length (L), the area around a crack tip within which the network strands are fully stretched. L corresponded to the three times of end-to-end distance of network strands, regardless of all parameters examined. We conclude that the Lake-Thomas model can quantitatively predict the fracture energy of polymer network without trapped entanglements, with the enhancement factor being near 3.

  10. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters.

    PubMed

    Mattea, Facundo; Romero, Marcelo R; Vedelago, José; Quiroga, Andrés; Valente, Mauro; Strumia, Miriam C

    2015-06-01

    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution in diagnostic and therapeutic medical applications. But, even in systems where the 3D structure is usually maintained for long periods of time after irradiation, it is still not possible to eliminate the diffusion of the different species in the regions of dose gradients within the gel. As a consequence, information of the dose loses quality over time. In the pursuit of a solution and to improve the understanding of this phenomenon a novel system based on itaconic acid and N-N'-methylene-bisacrylamide (BIS) is hereby proposed. Effects of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species was studied. In this study, one of the carboxylic groups of the itaconic acid molecule was modified with aniline to obtain molecules with similar reactivity but different molecular sizes. Then, dosimeters based on these modified species and on the original ITA molecules were irradiated in an X-ray tomography apparatus at different doses up to 173Gy. Afterwards, the resulting dosimeters were characterized by Raman spectroscopy and optical absorbance in order to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the post irradiation diffusion.

  11. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM

    PubMed Central

    Hartley, Jonathan M.; Zhang, Rui; Gudheti, Manasa; Yang, Jiyuan; Kopeček, Jindřich

    2016-01-01

    We used a single-molecule localization technique called direct stochastic optical reconstruction microscopy (dSTORM) to quantify both colocalization and spatial distribution on a cellular level for two conceptually different N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates. Microscopy images were acquired of entire cells with resolutions as high as 25 nm revealing the nanoscale distribution of the fluorescently labeled therapeutic components. Drug-free macromolecular therapeutics consisting of two self-assembling nanoconjugates showed slight increase in nanoclusters on the cell surface with time. Additionally, dSTORM provided high resolution images of the nanoscale organization of the self-assembling conjugates at the interface between two cells. A conjugate designed for treating ovarian cancer showed that the model drug (Cy3) and polymer bound to Cy5 were colocalized at an early time point before the model drug was enzymatically cleaved from the polymer. Using spatial descriptive statistics it was found that the drug was randomly distributed after 24 h while the polymer bound dye remained in clusters. Four different fluorescent dyes were used and two different therapeutic systems were tested to demonstrate the versatility and possible general applicability of dSTORM for use in studying drug delivery systems. PMID:26855050

  12. Characterisation of PRESAGE: A new 3-D radiochromic solid polymer dosemeter for ionising radiation.

    PubMed

    Adamovics, J; Maryanski, M J

    2006-01-01

    For the past 50 years there has been interest in developing 3-D dosemeters for ionising radiation. Particular emphasis has been put on those dosemeters that change their optical properties in proportion to the absorbed dose. Many of the dosemeters that have been evaluated have had limitations such as lack of transparency, diffusion of the image of the dose distribution or poor stability of baseline optical density. Many of these performance limitations have been overcome by the development of PRESAGE, an optically clear polyurethane-based radiochromic 3-D dosemeter. The solid PRESAGE dosemeter is formulated with a free radical initiator and a leuco dye and it does not require a container to maintain its shape. The polyurethane matrix is tissue equivalent and prevents the diffusion of the dose distribution image. There is a linear dose-response, which is independent of both photon energy and dose rate. Simple precautions such as preventing long-term exposure to additional ionising radiation including ultraviolet and controlling storage temperatures prevent the bleaching of the radiochromic response field within the irradiated dosemeter.

  13. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  14. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; ...

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  15. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    SciTech Connect

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  16. Imaging of Absorbed Dose in Radiotherapy by a Polymer Gel Dosimeter

    NASA Astrophysics Data System (ADS)

    Vanossi, E.; Gambarini, G.; Carrara, M.; Mariani, M.; Negri, A.

    2008-06-01

    Optical imaging of polymer gel dosimeters in form of layers was investigated to enquire their reliability for in-phantom dose measurements in photon or thermal neutron fields. The obtained dose measurements were compared with those achieved by means of Fricke gel dosimeters. Reliability of Fricke gel dosimeters was confirmed, whereas it has been shown that a conspicuous improvement of the adopted polymer gel dosimeters is necessary.

  17. 3D printing of soft and wet systems benefit from hard-to-soft transition of transparent shape memory gels (presentation video)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Gong, Jin; Makino, Masato; Kabir, Md. Hasnat

    2014-04-01

    Recently we successfully developed novel transparent shape memory gels. The SMG memorize their original shapes during the gelation process. In the room temperature, the SMG are elastic and show plasticity (yielding) under deformation. However when heated above about 50˚C, the SMG induce hard-to-soft transition and go back to their original shapes automatically. We focus on new soft and wet systems made of the SMG by 3-D printing technology.

  18. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-06

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  19. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.

    PubMed

    Jeong, Gi Seok; Kwon, Gu Han; Kang, Ah Ran; Jung, Bo Young; Park, Yongdoo; Chung, Seok; Lee, Sang-Hoon

    2011-08-01

    Cell migration through the extracellular matrix (ECM) is one of the key features for physiological and pathological processes such as angiogenesis, cancer metastasis, and wound healing. In particular, the quantitative assay of endothelial cell migration under the well-defined three dimensional (3D) microenvironment is important to analyze the angiogenesis mechanism. In this study, we report a microfluidic assay of endothelial cell sprouting and migration into an interpenetrating polymer semi-network HA-Collagen (SIPNs CH) hydrogel as ECM providing an enhanced in vivo mimicking 3D microenvironment to cells. The microfluidic chip could provide a well-controlled gradient of growth factor to cells, whereas the hydrogel could mimic a well-defined 3D microenvironment in vivo. (In addition/Furthermore, the microfluidic chip gives a well-controlled gradient of growth factor to cells) For this reason, three types of hydrogel, composed of semi-interpenetrating networks of collagen and hyaluronic acid were prepared, and firstly we proved the role of the hydrogel in endothelial cell migration. The diffusion property and swelling ratio of the hydrogel were characterized. It modulated the migration of endothelial cells in quantified manner, also being influenced by additional synthesis of Matrix metalloproteinase(MMP)-sensitive remodeling peptides and Arginine-glycine-lycinee (RGD) cell adhesion peptides. We successfully established a novel cell migration platform by changing major determinants such as ECM material under biochemical synthesis and under growth factor gradients in a microfluidic manner.

  20. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  1. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  2. Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds.

    PubMed

    Pérez-Ramírez, Ursula; López-Orive, Jesús Javier; Arana, Estanislao; Salmerón-Sánchez, Manuel; Moratal, David

    2015-01-01

    Anisotropy is one of the most meaningful determinants of biomechanical behaviour. This study employs micro-computed tomography (μCT) and image techniques for analysing the anisotropy of regenerative medicine polymer scaffolds. For this purpose, three three-dimensional anisotropy evaluation image methods were used: ellipsoid of inertia (EI), mean intercept length (MIL) and tensor scale (t-scale). These were applied to three patterns (a sphere, a cube and a right prism) and to two polymer scaffold topologies (cylindrical orthogonal pore mesh and spherical pores). For the patterns, the three methods provided good results. Regarding the scaffolds, EI mistook both topologies (0.0158, [-0.5683; 0.6001]; mean difference and 95% confidence interval), and MIL showed no significant differences (0.3509, [0.0656; 0.6362]). T-scale is the preferable method because it gave the best capability (0.3441, [0.1779; 0.5102]) to differentiate both topologies. This methodology results in the development of non-destructive tools to engineer biomimetic scaffolds, incorporating anisotropy as a fundamental property to be mimicked from the original tissue and permitting its assessment by means of μCT image analysis.

  3. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    SciTech Connect

    Qin Junsheng; Du Dongying; Chen Lei; Sun Xiuyun; Lan Yaqian; Su Zhongmin

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studied in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.

  4. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  5. Sol-gel derived polymer composites for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Han, Kuo

    conduction are still open issues to be addressed before full potential can be realized. Herein we report the percolative composites based on ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) as the matrix and sol-gel derived SiO2 coated reduced graphene oxide nanosheets as the filler. By capitalizing on the SiO2 surface layers which have high electrical resistivity and breakdown strength, the composites exhibit superior dielectric performance as compared to the respective composites containing bare reduced graphene oxide nanosheet fillers. In addition to greatly reduced dielectric loss, little change in dielectric loss has been observed within medium frequency range (ie. 300 KHz-3 MHz) in the prepared composites even with a filler concentration beyond the percolation threshold, indicating significantly suppressed energy dissipation and the feasibility of using the conductor-insulator composites beyond the percolation threshold. Moreover, remarkable breakdown strength of 80 MV/m at the percolation threshold has been achieved in the composite, which far exceeds those of conventional percolative composites (lower than 0.1 MV/m in most cases) and thus enables the applications of the percolative composites at high electric fields. This work offers a new avenue to the percolative polymer composites exhibiting high permittivity, reduced loss and excellent breakdown strength for electrical energy storage applications. Flexible piezoelectric materials have attracted extensive attention because they can provide a practical way to scavenge energy from the environment and motions. It also provides the possibility to fabricate wearable and self-powered energy generator for powering small electronic devices. In the dissertation a new composite including BTO 3D structure and PDMS has been successfully fabricated using the sol-gel process. The structure, flexibility, dielectric and piezoelectric properties have been well studied. The new material shows a high g33 value of

  6. TU-C-BRE-04: 3D Gel Dosimetry Using ViewRay On-Board MR Scanner: A Feasibility Study

    SciTech Connect

    Zhang, L; Du, D; Green, O; Rodriguez, V; Wooten, H; Xiao, Z; Yang, D; Hu, Y; Li, H

    2014-06-15

    Purpose: MR based 3D gel has been proposed for radiation therapy dosimetry. However, access to MR scanner has been one of the limiting factors for its wide acceptance. Recent commercialization of an on-board MR-IGRT device (ViewRay) may render the availability issue less of a concern. This work reports our attempts to simulate MR based dose measurement accuracy on ViewRay using three different gels. Methods: A spherical BANG gel dosimeter was purchased from MGS Research. Cylindrical MAGIC gel and Fricke gel were fabricated in-house according to published recipes. After irradiation, BANG and MAGIC were imaged using a dual-echo spin echo sequence for T2 measurement on a Philips 1.5T MR scanner, while Fricke gel was imaged using multiple spin echo sequences. Difference between MR measured and TPS calculated dose was defined as noise. The noise power spectrum was calculated and then simulated for the 0.35 T magnetic field associated with ViewRay. The estimated noise was then added to TG-119 test cases to simulate measured dose distributions. Simulated measurements were evaluated against TPS calculated doses using gamma analysis. Results: Given same gel, sequence and coil setup, with a FOV of 180×90×90 mm3, resolution of 3×3×3 mm3, and scanning time of 30 minutes, the simulated measured dose distribution using BANG would have a gamma passing rate greater than 90% (3%/3mm and absolute). With a FOV 180×90×90 mm3, resolution of 4×4×5 mm3, and scanning time of 45 minutes, the simulated measuremened dose distribution would have a gamma passing rate greater than 97%. MAGIC exhibited similar performance while Fricke gel was inferior due to much higher noise. Conclusions: The simulation results demonstrated that it may be feasible to use MAGIC and BANG gels for 3D dose verification using ViewRay low-field on-board MRI scanner.

  7. Assembly of 3D coordination polymers from 2D sheets by [2+2] cycloaddition reaction.

    PubMed

    Medishetty, Raghavender; Tandiana, Rika; Koh, Lip Lin; Vittal, Jagadese J

    2014-01-27

    The synthesis of three 2D interdigitated Zn(II) coordination polymers (CPs), by using three monotopic ligands containing C=C bonds, is reported. Among these, two CPs with 4spy (4-styryl pyridine) and 2F-4spy (a 2'-fluoro derivative of 4spy) ligands showed quantitative formation of cyclobutane rings, thus demonstrating a unique synthetic procedure to synthesize metal-organic frameworks (MOFs) by using this photochemical reaction. Interestingly, these compounds can also be synthesized by mechanochemical grinding procedures by using Zn(OAc)2. In contrast, Zn(NO3)2 did not yield the required product, unlike in the solution route. In addition, compounds with 4vpy (4-vinylpyridine), 4spy and 2F-4spy ligands created different units in the CPs; 4vpy and 2F-4spy furnished paddle wheel units, whereas 4spy yielded tetrahedral Zn(II) repeating units. Furthermore, the change in coordination geometry manifests in the photoluminescence properties, attributed to the difference in charge-transfer and ligand-centered fluorescent phenomenon.

  8. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study

    PubMed Central

    Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris

    2017-01-01

    In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557

  9. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study.

    PubMed

    Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris

    2017-02-24

    In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head's liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts' quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.

  10. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas.

    PubMed

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-28

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.

  11. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells.

    PubMed

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  12. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  13. Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients

    NASA Astrophysics Data System (ADS)

    Sandilos, Panagiotis; Baras, Panagiotis; Georgiou, Evangelos; Dardoufas, Konstantinos; Karaiskos, Pantelis; Papagiannis, Panagiotis; Paschalis, Theodoros; Tatsis, Elias; Torrens, Michael; Vlahos, Lampros

    2006-12-01

    Polymer gels constitute water equivalent integrating detectors, which, combined with magnetic resonance imaging (MRI), can provide accurate three dimensional (3D) dose distributions in contemporary radiotherapy applications where the small field dimensions and steep dose gradients induce limitations to conventional dosimeters. One of the main obstacles for adapting the method for routine use in the clinical setting is the cost effectiveness of the MRI readout method. Currently, optimized Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo imaging pulse sequences are commonly used which however result in long imaging times. This work evaluates the efficiency of 3D, dual-echo, k-space segmented turbo spin echo (TSE) scanning sequences for accurate dosimetry with sub-millimetre spatial resolution in strenuous radiation therapy applications. PABIG polymer gel dosimeters were irradiated with an 192Ir High Dose Rate brachytherapy source, the 4 mm and 8 mm collimator helmets of a gamma knife unit and a custom made x-knife collimator of 1 cm diameter. Profile and dose distribution measurements using TSE are benchmarked against corresponding findings obtained by the commonly used, but time consuming, CPMG sequence as well as treatment planning calculations, Monte Carlo (MC) simulations and film measurements. The implementation of a high Turbo factor was found to provide comparable accuracy, allowing a 64-fold MRI scan acceleration compared to conventional multi-echo sequences. The availability of TSE sequences in typical MRI installations greatly facilitates the introduction of polymer gel dosimetry in the clinical environment as a practicable tool for the determination of full 3D dose distributions in contemporary radiotherapy applications.

  14. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.

    PubMed

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  15. Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Li, Dagang

    2017-03-01

    As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.

  16. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    PubMed Central

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-01-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669

  17. Developing Customized Dental Miniscrew Surgical Template from Thermoplastic Polymer Material Using Image Superimposition, CAD System, and 3D Printing

    PubMed Central

    Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin

    2017-01-01

    This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews. PMID:28280726

  18. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    NASA Astrophysics Data System (ADS)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  19. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms.

  20. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties.

    PubMed

    Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J

    2017-03-06

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  1. Three-dimensional dosimetry of TomoTherapy by MRI-based polymer gel technique.

    PubMed

    Watanabe, Yoichi; Gopishankar, N

    2010-09-14

    Verification of the dose calculation model and the software used for treatment planning is an important step for accurate radiation delivery in radiation therapy. Using BANG3 polymer gel dosimeter with a 3 Tesla magnetic resonance imaging (MRI) scanner, we examined the accuracy of TomoTherapy treatment planning and radiation delivery. We evaluated one prostate treatment case and found the calculated three-dimensional (3D) dose distributions agree with the measured 3D dose distributions with an exception in the regions where the dose was much smaller (25% or less) than the maximum dose (2.5 Gy). The analysis using the gamma-index (3% dose difference and 3 mm distance-to-agreement) for a volume of 12 cm × 11 cm × 9 cm containing the planning target volume showed that the gamma values were smaller than unity for 53% of the voxels. Our measurement protocol and analysis tools can be easily applied to the evaluation of other newer complex radiation delivery techniques, such as intensity-modulated arc therapy, with a reasonably low financial investment.

  2. Investigation of Preparation and Mechanisms of a Dispersed Particle Gel Formed from a Polymer Gel at Room Temperature

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang

    2013-01-01

    A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817

  3. Composite gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  4. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO3), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m(2)g(-1) was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg(-1) in 1.0 M KOH at a scan rate of 5 mV s(-1). Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg(-1) using Nafion binder is obtained under a current density of 1 Ag(-1) by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  5. Graphene tailored polymer gel electrolytes for 9.1%-efficiency quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing

    2017-04-01

    Pursuit of technological implementation with enhanced photoelectric conversion efficiency and power generation ability in the dark is a persistent objective for dye-sensitized solar cells (DSSCs). We launch here three strategies of designing graphene tailored polymer gel electrolytes (PGEs) with an electron-conducting feature, aiming at reserving I-/I3- redox couples into three-dimensional (3D) PGE framework, reducing I3- species within the PGE and shortening the diffusion length of redox couples. The 3D PGE provides framework for I-/I3- diffusion like in a liquid system, whereas graphene experiences to form interconnected channels along polyelectrolyte backbones. The results demonstrate that a power conversion efficiency of 9.1% is yielded on the resultant quasi-solid-state DSSCs by optimizing synthesis strategies.

  6. MRI-based polymer gel dosimetry for validating plans with multiple matrices in Gamma Knife stereotactic radiosurgery.

    PubMed

    Gopishankar, N; Watanabe, Yoichi; Subbiah, Vivekanandhan

    2011-01-31

    One of treatment planning techniques with Leksell GammaPlan (LGP) for Gamma Knife stereotactic radiosurgery (GKSRS) uses multiple matrices with multiple dose prescriptions. Computational complexity increases when shots are placed in multiple matrices with different grid sizes. Hence, the experimental validation of LGP calculated dose distributions is needed for those cases. For the current study, we used BANG3 polymer gel contained in a head-sized glass bottle to simulate the entire treatment process of GKSRS. A treatment plan with three 18 mm shots and one 8 mm shot in separate matrices was created with LGP. The prescribed maximum dose was 8 Gy to three shots and 16 Gy to one of the 18 mm shots. The 3D dose distribution recorded in the gel dosimeter was read using a Siemens 3T MRI scanner. The scanning parameters of a CPMG pulse sequence with 32 equidistant echoes were as follows: TR = 7 s, echo step = 13.6 ms, field-of-view = 256 mm × 256 mm, and pixel size = 1 mm × 1 mm. Interleaved acquisition mode was used to obtain 15 to 45 2-mm-thick slices. Using a calibration relationship between absorbed dose and the spin-spin relaxation rate (R2), we converted R2 images to dose images. MATLAB-based in-house programs were used for R2 estimation and dose comparison. Gamma-index analysis for the 3D data showed gamma values less than unity for 86% of the voxels. Through this study we accomplished the first application of polymer gel dosimetry for a true comparison between measured 3D dose distributions and LGP calculations for plans using multiple matrices for multiple targets.

  7. Polymer gels with associating side chains and their interaction with surfactants

    NASA Astrophysics Data System (ADS)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  8. Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Yun, Ye Sun; Kim, Jin Hee; Lee, Sang-Young; Shim, Eun-Gi; Kim, Dong-Won

    Gel polymer electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and a small amount of additive (vinylene carbonate, fluoroethylene carbonate, and ethylene carbonate) are prepared, and their electrochemical properties are investigated. The cathodic limit of the gel polymer electrolytes can be extended to 0 V vs. Li by the formation of a protective solid electrolyte interphase on the electrode surface. Using these gel polymer electrolytes, lithium metal polymer cells composed of a lithium anode and a LiNi 1/3Co 1/3Mn 1/3O 2 cathode are assembled, and their cycling performances are evaluated at room temperature. The cells show good cycling performance, comparable to that of a cell assembled with gel polymer electrolyte containing standard liquid electrolyte (1.0 M LiPF 6 in ethylene carbonate/diethylene carbonate). Flammability tests and differential scanning calorimetry studies show that the presence of the ionic liquid in the gel polymer electrolyte considerably improves the safety and thermal stability of the cells.

  9. IMPROVED APPROACHES TO DESIGN OF POLYMER GEL TREATMENTS IN MATURE OIL FIELDS: FIELD DEMONSTRATION IN DICKMAN FIELD, NESS COUNTY, KANSAS

    SciTech Connect

    Ronald Fowler

    2004-11-30

    This report describes the results of the one-year project entitled ''Improved Approaches to Design of Polymer Gel Treatments in Mature Oil Fields: Field Demonstration in Dickman Field, Ness County, Kansas''. The project was a 12-month collaboration of Grand Mesa Operating Company (a small independent), TIORCO Inc. (a company focused on improved recovery technology) and the University of Kansas. The study undertook tasks to determine an optimum polymer gel treatment design in Mississippian reservoirs, demonstrate application, and evaluate the success of the program. The project investigated geologic and engineering parameters and cost-effective technologies required for design and implementation of effective polymer gel treatment programs in the Mississippian reservoir in the Midcontinent. The majority of Mississippian production in Kansas occurs at or near the top of the Mississippian section just below the regional sub-Pennsylvanian unconformity and karst surface. Dickman Field with the extremely high water cuts and low recovery factors is typical of Mississippian reservoirs. Producibility problems in these reservoirs include inadequate reservoir characterization, drilling and completion design problems, and most significantly extremely high water cuts and low recovery factors that place continued operations at or near their economic limits. Geologic, geophysical and engineering data were integrated to provide a technical foundation for candidate selection and treatment design. Data includes core, engineering data, and 3D seismic data. Based on technical and economic considerations a well was selected for gel-polymer treatment (Grand Mesa Operating Company Tilley No.2). The treatment was not successful due to the small amount of polymer that could be injected. Data from the initial well and other candidates in the demonstration area was analyzed using geologic, geophysical and engineering data. Based on the results of the treatment and the integrated reservoir

  10. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  11. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  12. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  13. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    PubMed

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  14. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xin, Na; Sun, Ya-Qiu; Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying

    2016-11-01

    Seven new 3d-4f heterometallic coordination polymers, [Ln(CuL)2(Hbtca)(btca)(H2O)]·2H2O (Ln = TbIII1, PrIII2, SmIII3, EuIII4, YbIII5), [Nd(NiL)(nip)(Rnip)]·0·25H2O·0.25CH3OH (R= 0.6CH3, 0.4H) 6 and [Nd2(NiL)(nip)3(H2O)]·2H2O 7(CuL or NiL, H2L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H2btca = benzotriazole-5-carboxylic acid; H2nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit a double-strand meso-helical chain structures formed by [LnIIICuII2] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip2- bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χMT versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm-1, zj' = -0.33 cm-1, gav = 1.94; for 5, Δ = 6.98 cm-1, zj' = 1.53 cm-1, gav = 1.85).

  15. Differential dose volume histograms of Gamma Knife in the presence of inhomogeneities using MRI-polymer gel dosimetry and MC simulation

    SciTech Connect

    Allahverdi Pourfallah, Tayyeb; Allahverdi, Mahmoud; Riahi Alam, Nader; Ay, Mohammad-Reza; Zahmatkesh, Mohammad-Hasan

    2009-07-15

    Polymer gel dosimeters offer a practical solution to 3D dose verification for conventional radiotherapy as well as intensity-modulated and stereotactic radiotherapy. In this study, EGSnrc calculated and PAGAT polymer gel dosimeter measured dose volume histograms (DVHs) for single-shot irradiations of the Gamma Knife (GK) unit were used to investigate the effects of the presence of inhomogeneities on 3D dose distribution. The head phantom was a custom-built 16 cm diameter Plexiglas sphere. Inside the phantom, there is a cubic cutout for inserting the gel vials and another cutout for inserting the inhomogeneities. Following irradiation with the GK unit, the polymer gel phantoms were scanned with a 1.5 T MRI scanner. Comparing the results of measurement in homogeneous and heterogeneous phantoms revealed that inserting inhomogeneities inside the homogeneous phantom did not cause considerable disturbances on dose distribution in irradiation with 8 mm collimator within low isodose levels (<50%), which is essential for the dose sparing of sensitive structures. The results of simulation for homogeneous and inhomogeneous phantoms in irradiation with 18 mm collimator of the GK unit showed 23.24% difference in DVH within 90%-100% relative isodose level and also revealed that a significant part of the target (28.56%) received relative doses higher than the maximum dose, which exceeds the acceptance criterion (5%). Based on these results it is concluded that the presence of inhomogeneities inside the phantom can cause considerable errors in dose calculation within high isodose levels with respect to LGP prediction which assumes that the target is a homogeneous material. Moreover, it is demonstrated that the applied MC code is an accurate and stand-alone tool for 3D evaluation of dose distribution in irradiation with the GK unit, which can provide important, 3D plan evaluation criteria used in clinical practice.

  16. 3D-printed polylactic acid supports for enhanced ionization efficiency in desorption electrospray mass spectrometry analysis of liquid and gel samples.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bianchera, Annalisa; Silvestri, Marco; Bettini, Ruggero

    2016-08-01

    The potential of 3D printing technology was here exploited to prepare tailored polylactic acid (PLA) supports for desorption electrospray ionization (DESI) experiments. PLA rough solid supports presenting wells of different shape (i.e. cylindrical, cubic and hemispherical cavities) were designed to accommodate samples of different physical state. The potentials of such supports in terms of sample loading capacity, sensitivity, signal stability were tested by analysing a peptide (i.e. insulin) and an aminoglycoside antibiotic (i.e. gentamicin sulphate) from solution and a chitosan-based gel. The results obtained were compared with those obtained by using a traditional polytetrafluoroethylene (PTFE) support and discussed. By using PLA support on the flat side, signal intensity improved almost twice with respect to PTFE support, whereas with spherical wells a five times improved signal sensitivity and good stability (RSD<6%) were obtained for the analysis of two model molecules. Limits of detection were in the 3-10nM range and linearity was demonstrated for both analytes in the 0.05-0.5μM range for semi-quantitative or quantitative purposes. The use of a well and the set-up of optimal source parameters allowed the analysis of samples in a gel state with good precision (RSD<10%) and accuracy (86±6-102±9%), otherwise difficult to analyse on a flat smooth surface. These findings are of great interest and stimulus to exploit the advantages of 3D printing technology for the development of devices for a DESI source, presenting different shapes or configuration as a function of the sample types.

  17. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  18. Utilizing ATRP to Design Self-Regenerating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Averick, Saadyah; Kuksenok, Olga; Matyjaszewski, Krzysztof; Balazs, Anna

    2014-03-01

    Using newly developed computational approaches, we design a gel system capable of re-growth after a substantial section of the material was cut away. Atom transfer radical polymerization (ATRP) is utilized to form gels with preserved ``living'' chain ends and residual unreacted cross-linking groups. When this ``living'' gel is cut, these active species are exposed to a solution containing monomer, crosslinker, initiator and catalyst. A ``repairing'' polymerization occurs from both the new initiators introduced in the outer solution and the reactive chain ends present at the cut site. This new polymerization results in a covalent linkage between the initial living gel and the new gel prepared in the outer solution, and the connection is promoted by the presence of residual cross-linking groups. By measuring the diffusion of the outer solution into the cut gel and characterizing the width and strength of the interface between the initial and new gels, we identify the optimum parameters that yield a strong interface between the gel layers. Our simulations results are in good agreement with our experimental studies. This strategy not only regenerates ``injured'' gels, but also offers a novel means to engineer multi-layered composite gels.

  19. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    PubMed

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

  20. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    DTIC Science & Technology

    2015-09-21

    performance in elevated temperature environments. High- temperature polymer matrix composites (HTPMCs) are being considered for such applications . However...the polymer matrix in most HTPMCs cannot operate at temperatures required for many aerospace structural applications . Continuous research seeks to...temperature polymer matrix composites (HTPMCs) applications , other polyimide resins replacement are being researched and developed due to the carcinogenic

  1. Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Sato, Y.; Nagasawa, N.; Ohta, A.; Seito, H.; Yamabayashi, H.; Yamamoto, T.; Taguchi, M.; Tamada, M.; Kojima, T.

    2013-10-01

    New polymer gel dosimeters consisting of 2-hydroxyethyl methacrylate (HEMA), triethylene glycol monoethyl ether monomethacrylate (TGMEMA), polyethylene glycol 400 dimethacrylate (9G), tetrakis (hydroxymethyl) phosphonium chloride as an antioxidant, and gellan gum as a gel matrix were prepared. They were optically analyzed by measuring absorbance to evaluate a dose response. The absorbance of the polymer gel dosimeters that were exposed to 60Co γ-rays increased with increasing dose. The dosimeters comprising HEMA and 9G showed a linear increase in absorbance in the dose range from 0 to 10 Gy. The dose response depended on the 9G concentration. For others comprising HEMA, 9G and TGMEMA, the absorbance of the polymer gel dosimeters drastically increased above a certain dose, and then leveled off up to 10 Gy. The optical variations in these polymer gel dosimeters were also induced by x-irradiation from Cyberknife radiotherapy equipment. Furthermore, the exposed region of the latter polymer gel dosimeter exhibited a thermo-responsive behavior.

  2. Electrophoretic NMR measurements of lithium transference numbers in polymer gel electrolytes

    SciTech Connect

    Dai, H.; Sanderson, S.; Davey, J.; Uribe, F.; Zawodzinski, T.A. Jr.

    1997-05-01

    Polymer gel electrolytes are of increasing interest for plastic lithium batteries largely because of their high room temperature conductivity. Several studies have probed their conductivity and electrochemical stability but very little work has been done related to lithium transference numbers. Lithium ion transference numbers, the net number of Faradays carried by lithium upon the passage of 1 Faraday of charge across a cell, are key figures of merit for any potential lithium battery electrolytes. The authors describe here their application of electrophoretic NMR (ENMR) to the determination of transference numbers of lithium ions in polymer gel electrolytes. Two types of polymer gel electrolytes were selected for this study: PAN/PC/EC/LiX and Kynar/PC/LiX. Results obtained for the two types of gels are compared and the effects of anion, polymer-ion interactions and ion-ion interactions on lithium transference numbers are discussed. Significant differences in the behavior of transference numbers with salt concentration are observed for the two types of gels. This may be due to the extent of interaction between the polymer and the ions. Implications for solid polymer electrolytes are discussed.

  3. Development of a new aluminum-polymer gel system for permeability adjustment

    SciTech Connect

    Dovan, H.T.; Hutching, R.D.

    1984-04-01

    A new method for gelling polymer with aluminum has been developed to reduce reservoir heterogeneity resulting in improved waterflood efficiency and higher oil recovery. The method uses a soluble aluminum compound in a high pH, nonreactive form that is mixed directly with the polymer at optimum concentrations. Polymer gelling occurs in the reservoir when reactive aluminum is generated by consumption of hydroxyl ions. Variations in gel strength and gel time are made by adjusting polymer and aluminate concentrations in the slug to the desired levels. This process has several advantages over the currently practiced aluminum citrate technology as well as the chromium redox bulk gel system. Although the process works best in fresh water systems, it can be modified to accommodate waters with higher brine content. Laboratory development of the process and a successful field trail are described in the paper.

  4. SU-E-T-318: Dosimetric Evaluation of ArcCHECK and 3DVH System Using Customized Polymer Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2015-06-15

    Purpose: ArcCHECK and 3DVH system (Sun Nuclear) can reconstruct the three-dimensional (3D) dose distribution and provide the DVH analysis in a patient. The aim of this study was to evaluate dosimetric accuracy of this system using customized polymer gel dosimeter, and also Gafchromic EBT3 films. Methods: Polyacrylamide-based gel contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. Volumetric-modulated arc therapy (VMAT) plan was performed for the C-shape structure by the Eclipse treatment planning system (Varian) and used to irradiate the ArcCHECK by the Novalis Tx linear accelerator (Varian/BrainLAB). The cubic phantom filled with iPAGAT and EBT3 films placed in three orthogonal planes (axial, sagittal, and coronal) inserted into the I’mRT Phantom (IBA Dosimetry) simulated a patient were irradiated with the same VMAT plan. The measurement-guided 3D dose distribution was reconstructed using 3DVH software from the measured data of the ArcCHECK. The 3D dose distribution in iPAGAT was read out by Signa 1.5 T MRI system (GE), and 2D dose distribution on EBT3 was read out by color scanner (Epson). The comparison of all the dose distributions was performed with dose profiles and gamma index analysis in orthogonal planes using in-house developed software. Results: A good agreement was observed by overlaying the dose profiles of 3DVH, EBT3, and iPAGAT. The mean pass rates by gamma index analysis with 3%/3 mm criteria in orthogonal planes were 94.3% (3DVH vs EBT3), 91.1% (3DVH vs iPAGAT), and 96.4% (iPAGAT vs EBT3), respectively. Conclusion: 3D dose distribution reconstructed by ArcCHECK and 3DVH system was estimated accurately in a patient. However, slightly differences were observed between 3DVH and iPAGAT because of MRI noise, therefore further study is required to improve the accuracy of MRI based polymer gel dosimetry for the DVH analysis.

  5. Nanostructure investigation of polymer solutions, polymer gels, and polymer thin films

    NASA Astrophysics Data System (ADS)

    Lee, Wonjoo

    This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels. Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic

  6. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  7. Effects of glycerol co-solvent on the rate and form of polymer gel dose response

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.; Berman, A.; McAuley, K. B.

    2009-02-01

    A factor currently limiting the clinical utility of x-ray CT polymer gel dosimetry is the overall low dose sensitivity (and hence low dose resolution) of the system. Hence, active research remains in the investigation of polymer gel formulations with increased CT dose response. An ideal polymer gel dosimeter will exhibit a sensitive CT response which is linear over a suitable dose range, making clinical implementation reasonably straightforward. This study reports on the variations in rate and form of the CT dose response of irradiated polymer gels manufactured with glycerol, which is a co-solvent that permits dissolution of additional bisacrylamide above its water solubility limit (3% by weight). This study focuses on situations where the concentration of bisacrylamide is kept at or below its water solubility limit so that the influence of the co-solvent on the dose response can be explored separately from the effects of increased cross-linker concentration. CT imaging and Raman spectroscopy are used to construct dose-response curves for irradiated gels varying in (i) initial total monomer (%T) and (ii) initial co-solvent concentration. Results indicate that: (i) for a fixed glycerol concentration, gel response increases linearly with %T. Furthermore, the functional form of the dose response remains constant, in agreement with a previous model of polymer formation. (ii) Polymer gels with constant %T and increasing co-solvent concentrations also show enhanced CT response. In addition, the functional form of the response is altered in these gels as co-solvent concentration is increased. Raman data indicate that the fraction of bis-acrylamide incorporated into polymerization, as opposed to cyclization, increases as co-solvent concentration increases. The changes in functional form indicate varying polymer yields (per unit dose), akin to relative fractional monomer/cross-linker (i.e. %C) changes in earlier studies. These results are put into context of the model of

  8. A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)

    NASA Astrophysics Data System (ADS)

    Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie

    2015-04-01

    The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.

  9. A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)

    SciTech Connect

    Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie

    2015-04-24

    The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.

  10. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ˜2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ˜127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ˜76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  11. Quantifying the effects of cyclic defects on the mechanical properties of polymer gels

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Zhong, Mingjiang; Kawamoto, Ken; Johnson, Jeremiah; Olsen, Bradley

    Understanding the correlation between the topology and properties of polymer gels is an outstanding challenge in polymer science. Classical theories of gel elasticity assume acyclic tree-like network topology; however, all polymer gels inevitably possess cyclic defects: loops that have profound, yet previously unpredictable, effect on gel properties. Here, we develop a modified phantom network theory that describes the effects of loops on the modulus of polymer gels. We demonstrate that small loops (primary and secondary loops) have vital effect on the modulus; whereas this negative impact decreases rapidly as the loop order increases, especially for networks with higher junction functionalities. Loop effect is non-local, which can propagate to its neighborhood strands. We show that adjacent loops weaken the network cooperatively, resulting in the nonlinear decrease of the dimensionless modulus (G/vkT, where v is the total density of polymer strands) with the loop fraction. The theory is in good agreement with the experimental data without any fitting parameters.

  12. On the use of polymer gels for assessing the total geometrical accuracy in clinical Gamma Knife radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Moutsatsos, A.; Karaiskos, P.; Petrokokkinos, L.; Zourari, K.; Pantelis, E.; Sakelliou, L.; Seimenis, I.; Constantinou, C.; Peraticou, A.; Georgiou, E.

    2010-11-01

    The nearly tissue equivalent MRI properties and the unique ability of registering 3D dose distributions of polymer gels were exploited to assess the total geometrical accuracy in clinical Gamma Knife applications, taking into account the combined effect of the unit's mechanical accuracy, dose delivery precision and the geometrical distortions inherent in MR images used for irradiation planning. Comparison between planned and experimental data suggests that the MR-related distortions due to susceptibility effects dominate the total clinical geometrical accuracy which was found within 1 mm. The dosimetric effect of the observed sub-millimetre uncertainties on single shot GK irradiation plans was assessed using the target percentage coverage criterion, and a considerable target dose underestimation was found.

  13. 3D-printing of pH-responsive and functional polymers on an affordable desktop printer.

    PubMed

    Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A

    2016-10-03

    In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D- printable filaments for fused deposition modeling (FDM). We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are crosslinked and quaternized post-printing to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was harassed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.

  14. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  15. Development of a new aluminum/polymer gel system for permeability adjustment

    SciTech Connect

    Dovan, H.T.; Hutchins, R.D.

    1987-05-01

    A new method for gelling polyacrylamide with aluminum has been developed to reduce the effect of reservoir heterogeneity, resulting in improved waterflood efficiency and higher oil recovery. The method uses a soluble aluminum compound in a high-pH, nonreactive form that is mixed directly with the polymer at optimum concentrations. Polymer gelling occurs in the reservoir when reactive aluminum is generated by consumption of hydroxyl ions. Variations in gel strength and gel time are obtained by adjusting polymer and aluminate concentrations in the slug to the desired levels. This process has several advantages over the current aluminum citrate technology as well as the chromium redox bulk gel system. Although the process works best in freshwater systems, it can be modified to accommodate waters with higher brine content. Laboratory development of the process and a successful profile modification field trial are described.

  16. Sci—Fri PM: Dosimetry—01: Radiation-induced refraction artefacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G; Jirasek, Andrew; Wells, Derek M

    2014-08-15

    Polymer gel dosimeters (PGDs) are a desirable tool for the verification of advanced radiotherapy treatments. Fully 3D, deformable, and tissue-equivalent, the PGD polymerizes wherever it absorbs dose. To measure the dose absorbed by a PGD, optical computed tomography (CT) can be used to evaluate, in full 3D, the opacity distribution that coincides with polymerization. In addition to an increase in opacity with dose, an increase in refractive index (RI) is also known to occur in irradiated polymer gels. The increase in RI is slight and was previously assumed insignificant. This work reveals the effects that radiation-induced RI changes can have on the optical CT readout of PGDs. A fan-beam optical CT scanner was used to image a cylindrical PGD irradiated by a pair of 3×3 cm{sup 2}, 6 MV photon beams in an orthogonal arrangement. Investigative scans were performed to evaluate refraction errors occurring: i) within the plane, and ii) out of the plane of the fan-beam. In-plane refraction was shown to cause distinct streaking artefacts along dose gradients (i.e. RI gradients) due to higher intensity rays being refracted into more opaque regions. Out-of-plane refraction was shown to produce severe, widespread artefacts due to rays missing the detector array. An iterative Savitzky-Golay filtering technique was developed to reduce both types of artefacts by specifically targeting structured errors in sinogram space. Results introduce a new category of imaging artefacts to be aware of when using optical CT for PGD readout.

  17. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    NASA Astrophysics Data System (ADS)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  18. Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries.

    PubMed

    Shi, Ye; Zhou, Xingyi; Zhang, Jun; Bruck, Andrea M; Bond, Andrew C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Yu, Guihua

    2017-03-08

    Controlling architecture of electrode composites is of particular importance to optimize both electronic and ionic conduction within the entire electrode and improve the dispersion of active particles, thus achieving the best energy delivery from a battery. Electrodes based on conventional binder systems that consist of carbon additives and nonconductive binder polymers suffer from aggregation of particles and poor physical connections, leading to decreased effective electronic and ionic conductivities. Here we developed a three-dimensional (3D) nanostructured hybrid inorganic-gel framework electrode by in situ polymerization of conductive polymer gel onto commercial lithium iron phosphate particles. This framework electrode exhibits greatly improved rate and cyclic performance because the highly conductive and hierarchically porous network of the hybrid gel framework promotes both electronic and ionic transport. In addition, both inorganic and organic components are uniformly distributed within the electrode because the polymer coating prevents active particles from aggregation, enabling full access to each particle. The robust framework further provides mechanical strength to support active electrode materials and improves the long-term electrochemical stability. The multifunctional conductive gel framework can be generalized for other high-capacity inorganic electrode materials to enable high-performance lithium ion batteries.

  19. In situ Oxidation of phenol and o-aminophenol in the channels of 3d-supramolecular coordination polymers

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-Din H.; Werida, Amal H.

    2010-09-01

    The host attractive properties of supramolecular coordination polymers of the type _infty^3 [(R3Sn)3FeIII(CN)6], where R = methyl (I), n-butyl (II), and phenyl (III), afford the ability to be used as effective oxidizing reagents for phenol and o-aminophenol forming new host-guest supramolecular coordination polymers. Phenol was oxidized to 1,4-benzoquinone while o-aminophenol was oxidized to poly-o-aminophenol by the polymers I and II and to 2-aminophenoxazin-3-one by the polymer III. The oxidation products were investigated by methods of spectroscopy and high-performance liquid chromatography. The redox reactions were characterized by first-order kinetics. Moreover, mechanisms of the oxidation processes of phenol and o-aminophenol have been proposed.

  20. Gamma Knife relative dosimetry using VIP polymer gel and EBT radiochromic films

    NASA Astrophysics Data System (ADS)

    Moutsatsos, A.; Petrokokkinos, L.; Zourari, K.; Papagiannis, P.; Karaiskos, P.; Dardoufas, K.; Damilakis, J.; Seimenis, I.; Georgiou, E.

    2009-05-01

    The VIP polymer gel-MRI method and EBT Gafchromic films were employed to obtain relative dosimetry results for the Gamma Knife (GK) radiation fields of 4 mm and 18 mm nominal diameter. Results are compared to the corresponding calculations of GammaPlan Treatment Planning System (TPS) in the form of 1D profiles and 2D distributions. Measured and planned relative dosimetry datasets are found in close agreement within experimental uncertainties. A corresponding agreement is shown for Dose Volume Histogram (DVH) results that are available only through the application of the polymer gel method.

  1. The dose response of normoxic polymer gel dosimeters measured using X-ray CT.

    PubMed

    Hill, B; Venning, A; Baldock, C

    2005-07-01

    X-ray CT was used to determine the dose response of normoxic polymer gel dosimeters. Normoxic polymer gel dosimeters were manufactured and irradiated up to 150 Gy. Up to 50 CT images were acquired on a Toshiba Aquilion Multislice CT scanner using protocols for 80 kV and 135 kV to determine dose response. HU-dose sensitivity, the linear regression of data for the HU versus dose for the linear part of the curve up to 60 Gy was 0.38+/-0.07 HU Gy(-1) for 135 kV and 0.37+/-0.01 HU Gy(-1) for 80 kV. Dose resolution was found to be < 1.3 Gy for an absorbed dose range up to 70 Gy for 135 kV, similar to that measured previously for polyacrylamide gel (PAG). Although the HU-dose sensitivity was lower than that previously measured for PAG gel dosimeters it had a greater range of absorbed dose indicating that normoxic polymer gel dosimeters have potential in CT gel dosimetry.

  2. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  3. Interpenetrating polymer networks of poly(N-vinylacetamide) and stimuli responsive polymers applied to novel amphiphilic gel.

    PubMed

    Ajiro, Hiroharu; Takemoto, Yukie; Akashi, Mitsuru

    2011-08-01

    The swelling behaviors of IPN with poly(N-vinylacetamide) (PNVA), which possibly converts from nonionic gel to cationic gel, and the stimuli responsive polymers, such as poly(acrylic acid) (PAAc) and poly(N-isopropylacrylamide) (PNIPAm) were investigated in order to prepare the stimuli responsive amphiphilic gel. When the monomer concentrations were uniformed at the IPN preparation, the obtained PNVA/PAAc IPN showed the pH responsivity with around 100 of swelling ratio at pH 4 to around 1 of swelling ratio at pH 2, although it lost the amphiphilicity due to the lack of swelling in ethanol. On the other hand, the gelation of N-vinylacetamide at 2 M in PNIPAM gel resulted in thermosensitive and amphiphilic hydrogel, that the swelling ratio in EtOH/water (3/7, v/v) also decreased, compared to the value in water at 25 degrees C.

  4. Polymer Physics Prize: Designing ''Materials that Compute'': Exploiting the Properties of Self-oscillating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Balazs, Anna

    Lightweight, deformable materials that can sense and respond to human touch and motion can be the basis of future wearable computers, where the material itself will be capable of performing computations. To facilitate the creation of ''materials that compute'', we draw from two emerging modalities for computation: chemical computing, which relies on reaction-diffusion mechanisms to perform operations, and oscillatory computing, which performs pattern recognition through synchronization of coupled oscillators. Chemical computing systems, however, suffer from the fact that the reacting species are coupled only locally; the coupling is limited by diffusion as the chemical waves propagate throughout the system. Additionally, oscillatory computing systems have not utilized a potentially wearable material. To address both these limitations, we develop the first model for coupling self-oscillating polymer gels to a piezoelectric (PZ) micro-electro-mechanical system (MEMS). The resulting transduction between chemo-mechanical and electrical energy creates signals that can be propagated quickly over long distances and thus, permits remote, non-diffusively coupled oscillators to communicate and synchronize. The oscillators can be organized into arbitrary topologies because the electrical connections lift the limitations of diffusive coupling. Using our model, we predict the synchronization behavior that can be used for computational tasks, ultimately enabling ''materials that compute''.

  5. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon; Reyes, Edgar I.; Moon, Kyoung-sik; Rumpf, Raymond C.; Kim, Nam Soo

    2015-03-01

    New metal/polymer composite filaments for fused deposition modeling (FDM) processes were developed in order to observe the thermo-mechanical properties of the new filaments. The acrylonitrile butadiene styrene (ABS) thermoplastic was mixed with copper and iron particles. The percent loading of the metal powder was varied to confirm the effects of metal particles on the thermo-mechanical properties of the filament, such as tensile strength and thermal conductivity. The printing parameters such as temperature and fill density were also varied to see the effects of the parameters on the tensile strength of the final product which was made with the FDM process. As a result of this study, it was confirmed that the tensile strength of the composites is decreased by increasing the loading of metal particles. Additionally, the thermal conductivity of the metal/polymer composite filament was improved by increasing the metal content. It is believed that the metal/polymer filament could be used to print metal and large-scale 3-dimensional (3D) structures without any distortion by the thermal expansion of thermoplastics. The material could also be used in 3D printed circuits and electromagnetic structures for shielding and other applications.

  6. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won

    2017-03-01

    Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.

  7. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties

    NASA Astrophysics Data System (ADS)

    Tillmann, S. D.; Isken, P.; Lex-Balducci, A.

    2014-12-01

    A polymer system based on oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and cyclic carbonate methacrylate (CCMA) was chosen as matrix to realize high-performance gel polymer electrolytes due to the fact that both monomers are able to interact with the liquid electrolyte, thus, retaining it inside the matrix. Additionally, OEGMA enables high flexibility, while CCMA provides mechanical stability. The polymer displays a high thermal stability up to 200 °C and a glass transition temperature below room temperature (5 °C) allowing an easy handling of the obtained films. By immobilizing the liquid electrolyte 1 M LiPF6 in EC:DMC 1:1 w:w in the polymer host a gel polymer electrolyte with a high conductivity of 2.3 mS cm-1 at 25 °C and a stable cycling behavior with high capacities and efficiencies in Li(Ni1/3Co1/3Mn1/3)O2 (NCM)/graphite full cells is obtained. The investigated gel polymer electrolyte is identified as promising electrolyte for lithium-ion batteries, because it combines good electrochemical properties comparable to that of liquid electrolytes with the safety advantage that no leakage of the flammable electrolyte solvents can occur.

  8. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

    2003-11-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on

  9. Polymer gel dosimetry close to an 125I interstitial brachytherapy seed

    NASA Astrophysics Data System (ADS)

    Pantelis, E.; Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Stiliaris, E.; Sandilos, P.; Seimenis, I.; Kozicki, M.; Rosiak, J. M.

    2005-09-01

    Despite its advantages, the polymer gel-magnetic resonance imaging (MRI) method has not, as yet, been successfully employed in dosimetry of low energy/low dose rate photon-emitting brachytherapy sources such as 125I or 103Pd interstitial seeds. In the present work, two commercially available 125I seed sources, each of approximately 0.5 U, were positioned at two different locations of a polymer gel filled vial. The gel vial was MR scanned with the sources in place 19 and 36 days after seed implantation. Calibration curves were acquired from the coupling of MRI measurements with accurate Monte Carlo dose calculations obtained simulating the exact experimental setup geometry and materials. The obtained gel response data imply that while linearity of response is sustained, sensitivity (calibration curve slope) is significantly increased (approximately 60%) compared to its typical value for the 192Ir (or 60Co and 6 MV LINAC) photon energies. Water equivalence and relative energy response corrections of the gel cannot account for more than 3-4% of this increase, which, therefore, has to be mainly attributed to physicochemical processes related to the low dose rate of the sources and the associated prolonged irradiation time. The calibration data obtained from one 125I source were used to provide absolute dosimetry results for the other 125I source, which were found to agree with corresponding Monte Carlo calculations within experimental uncertainties. It is therefore suggested that, regardless of the underlying factors accounting for the gel dose response to 125I irradiations, polymer gel dosimetry of new 125I or 103Pd sources should be carried out as originally proposed by Heard and Ibbot (2004 J. Phys.: Conf. Ser. 3 221-3), i.e., by irradiating the same gel sample with the new low dose rate source, as well as with a well-characterized low dose rate source which will provide the dose calibration curve for the same irradiation conditions.

  10. Enhancement in dose sensitivity of polymer gel dosimeters composed of radiation-crosslinked gel matrix and less toxic monomers

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Taguchi, M.

    2015-01-01

    Polymer gel dosimeters based on radiation-crosslinked hydroxypropyl cellulose gel were prepared, which comprised 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol #400 dimethacrylate (9G) as less toxic monomers and tetrakis (hydroxymethyl) phosphonium chloride (THPC) as an antioxidant. The dosimeters exposed to 60Co γ-rays became cloudy at only 1 Gy. The irradiated dosimeters were optically analyzed by using a UV- vis spectrophotometer to evaluate dose response. Absorbance of the dosimeters linearly increased in the dose range from 0 to 10 Gy, in which dose sensitivity increased with increasing 9G concentration. The dose sensitivity of the dosimeters with 2 wt% HEMA and 3 wt% 9G was also enhanced by increment in THPC.

  11. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    NASA Astrophysics Data System (ADS)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛ<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3<ɛ<10) enhances the swelling ability by expansion of the polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  12. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents.

    PubMed

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilon<10) have been reported, because common polyelectrolyte gels collapse in such solvents owing to the formation of a higher number of aggregates of ions and ion pairs. Here, we report that a novel class of polyelectrolyte gels bearing tetra-alkylammonium tetraphenylborate as a lipophilic and bulky ionic group swell in some nonpolar organic solvents up to 500 times their dry size. Dissociation of the ionic groups even in low-dielectric media (3polymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  13. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels

    SciTech Connect

    Pantelis, E.; Antypas, C.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Kozicki, M.; Georgiou, E.; Sakelliou, L.; Seimenis, I.

    2008-06-15

    Dose distributions registered in water equivalent, polymer gel dosimeters were used to measure the output factors and off-axis profiles of the radiosurgical photon beams employed for CyberKnife radiosurgery. Corresponding measurements were also performed using a shielded silicon diode commonly employed for CyberKnife commissioning, the PinPoint ion chamber, and Gafchromic EBT films, for reasons of comparison. Polymer gel results of this work for the output factors of the 5, 7.5, and 10 mm diameter beams are (0.702{+-}0.029), (0.872{+-}0.039), and (0.929{+-}0.041), respectively. Comparison of polymer gel and diode measurements shows that the latter overestimate output factors of the two small beams (5% for the 5 mm beam and 3% for the 7.5 mm beams). This is attributed to the nonwater equivalence of the high atomic number silicon material of the diode detector. On the other hand, the PinPoint chamber is found to underestimate output factors up to 10% for the 5 mm beam due to volume averaging effects. Polymer gel and EBT film output factor results are found in close agreement for all beam sizes, emphasizing the importance of water equivalence and fine detector sensitive volume for small field dosimetry. Relative off-axis profile results are in good agreement for all dosimeters used in this work, with noticeable differences observed only in the PinPoint estimate of the 80%-20% penumbra width, which is relatively overestimated.

  14. Preparation and electrochemical performance of gel polymer electrolytes using tri(ethylene glycol) dimethacrylate

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Soo; Shin, Jung-Han; Doh, Chil-Hoon; Moon, Seong-In; Kim, Sang-Pil

    A gel polymer electrolyte (GPE) is prepared from tri(ethylene glycol) dimethacrylate monomer, benzoyl peroxide, and 1.0 M LiPF 6/ethylene carbonate:diethyl carbonate (1:1 vol.%). The LiCoO 2|graphite cells are assembled and their electrochemical properties are evaluated at various current densities and temperatures. The viscosity of the precursor containing 5 vol.% tri(ethylene glycol) dimethacrylate monomer is around 4.6 mPa s. The ionic conductivity of the gel polymer electrolyte at 20 °C is around 5.9×10 -3 S cm -1. The gel polymer electrolyte has good electrochemical stability up to 4.5 V versus Li/Li +. The capacity of the cell at the 1.0 C rate is 89% of the discharge capacity at the 0.2 C rate. The capacity of the cell at temperature of -10 °C is 81% of the discharge capacity at 20 °C. The discharge capacity of the cell with gel polymer electrolyte is stable with charge-discharge cycling.

  15. Mathematical modelling of response of polymer gel dosimeters to brachytherapy radiation

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Chain, J. N. M.; Schreiner, L. J.; McAuley, K. B.

    2010-11-01

    A dynamic partial differential equation (PDE) model is used to simulate effects of a single Ir192 brachytherapy seed on the amount and composition of polymer formed during polyacrylamide gel (PAG) dosimetry. Simulations are conducted for a point-source brachytherapy seed placed at the center of a 6%T 50% C anoxic PAG phantom. The seed is removed after one minute, but polymerization is simulated up to a final time of 24 hours. Simulation results indicate that changes occur in both the mass of polymer formed per unit dose and in the crosslink density as a function of the radial distance from the brachytherapy seed. For example, at a distance of 5 mm from the seed, 41 mg of polymer form per Gy of radiation absorbed (after 24 hours), whereas at a larger distance of 5 cm from the seed 75 mg of polymer form per Gy. The polymer that forms near the seed is predicted to have a higher level of crosslinking than the polymer that forms further away. These results suggest potential calibration problems that may occur during brachytherapy dosimetry using polymer gels.

  16. Novel composition of polymer gel dosimeters based on N-(Hydroxymethyl)acrylamide for radiation therapy

    NASA Astrophysics Data System (ADS)

    Basfar, Ahmed A.; Moftah, Belal; Rabaeh, Khalid A.; Almousa, Akram A.

    2015-07-01

    A new composition of polymer gel dosimeters is developed based on radiation induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) for radiotherapy treatment planning. The dosimeters were irradiated by 10 MV photon beam of a medical linear accelerator at a constant dose rate of 600 cGy/min with doses up to 20 Gy. The polymerization occurs and increases with increasing absorbed dose. The dose response of polymer gel dosimeters was studied using nuclear magnetic imaging (NMR) for relaxation rate (R2) of water proton. Dose rate, energy of radiation and the stability of the polymerization after irradiation were investigated. No appreciable effects of these parameters on the performance of the novel gel dosimeters were observed.

  17. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    SciTech Connect

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.

  18. Non-affine deformations in flexible and semi-flexible polymer gels

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Wen, Qi; Mao, Xiaoming; Lubensky, Tom; Janmey, Paul; Yodh, Arjun

    2011-03-01

    We test the validity of affine deformation assumption in flexible and semi-flexible polymer networks by embedding different-sized fluorescent tracer beads within model polymer networks and quantifying their displacements under shear. A conventional rheometer is used with a confocal microscope for this purpose. Non-affinity is quantified as a function of applied strain, polymer chain density, cross-link concentration, network morphology, reaction kinetics and size of probe particles used. ~Non-affinity measurements in flexible polymer gels are in qualitative agreement with current theories in rubber elasticity. ~For semi-flexible bio-polymer gels, measurements indicate that non-affine deformations are small for networks of thinner, relatively flexible filaments and get smaller as strain increases into non-linear elastic regime. These small measures are consistent with the entropic model for non-linear elasticity of semi-flexible gels. However, as filament stiffness and mesh size increase, the deformations become more non-affine, as predicted by the enthalpic bending and stretching models of non-linear elasticity. MRSEC DMR-0520020, DMR-0505048, and DMR- 0079909. Done...processed 7726 records...17:54:11 Beginning APS data extraction...17:54:12

  19. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    SciTech Connect

    G. Paul Willhite; Don W. Green; Stan McCool; Min Cheng; Feiyan Chen

    2004-02-01

    The objectives of the research are to improve the effectiveness of polymer gels to increase volumetric sweep efficiency of fluid displacement processes and to reduce water production in production wells. The research is based on experimental data and conceptual and mathematical models developed from interpretation of experimental data. This report describes two types of mathematical models that were developed. One model type simulates the chemical reactions where polymer molecules are crosslinked to form a 3-dimensional network or gel. The model is based on statistical probabilities of reactions and yields molecular weights averages and distributions as functions of conversion. The second model type simulates the transport of chromium acetate, a common polymer crosslinker, through porous dolomite rock and includes the mechanisms of dolomite dissolution and chromium precipitation. The chromium transport model reasonably agreed with experimental data.

  20. First high thermally stable organo-inorganic 3D polymer scandium derivative as a heterogeneous Lewis acid catalyst.

    PubMed

    Perles, Josefina; Iglesias, Marta; Ruiz-Valero, Caridad; Snejko, Natalia

    2003-02-07

    Sc2(OOCC2H4COO)2.5(OH), a new hybrid organic-inorganic polymer, has been hydrothermally obtained; the crystal structure of this material has been established by single crystal X-ray diffraction; having high thermal stability it can be used as an effective Lewis acid catalyst and can be easily recycled and reused without any appreciable loss in activity.

  1. Swelling-Induced Folding in Confined Nanoscale Responsive Polymer Gels

    DTIC Science & Technology

    2010-03-16

    is a weak cat- ionic polymer that exhibits dramatic globulecoil transformation due to the protonation of the pyridine group below pH 4.0.5456 As a...on the pyridine ring.57 In the protonated state (below pH 4.0), the electrostatic in- teraction between the positively charged pyridine units and...re- moves hydrogen bonding and introduces Coulombic repulsion between protonated pyridine groups and the substrate. For this control system with

  2. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  3. Structural Modulation from 1D Chain to 3D Framework: Improved Thermostability, Insensitivity, and Energies of Two Nitrogen-Rich Energetic Coordination Polymers.

    PubMed

    Guo, Zhaoqi; Wu, Yunlong; Deng, Chongqing; Yang, Guoping; Zhang, Jiangong; Sun, Zhihua; Ma, Haixia; Gao, Chao; An, Zhongwei

    2016-11-07

    Two new energetic coordination polymers (CPs) [Pb(BT)(H2O)3]n (1) and [Pb3(DOBT)3(H2O)2]n·(4H2O)n (2) with 1D and 3D structures were synthesized by employing two rational designed ligands, 1H,1'H-5,5'-bitetrazole (H2BT) and 1H,1'H-[5,5'-bitetrazole]-1,1'-diol ligands (DHBT), respectively. Thermal analyses and sensitivity tests show that the 3D architecture reinforces the network of 2 which has higher thermal stability and lower sensitivity than that of 1. Through oxygen-bomb combustion calorimetry the molar enthalpy of formation of 2 is derived to be much higher than that of 1 as well as the reported CPs. Herein, more importantly, the heats of detonation (ΔHdet) were calculated according to the decomposition products of TG-DSC-MS-FTIR simultaneous analyses for the first time. The calculated results show that ΔHdet of 2 is 23% higher than that of 1. This research demonstrates that 3D energetic CP with outstanding energetic properties can be obtained through efficient and reasonable design.

  4. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  5. The compatibility evaluation of Cr3+ Gel system and polymer/surfactant system with alternating injection mode

    NASA Astrophysics Data System (ADS)

    Zhang, J. H.; Li, H. K.; Wang, Y. N.; Zhi, J. Q.; Liu, Y.

    2016-08-01

    Alternately injecting the slug of the gel and polymer/surfactant compound system is a new way to further enhance oil recovery after polymer flooding. The displacement system needs to produce an ultra low interfacial tension to oil and to enlarge swept volume significantly. Based on experimental analysis, the influence factors of Cr3+ gel system viscosity and the compatibility of gel with two types of surfactant compared with composite ion gel system has been studied. The experimental result shows that it has well stability, and the compatibility of gel with RMA-1 type surfactant is very well. It can produce an ultra low interfacial tension to oil so that enhanced oil recovery has been reached more than 10 percent by using the gel system to displace residual oil after polymer flooding in artificial large flat- panel model.

  6. Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films

    NASA Astrophysics Data System (ADS)

    Petcu, Cristian; Purcar, Violeta; Ianchiş, Raluca; Spătaru, Cătălin-Ilie; Ghiurea, Marius; Nicolae, Cristian Andi; Stroescu, Hermine; Atanase, Leonard-Ionuţ; Frone, Adriana Nicoleta; Trică, Bogdan; Donescu, Dan

    2016-12-01

    Sol-gel derived organic-inorganic hybrid systems were obtained by applying alkaline-catalyzed co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), isobutyltriethoxysilane (IBTES), diethoxydimethylsilane (DMDES), and vinyltriethoxysilane (VTES), respectively, into a polymer latex functionalized with vinyltriethoxysilane (VTES). The properties of the latex hybrid materials were analyzed by FTIR, water contact angle, environmental scanning electron microscopy (ESEM), TEM and AFM analysis, respectively. FT-IR spectra confirmed that the chemical structures of the sol-gel derived organic-inorganic materials are changed as function of inorganic precursor and Sisbnd Osbnd Si networks are formed during the co-hydrolysis and copolycondensation reactions. The water contact angle on the sol-gel latex film containing TEOS + VTES increased to 135° ± 2 compared to 65° ± 5 for the blank latex, due VTES incorporation into latex material. TGA curves of hybrid sample modifies against neat polymer, the thermal stability being influenced by the presence of the inorganic partner. ESEM analysis showed that the latex hybrid films prepared with different inorganic precursors were formed and the Si-based polymers were distributed on the surface of the dried sol-gel hybrid films. TEM and AFM photos revealed that the latex emulsion morphology was modified due to the VTES incorporation into system.

  7. Responsive Hydrogels and Ion Gels by Self-Assembly of ABA and ABC Triblock Polymers

    NASA Astrophysics Data System (ADS)

    Lodge, Timothy

    2014-03-01

    Gels - polymeric networks swollen with a substantial amount of solvent - represent a fascinating class of soft materials, with wide-ranging applications in fields as diverse as biomedicine, pharmaceutics, personal care products, foods, sensors, actuators, flexible electronics, oil recovery, and adhesives. Physical gels are held together by non-covalent interactions, which may be as specific as hydrogen bonds, or as general as solvophobic association of insoluble blocks. Among the attractive features of physical gels are reversibility, stimuli-responsiveness, and tunability of macroscopic properties. In this talk two classes of physical gels will be highlighted. In one, the ability of ABC block terpolymers to form novel structures will be demonstrated, where blocks A and C are mutually immiscible and solvophobic, while B is solvophilic. In particular, the formation of gels by sequential association (first A, then C) leads to a remarkably sharp gelation transition, at a relatively low polymer concentration, compared to analogous gels formed from ABA systems. In the second class, gels formed by self-assembly of a variety of ABA systems in ionic liquids will be described, and in particular how gelation can be controlled through factors such as block chemistry, temperature, choice of ionic liquid, and application of light.

  8. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition.

    PubMed

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S A

    2013-06-20

    Experimental studies on the novel compositions of gel polymer electrolytes, comprised of plastic crystal succinonitrile (SN) dispersed with pyrrolidinium and imidazolium-based ionic liquids (ILs) entrapped in a host polymer poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), are reported. The gel electrolytes are in the form of free-standing films with excellent mechanical, thermal, and electrochemical stability. The introduction of even a small content (~1 wt %) of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide (BMPTFSI) or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) in the PVdF-HFP/SN system (1:4 w/w) enhances the electrical conductivity by 4 orders of magnitude, that is, from ~10(-7) to ~10(-3) S cm(-1) at room temperature. The structural changes due to the entrapment of SN or SN/ILs mixtures and ion-SN-polymer interactions are examined by Fourier transform infrared (FTIR)/Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimmetry (DSC). Various physicochemical properties and fast ion conduction in the gel polymer membranes show their promising characteristics as electrolytes in different ionic devices including supercapacitors.

  9. Highly compliant shape memory polymer gels for tunable damping and reversible adhesion

    NASA Astrophysics Data System (ADS)

    Mrozek, Randy A.; Berg, Michael C.; Gold, Christopher S.; Leighliter, Brad; Morton, Jeffrey T.; Lenhart, Joseph L.

    2016-02-01

    Materials that can dynamically change their properties to better adapt to the local environment have potential utility in robotics, aerospace, and coatings. For some of these applications, most notably robotics, it is advantageous for these responsive materials to be highly compliant in an effort to provide dynamic changes in adhesion and mechanical damping within a broad temperature operational environment. In this report, non-aqueous, highly compliant shape-memory polymer gels are developed by incorporating a low density of chemical cross-links into a physically cross-linked thermoplastic elastomer gel. Chemical cross-linkers were evaluated by varying there size and degree of functionality to determine the impact on the mechanical and adhesive properties. As a result of the chemical cross-linking, the gels exhibit modulus plateaus around room temperature and at elevated temperatures above 100 °C, where the thermoplastic elastomer gel typically melts. The materials were designed so that moduli in the plateaued regions were above and below the Dahlquist criteria of 4 × 104 Pa, respectively, where materials with a modulus below this value typically exhibit an increase in adhesion. The shape memory polymer gels were also integrated into fiber-reinforced composites to determine the temperature-dependent changes in mechanical damping. It is anticipated that this work will provide insight into materials design to provide dynamic changes in adhesion and damping to improve robotic appendage manipulation and platform mobility.

  10. Application of polymer gels for profile modification and sweep improvement of gas flooding

    SciTech Connect

    Raible, C.; Zhu, T.

    1992-12-01

    Early CO{sub 2} breakthrough can be a serious problem during miscible and immiscible CO{sub 2} flooding of reservoirs with heterogeneous formations. One potential method to reduce the problem of gas channeling is the use of a gel to restrict flow of fluids into the high-permeability zones. This study included evaluation of several different candidates for their potential as gelled polymer treatments for in situ profile modification. The objective of gel treatments is to restrict flow through fractures and high permeability zones without significantly damaging the adjacent oil productive zones. This involves injection of viscous polymer solution, hopefully into a high-permeability zone. In this study, layered sandpacks were used to show the effect of gelant mobility on gel penetration and placement. X-ray computerized tomography (CT) was used to visualize the flow path of the injected gelant and the location of gel placement. A conventional gel of xanthan and Cr(III) as a crosslinking agent was used for experimental model studies. The results of experimental model studies demonstrated the effects of viscous crossflow which may damage the oil productive strata. More specifically these studies of layered models showed that unless there is a very high-permeability contrast, such as a fractured zone, a considerable volume of viscous crossflow will occur with damage to oil productive strata. These results indicated the need for injection and placement of a low viscosity gelant prior to gelation.

  11. Application of polymer gels for profile modification and sweep improvement of gas flooding

    SciTech Connect

    Raible, C.; Zhu, T.

    1992-12-01

    Early CO[sub 2] breakthrough can be a serious problem during miscible and immiscible CO[sub 2] flooding of reservoirs with heterogeneous formations. One potential method to reduce the problem of gas channeling is the use of a gel to restrict flow of fluids into the high-permeability zones. This study included evaluation of several different candidates for their potential as gelled polymer treatments for in situ profile modification. The objective of gel treatments is to restrict flow through fractures and high permeability zones without significantly damaging the adjacent oil productive zones. This involves injection of viscous polymer solution, hopefully into a high-permeability zone. In this study, layered sandpacks were used to show the effect of gelant mobility on gel penetration and placement. X-ray computerized tomography (CT) was used to visualize the flow path of the injected gelant and the location of gel placement. A conventional gel of xanthan and Cr(III) as a crosslinking agent was used for experimental model studies. The results of experimental model studies demonstrated the effects of viscous crossflow which may damage the oil productive strata. More specifically these studies of layered models showed that unless there is a very high-permeability contrast, such as a fractured zone, a considerable volume of viscous crossflow will occur with damage to oil productive strata. These results indicated the need for injection and placement of a low viscosity gelant prior to gelation.

  12. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI

    NASA Astrophysics Data System (ADS)

    Papagiannis, P.; Karaiskos, P.; Kozicki, M.; Rosiak, J. M.; Sakelliou, L.; Sandilos, P.; Seimenis, I.; Torrens, M.

    2005-05-01

    This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.

  13. Controlled Sol-gel Transitions by Actuating Molecular Machine based Supramolecular Polymers.

    PubMed

    Goujon, Antoine; Mariani, Giacomo; Lang, Thomas; Moulin, Emilie; Rawiso, Michel; Buhler, Eric; Giuseppone, Nicolas

    2017-03-13

    The implementation of artificial molecular machines in polymer science is an important objective that challenges chemists and physicists in order to access an entirely new class of smart materials. To design such systems, the amplification of a mechanical actuation from the nanoscale up to a macroscopic response in the bulk material is a central issue. In this article we show that bistable [c2]daisy chain rotaxanes (i.e. molecular muscles) can be linked into main-chain Upy-based supramolecular polymers. We then reveal by an in depth quantitative study that the pH actuation of the mechanically active rotaxane at the nanoscale influences the physical reticulation of the polymer chains by changing the supramolecular behavior of the Upy units. This nano-actuation within the local structure of the main chain polymer results in a mechanically controlled sol-gel transition at the macroscopic level.

  14. Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells

    NASA Astrophysics Data System (ADS)

    Mohamed, S. N.; Johari, N. A.; Ali, A. M. M.; Harun, M. K.; Yahya, M. Z. A.

    Gel polymer electrolyte films comprised of 50% epoxidised natural rubber polymer host, lithium triflate salt (LiCF 3SO 3), and ethylene carbonate (EC) or propylene carbonate (PC) plasticizer are prepared using the solution-casting technique. AC impedance studies show that the electrical conductivity of the electrolytes is dependent on both the salt and plasticizer concentrations. The highest room temperature conductivity of 4.92 × 10 -4 S cm -1 is achieved when 10 wt.% propylene carbonate is introduced into the system containing 1.0 g 50% epoxidised natural rubber polymer doped with 35 wt.% LiCF 3SO 3. Conductivity studies of these polymer electrolytes are carried out at various temperatures and are found to obey the Vogel-Tamman-Fulcher (VTF) rule. The highest conducting plasticized sample is used as a gelled electrolyte for lithium-air cells.

  15. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  16. Faraday waves on finite thickness smectic A liquid crystal and polymer gel materials

    SciTech Connect

    Ovando-Vazquez, C.; Rodriguez, O. Vazquez; Hernandez-Contreras, M.

    2008-11-13

    We studied with linear stability theory the Faraday waves on the surface of a smectic A liquid crystal and polymer gel-vapor systems of finite thicknesses. Model smectic A material exhibits alternating subharmonic-harmonic patterns of stability curves in a plot of driving acceleration versus wave number. For the case of highly viscoelastic gel media there are coexisting surface modes of harmonic and subharmonic types that correspond to peaks in the plot of the critical acceleration as a function of wave frequency. Larger frequencies lead to subsequent peaks of coexisting subharmonic waves only.

  17. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  18. Enhancing Osteoconductivity of Fibrin Gels with Apatite-Coated Polymer Microspheres

    PubMed Central

    Davis, Hillary E.; Binder, Bernard Y.K.; Schaecher, Phillip; Yakoobinsky, Dana D.; Bhat, Archana

    2013-01-01

    Fibrin gels are a promising material for use in promoting bone repair and regeneration due to their ease of implant formation, tailorability, biocompatibility, and degradation by natural processes. However, these materials lack necessary osteoconductivity to nucleate calcium, integrate with surrounding bone, and promote bone formation. Polymeric substrata formed from poly(lactide-co-glycolide) (PLG) are widely used in bone tissue engineering. A carbonated apatite layer of bone-like mineral can be successfully grown on the surface of PLG microspheres after a multiday incubation process in modified simulated body fluid. Such coatings improve the osteoconductivity of the polymer, provide nucleation sites for cell-secreted calcium, and enhance the potential osseointegration with host tissue. We examined the capacity of mineralized polymeric microspheres suspended within fibrin hydrogels to enhance the osteoconductivity of fibrin gels and increase the osteogenic potential of these materials. The inclusion of microparticles, both nonmineralized and mineralized, reduced the capacity of mesenchymal stem cells (MSCs) to contract the gel. When cultured in osteogenic media, we detected a near linear increase in both calcium and phosphate incorporation in gels containing mineralized microspheres and entrapped MSCs. The osteoconductivity of acellular fibrin gels with mineralized and nonmineralized microspheres was assessed in a rodent calvarial bone defect over 12 weeks. Compared to untreated rodent calvarial bone defects, we detected significant increases in early vascularization when treated with fibrin gels, with greater vascularization, on average, occurring with gels containing microspheres. We detected a trend for increased bone mineral density in gels containing mineralized microspheres after 12 weeks. These findings demonstrate that the osteoconductivity of fibrin gels can be increased by inclusion of mineralized microspheres, but additional signals may be required to

  19. Polymer model with Epigenetic Recoloring Reveals a Pathway for the de novo Establishment and 3D Organization of Chromatin Domains

    NASA Astrophysics Data System (ADS)

    Michieletto, D.; Orlandini, E.; Marenduzzo, D.

    2016-10-01

    One of the most important problems in development is how epigenetic domains can first be established, and then maintained, within cells. To address this question, we propose a framework that couples three-dimensional chromatin folding dynamics to a "recoloring" process modeling the writing of epigenetic marks. Because many intrachromatin interactions are mediated by bridging proteins, we consider a "two-state" model with self-attractive interactions between two epigenetic marks that are alike (either active or inactive). This model displays a first-order-like transition between a swollen, epigenetically disordered phase and a compact, epigenetically coherent chromatin globule. If the self-attraction strength exceeds a threshold, the chromatin dynamics becomes glassy, and the corresponding interaction network freezes. By modifying the epigenetic read-write process according to more biologically inspired assumptions, our polymer model with recoloring recapitulates the ultrasensitive response of epigenetic switches to perturbations and accounts for long-lived multidomain conformations, strikingly similar to the topologically associating domains observed in eukaryotic chromosomes.

  20. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  1. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    NASA Astrophysics Data System (ADS)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  2. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  3. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    PubMed

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  4. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-04-03

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the third year of a 42 month research program that is aimed at an understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work focused on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A mathematical model that describes uptake and crosslinking reactions as a function of time was derived. The model was probability based and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. A liquid chromatography apparatus to experimentally measure the size and molecular weight distributions of polymer samples was developed. The method worked well for polymer samples without the chromium crosslinker. Sample retention observed during measurements of gelant samples during the gelation process compromised the results. Other methods will be tested to measure size distributions of the pre-gel aggregates. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results.

  5. Polymer-gel formation and reformation on irradiation of tertiary-butyl acrylate

    NASA Astrophysics Data System (ADS)

    Yao, Tiantian; Denkova, Antonia G.; Warman, John M.

    2014-04-01

    The purpose of the present research was to provide a radiation-chemical basis for the use of tertiary-butyl acrylate gels in radio-fluorogenic dose-imaging applications (Warman et al. 2011a,b, 2013a,b). The radiation-induced polymerization of tertiary-butyl acrylate (TBA) results in the formation of a transparent gel with an optical density lower than 0.1 cm-1 from 600 nm down to 315 nm. The fractional monomer-to-polymer conversion, CM, determined gravimetrically, increases super-linearly with dose, D Gy. Up to CM≈40%, and over the dose rate range D‧=3.5 to 49 cGy s-1, the dose dependence is given by CM=[1+ACM]KD/√D‧ with K=1.43×10-3 Gy-0.5 s-0.5 and A=0.70. For D‧=3.5 cGy s-1 the average polymer size is estimated to be 1.2×105 monomer units or 17 megadalton. For CM≥10% the gel is quasi-rigid, displaying little tendency to flow on a timescale of an hour or more. After removal of monomer by evacuation, the gel can be reformed by adding a volume of monomer to the remaining polymer equal to that removed and allowing this to swell for several days. The dose and dose rate dependence of radiation-induced monomer conversion in the reformed gel show no evidence of a discontinuity caused by the intervening evacuation and reformation procedures.

  6. Effect of the exothermal polymerization reaction on polymer gel dosimetric measurements

    NASA Astrophysics Data System (ADS)

    Sedaghat, Mahbod; Bujold, Rachel; Lepage, Martin

    2010-11-01

    Discrepancies in polymer gel dosimetric measurements have been observed between containers of different sizes receiving the same radiation dose. We hypothesized that these deviations are caused by a change in the rate of polymerization due to internal heat increase in the gel containers resulting from the exothermic polymerization of monomers. Here, we test this hypothesis in a polyacrylamide gel dosimeter by recording the temperature in glass phantoms of different sizes during and after irradiation. The dose response of the samples was determined with magnetic resonance imaging. The difference of R2 values along the depth of the containers was below ±1%. We discuss that this small difference can be attributed to variations in the rate of gelatin cooling during manufacture rather than to the measured heat increase during irradiation.

  7. Crystal structure and carrier transport properties of a new 3D mixed-valence Cu(I)-Cu(II) coordination polymer including pyrrolidine dithiocarbamate ligand.

    PubMed

    Okubo, Takashi; Tanaka, Naoya; Kim, Kyung Ho; Anma, Haruho; Seki, Shu; Saeki, Akinori; Maekawa, Masahiko; Kuroda-Sowa, Takayoshi

    2011-03-14

    A novel mixed-valence Cu(i)-Cu(ii) coordination polymer having an infinite three-dimensional (3D) structure, {[Cu(I)(4)Cu(II)(2)Br(4)(Pyr-dtc)(4)]·CHCl(3)}(n) (1) (Pyr-dtc(-) = pyrrolidine dithiocarbamate), has been prepared and structurally characterized via X-ray diffraction. This complex consists of 1D Cu(i)-Br chains and bridging mononuclear copper(ii) units of Cu(II)(Pyr-dtc)(2), which form an infinite 3D network. A magnetic study indicates that this complex includes copper(ii) ions exhibiting a weak antiferromagnetic interaction (θ = -0.086 K) between the unpaired electrons of the copper(ii) ions present in the diamagnetic Cu(i)-Br chains. The carrier transport properties of 1 are investigated using an impedance spectroscopy technique and flash-photolysis time-resolved microwave conductivity measurement (FP-TRMC). The impedance spectroscopy reveals that this complex exhibits intriguing semiconducting properties at a small activation energy (E(a) = 0.29 eV (bulk)). The sum of the mobilities of the negative and positive carriers estimated via FP-TRMC is Σμ∼ 0.4 cm(2) V(-1) s(-1).

  8. Dose verification of single shot gamma knife applications using VIPAR polymer gel and MRI

    NASA Astrophysics Data System (ADS)

    Karaiskos, P.; Petrokokkinos, L.; Tatsis, E.; Angelopoulos, A.; Baras, P.; Kozicki, M.; Papagiannis, P.; Rosiak, J. M.; Sakelliou, L.; Sandilos, P.; Vlachos, L.

    2005-03-01

    This work describes an experimental procedure with potential to assess the overall accuracy associated with gamma knife clinical applications, from patient imaging and dosimetry planning to patient positioning and dose delivery using the automated positioning system of a Leksell Gamma Knife model C. The VIPAR polymer gel-MRI dosimetry method is employed due to its inherent three-dimensional feature and linear dose response over the range of gamma knife applications. Different polymer gel vials were irradiated with single shot gamma knife treatment plans using each of the four available collimator helmets to deliver a maximum dose of 30 Gy. Percentage relative dose results are presented not only in the form of one-dimensional profiles but also planar isocontours and isosurfaces in three dimensions. Experimental results are compared with corresponding Gammaplan treatment planning system calculations as well as acceptance test radiochromic film measurements. A good agreement, within the experimental uncertainty, is observed between measured and expected dose distributions. This experimental uncertainty is of the order of one imaging pixel in the MRI gel readout session (<1 mm) and allows for the verification of single shot gamma knife applications in terms of acceptance specifications for precision in beam alignment and accuracy. Averaging net R2 results in the dose plateau of the 4 mm and 18 mm collimator irradiated gel vials, which were MR scanned in the same session, provides a crude estimate of the 4 mm output factor which agrees within errors with the default value of 0.870.

  9. Transport in polymer-gel composites: theoretical methodology and response to an electric field

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.

    2006-03-01

    A theoretical model of electromigrative, diffusive and convective transport in polymer-gel composites is presented. Bulk properties are derived from the standard electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-saturated Brinkman medium. Because the microstructure can be carefully controlled, these materials are promising candidates for enhanced gel-electrophoresis, chemical sensing, drug delivery, and microfluidic pumping technologies. The methodology provides solutions for situations where perturbations from equilibrium are induced by gradients of electrostatic potential, concentration and pressure. While the volume fraction of the inclusions should be small, Maxwell's well-known theory of conduction suggests that the model may also be accurate at moderate volume fractions. In this work, the theory is used to compute ion fluxes, electrical current density, and convective flow driven by an electric field applied to an homogeneous composite. The electric-field-induced (electro-osmotic) flow is a sensitive indicator of the inclusion zeta-potential and size, electrolyte concentration, and Darcy permeability of the gel, while the electrical conductivity is usually independent of the polymer gel and is relatively insensitive to characteristics of the inclusions and electrolyte.

  10. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  11. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  12. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-06

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.

  13. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    NASA Astrophysics Data System (ADS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.

  14. The application of polymer gel dosimeters to dosimetry for targeted radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Flux, G. D.; Charles-Edwards, E.; Partridge, M.; Cook, G.; Ott, R. J.

    2006-07-01

    There is a lack of standardized methodology to perform dose calculations for targeted radionuclide therapy and at present no method exists to objectively evaluate the various approaches employed. The aim of the work described here was to investigate the practicality and accuracy of calibrating polymer gel dosimeters such that dose measurements resulting from complex activity distributions can be verified. Twelve vials of the polymer gel dosimeter, 'MAGIC', were uniformly mixed with varying concentrations of P-32 such that absorbed doses ranged from 0 to 30 Gy after a period of 360 h before being imaged on a magnetic resonance scanner. In addition, nine vials were prepared and irradiated using an external 6 MV x-ray beam. Magnetic resonance transverse relaxation time, T2, maps were obtained using a multi-echo spin echo sequence and converted to R2 maps (where T2 = 1/R2). Absorbed doses for P-32 irradiated gel were calculated according to the medical internal radiation dose schema using EGSnrc Monte Carlo simulations. Here the energy deposited in cylinders representing the irradiated vials was scored. A relationship between dose and R2 was determined. Effects from oxygen contamination were present in the internally irradiated vials. An increase in O2 sensitivity over those gels irradiated externally was thought to be a result of the longer irradiation period. However, below the region of contamination dose response appeared homogenous. Due do a drop-off of dose at the periphery of the internally irradiated vials, magnetic resonance ringing artefacts were observed. The ringing did not greatly affect the accuracy of calibration, which was comparable for both methods. The largest errors in calculated dose originated from the initial activity measurements, and were approximately 10%. Measured R2 values ranged from 5-35 s-1 with an average standard deviation of 1%. A clear relationship between R2 and dose was observed, with up to 40% increased sensitivity for internally

  15. Huperzine A-phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release.

    PubMed

    Cai, Xiaoqing; Luan, Yuxia; Jiang, Yue; Song, Aixin; Shao, Wei; Li, Zhonghao; Zhao, Zhongxi

    2012-08-20

    The huperzine A-phospholipid complex loaded biodegradable thermosensitive PLGA-PEG-PLGA polymer gel was studied as injectable implant system for controlled release of huperzine-A (HA). First, HA molecules were successfully incorporated into the soybean phosphatidylcholine (SP) molecules to form the huperzine-A-soybean phosphatidylcholine complexes (HA-SPC), which was proved by FT-IR, DSC, XRD, solubility study, TEM, etc. The results indicated that hydrogen bonds and electrostatic interaction between HA and SP molecules play an important role in the formation of HA-SPC. Secondly, the HA-SPC was loaded into biodegradable PLGA-PEG-PLGA thermosensitive gel as injectable implant material to control the release of HA. The in vitro and in vivo drug release behaviors of the prepared products were studied. The in vitro release studies demonstrated that the HA-SPC-loaded gel significantly reduced the initial burst of drug release and extended the release period to about 2 weeks. The in vivo pharmacokinetics study of HA-SPC-loaded gel in rabbits showed that plasma concentration of HA (2.54-0.15ng/mL) was detected for nearly 2 weeks from delivery systems upon single subcutaneous injection. What's more, the in vitro release pattern correlated well with the in vivo pharmacokinetics profile. The present study indicates that HA-SPC loaded PLGA-PEG-PLGA thermal gel may be an attractive candidate vehicle for controlled HA release.

  16. Neurolysis using a carbohydrate polymer gel for the treatment of postoperative neuropathic pain.

    PubMed

    Espinoza, Daniel P; Kalbermatten, Daniel F; Egloff, Daniel V; Raffoul, Wassim

    2010-02-01

    Perineural and intraneural fibrosis is thought to be the main cause of failure of the many surgical treatments of neuropathic pain. We have used Adcon-T/N carbohydrate polymer gel for prevention of perineural fibrosis in several parts of the body. In this retrospective study, 54 patients who presented with postoperative neuropathic pain had microsurgical epineural neurolysis and relocation of a terminal neuroma. In 19 of them, the carbohydrate gel was applied at the same time. The mean follow-up was four years and the nerve distribution varied. Postoperative improvement in pain scores (visual analogue scale (VAS) and neuropathic pain scale inventory (NPSI)), sensitivity, overall improvement and satisfaction were equivalent in the two groups, with pain relief in about 80% of the patients. There was no significant beneficial effect in the carbohydrate gel group. Patients treated with this device had a higher infection rate (21 compared with 0, p = 0.01) and delayed wound healing (31.6 compared with 11.8, p = 0.2). We conclude that good long-term pain relief is obtained postoperatively independently of the addition of carbohydrate gel. There was a slight but not significant trend towards profound pain relief with the gel.

  17. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  18. MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification.

    PubMed

    Gustavsson, Helen; Karlsson, Anna; Bäck, Sven A J; Olsson, Lars E; Haraldsson, Pia; Engström, Per; Nyström, Håkan

    2003-06-01

    A new type of polymer gel dosimeter, which responds well to absorbed dose even when manufactured in the presence of normal levels of oxygen, was recently described by Fong et al. [Phys. Med. Biol. 46, 3105-3113 (2001)] and referred to by the acronym MAGIC. The aim of this study was to investigate the feasibility of using this new type of gel for intensity-modulated radiation therapy (IMRT) verification. Gel manufacturing was carried out in room atmosphere under normal levels of oxygen. IMRT inverse treatment planning was performed using the Helios software. The gel was irradiated using a linear accelerator equipped with a dynamic multileaf collimator, and intensity modulation was achieved using sliding window technique. The response to absorbed dose was evaluated using magnetic resonance imaging. Measured and calculated dose distributions were compared with regard to in-plane isodoses and dose volume histograms. In addition, the spatial and dosimetric accuracy was evaluated using the gamma formalism. Good agreement between calculated and measured data was obtained. In the isocenter plane, the 70% and 90% isodoses acquired using the different methods are mostly within 2 mm, with up to 3 mm disagreement at isolated points. For the planning target volume (PTV), the calculated mean relative dose was 96.8 +/- 2.5% (1 SD) and the measured relative mean dose was 98.6 +/- 2.2%. Corresponding data for an organ at risk was 34.4 +/- 0.9% and 32.7 +/- 0.7%, respectively. The gamma criterion (3 mm spatial/3% dose deviation) was fulfilled for 94% of the pixels in the target region. Discrepancies were found in hot spots the upper and lower parts of the PTV, where the measured dose was up to 11% higher than calculated. This was attributed to sub optimal scatter kernels used in the treatment planning system dose calculations. Our results indicate great potential for IMRT verification using MAGIC-type polymer gel.

  19. Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells.

    PubMed

    Shen, Sheng-Yen; Dong, Rui-Xuan; Shih, Po-Ta; Ramamurthy, Vittal; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2014-11-12

    A cross-linked copolymer was previously synthesized from poly(oxyethylene) diamine (POE-amine) and an aromatic anhydride and cured to generate an amide-imide cross-linking structure. The copolymer containing several chemical groups such as POE, amido acids, and imide, enabled to absorb liquid electrolytes in methoxypropionitrile (MPN) for suitable uses in dye-sensitized solar cells. To establish the advantages of polymer gel electrolytes (PGE), the same copolymer was studied by using different electrolyte solvents including propylene carbonate (PC), dimethylformamide, and N-methyl-2-pyrrolidone, and shown their long-term stability. The morphology of the copolymer after absorbing liquid electrolytes in these solvents was proven the same as a 3D interconnected nanochannels, evidenced field emission-scanning electron microscopy. Among these solvents, PC was selected as the optimized PGE, which demostrated a higher power conversion efficiency (8.31%) than that of the liquid electrolyte (7.89%). In particular, the long-term stability of only a 5% decrease in the cell efficiency after 1000 h of testing was achieved. It was proven the developed copolymer as PGE was versatile for different solvents showing high efficiency and long-term durability.

  20. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  1. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  2. Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Gochberg, Daniel F.; Gore, John C.

    2008-12-01

    The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.

  3. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films

    SciTech Connect

    Hassani, Hossein; Nedaie, Hassan Ali; Zahmatkesh, Mohammad Hassan; Shirani, Kaveh

    2014-04-01

    The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 × 5 mm{sup 2}, 10 × 10 mm{sup 2}, 20 × 20 mm{sup 2}, and 30 × 30 mm{sup 2} are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.

  4. Self-assembling semiconducting polymers--rods and gels from electronic materials.

    PubMed

    Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H

    2013-02-26

    In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.

  5. Structure and Hydrogen Bonding of Water in Polyacrylate Gels: Effects of Polymer Hydrophilicity and Water Concentration.

    PubMed

    Mani, Sriramvignesh; Khabaz, Fardin; Godbole, Rutvik V; Hedden, Ronald C; Khare, Rajesh

    2015-12-10

    The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

  6. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  7. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core-shell structure.

    PubMed

    Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok

    2013-10-21

    Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure.

  8. Self-assembled 3D heterometallic Cu(II)/Fe(II) coordination polymers with octahedral net skeletons: structural features, molecular magnetism, thermal and oxidation catalytic properties.

    PubMed

    Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L

    2010-12-06

    The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.

  9. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Duke, Thomas; Viovy, Jean Louis

    1994-03-01

    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  10. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  11. Controlling sensitivity and stability of ferrous-xylenol orange-gelatin 3D gel dosimeters by doping with phenanthroline-type ligands and glyoxal

    NASA Astrophysics Data System (ADS)

    Penev, Kalin I.; Mequanint, Kibret

    2013-03-01

    The ferrous-xylenol orange-gelatin (FXG) dosimeter is widely used for three-dimensional ionizing radiation field mapping through optical scanning. Upon irradiation, the ferrous iron (Fe2+) is oxidized to ferric iron (Fe3+), which forms an intensely coloured complex with xylenol orange (XO). XO also acts as a diffusion-limiting additive; however, its presence may cause rapid auto-oxidation of Fe2+ during storage and low stability of the dose response. In this work, phenanthroline-type ligands were added to FXG system in a bid to bind the ferrous iron in a stable complex and minimize the rate of the auto-oxidation, whereas glyoxal was used as a chemical cross-linker, aiming to minimize the ferric iron diffusion. It was found that addition of either 1,10-phenanthroline or 5-nitro-1,10-phenanthroline can improve the auto-oxidation behaviour of the gels. However, the initial background absorbance was slightly increased, and the sensitivity of the dosimeters was decreased. Doping with glyoxal led to a moderate decrease of the diffusion only in those gels that also contained a phenanthroline-type ligand, and did not affect the initial dose response. Glyoxal also afforded an extended period of stable background absorbance level after an initial period of bleaching of the gel. Following re-irradiation, most glyoxal-containing dosimeters showed an excellent linearity of the dose response, albeit at a decreased sensitivity. We recommend further testing of FXG dosimeters, doped with phenanthroline-type ligands and glyoxal as a means for controlling the dose response and improving the long-term storage properties of the gels and the potential for dose fractionation.

  12. Characterization of a new polymer gel for radiosurgery dosimetry using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Petrokokkinos, L.; Kozicki, M.; Pantelis, E.; Antypas, C.; Fijuth, J.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.

    2009-06-01

    The VIPAR polymer gel dosimeter formulation was modified in an effort to eliminate the need for deoxygenation in the manufacturing procedure while preserving its favorable characteristics of dose rate independence and a wide dose response range. Aiming at an adequate dose sensitivity and the extension of dose response in the low dose region to facilitate the dose verification of radiosurgery applications where narrow beams are employed and steep dose gradients are involved, the new formulation consists of 8% N-Vinylpyrrolidone, 7.5% gelatine, 4% N,N'-methylenebisacrylamide, as well as of 0.0008% Copper Sulfate and 0.007% Ascorbic Acid as oxygen scavengers. To study the dose-R2 response, dose rate dependence and ``edge effect'' behaviour of the new formulation, one batch of two gel filled glass vials was prepared. Before MR Imaging, one vial was irradiated with a brachytherapy source while the other one was irradiated using circular CyberKnife radiation fields of 60, 10, 7.5 and 5 mm in diameter. Results of this study suggest that the new gel dosimeter responds linearly in the dose range of about 3 to 30 Gy, whilst the full dose response range exceeds the maximum delivered dose of 50 Gy. No dose rate dependence was observed for the new gel, while Cyberknife dosimetry results in the form of stereotactic field size and penumbra measurements suggest that the new formulation could be effective in the dose verification of demanding radiosurgery techniques.

  13. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  14. Determine the Dose Distribution Using Ultrasound Parameters in MAGIC-f Polymer Gels.

    PubMed

    Masoumi, Hossein; Mokhtari-Dizaji, Manijhe; Arbabi, Azim; Bakhshandeh, Mohsen

    2016-01-01

    In this study, using methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC-f) polymer gel after megavoltage energy exposure, the sensitivity of the ultrasound velocity and attenuation coefficient dose-dependent parameters was evaluated. The MAGIC-f polymer gel was irradiated under 1.25 MeV cobalt-60, ranging from 0 to 60 Gy in 2-Gy steps, and received dose uniformity and accuracy of ±2%. After calibration of the ultrasonic systems with a frequency of 500 kHz, the parameters of ultrasound velocity and attenuation coefficient of the irradiated gel samples were measured. According to the dose-response curve, the ability of ultrasonic parameters was evaluated in dose rate readings. Based on a 4-order polynomial curve, fitted on the dose-response parameters of ultrasound velocity and attenuation coefficient and observed at 24 hours after irradiation, ultrasonic parameters had more sensitivity. The sensitivity of the dose-velocity and dose-attenuation coefficient curves was observed as 50 m/s/Gy and 0.06 dB/MHz/Gy over the linear range of 4 to 44 Gy, respectively. The ultrasonic parameters at 5°C, 15°C, and 25°C on the gel dosimeter after 0 to 60 Gy irradiation showed that readings at 25°C have higher sensitivity compared to 15°C and 5°C. Maximum sensitivity time and temperature readings of the MAGIC-f ultrasonic parameters were concluded 24 hours after irradiation and at a temperature of 25°C.

  15. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink.

  16. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    SciTech Connect

    Park, M; Jung, H; Kim, G; Ji, Y; Kim, K; Park, S

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in the simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.

  17. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole.

    PubMed

    Li, Yingchun; Liu, Yuan; Yang, Yang; Yu, Feng; Liu, Jie; Song, Han; Liu, Jiang; Tang, Hui; Ye, Bang-Ce; Sun, Zhipeng

    2015-07-22

    A novel electrochemical sensor has been developed by using a composite element of three-dimensional (3D) nanoporous nickel (NPNi) and molecularly imprinted polymer (MIP). NPNi is introduced in order to enhance the electron-transport ability and surface area of the sensor, while the electrosynthesized MIP layer affords simultaneous identification and quantification of the target molecule by employing Fe(CN)6(3-/4-) as the probe to indicate the current intensity. The morphology of the hybrid film was observed by scanning electron microscopy, and the properties of the sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy. By using metronidazole (MNZ) as a model analyte, the sensor based on the MIP/NPNi hybrid exhibits great features such as a remarkably low detection limit of 2 × 10(-14) M (S/N = 3), superb selectivity in discriminating MNZ from its structural analogues, and good antiinterference ability toward several coexisting substances. Moreover, the proposed method also demonstrates excellent repeatability and stability, with relative standard deviations of less than 1.12% and 1.4%, respectively. Analysis of MNZ in pharmaceutical dosage form and fish tissue is successfully carried out without assistance of complicated pretreatment. The MIP/NPNi composite presented here with admirable merits makes it a promising candidate for developing electrochemical sensor devices and plays a role in widespread fields.

  18. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  19. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.

    PubMed

    Alhijjaj, Muqdad; Belton, Peter; Qi, Sheng

    2016-11-01

    FDM 3D printing has been recently attracted increasing research efforts towards the production of personalized solid oral formulations. However, commercially available FDM printers are extremely limited with regards to the materials that can be processed to few types of thermoplastic polymers, which often may not be pharmaceutically approved materials nor ideal for optimizing dosage form performance of poor soluble compounds. This study explored the use of polymer blends as a formulation strategy to overcome this processability issue and to provide adjustable drug release rates from the printed dispersions. Solid dispersions of felodipine, the model drug, were successfully fabricated using FDM 3D printing with polymer blends of PEG, PEO and Tween 80 with either Eudragit E PO or Soluplus. As PVA is one of most widely used polymers in FDM 3D printing, a PVA based solid dispersion was used as a benchmark to compare the polymer blend systems to in terms of processability. The polymer blends exhibited excellent printability and were suitable for processing using a commercially available FDM 3D printer. With 10% drug loading, all characterization data indicated that the model drug was molecularly dispersed in the matrices. During in vitro dissolution testing, it was clear that the disintegration behavior of the formulations significantly influenced the rates of drug release. Eudragit EPO based blend dispersions showed bulk disintegration; whereas the Soluplus based blends showed the 'peeling' style disintegration of strip-by-strip. The results indicated that interplay of the miscibility between excipients in the blends, the solubility of the materials in the dissolution media and the degree of fusion between the printed strips during FDM process can be used to manipulate the drug release rate of the dispersions. This brings new insight into the design principles of controlled release formulations using FDM 3D printing.

  20. Sensitivity calibration procedures in optical-CT scanning of BANG®3 polymer gel dosimeters

    PubMed Central

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.

    2010-01-01

    The dose response of the BANG®3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS™ laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4×4 cm2 photon fields or 6×6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6×6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG®3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752±3%, 0.0756±3%, 0.0767±3%, and 0.0759±3% cm−1 Gy−1) and the PDD matching methods (0.0768±3% and 0.0761±3% cm−1 Gy−1) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6×6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse

  1. Characteristics of a novel polymer gel dosimeter formula for MRI scanning: Dosimetry, toxicity and temporal stability of response.

    PubMed

    Abtahi, S M

    2016-09-01

    The present study intended to investigate the composition of a new polymer gel dosimeter. The new composition would be more suitable for a wide range of applications in comparison to polyacrylamide gel dosimeter since its extremely toxic acrylamide has been replaced with less harmful monomer i.e. 2-Acrylamido-2-MethylPropane Sulfonic acid (AMPS). To this end, the PAGAT gel dosimeter formula was used as a basis to test the new formulation of polymer gel dosimeter with a different monomer (AMPS) instead of acrylamide by using the %6T and %50C to the formula. The new formulation was named PAMPSGAT (Poly AMPS, Gelatin and THPC) polymer gel dosimeter. Moreover, the MRI response (R2) of dosimeters was analyzed in terms of different dose range as well as post-irradiation time. The results indicated that the dose-response (R2) of AMPS/Bis had a linear trend over a wide dose range. Furthermore, the results showed an acceptable temporal stability for the new polymer gel dosimeter.

  2. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.

    PubMed

    Srichan, Tharatree; Phaechamud, Thawatchai

    2017-01-01

    An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.

  3. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  4. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  5. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-18

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  6. The Effect of Polymer Composition on the Gelation Behavior of PLGA-g-PEG Biodegradable Thermoreversible Gels

    SciTech Connect

    Tarasevich, Barbara J.; Gutowska, Anna; Li, Xiaohong S.; Jeong, Byeongmoon

    2009-04-01

    Graft copolymers consisting of a poly(DL-lactic acid–co–glycolic acid) backbone grafted with polyethyelene glycol (PLGA-g-PEG) side chains were synthesized and formed thermoreversible gels in aqueous solutions which exhibited solution behavior at low temperature and sol-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid (LA), glycolic acid (GA), and ethylene glycol (EG) could be varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15°C to 34°C by increasing the concentration of PEG in the graft copolymer. The gelation temperature decreased with increasing polymer molecular weight and decreasing polymer concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery.

  7. MO-F-CAMPUS-T-02: Dosimetric Accuracy of the CrystalBallâ„¢: New Reusable Radiochromic Polymer Gel Dosimeter for Patient QA in Proton Therapy

    SciTech Connect

    Avery, S; Kraus, J; Lin, L; Kassaee, A; Maryanski, M

    2015-06-15

    Purpose: To evaluate the accuracy of monoexponential normalization in a new class of commercial, reusable, human-soft-tissue-equivalent, radiochromic polymer gel dosimeters for patient-specific QA in proton therapy. Methods: Eight formulations of the dosimeter (sealed in glass spheres of 166 mm OD), were exposed to a 150 MeV proton beam (5 cm x 5 cm square field, range 15 cm, modulation10 cm), with max dose ranging from 2.5 Gy to 20 Gy, depending on formulation. Exposed dosimeters were promptly placed in the commercial OCTOPUS™ laser CT scanner which was programmed to scan the central slice every 5 minutes for 20 hours (15 seconds per slice scan). This procedure was repeated several times. Reconstructed data were analyzed using the log-lin scale to determine the time range over which a monoexponential relaxation model could be applied. Next, a simple test plan was devised and delivered to each dosimeter. The OCTOPUS™ was programmed to rescan the central slice at the end of each volume scan, for signal relaxation reference. Monoexponential normalization was applied to sinograms before FBP reconstruction. Dose calibration was based on a volume-lookup table built within the central spherical volume of 12 cm diameter. 3D gamma and sigma passing rates were measured at 3%/3mm criteria down to 50% isodose. Results: Approximately monoexponential signal relaxation time ranges from 25 minutes to 3.5 hours, depending on formulation, followed by a slower-relaxation component. Noise in reconstructed OD/cm images is less than 0.5%. Dose calibration accuracy is better than 99%. Measured proton PDDs demonstrate absence of Bragg-peak quenching. Estimated number of useful cycles is at least 20, with a theoretical limit above 100. 3D gamma and sigma passing rates exceed 95%. Conclusion: Monoexponential normalization was found to yield adequate dosimetric accuracy in the new class of commercial radiochromic polymer gel dosimeters for patient QA in proton therapy.

  8. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    PubMed Central

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-01-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm−1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost. PMID:24216756

  9. Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yusong; Wang, Faxing; Liu, Lili; Xiao, Shiyin; Yang, Yaqiong; Wu, Yuping

    2013-11-01

    Lithium ion batteries (LIBs) are going to play more important roles in electric vehicles and smart grids. The safety of the current LIBs of large capacity has been remaining a challenge due to the existence of large amounts of organic liquid electrolytes. Gel polymer electrolytes (GPEs) have been tried to replace the organic electrolyte to improve their safety. However, the application of GPEs is handicapped by their poor mechanical strength and high cost. Here, we report an economic gel-type composite membrane with high safety and good mechanical strength based on glass fiber mats, which are separator for lead-acid batteries. The gelled membrane exhibits high ionic conductivity (1.13 mS cm-1), high Li+ ion transference number (0.56) and wide electrochemical window. Its electrochemical performance is evaluated by LiFePO4 cathode with good cycling. The results show this gel-type composite membrane has great attraction to the large-capacity LIBs requiring high safety with low cost.

  10. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose

    PubMed Central

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-01-01

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers’ subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using

  11. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.

    PubMed

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-10-20

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using

  12. A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Xiaoyun; Deng, Huayang

    2011-10-01

    Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10-3 S cm-1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g-1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.

  13. Radiation detection with CdTe quantum dots in sol-gel glass and polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Manickaraj, Kavin; Wagner, Brent K.; Kang, Zhitao

    2013-05-01

    Optically based radiation detectors in various fields of science still suffer from low resolution, sensitivity and efficiency that restrict their overall performance. Quantum dots (QD) are well-suited for such detectors due to their unique optical properties. CdTe QDs show fast luminescence decay times, high conversion efficiencies, and have band gaps strongly dependent on the particle radius. Since QD particle sizes are well below the wavelengths of their emissions, they remain optically transparent when incorporated in both polymer and sol-gel based silica glass due to negligible optical scattering. In addition, as these composite materials can greatly improve the mechanical robustness of alpha-particle detectors, conventionally known to have delicate components, CdTe QDs show high promise for radiation sensing applications. These properties are especially advantageous for alpha-particle and potentially neutron detection. In this work, CdTe QD-based glass or polymer matrix nanocomposites were synthesized for use as alpha-particle detection scintillators.. The fast photo-response and decay times provide excellent time resolution. The radiation responses of such nanocomposites in polymer or glass matrices were investigated.

  14. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  15. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties.

    PubMed

    Tafur, Juan P; Santos, Florencio; Romero, Antonio J Fernández

    2015-11-19

    Gel Polymer Electrolytes (GPEs) composed by ZnTf₂ salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf₂ concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf₂ salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn(2+) and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer's matrix turns out to be a key factor for improving the Zn(2+) transport inside the GPE due to the interaction between Zn(2+) cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110-120 mAh·g(-1) have been obtained for Zn/IL-GPE/MnO₂ batteries discharged at -1 mA·cm(-2).

  16. A novel injectable thermoresponsive and cytocompatible gel of poly(N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture.

    PubMed

    Yang, Hsiao-yin; van Ee, Renz J; Timmer, Klaas; Craenmehr, Eric G M; Huang, Julie H; Öner, F Cumhur; Dhert, Wouter J A; Kragten, Angela H M; Willems, Nicole; Grinwis, Guy C M; Tryfonidou, Marianna A; Papen-Botterhuis, Nicole E; Creemers, Laura B

    2015-09-01

    Hybrid hydrogels composed of poly(N-isopropylacrylamide) (pNIPAAM) and layered double hydroxides (LDHs) are presented in this study as novel injectable and thermoresponsive materials for siRNA delivery, which could specifically target several negative regulators of tissue homeostasis in cartilaginous tissues. Effectiveness of siRNA transfection using pNIPAAM formulated with either MgAl-LDH or MgFe-LDH platelets was investigated using osteoarthritic chondrocytes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing. No significant adverse effects of pNIPAAM/LDH hydrogels on cell viability were noticed. Cellular uptake of fluorescently labeled siRNA was greatly enhanced (>75%) in pNIPAAM/LDH hydrogel constructs compared to alginate, hyaluronan and fibrin gels, and was absent in pNIPAAM hydrogel without LDH platelets. When using siRNA against GAPDH, 82-98% reduction of gene expression was found in both types of pNIPAAM/LDH hydrogel constructs after 6 days of culturing. In the pNIPAAM/MgAl-LDH hybrid hydrogel, 80-95% of GAPDH enzyme activity was reduced in parallel with gene. Our findings show that the combination of a cytocompatible hydrogel and therapeutic RNA oligonucleotides is feasible. Thus it might hold promise in treating degeneration of cartilaginous tissues by providing supporting scaffolds for cells and interference with locally produced degenerative factors.

  17. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links.

    PubMed

    Kean, Zachary S; Hawk, Jennifer L; Lin, Shaoting; Zhao, Xuanhe; Sijbesma, Rint P; Craig, Stephen L

    2014-09-10

    Hydrogels and organogels made from polymer networks are widely used in biomedical applications and soft, active devices for which the ability to sustain large deformations is required. The strain at which polymer networks fracture is typically improved through the addition of elements that dissipate energy, but these materials require extra work to achieve a given, desired level of deformation. Here, the addition of mechanically "invisible" supramolecular crosslinks causes substantial increases in the ultimate gel properties without incurring the added energetic costs of dissipation.

  18. A new gel using super absorbent polymer for mapping the spatial dose distributions of electron beams by MR imager.

    PubMed

    Hiraoka, T; Hoshino, K; Kawashima, K; Kato, H; Tateno, Y

    1993-01-01

    A technique for mapping the spatial dose distribution with a magnetic resonance imager is presented. A ferrous sulphate solution with sulfuric acid was used as the detecting medium for radiation dose. To make a gel of the solution for filling up a cubic phantom, we developed a new gel component that is combined with a super absorbent polymer (Sumikagel N-100) and a cross-linked dextran gel (Sephadex G-200). In order to make the application for radiation treatment planning, mapping of the dose distribution was carried out using a Unix computer.

  19. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration.

    PubMed

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S

    2014-02-06

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a naturally derived extracellular matrix for cell growth, type I collagen gels were reconstituted with conductive polymer nanofibres and cells. Cell viability and proliferation of PC-12 cells and human skeletal muscle cells on these three-dimensional conductive collagen gels were evaluated in vitro. PANI and PEDOT nanofibres were found to be cytocompatible with both cell types and the best results (i.e. cell growth and gel electrical conductivity) were obtained with a low concentration (0.5 wt%) of PANI. After 7 days of culture in the conductive gels, the densities of both cell types were similar and comparable to collagen positive controls. Moreover, PC-12 cells were found to differentiate in the conductive hydrogels without the addition of nerve growth factor or electrical stimulation better than collagen control. Importantly, electrical conductivity of the three-dimensional gel scaffolds increased by more than 400% compared with control. The increased conductivity and injectability of the cell-laden collagen gels to injury sites in order to create an electrically conductive extracellular matrix makes these biomaterials very conducive for the regeneration of tissues.

  20. Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels

    NASA Astrophysics Data System (ADS)

    Takigawa, T.; Araki, H.; Takahashi, K.; Masuda, T.

    2000-11-01

    The effects of mechanical stress on the volume phase transition of a poly(N-isopropylacrylamide) (PNIPA) gel as well as a copolymer gel composed of N-isopropylacrylamide (NIPA) and sodium acrylate (SA) were investigated in the relatively low stress region. The PNIPA gel without elongational stress showed the behavior close to the second order phase transition. The character of the first order transition became clear under tension, and the transition temperature increased with increasing applied stress. Similar behavior was observed for the NIPA-SA copolymer gel, but the copolymer gel showed the first order transition in the whole stress range investigated. The thermodynamical linear region, where the transition temperature varies linearly with applied stress, was narrower than the mechanical linear region determined by the stress-strain relation of the gels. The change in the transition behavior by the application of the mechanical stress originated chiefly from the volume change in the gels by the applied mechanical stress. It was found that the curve of the transition temperature against applied stress corresponds to the phase boundary between the swollen and collapsed phases for the gels. On the basis of the experimental data, a phenomenological model describing the volume phase transition of the polymer gels is proposed in the frame of the Landau-type free energy expression.

  1. Luminescent organosilicon polymers and sol-gel synthesis of nano-structured silica

    NASA Astrophysics Data System (ADS)

    Martinez, H. Paul

    2011-12-01

    There remains a demand for inexpensive and reliable explosive sensors to be used in a field setting for identifying specific explosives. High explosives are considered to be organic and oxidizing, a relatively rare combination that makes them tractable for molecular recognition event. For this reason, fluorescent polymers have had favorable success in their use as sensors for high explosive. Here we report the use of fluorescent, silicon based copolymers, covalently linked to a silica TLC support. A thin layer of the polymer allows for a more efficient interaction with an analyte, thus yielding enhanced detection sensitivity. The attachment of the sensing polymers onto a chromatographic support allows for the separation of a mixture, as well as the identification of multiple explosives through the use of multiple sensing polymers. Hollow hard shell particles of 200 nm and 2 micron diameter with a 10 nm thick porous silica shell have also been synthesized using polystyrene templates and a sol-gel process. The template ensures that the hollow particles are monodispersed, while the charged silica surface ensures that they remain suspended in solution for weeks. When filled with perfluorocarbon gas, the particles behave as an efficient contrast agent for color Doppler ultrasound imaging in human breast tissue. The silica shell provides unique properties compared to conventional soft shell particles employed as ultrasound contrast agents: uniform size control, strong adsorption to tissue and cells immobilizing particles at the tissue injectionsite, a long imaging lifetime, and a silica surface that can be easily modified with biotargeting ligands or small molecules to adjust the surface charge and polarity.

  2. Synthesis of nano-bound microsphere Co3O4 by simple polymer-assisted sol-gel technique

    NASA Astrophysics Data System (ADS)

    Karthick, S. N.; Hemalatha, K. V.; Justin Raj, C.; Kim, Hee Je; Yi, Moonsuk

    2013-03-01

    Nano-bound Co3O4 microspheres and molten Co3O4 microspheres were synthesized for the first time by a simple polymer (poly-(vinylpyrrolidone))-assisted sol-gel and sol-gel technique, respectively. Thermal decomposition of the precursor samples of both polymer-assisted sol-gel and sol-gel technique were studied by thermogravimetric analysis. In both techniques, the material was calcined at different temperatures for the formation of phase pure Co3O4. X-ray diffraction confirmed the formation of phase pure cubic spinel structured Co3O4 at 400 and 500 °C for the polymer-assisted sol-gel and sol-gel technique, respectively. Fourier transform infrared spectroscopy revealed the vibrational assignments of functional groups associated with the cubic spinel structure of Co3O4. Scanning electron microscopy of all samples showed clear microsphere sizes ranging from 1 to 4 μm. Both techniques allowed the formation of spherical-shaped microspheres by a simple process. Nano-bound microspheres were observed from the polymer-assisted sol-gel technique because the decomposition of PVP at 400 °C is the main reason for the formation of nano-bound microspheres. The nanoparticle size of the nano-bound microsphere measured by transmission electron microscopy was 40 nm. Therefore, PVP is an essential compound for the formation of nano-bound microspheres. This very simple and inexpensive technique is suitable for the formation of spherical-shaped microspheres.

  3. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    PubMed Central

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-01-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390

  4. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  5. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    PubMed

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  6. pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices

    PubMed Central

    Zhang, Shiyi; Bellinger, Andrew M.; Glettig, Dean L.; Barman, Ross; Lee, Young-Ah Lucy; Zhu, Jiahua; Cleveland, Cody; Montgomery, Veronica A; Gu, Li; Nash, Landon D.; Maitland, Duncan J.; Langer, Robert; Traverso, Giovanni

    2015-01-01

    Devices resident in the stomach -- which are used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric retentive dosage forms for prolonged drug delivery -- typically incorporate elastic polymers to compress the devices during delivery through the esophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric retentive devices. PMID:26213897

  7. A thermal and electrochemical properties research on gel polymer electrolyte membrane of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Li, Libo; Ma, Yue; Wang, Wentao; Xu, Yanping; You, Jun; Zhang, Yonghong

    2016-12-01

    N-methyl-N-propyl-piperidin-bis(trifluoromethylsulfonyl)imide/bis(trifluoromethylsulfonyl) imide lithium base/polymethyl methacrylate(PP13TFSI/LiTFSI/PMMA) gel polymer electrolyte (GPE) membrane was prepared by in situ polymerization. The physical and chemical properties were comprehensively discussed. The decomposition characteristics were emphasized by thermogravimetric (TG-DTG) method in the nitrogen atmosphere at the different heating rates of 5, 10, 15 and 20 °C min-1, respectively. The activation energy was calculated with the iso-conversional methods of Ozawa and Kissinger, Friedman, respectively, and the Coats-Redfern methods were adopted to employ the detailed mechanism of the electrolyte membrane. The equation f(α)=3/2[(1-α)1/3-1] was quite an appropriate kinetic mechanisms to describe the thermal decomposition process with an activation energy (Eα) of 184 kJ/mol and a pre-exponential factor (A) of 1.894×1011 were obtained.

  8. Rheological and textural properties of microemulsion-based polymer gels with indomethacin.

    PubMed

    Froelich, Anna; Osmałek, Tomasz; Kunstman, Paweł; Roszak, Rafał; Białas, Wojciech

    2016-01-01

    In this paper, we present novel microemulsion (ME)-based semisolid polymer gels designed for topical administration of poorly water soluble non-steroidal anti-inflammatory drugs. Indomethacin (IND) was used as a model compound. The ME consisted of castor oil, water, Tween®80 as a surfactant and ethanol as cosurfactant. To obtain the desired consistency of the formulations Carbopol®960 was applied as a thickening agent. The aim of the study was to analyze in detail the mechanical properties of the obtained systems, with special attention paid to the features crucial for topical application. The rheological and textural experiments performed for samples with and without the incorporated drug clearly indicate that flow characteristics, viscoelastic properties and texture profiles were affected by the presence of IND. Novel semisolid formulations with IND described for the first time in this paper can be considered as an alternative for commercially available conventional topical dosage forms.

  9. Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems

    NASA Astrophysics Data System (ADS)

    Ko, Hsu-Feng

    Sustained delivery of therapeutic genes from a three-dimensional (3-D) scaffold and subsequent gene expression capable of triggering the regeneration of damaged tissues is a tissue engineering strategy that has been gaining increased attention. Nanostructured calcium phosphates (NanoCaPs) are biocompatible and non-toxic biomaterials. Furthermore, their efficient transfection in vitro have rendered them attractive gene delivery carriers compared to other viral- or lipid-based agents that tend to be immunogenic or cytotoxic, leading to undesirable responses when utilized above a critical threshold. However, NanoCaPs are typically characterized by variable transfection and short shelf life due to particle aggregation. A viable solution to this problem is the incorporation of NanoCaPs into 3-D scaffolds. The main objectives of this research are therefore two-fold: (1) Examination of the potential of achieving optimized transfection of NanoCaPs via anionic substitution and (2) high throughput synthesis and screening of non-viral gene delivery systems (GDS) comprised of naturally-derived polymers as scaffolds containing NanoCaPs gene carriers. Results indicated that in addition to the excellent transfection levels exhibited by NanoCaPs in vitro, an additional 20-30% increase was observed for NanoCaPs with 10-25 mol% anion substitution. In contrast, high anion substitution (>60%) yielded a drastic decline in transfection. Structural characterizations verified successful anion substitution with a noticeable increase in lattice parameters indicative of an expanded unit cell due to ionic substitution. All of the anion substituted calcium phosphates exhibited the primary phase of hydroxyapatite. For the first time, GDS composed of various concentrations of alginate (AA), fibronectin (FN), and NanoCaPs-DNA complexes were demonstrated. The presence of AA and FN was effective in immobilizing NanoCaPs and reducing the aggregation. High throughput synthesis and screening

  10. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  11. Efficacy of Entomopathogenic Nematodes and Sprayable Polymer Gel Against Crucifer Flea Beetle (Coleoptera: Chrysomelidae) on Canola.

    PubMed

    Antwi, Frank B; Reddy, Gadi V P

    2016-08-01

    The crucifer flea beetle, Phyllotreta cruciferae (Goeze), is a key pest of canola (Brassica napus L.) in the northern Great Plains of North America. The efficacies of entomopathogenic nematodes (Steinernema spp. and Heterorhabditis spp.), a sprayable polymer gel, and a combination of both were assessed on canola for flea beetle management. Plots were treated soon after colonization by adult flea beetles, when canola was in the cotyledon to one-leaf stage. Ten plants along a 3.6-m section of row were selected and rated at pre-treatment and 7 and 14 d post treatment using the damage-rating scheme advanced by the European Plant Protection Organization, where 1 = 0%, 2 = 2%, 3 = 5%, 4 = 10%, and 5 = 25% leaf area injury. Under moderate flea beetle feeding pressure (1-3.3% leaf area damaged), seeds treated with Gaucho 600 (Bayer CropScience LP Raleigh, NC) (imidacloprid) produced the highest yield (843.2 kg/ha). Meanwhile, Barricade (Barricade International, Inc. Hobe Sound, FL) (polymer gel; 1%) + Scanmask (BioLogic Company Inc, Willow Hill, PA) (Steinernema feltiae) resulted in the highest yields: 1020.8 kg/ha under high (2.0-5.3% leaf area damaged), and 670.2 kg/ha at extremely high (4.3-8.6 % leaf area damaged) feeding pressure. Our results suggest that Barricade (1%) + Scanmask (S. feltiae) can serve as an alternative to the conventional chemical seed treatment. Moreover, Scanmask (S. feltiae) can be used to complement the effects of seed treatment after its protection has run out.

  12. Electrochemical properties of poly(tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Soo; Shin, Jung-Han; Moon, Seong-In; Yun, Mun-Soo

    The precursor for a gel polymer electrolyte (GPE) consisted of tetra (ethylene glycol) diacrylate monomer, benzoyl peroxide, and 1.1 M LiPF 6/EC:PC:EMC:DEC (30:20:30:20 wt.%). LiCoO 2/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The viscosity of the precursor containing 5 vol.% tetra (ethylene glycol) diacrylate monomer was around 4.6 mPa s. The ionic conductivity of the gel polymer electrolyte at 20 °C was around 6.34×10 -3 S cm -1. The gel polymer electrolyte had good electrochemical stability up to 4.5 V versus Li/Li +. The capacity of the cell at 2.0 C rate was 74% of the discharge capacity at 0.2 C rate. The capacity of the cell at temperature of -10 °C was 81% of the discharge capacity at temperature of 20 °C. Discharge capacity of the cell with gel polymer electrolyte was stable with charge-discharge cycling.

  13. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    SciTech Connect

    Park, M; Kim, G; Ji, Y; Kim, K; Park, S; Jung, H

    2015-06-15

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). The shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.

  14. Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Song, Min-Kyu; Cho, Jin-Yeon; Cho, Byung Won; Rhee, Hee-Woo

    Novel ultraviolet (UV)-cured gel polymer electrolytes based on polyethyleneglycol diacrylate (PEGDA) oligomer and polyvinylidene fluoride (PVdF) are prepared and characterized. UV-curing of PEGDA oligomer containing PVdF and ethylene carbonate (EC)-based liquid electrolyte yields chemically and physically cross-linked PEGDA/PVdF blend gel electrolytes. PEGDA/PVdF blend films show much higher mechanical properties and electrolyte liquid retention than pure PEGDA film. The ionic conductivity ( σ) of a PEGDA/PVdF (5/5) blend electrolyte reaches about 4 mS cm -1 at ambient temperature and is as high as 1 mS cm -1 at 0 °C. All the blend electrolytes are electrochemically stable up to 4.6 V versus Li/Li +. The cation transference number ( t+) measured by dc micropolarization exceeds 0.5 at room temperature. Li/(PEGDA/PVdF)/LiCoO 2 cells ( 2 cm×2 cm) retains >91% of its initial discharge capacity after 50 cycles at the C/3 rate (2 mA cm -2) and delivers about 70% of full capacity with an average load voltage of 3.6 V at the C/1 rate. Cell performance is stable up to 80 °C because PVdF chains might be stabilized by entanglement with the chemically cross-linked PEGDA network structure.

  15. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    PubMed Central

    Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580

  16. Sol-gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides.

    PubMed

    Wang, Yu-Long; Gao, Yuan-Li; Wang, Pei-Pei; Shang, Huan; Pan, Si-Yi; Li, Xiu-Juan

    2013-10-15

    A sol-gel technique was applied for the preparation of water-compatible molecularly imprinted polymer (MIP) for solid phase microextraction (SPME) using diazinon as template and polyethylene glycol as functional monomer. The MIP-coated fiber demonstrated much better selectivity to diazinon and its structural analogs in aqueous cucumber sample than in distilled water, indicating its potential in real samples. Thanks to its specific adsorption as well as rough and porous surface, the coating revealed rather larger extraction capability than the non-imprinted polymer and commercial fibers. In addition, the fiber exhibited excellent thermal (about 350°C) and chemical stability (organic and inorganic). After optimization of several parameters affecting extraction efficiency, a method based on MIP-SPME combined with gas chromatography was developed for the determination of organophosphorus pesticides (OPPs) in vegetable samples. The limits of detection for the tested OPPs were in the range of 0.017-0.77 μg kg(-1). The proposed method was applied to evaluate OPPs in spiked cucumber, green pepper, Chinese cabbage, eggplant and lettuce samples, and recoveries of 81.2-113.5% were obtained by the standard addition method with three spiking levels in each kind of vegetable.

  17. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    NASA Astrophysics Data System (ADS)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  18. Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell.

    PubMed

    Wu, Congcong; Jia, Lichao; Guo, Siyao; Han, Song; Chi, Bo; Pu, Jian; Jian, Li

    2013-08-28

    Dye-sensitized solar cells (DSSC) have received considerable attention owing to their low preparation cost and easy fabrication process. However, one of the drawbacks that limits the further application of DSSC is their poor stability, arising from the leakage and volatilization of the liquid organic solvent in the electrolyte. Therefore, to improve the long-term stability of DSSC, polymer gel electrolyte was studied to replace the conventional liquid electrolyte in this work. The results show that compared to liquid electrolyte, DSSC with polymer gel electrolyte has a smaller short-circuit current (Jsc), which decreases with the increase of the polymer gelator. Nevertheless, with the employment of the polymer gel electrolyte, there is a significant enhancement of open-circuit voltage (Voc), and it increases with the increase of the polymer gelator content. The highest Voc, up to 0.873 V, can be obtained for DSSC with a 30% polymer gelator content. The impact of the polymer gel electrolyte on the photovoltaic performance of DSSC, especially on Voc, was studied by analyzing the charge-transfer kinetics in the polymer gel electrolyte. Furthermore, the influence of the polymer gel electrolyte on the long-term stability of DSSC was also investigated.

  19. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  20. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  1. Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent.

    PubMed

    Nam, Kwangwoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio

    2010-02-01

    The drawback with collagen/2-methacryloyloxyethyl phosphorylcholine (MPC) polymer hybrid gels (collagen/phospholipid polymer hybrid gels) prepared in alkaline morpholinoethane sulfonic acid (MES) aqueous solution is that the cross-linking rate between the polymer and the collagen is low. To solve this problem, ethanol has been adopted as the reaction solvent, to prevent 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide hydrochloride (EDC) hydrolysis. Alterations in the ethanol mole concentration changed the cross-linking rate between the MPC polymer and the collagen gel. Prevention of EDC hydrolysis is clearly observed; protonation of carboxyl groups implies that the ratio of ethanol to water should be controlled. The polymer shows signs of penetration into the collagen gel layer, thus forming a totally homogeneous phase gel. This affects the mechanical strength of the collagen gel, making the gel much stiffer and brittle with an increase in the swelling ratio, as compared with that prepared in MES buffer. However, it is possible to obtain a collagen/phospholipid polymer hybrid gel with a high polymer portion and the cross-linking rate can be successfully controlled.

  2. Hierarchical Sol-Gel Transition Induced by Thermosensitive Self-Assembly of an ABC Triblock Polymer in an Ionic Liquid

    SciTech Connect

    Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.; Tamura, Saki; Niitsuma, Kazuyuki; Imaizumi, Satoru; Lodge, Timothy P.; Watanabe, Masayoshi

    2016-04-29

    Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20 wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).

  3. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus.

    PubMed

    Oh, Keun Sang; Kim, Jae Yeon; Yoon, Byeong Deok; Lee, Minae; Kim, Heejoo; Kim, Michelle; Seo, Jae Hong; Yuk, Soon Hong

    2014-11-01

    The sol-gel transition of nanoparticles (NPs)/polymer mixture in aqueous medium was investigated for the sustained delivery of exenatide to treat type 2 diabetes mellitus. Exenatide-loaded multilayer NPs were prepared using a layer-by-layer approach which utilized the interaction between Pluronics and lipid bilayers as the main driving force for the construction of the multilayer. Pluronic F-127 was the polymer used, and it forms a gel at body temperature. Although the antidiabetic effects of exenatide-loaded multilayer NPs have been demonstrated previously in an animal model, in this work, the attempt was made to demonstrate the extended duration of antidiabetic effects, which was accomplished by localizing the exenatide-loaded NPs in muscular areas in the body through the gelation of Pluronic F-127. Transmittance electron microscopy and dynamic light scattering were used to examine the morphology of the multilayer NPs/polymer mixture. A change in the release pattern of exenatide was observed after gel formation at body temperature, and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis was performed using native exenatide and a reference biomarker as control to observe whether exenatide extracted from the multilayer NPs and the multilayer NPs/Pluronic F-127 mixture degraded or not. We then observed the antidiabetic effect of exenatide-loaded multilayer NPs/Pluronic F-127 mixture by monitoring blood-glucose levels in db/db mice. In vitro and in vivo correlation was discussed regarding structural variation in the delivery vehicles.

  4. Formation of 3D graphene foams on soft templated metal monoliths

    NASA Astrophysics Data System (ADS)

    Tynan, Michael K.; Johnson, David W.; Dobson, Ben P.; Coleman, Karl S.

    2016-07-01

    Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy.Graphene foams are leading contenders as frameworks for polymer thermosets, filtration/pollution control and for use as an electrode material in energy storage devices, taking advantage of graphene's high electrical conductivity and the porous structure of the foam. Here we demonstrate a simple synthesis of a macroporous 3D graphene material templated from a dextran/metal salt gel, where the metal was cobalt, nickel, copper, and iron. The gel was annealed to form a metal oxide foam prior to a methane chemical vapour deposition (CVD). Cobalt metal gels were shown to afford the highest quality material as determined by electron microscopy (SEM and TEM) and Raman spectroscopy. Electronic supplementary information (ESI) available: Raman, EDX, PXRD, TGA, electrical conductivity data and SEM. See DOI: 10.1039/c6nr02455f

  5. Effect of Gold Nanoparticle on Percentage Depth Dose Enhancement On Megavoltage Energy in MAGICA Polymer Gel Dosimeter

    PubMed Central

    Mahdavi, M; KhademAbolfazli, M; Mahdavi, S-R-M; Ataei, Gh

    2013-01-01

    Background: Radiation-sensitive polymer gels are among the most promising three-dimensional dose verification tools and tissue-like phantom developed to date. Objective: The aim of this study is an investigating of percentage depth dose enhancement within the gel medium with used of conformal distribution gold nanoparticle as contrast agents by high atomic number material. Methods: In this work the normoxic polymer gel dosimeter MAGICA tissue-equivalence was first theoretically verified using MCNPX Monte Carlo code and experimentally by percentage depth dose curves within the gel medium. Then gold nanoparticles (GNPs) of 50nm diameter with different concentrations of 0.1mM, 0.2mM, and 0.4mM were embedded in MAGICA gel and irradiated by 18MV photon beam. Results: Experimental results have shown dose increase of 10%, 2% and 4%   in 0.1mM, 0.2mM and 0.4mM concentrations, respectively. Simulation results had good agreement in the optimum concentration of 0.1mM. The largest error between experimental and simulation results was equal to 9.28% stood for 0.4mM concentration. Conclusion: The results showed that the optimum concentration of gold nanoparticles to achieve maximum absorbed dose in both experimental and simulation was 0.1 mM and so it can be used for clinical studies. PMID:25505746

  6. Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fasciani, Chiara; Panero, Stefania; Hassoun, Jusef; Scrosati, Bruno

    2015-10-01

    Herein we propose a novel poly(vinylidene difluoride) (PVdF)-based gel polymer electrolyte (GPE) for application in lithium-ion batteries, LIBs. The GPE is prepared under air as a dry, flexible film and directly gelled during LIB assembly with a conventional liquid organic electrolyte. The dry-gel here originally reported maintains its structural integrity due to the presence of crystallized EC-solvent within its matrix that avoids structural collapse, as demonstrated by TGA analysis. By avoiding the use of controlled atmosphere, the GPE is easy to handle and suitable for roll-to-roll scaling-up, i.e. characteristics missed by the common gel membranes. Scanning Electron Microscopy (SEM) evidences a micrometric polymer network of the dry membrane precursor acting as the support matrix for the gelation. Electrochemical impedance spectroscopy (EIS) measurements and galvanostatic tests suggest a good stability of the lithium electrode/gel electrolyte interface and a satisfactory lithium transference number. Cycling tests of gel-electrolyte-based lithium half-cells using lithium iron phosphate (LiFePO4, LFP) and graphite (C), respectively, as counter electrodes, as well as of a full C/LFP lithium-ion battery confirm the suitability of the GPE developed in this work for application in stable, low cost and environmentally friendly energy storage systems.

  7. Polymer gel dosimetry for the TG-43 dosimetric characterization of a new 125I interstitial brachytherapy seed.

    PubMed

    Papagiannis, P; Pantelis, E; Georgiou, E; Karaiskos, P; Angelopoulos, A; Sakelliou, L; Stiliaris, S; Baltas, D; Seimenis, I

    2006-04-21

    In this work, a polymer gel-magnetic resonance (MR) imaging method is employed for the dosimetric characterization of a new 125I low dose rate seed (IsoSeed model I25.S17). Two vials filled with PABIG gel were prepared in-house and one new seed as well as one commercially available 125I seed of similar dose rate and well-known dosimetric parameters (IsoSeed model I25.S06) were positioned in each vial. Both seeds in each vial were MR scanned simultaneously on days 11 and 26 after implantation. The data obtained from the known seed in each vial are used to calibrate the gel dose response which, for the prolonged irradiation duration necessitated by the investigated dose rates, depends on the overall irradiation time. Data for this study are presented according to the AAPM TG-43 dosimetric formalism. Polymer gel results concerning the new seed are compared to corresponding, published dosimetric results obtained, for the purpose of the new seed clinical implementation, by our group using the established methods of Monte Carlo (MC) simulation and thermo-luminescence dosimetry (TLD). Polymer gel dosimetry yields an average dose rate constant value of lambda = (0.921 +/- 0.031) cGy h(-1) U(-1) relative to (MC)lambda = (0.929 +/- 0.014) cGy h(-1) U(-1), (TLD)lambda = (0.951 +/- 0.044) cGy h(-1) U(-1) and the average value of Lambda = (0.940 +/- 0.051) cGy h(-1) U(-1) proposed for the clinical implementation of the new seed. Results for radial dose function, g(L)(r), and anisotropy function, F(r, theta), also agree with corresponding MC calculations within experimental uncertainties which are smaller for the polymer gel method compared to TLD. It is concluded that the proposed polymer gel-magnetic resonance imaging methodology could be used at least as a supplement to the established techniques for the dosimetric characterization of new low energy and low dose rate interstitial brachytherapy seeds.

  8. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  9. Final Technical Report for 'Investigations of the Role of Protozoa in Transformations of Marine Biopolymers using Phaeocytis Polymer Gels as a Model'

    SciTech Connect

    Lessard, Evelyn

    2003-04-01

    OAK B188 Biopolymers and biopolymer gels are major components of the organic carbon and nitrogen pools in the ocean. The overall goal of this project was to better understand the chemical and physical transformations of polymers and polymer gels in coastal waters that are mediated by protists and bacteria. Bacteria are thought to be the major consumers of marine biopolymers, but direct consumption by protists, and the interactions of bacteria and protists, may also be important but largely unexplored pathways of biopolymer cycling. Phaeocystis is a colonial prymnesiophyte alga that produces large amounts of polymer gels that have similar properties to those found in the dissolved organic carbon (DOC) pool namely, they are tangled networks of polymers held together by calcium bridges. We used the polymers and polymer gels produced by two species of Phaeocystis (from the North Atlantic and Antarctica) as models to examine the consumption, degradation and alteration of algal polymer gels by protists and bacteria. We developed several novel methods and approaches to examine polymer gel transformations. One tool was an immunoassay (ELISA) using a polyclonal antibody specific to Phaeocystis polymers that allowed us to track the polymer gels in situ and in laboratory experiments. We successfully tested the ability of the immunoassay to detect and quantify Phaeocystis polymer carbon in water from the Ross Sea, Gulf of Alaska and North Water (Greenland). This exciting new approach demonstrates the usefulness of antibodies for detecting and quantifying a specific component of the DOM pool in natural samples and provides a method for following the sources and sinks of that component. We also developed a fluorescent immunoassay procedure with the antibody to visualize and quantify ingested polymers in single protist cells. In experiments with polymer gels as the sole organic source (no prey), prey plus polymer gels, and prey without polymer gels, we determined that some

  10. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.

    PubMed

    Shi, Zhuqun; Huang, Junchao; Liu, Chuanjun; Ding, Beibei; Kuga, Shigenori; Cai, Jie; Zhang, Lina

    2015-10-21

    With the world's focus on utilization of sustainable natural resources, the conversion of wood and plant fibers into cellulose nanowhiskers/nanofibers is essential for application of cellulose in polymer nanocomposites. Here, we present a novel fabrication method of polymer nanocomposites by in-situ polymerization of monomers in three-dimensionally nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solution. The NCG have interconnected nanofibrillar cellulose network structure, resulting in high mechanical strength and size stability. Polymerization of the monomer gave P(MMA/BMA)/NCG, P(MMA/BA)/NCG nanocomposites with a volume fraction of NCG ranging from 15% to 78%. SEM, TEM, and XRD analyses show that the NCG are finely distributed and preserved well in the nanocomposites after polymerization. DMA analysis demonstrates a significant improvement in tensile storage modulus E' above the glass transition temperature; for instance, at 95 °C, E' is increased by over 4 orders of magnitude from 0.03 MPa of the P(MMA/BMA) up to 350 MPa of nanocomposites containing 15% v/v NCG. This reinforcement effect can be explained by the percolation model. The nanocomposites also show remarkable improvement in solvent resistance (swelling ratio of 1.3-2.2 in chloroform, acetone, and toluene), thermal stability (do not melt or decompose up to 300 °C), and low coefficients of thermal expansion (in-plane CTE of 15 ppm·K(-1)). These nanocomposites will have great promising applications in flexible display, packing, biomedical implants, and many others.

  11. Hydrogel-based reinforcement of 3D bioprinted constructs

    PubMed Central

    Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, W E; Vermonden, T; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as є-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  12. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    SciTech Connect

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan; Kumar, Rajesh

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm

  13. A study on the reproducibility and spatial uniformity of N-isopropylacrylamide polymer gel dosimetry using a commercial 10X fast optical-computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.

    2013-06-01

    This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

  14. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    PubMed Central

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10−3 S cm−1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm−2, 610 mV and 69.1%, respectively. PMID:26659087

  15. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    NASA Astrophysics Data System (ADS)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  16. Absolute dose verifications in small photon fields using BANGTM gel

    NASA Astrophysics Data System (ADS)

    Scheib, S. G.; Schenkel, Y.; Gianolini, S.

    2004-01-01

    Polymer gel dosimeters change their magnetic resonance (MR) and optical properties with the absorbed dose when irradiated and are suitable for narrow photon beam dosimetry in radiosurgery. Such dosimeters enable relative and absolute 3D dose verifications in order to check the entire treatment chain from imaging to dose application during commissioning and quality assurance. For absolute 3D dose verifications in radiosurgery using Gamma Knife B, commercially available BANGTM Gels (BANG 25 Gy and BANG 3 Gy) together with dedicated phantoms were chosen in order to determine the potential of absolute gel dosimetry in radiosurgery.

  17. Highly branched and loop-rich gels via formation of metal-organic cages linked by polymers.

    PubMed

    Zhukhovitskiy, Aleksandr V; Zhong, Mingjiang; Keeler, Eric G; Michaelis, Vladimir K; Sun, Jessie E P; Hore, Michael J A; Pochan, Darrin J; Griffin, Robert G; Willard, Adam P; Johnson, Jeremiah A

    2016-01-01

    Gels formed via metal-ligand coordination typically have very low branch functionality, f, as they consist of ∼2-3 polymer chains linked to single metal ions that serve as junctions. Thus, these materials are very soft and unable to withstand network defects such as dangling ends and loops. We report here a new class of gels assembled from polymeric ligands and metal-organic cages (MOCs) as junctions. The resulting 'polyMOC' gels are precisely tunable and may feature increased branch functionality. We show two examples of such polyMOCs: a gel with a low f based on a M2L4 paddlewheel cluster junction and a compositionally isomeric one of higher f based on a M12L24 cage. The latter features large shear moduli, but also a very large number of elastically inactive loop defects that we subsequently exchanged for functional ligands, with no impact on the gel's shear modulus. Such a ligand substitution is not possible in gels of low f, including the M2L4-based polyMOC.

  18. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    SciTech Connect

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho; Manuel, James; Ahn, Jou-Hyeon

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  19. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  20. High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator

    NASA Astrophysics Data System (ADS)

    Ma, Guofu; Li, Jiajia; Sun, Kanjun; Peng, Hui; Mu, Jingjing; Lei, Ziqiang

    2014-06-01

    A gel polymer PVA-KOH-K3[Fe(CN)6] is prepared by potassium hydroxide and potassium ferricyanide doped polyvinyl alcohol, and a solid-state supercapacitor is assembled using the gel polymer as electrolyte and separator, activated carbons as electrode. The gel polymer exhibits flexible, high ionic conductivity and wide potential properties. The electrochemical properties of the supercapacitor are investigated using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy techniques. The electrode specific capacitance of the supercapacitor can be as high as 430.95 F g-1, and after 1000 cycles at a current density of 1 A g-1 it still remains higher than 380 F g-1. The energy density and power density of the supercapacitor reach 57.94 Wh kg-1 and 59.84 kW kg-1, respectively. These novel flexible gel polymers are desirable for applications in supercapacitor devices.

  1. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    PubMed

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples.

  2. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Y. S.; Xiao, S. Y.; Li, M. X.; Chang, Z.; Wang, F. X.; Gao, J.; Wu, Y. P.

    2015-08-01

    A porous membrane of carboxymethyl cellulose (CMC) from natural macromolecule as a host of a gel polymer electrolyte for lithium ion batteries is reported. It is prepared, for the first time, by a simple non-solvent evaporation method and its porous structure is fine-adjusted by varying the composition ratio of the solvent and non-solvent mixture. The electrolyte uptake of the porous membrane based on CMC is 75.9%. The ionic conductivity of the as-prepared gel membrane saturated with 1 mol L-1 LiPF6 electrolyte at room temperature can be up to 0.48 mS cm-1. Moreover, the lithium ion transference in the gel membrane at room temperature is as high as 0.46, much higher than 0.27 for the commercial separator Celgard 2730. When evaluated by using LiFePO4 cathode, the prepared gel membrane exhibits very good electrochemical performance including higher reversible capacity, better rate capability and good cycling behaviour. The obtained results suggest that this porous polymer membrane shows great attraction to the lithium ion batteries requiring high safety, low cost and environmental friendliness.

  4. Radiation-induced refraction artifacts in the optical CT readout of polymer gel dosimeters

    SciTech Connect

    Campbell, Warren G.; Jirasek, Andrew; Wells, Derek M.

    2014-11-01

    Purpose: The objective of this work is to demonstrate imaging artifacts that can occur during the optical computed tomography (CT) scanning of polymer gel dosimeters due to radiation-induced refractive index (RI) changes in polyacrylamide gels. Methods: A 1 L cylindrical polyacrylamide gel dosimeter was irradiated with 3 × 3 cm{sup 2} square beams of 6 MV photons. A prototype fan-beam optical CT scanner was used to image the dosimeter. Investigative optical CT scans were performed to examine two types of rayline bending: (i) bending within the plane of the fan-beam and (ii) bending out the plane of the fan-beam. To address structured errors, an iterative Savitzky–Golay (ISG) filtering routine was designed to filter 2D projections in sinogram space. For comparison, 2D projections were alternatively filtered using an adaptive-mean (AM) filter. Results: In-plane rayline bending was most notably observed in optical CT projections where rays of the fan-beam confronted a sustained dose gradient that was perpendicular to their trajectory but within the fan-beam plane. These errors caused distinct streaking artifacts in image reconstructions due to the refraction of higher intensity rays toward more opaque regions of the dosimeter. Out-of-plane rayline bending was observed in slices of the dosimeter that featured dose gradients perpendicular to the plane of the fan-beam. These errors caused widespread, severe overestimations of dose in image reconstructions due to the higher-than-actual opacity that is perceived by the scanner when light is bent off of the detector array. The ISG filtering routine outperformed AM filtering for both in-plane and out-of-plane rayline errors caused by radiation-induced RI changes. For in-plane rayline errors, streaks in an irradiated region (>7 Gy) were as high as 49% for unfiltered data, 14% for AM, and 6% for ISG. For out-of-plane rayline errors, overestimations of dose in a low-dose region (∼50 cGy) were as high as 13 Gy for

  5. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom.

    PubMed

    Mann, P; Witte, M; Moser, T; Lang, C; Runz, A; Johnen, W; Berger, M; Biederer, J; Karger, C P

    2017-01-21

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX(™) container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  6. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    NASA Astrophysics Data System (ADS)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  7. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: role of dielectric constant of solvent and fumed silica

    NASA Astrophysics Data System (ADS)

    Kumar, R.

    2015-03-01

    In this paper, nano-composite polymer gel electrolytes containing polymethylmethacrylate, dimethylacetamide, diethyl carbonate, fumed silica and ortho-nitro benzoic acid have been synthesized. Electrical conductivity, viscosity, pH and thermal behavior of these electrolytes have been studied. The effect of acid, polymer, fumed silica concentration on conductivity, pH and viscosity has been discussed. The effect of dielectric constant of solvent on conductivity behavior of composite polymer gel electrolytes has also been studied. Two maxima in conductivity behavior have been observed with fumed silica concentration for composite polymer gel electrolytes, which have been explained on the basis of double percolation threshold model. Maximum conductivity of 3.20 × 10-4 and 2.46 × 10-6 S/cm at room temperature has been observed for nano-composite polymer gel electrolytes containing 10 wt% polymethylmethacrylate in 1 M solution of o-nitro benzoic acid in dimethylacetamide and diethyl carbonate respectively. The intensity of first maximum observed in conductivity at low concentration of fumed silica has been found to decrease with the decrease in acid concentration for composite polymer gel electrolytes, while the intensity of second maximum at higher fumed silica concentration remains unaffected. The conductivity of composite gels does not show much change in the temperature range of 20-100 °C and also remains constant with time, making them suitable for use as electrolytes in various devices like fuel cells, proton batteries, electrochromic window applications etc.

  8. Polymer particles filled with multiple colloidal silica via in situ sol-gel process and their thermal property

    NASA Astrophysics Data System (ADS)

    Byun, Hongsik; Hu, Jiayun; Pakawanit, Phakkhananan; Srisombat, Laongnuan; Kim, Jun-Hyun

    2017-01-01

    The in situ formation of dielectric silica (SiO2) particles was carried out in the presence of temperature-responsive poly(N-isopropylacrylamide) particles. Unlike the typical sol-gel method used to prepare various SiO2 particles, the highly uniform growth of SiO2 particles was achieved within the cross-linked polymer particles (i.e., the polymer particles were filled with the SiO2 particles) simply by utilizing interfacial interactions, including the van der Waals attractive force and hydrogen bonding in nanoscale environments. The structural and morphological features as well as the thermal behaviors of these composites were thoroughly examined by electron microscopes, dynamic light scattering, and thermal analyzers. In particular, the thermal properties of these composites were completely different from the bare polymer, SiO2 particles, and their mixtures, which clearly suggested the successful incorporation of multiple SiO2 particles within the cross-linked polymer particles. Similarly, titanium oxide (TiO2) particles were easily embedded within the polymer particle template which exhibited improved overall properties. As a whole, understanding in situ formation of nanoscale inorganic particles within polymer particle templates can allow for designing novel composite materials possessing enhanced chemical and physical properties.

  9. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  10. Sol-gel deposited gallium-doped zinc oxide electrode for polymer light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Ha, Jaeheung; Lee, Changhee; Hong, Yongtaek

    2012-09-01

    We have made a sol-gel deposited gallium-doped zinc oxide (GZO) film as a transparent conductive anode in polymer light-emitting diode (PLED) applications. The GZO films were obtained by spin-coating GZO precursor solutions followed by consecutive thermal annealing in the air and in the hydrogen-rich atmosphere. The resistance of GZO film was reduced to ~100 Ω/□ after thermal annealing in the hydrogen environment. Its surface roughness was sufficiently low (1.159 nm RMS) for depositing other polymer layers. We have fabricated PLEDs with quartz substrate / solution-processed GZO electrode (anode) / PEDOT:PSS (HITL) / SPG-01T (Green polymer light-emitting material purchased from Merck, EML) / Ca (EIL) / Al (Cathode). The fabricated devices showed current efficiency of 3.06 cd/A and power efficiency of 1.25 lm/W at luminance of 1000 cd/m2.

  11. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  12. A Novel Method of Estimating Dose Responses for Polymer Gels Using Texture Analysis of Scanning Electron Microscopy Images

    PubMed Central

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were −7.60%, 5.80%, 2.53%, and −0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection. PMID:23843998

  13. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    PubMed

    Shih, Cheng-Ting; Hsu, Jui-Ting; Han, Rou-Ping; Hsieh, Bor-Tsung; Chang, Shu-Jun; Wu, Jay

    2013-01-01

    Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM) images. The modified N-isopropyl-acrylamide (NIPAM) gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM). The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2) value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  14. High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes.

    PubMed

    Seidalilir, Zahra; Malekfar, Rasoul; Wu, Hui-Ping; Shiu, Jia-Wei; Diau, Eric Wei-Guang

    2015-06-17

    Highly ordered and vertically oriented TiO2 nanotube (NT) arrays were synthesized with potentiostatic anodization of Ti foil and applied to fabricate gel-state dye-sensitized solar cells (DSSCs). The open structure of the TiO2 NT facilitates the infiltration of the gel-state electrolyte; their one-dimensional structural feature provides effective charge transport. TiO2 NTs of length L=15-35 μm were produced on anodization for periods of t=5-15 h at a constant voltage of 60 V, and sensitized with N719 for photovoltaic characterization. A commercially available copolymer, poly(methyl methacrylate-co-ethyl acrylate) (PMMA-EA), served as a gelling agent to prepare a polymer-gel electrolyte (PGE) for DSSC applications. The PGE as prepared exhibited a maximum conductivity of 4.58 mS cm(-1) with PMMA-EA (7 wt %). The phase transition temperature (Tp) of the PGE containing PMMA-EA at varied concentrations was determined on the basis of the viscosities measured at varied temperatures. Tp increased with increasing concentration of PMMA-EA. An NT-DSSC with L=30 μm assembled using a PGE containing PMMA-EA (7 wt %) exhibited an overall power conversion efficiency (PCE) of 6.9%, which is comparable with that of a corresponding liquid-type device, PCE=7.1%. Moreover, the gel-state NT-DSSC exhibited excellent thermal and light-soaking enduring stability: the best device retained ∼90% of its initial efficiency after 1000 h under 1 sun of illumination at 50 °C, whereas its liquid-state counterpart decayed appreciably after light soaking for 500 h.

  15. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels

    SciTech Connect

    Moutsatsos, A.; Karaiskos, P.; Pantelis, E.; Georgiou, E.; Petrokokkinos, L.; Sakelliou, L.; Torrens, M.; Seimenis, I.

    2013-03-15

    Purpose: This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. Methods: A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a 'control point' in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. Results: MR spatial distortions stemming from main field (B{sub 0}) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total

  16. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Yan-Huei; Tsai, Pei-Ting; Chang, Chia-Ju; Meng, Hsin-Fei; Horng, Sheng-Fu; Zan, Hsiao-Wen; Lin, Hung-Cheng; Liu, Hung-Chuan; Tseng, Mei-Rurng; Yeh, Han-Cheng

    2016-11-01

    The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO) as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b')dithiophene)-2,6-diyl-alt- (4-(2-ethylhexanoyl)-thieno [3,4-b]thiophene-)-2-6-diyl)] (PBDTTT-C-T) and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM) as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  17. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models.

    PubMed

    Yates, Cecelia C; Whaley, Diana; Babu, Ranjith; Zhang, Jianying; Krishna, Priya; Beckman, Eric; Pasculle, A William; Wells, Alan

    2007-09-01

    We determined whether a two-part space-conforming polyethylene glycol/dopa polymer-based gel promoted healing of contaminated wounds in mice. This silver-catalysed gel was previously developed to be broadly microbiocidal in vitro while being biocompatible with human wound cell functioning. Full-thickness wounds were created on the backs of mice. The wounds were inoculated with 10(4) CFU of each of four common skin wound contaminants, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanii and Clostridium perfringens. The wounds were then treated with our multifunctional polymer-based gel, the commercially available NewSkin product, or left to heal untreated. The untreated wounds were overtly infected, and presented detectable bacterial loads over the entire 21-day healing period, while the gel and NewSkin groups presented significantly smaller rises in bacterial levels and were cleared of detectable colonies by the third week, with the gel group clearing the bacteria earlier. While all three groups healed their wounds, the polymer-based gel-treated group demonstrated significantly earlier re-epithelialization and dermal maturation (P<0.05). This was reflected in a quick regain of tensile strength. This accelerated dermal maturation and regain in strength was noted in mice treated with the polymer-based gel when compared to wound treated with the commercially available Aquacel-Ag dressing (P<0.05). What distinguishes the polymer-based gel from these other products is that it is incorporated within the healing wound. These preclinical studies show that the anti-microbial polymer gel not only supports but also accelerates healing of bacterially contaminated wounds.

  18. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  19. Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: pressure-induced spin crossover in the porous {Fe(II)(pz)[Pd(II)(SCN)4]} 3D coordination polymer.

    PubMed

    Muñoz-Lara, Francisco J; Arcís-Castillo, Zulema; Muñoz, M Carmen; Rodríguez-Velamazán, J Alberto; Gaspar, Ana B; Real, José A

    2012-10-15

    Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH)(2)[Pd(SCN)(4)]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN)(4)](2-) anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN)(4)]}(∞). The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH(3)OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordinated methanol molecules of adjacent layers. Compound {Fe(pz)[Pd(SCN)(4)]} (2) is a three-dimensional porous coordination polymer formed by flat {Fe[Pd(SCN)(4)]}(∞) layers pillared by the pz ligand. Thermal analysis of 1a shows a clear desorption of the two coordinated CH(3)OH molecules giving a rather stable phase (1b), which presumably is a polymorphic form of 2. The magnetic properties of the three derivatives are typical of the high-spin Fe(II) compounds. However, compounds 1b and 2, with coordination sphere [FeN(6)], show thermal spin crossover behavior at pressures higher than ambient pressure (10(5) MPa).

  20. Evaluation of methods of reducing permeability in porous rocks by in-situ polymer treatments. Summary for 1984. [Chromium(III) gels

    SciTech Connect

    Willhite, G.P.; Green, D.W.; Vossoughi, S.; Young, T.S.; Thiele, J.L.

    1984-01-01

    The general purpose of this research program is to investigate the application of gelled polymer systems for flow control in oil recovery processes involving fluid displacements. The work has been divided into five general areas: (1) characterization of gel systems and gels; (2) kinetics of gelation for chromium(III) systems; (3) rheological investigation of chromium(III) gels; (4) in-situ gelation of chromium(III) systems; and (5) permeability reduction by injection of polymer and aluminum citrate. Progress in each of these areas is summarized.

  1. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles.

    PubMed

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-10-01

    Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels' properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and [Formula: see text] and [Formula: see text] relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The [Formula: see text] and [Formula: see text] relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production.

  2. The fractal calibration method applied to the characterization of polymers in solvent mixtures and in mixed gel packings by SEC.

    PubMed

    Porcar, Iolanda; García-Lopera, Rosa; Abad, Concepción; Campos, Agustín

    2007-08-01

    The size-exclusion chromatographic (SEC) behaviour of different solvent/polymer systems in three packing sets has been analysed from fractal considerations. The three-column sets studied are specifically formed by: (i) 'pure' micro-styragel, (ii) 'mixed' TSK Gel H(HR + XL + HR) and (iii) mixed TSK Gel H(XL + HR + XL). The experimental data reveals that in most of the systems assayed the classical universal calibration (UC) is not fulfilled, denoting the existence of secondary effects accompanying the main SEC mechanism. In order to obtain an accurate characterization of different polymers eluted in solvent mixtures and/or mixed packings, the use of a reliable and trusted calibration curve is required. In this sense, two alternative procedures have been analysed: the specific (SC) and the fractal (FC) calibrations. The results have evidenced that the use of the FC instead of the classical universal method diminishes up to nine times (in the case of the micro-styragel set) the mean deviation on the calculated molar mass with respect to the value given by the supplier. In the case of TSK Gel-based sets, the mean deviation is reduced to the half. The SC curve made with standards of the sample under study also reduces the mean deviation values but needs a broad set of narrow standards, whereas the fractal approach only needs one polymeric sample to build up the calibration curve.

  3. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy.

  4. Practical performances of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, MCMB, and PAN-based gel electrolyte

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Shibuya, Mashio; Orui, Ken; Shibamoto, Gorou; Sekai, Koji

    The practical performances and thermal stability of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, mesocarbon microbead-based graphite, and poly(acrylonitrile) (PAN)-based gel electrolytes are reported. The gel electrolyte, which shows a fire-retardance by itself as well as good chemical stability effectively improved thermal stability of the Li-ion polymer battery up to 170 °C. We also found that the mesocarbon microbead-based graphite showed better coulombic efficiency even though the gel electrolyte contained PC and GBL. An evaluation of cell performances showed that the electrodes and the gel electrolyte were promising material for a next-generation Li-ion polymer battery.

  5. Spongy Gels by a Top‐Down Approach from Polymer Fibrous Sponges

    PubMed Central

    Jiang, Shaohua; Duan, Gaigai; Kuhn, Ute; Mörl, Michaela; Altstädt, Volker

    2017-01-01

    Abstract Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel‐like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom‐up process. In contrast, the spongy gels are formed by a top‐down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel‐like material. The spongy gels are independent of a time‐consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non‐wetting liquids dispersed in the sponge. PMID:28194915

  6. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Hazama, Taisuke; Fujii, Kenta; Sakai, Takamasa; Aoki, Masahiro; Mimura, Hideyuki; Eguchi, Hisao; Todorov, Yanko; Yoshimoto, Nobuko; Morita, Masayuki

    2015-07-01

    An organo gel with only 6 wt % tetra-armed poly(ethylene glycol), TetraPEG, was prepared and applied as a novel gel electrolyte for Li ion batteries (LIBs). The TetraPEG gel electrolyte containing 1.0 M LiPF6 in binary or ternary mixtures, i.e., EC + DEC and EC + DEC + TFEP (EC: ethylene carbonate, DEC: diethyl carbonate and TFEP: tris(2,2,2-trifluoroethyl)phosphate showed high ionic conductivity required for the use in LIB systems. The TetraPEG gel based on ternary EC + DEC + TFEP system acts as a nonflammable gel electrolyte at the TFEP content higher than 20 vol%. In cyclic voltammetry and charge/discharge cycling tests, the TetraPEG gel electrolytes showed good reversibility for a graphite negative electrode.

  7. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  8. An unusual 2p-3d-4f heterometallic coordination polymer featuring Ln8Na and Cu8I clusters as nodes

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjuan; Chen, Shimin; Huang, Yutian; Dan, Youmeng

    2017-01-01

    A new cluster-based three-dimensional 2p-3d-4f heterometallic framework {[Ho8Na(OH)6Cu16I2(CPT)24](NO3)9(H2O)6(CH3CN)18}n (1, HCPT = 4-(4-carboxyphenyl)-1,2,4 triazole) has been prepared under solvothermal condition by using a custom-designed bifunctional organic ligand. The single-crystal structure analysis reveals that this framework features novel Ln8Na and Cu8I clusters as nodes, these nodes are further connected by the CPT ligands to give rise to a (6,14)-connected network. The magnetic property of this framework has also been investigated.

  9. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  10. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Krishna Jyothi, N.; Vijaya Kumar, K.; Sunita Sundari, G.; Narayana Murthy, P.

    2016-03-01

    Sodium ion conducting gel polymer electrolytes based on polyacrylonitrile (PAN) with ethylene carbonate and dimethyl formamide as plasticizing solvents are prepared by the solution cast technique. These electrolyte films are free standing, transparent and dimensionally stable. Na+ ions are derived from NaI. The structural properties of pure and complex formations have been examined by X-ray diffraction, Fourier transform infrared spectroscopic studies and differential scanning calorimetric studies. The variation of the conductivity with salt concentration ranging from 10 to 40 wt% is studied. The sample containing 30 wt% of NaI exhibits the highest conductivity of 2.35 × 10-4 S cm-1 at room temperature (303 K) and 1 × 10-3 S cm-1 at 373 K. The conductivity-temperature dependence of polymer electrolyte films obeys Arrhenius behavior with activation energy in the range of 0.25-0.46 eV. The transport numbers both electronic ( t e) and ionic ( t i) are evaluated using Wagner's polarization technique. It is revealed that the conducting species are predominantly due to ions. The ionic transport number of highest conducting film is found to be 0.991. Solid-state battery with configuration Na/(PAN + NaI)/(I2 + C + electrolyte) is developed using the highest conducting gel polymer electrolyte system and the discharge characteristics of the cell are evaluated over the load of 100 KΩ.

  11. Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films.

    PubMed

    Di Florio, Giuseppe; Bründermann, Erik; Yadavalli, Nataraja Sekhar; Santer, Svetlana; Havenith, Martina

    2014-03-14

    We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser in three dimensions. We found periodic patterns, which are not restricted to the surface alone, but appear also well below the surface in the bulk of the material. Near-field optical microscopy with nanoscale resolution revealed lateral two-dimensional optical contrast, which is not observable by atomic force and Raman microscopy.

  12. Extreme strain localization and sliding friction in physically associating polymer gels.

    PubMed

    Erk, Kendra A; Martin, Jeffrey D; Hu, Y Thomas; Shull, Kenneth R

    2012-03-06

    Model physically associating gels deformed in shear over a wide range of reduced rates displayed evidence of strain localization. The nonlinear stress responses and inhomogeneous velocity profiles observed during shear rheometry coupled with particle tracking velocimetry were associated with the occurrence of rate-dependent banding and fracture-like responses in the gel. Scaling law analysis from traditional sliding friction studies suggests that, at the molecular level, deformation is confined to a shear zone with thickness comparable to the mesh size of the gel, the smallest structurally relevant length scale in the gel.

  13. Dynamic and static fluctuations in polymer gels studied by neutron spin-echo

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.

    2006-11-01

    We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.

  14. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    , supplemented with polyP and/or biosilica, is a suitable biomaterial that promotes the growth and differentiation of hMSCs and might be beneficial for application in 3D tissue printing of hMSCs and for the delivery of hMSCs in fractures, surgically created during distraction osteogenesis.

  15. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E. G.

    2014-01-01

    , supplemented with polyP and/or biosilica, is a suitable biomaterial that promotes the growth and differentiation of hMSCs and might be beneficial for application in 3D tissue printing of hMSCs and for the delivery of hMSCs in fractures, surgically created during distraction osteogenesis. PMID:24566262

  16. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  17. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  18. Direct Evidence for Percolation of Immobilized Polymer Layer around Nanoparticles Accounting for Sol-Gel Transition in Fumed Silica Dispersions.

    PubMed

    Zheng, Zhong; Song, Yihu; Yang, Ruiquan; Zheng, Qiang

    2015-12-22

    Immobilized polymer fractions have been claimed to be of vital importance for sol-gel transitions generally observed in nanoparticle dispersions but remain a matter of debate regarding mechanism and difficulty for prediction. Here we investigate the immobilized layer structures of trifunctionality polyether polyol (PPG) near the surfaces of hydrophilic and hydrophobic fumed silica (FS) nanoparticles to reveal the role of surface chemistry on the molecular dynamics and sol-gel transitions of the dispersions. Using modulated differential scanning calorimetry, we measure the specific heat capacity during glass transition and the enthalpy during cold-crystallization. Comparing with hydrophobic FS that forms a fully immobilized (glassy) layer, we find that hydrophilic FS immobilizes more PPG, forming a partially immobilized outer layer being unable to crystallize next to the inner glassy layer. By correlating the thickness of the glassy layer with half of the minimum spacing between nanoparticles, we directly evidence the percolation of this layer along the nearest neighbor nanoparticles responsible for the sol-gel transition. Using effective volume fraction including the glassy layer, we successfully construct master curves of relative viscosity of both hydrophilic and hydrophobic FS dispersions, pointing to a common sol-gel transition mechanism mediated by the surface chemistry.

  19. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    SciTech Connect

    Smith, S. T. Masters, K.-S.; Hosokawa, K.; Blinco, J. P.; Trapp, J. V.; Crowe, S. B.; Kairn, T.

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2} h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.

  20. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs.

    PubMed

    Cappello, J; Crissman, J W; Crissman, M; Ferrari, F A; Textor, G; Wallis, O; Whitledge, J R; Zhou, X; Burman, D; Aukerman, L; Stedronsky, E R

    1998-04-30

    Sequential block copolymers consisting of tandem repetition of amino acids have been constructed and genetically produced based on the natural repeating structures of silk and elastin protein. Combinations of silklike and elastinlike amino acid sequence blocks in a high molecular weight protein polymer are used to confer properties similar to those observed with hard block and soft block segmented polyurethanes. A certain subset of these silk-elastinlike protein compositions, termed ProLastins, will undergo an irreversible solution to gel transition in physiological, aqueous solution. The transition occurs over time and can be controlled by temperature, solution conditions, and additives which either prevent or promote hydrogen bond-mediated chain crystallization. The process involves no covalent crosslinking. Characterization of the gelling properties of various ProLastin compositions and their ability to release compounds which are incorporated directly into the gels are presented.

  1. Two-dimensional finite element analysis of a polymer gel drug delivery system

    SciTech Connect

    Segalman, D.J.; Witkowski, W.R.

    1993-12-31

    Hydrogels are being investigated as drug delivery mechanisms. Gels can be impregnated with a drug and then stimulated through various means to release it. Having the capability to numerically predict the dynamic behavior of these release process would benefit the design and control of the such a process. In the paper, a finite element analysis is used to simulate the dynamic behavior of an eroding polyelectrolyte gel. The gel is impregnated in a collapsed state. It is then subjected to a higher pH environment causing it to swell. When it has swollen to a specified extent, the gel erodes, thereby releasing the drug agent. Such gels are currently being investigated in drug delivery schemes to the colon.

  2. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers.

    PubMed

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke

    2016-07-11

    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction.

  3. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  4. The influence of polymer content on early gel-layer formation in HPMC matrices: The use of CLSM visualisation to identify the percolation threshold.

    PubMed

    Mason, Laura Michelle; Campiñez, María Dolores; Pygall, Samuel R; Burley, Jonathan C; Gupta, Pranav; Storey, David E; Caraballo, Isidoro; Melia, Colin D

    2015-08-01

    Percolation theory has been used for several years in the design of HPMC hydrophilic matrices. This theory predicts that a minimum threshold content of polymer is required to provide extended release of drug, and that matrices with a lower polymer content will exhibit more rapid drug release as a result of percolation pathways facilitating the faster penetration of the aqueous medium. At present, percolation thresholds in HPMC matrices have been estimated solely through the mathematical modelling of dissolution data. This paper examines whether they can be also identified in a novel way: through the use of confocal laser scanning fluorescence microscopy (CLSM) to observe the morphology of the emerging gel layer during the initial period of polymer hydration and early gel formation at the matrix surface. In this study, matrices have been prepared with a polymer content of 5-30% w/w HPMC 2208 (Methocel K4M), with a mix of other excipients (a soluble drug (caffeine), lactose, microcrystalline cellulose and magnesium stearate) to provide a typical industrially realistic formulation. Dissolution studies, undertaken in water using USP apparatus 2 (paddle) at 50rpm, provided data for the calculation of the percolation threshold through relating dissolution kinetic parameters to the excipient volumetric fraction of the dry matrix. The HPMC percolation threshold estimated this way was found to be 12.8% v/v, which was equivalent to a matrix polymer content of 11.5% w/w. The pattern of polymer hydration and gel layer growth during early gel layer formation was examined by confocal laser scanning fluorescence microscopy (CLSM). Clear differences in gel layer formation were observed. At polymer contents above the estimated threshold a continuous gel layer was formed within 15min, whereas matrices with polymer contents below the threshold were characterised by irregular gel layer formation with little evidence of HPMC particle coalescence. According to percolation theory, this

  5. A preliminary study of the novel application of normoxic polymer gel dosimeters for the measurement of CTDI on diagnostic x-ray CT scanners.

    PubMed

    Hill, Brendan; Venning, Anthony J; Baldock, Clive

    2005-06-01

    Computer tomography dose index (CTDI) is a measurement undertaken during acceptance testing and subsequent quality assurance measurements of diagnostic x-ray CT scanners for the determination of patient dose. Normoxic polymer gel dosimeters have been used for the first time to measure dose and subsequently CTDI during acceptance testing of a CT scanner and compared with the conventional ionization chamber measurement for a range of imaging protocols. The normoxic polymer gel dosimeter was additionally used to simultaneously determine slice-width dose profiles and CTDI in the transaxial plane, the measurements of which are usually determined with thermoluminescent dosimetry or film. The resulting CTDI for all slice widths calculated from the normoxic polymer gel dosimeter were within corresponding ionization chamber CTDI values. Slice-width dose-profiles full-width half-maximum values from the normoxic polymer gel dosimeter were compared to the slice sensitivity profiles and were within the tolerances of the manufacturer. Normoxic polymer gel dosimeters have been shown to be a useful device for determining CTDI and dose distributions for CT equipment, and provide additional information not possible with just the use of an ionization chamber.

  6. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  7. Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes.

    PubMed

    Ahn, Sung Kwang; Ban, Taewon; Sakthivel, P; Lee, Jae Wook; Gal, Yeong-Soon; Lee, Jin-Kook; Kim, Mi-Ra; Jin, Sung-Ho

    2012-04-01

    In order to overcome the problems associated with the use of liquid electrolytes in dye-sensitized solar cells (DSSCs), a new system composed of liquid crystal embedded, polymer electrolytes has been developed. For this purpose, three types of DSSCs have been fabricated. The cells contain electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVdF-co-HFP) polymer gel electrolyte, with and without doping with the liquid crystal E7 and with a liquid electrolyte. The morphologies of the newly prepared DSSCs were explored using field emission scanning electron microscopy (FE-SEM). Analysis of the FE-SEM images indicate that the DSSC composed of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte has a greatly regular morphology with an average diameter. The ionic conductivity of E7 embedded on e-PVdF-co-HFP polymer gel electrolyte was found to be 2.9 × 10(-3) S/cm at room temperature, a value that is 37% higher than that of e-PVdF-co-HFP polymer gel electrolyte. The DCCS containing the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte was observed to possess a much higher power conversion efficiency (PCE = 6.82%) than that of an e-PVdF-co-HFP nanofiber (6.35%). In addition, DSSCs parameters of the E7 embedded, e-PVdF-co-HFP polymer gel electrolyte (V(oc) = 0.72 V, J(sc) = 14.62 mA/cm(2), FF = 64.8%, and PCE = 6.82% at 1 sun intensity) are comparable to those of a liquid electrolyte (V(oc) = 0.75 V, J(sc) = 14.71 mA/cm(2), FF = 64.9%, and PCE = 7.17%, both at a 1 sun intensity).

  8. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    NASA Astrophysics Data System (ADS)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  9. Comparison of Monte Carlo calculations around a Fletcher Suit Delclos ovoid with radiochromic film and normoxic polymer gel dosimetry.

    PubMed

    Gifford, Kent A; Horton, John L; Jackson, Edward F; Steger, Theodore R; Heard, Malcolm P; Mourtada, Firas; Lawyer, Ann A; Ibbott, Geoffrey S

    2005-07-01

    The Fletcher Suit Delclos (FSD) ovoids employed in intracavitary brachytherapy (ICB) for cervical cancer contain shields to reduce dose to the bladder and rectum. Many treatment planning systems (TPS) do not include the shields and other ovoid structures in the dose calculation. Instead, TPSs calculate dose by summing the dose contributions from the individual sources and ignoring ovoid structures such as the shields. The goal of this work was to calculate the dose distribution with Monte Carlo around a Selectron FSD ovoid and compare these calculations with radiochromic film (RCF) and normoxic polymer gel dosimetry. Monte Carlo calculations were performed with MCNPX 2.5.c for a single Selectron FSD ovoid with and without shields. RCF measurements were performed in a plane parallel to and displaced laterally 1.25 cm from the long axis of the ovoid. MAGIC gel measurements were performed in a polymethylmethacrylate phantom. RCF and MAGIC gel were irradiated with four 33 microGy m2 h(-1) Cs-137 pellets for a period of 24 h. Results indicated that MCNPX calculated dose to within +/- 2% or 2 mm for 98% of points compared with RCF measurements and to within +/- 3% or 3 mm for 98% of points compared with MAGIC gel measurements. It is concluded that MCNPX 2.5.c can calculate dose accurately in the presence of the ovoid shields, that RCF and MAGIC gel can demonstrate the effect of ovoid shields on the dose distribution and the ovoid shields reduce the dose by as much as 50%.

  10. Comparison of Monte Carlo calculations around a Fletcher Suit Delclos ovoid with radiochromic film and normoxic polymer gel dosimetry

    SciTech Connect

    Gifford, Kent A.; Horton, John L. Jr.; Jackson, Edward F.; Steger, Theodore R. III; Heard, Malcolm P.; Mourtada, Firas; Lawyer, Ann A.; Ibbott, Geoffrey S.

    2005-07-15

    The Fletcher Suit Delclos (FSD) ovoids employed in intracavitary brachytherapy (ICB) for cervical cancer contain shields to reduce dose to the bladder and rectum. Many treatment planning systems (TPS) do not include the shields and other ovoid structures in the dose calculation. Instead, TPSs calculate dose by summing the dose contributions from the individual sources and ignoring ovoid structures such as the shields. The goal of this work was to calculate the dose distribution with Monte Carlo around a Selectron FSD ovoid and compare these calculations with radiochromic film (RCF) and normoxic polymer gel dosimetry. Monte Carlo calculations were performed with MCNPX 2.5.c for a single Selectron FSD ovoid with and without shields. RCF measurements were performed in a plane parallel to and displaced laterally 1.25 cm from the long axis of the ovoid. MAGIC gel measurements were performed in a polymethylmethacrylate phantom. RCF and MAGIC gel were irradiated with four 33 {mu}Gy m{sup 2} h{sup -1} Cs-137 pellets for a period of 24 h. Results indicated that MCNPX calculated dose to within {+-}2% or 2 mm for 98% of points compared with RCF measurements and to within {+-}3% or 3 mm for 98% of points compared with MAGIC gel measurements. It is concluded that MCNPX 2.5.c can calculate dose accurately in the presence of the ovoid shields, that RCF and MAGIC gel can demonstrate the effect of ovoid shields on the dose distribution and the ovoid shields reduce the dose by as much as 50%.

  11. Enhancement of Dose Response and Nuclear Magnetic Resonance Image of PAGAT Polymer Gel Dosimeter by Adding Silver Nanoparticles.

    PubMed

    Sabbaghizadeh, Rahim; Shamsudin, Roslinda; Deyhimihaghighi, Najmeh; Sedghi, Arman

    2017-01-01

    In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles.

  12. Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles

    PubMed Central

    In, Eunji; Naguib, Hani; Haider, Masoom

    2014-01-01

    Abstract. Medical imaging is an effective technique used to detect and prevent disease in cancer research. To optimize medical imaging, a calibration medium or phantom with tissue-mimicking properties is required. Although the feasibility of various polymer gel materials has previously been studied, the stability of the gels’ properties has not been investigated. In this study, we fabricated carrageenan-based polymer gel to examine the stability of its properties such as density, conductivity, permittivity, elastic modulus, and T1 and T2 relaxation times over six weeks. We fabricated eight samples with different carrageenan and agar concentrations and found that the density, elastic modulus, and compressive strength fluctuated with no specific pattern. The elastic modulus in sample 4 with 3 wt. % carrageenan and 1.5 wt. % agar fluctuated from 0.51 to 0.64 MPa in five weeks. The T1 and T2 relaxation times also varied by 23% to 29%. We believe that the fluctuation of these properties is related to the change in water content of the sample due to cycles of water expulsion and absorption in their containers. The fluctuation of the properties should be minimized to achieve accurate calibration over the shelf life of the phantom and to serve as the standard for quality assurance. Furthermore, a full liver phantom with spherical lesion particles was fabricated to demonstrate the potential for phantom production. PMID:26158073

  13. Enhancement of Dose Response and Nuclear Magnetic Resonance Image of PAGAT Polymer Gel Dosimeter by Adding Silver Nanoparticles

    PubMed Central

    Sabbaghizadeh, Rahim; Shamsudin, Roslinda; Deyhimihaghighi, Najmeh; Sedghi, Arman

    2017-01-01

    In the present study, the normoxic polyacrylamide gelatin and tetrakis hydroxy methyl phosphoniun chloride (PAGAT) polymer gel dosimeters were synthesized with and without the presence of silver (Ag) nanoparticles. The amount of Ag nanoparticles varied from 1 to 3 ml with concentration 3.14 g/l, thus forming two types of PAGAT polymer gel dosimeters before irradiating them with 6 to 25 Gy produced by 1.25-MeV 60Co gamma rays. In this range, the predominant gamma ray interaction with matter is by Compton scattering effect, as the photoelectric absorption effect diminishes. MRI was employed when evaluating the polymerization of the dosimeters and the gray scale of the MRI film was determined via an optical densitometer. Subsequent analyses of optical densities revealed that the extent of polymerization increased with the increase in the absorbed dose, while the increase of penetration depth within the dosimeters has a reverse effect. Moreover, a significant increase in the optical density-dose response (11.82%) was noted for dosimeters containing 2 ml Ag nanoparticles. PMID:28060829

  14. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  15. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators