Science.gov

Sample records for 3d pore network

  1. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  2. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-04-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  3. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  4. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  5. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  6. Molecular tectonics: control of pore size and polarity in 3-D hexagonal coordination networks based on porphyrins and a zinc cation.

    PubMed

    Kühn, Elisabeth; Bulach, Véronique; Hosseini, Mir Wais

    2008-11-07

    In the crystalline phase, porphyrin derivatives based on two 4-pyridyl units at the 5 and 15 meso positions and two 4-aryl moieties bearing various groups (CN, OMe, OH and CF(3)) at the 10 and 20 meso positions lead, in the presence of a zinc dication, to the formation of robust 3-D networks presenting hexagonal channels: both the size and the polarity of the pores were tuned by the nature of the substituents attached to the two aryl groups.

  7. Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates.

    PubMed

    Gillette, Eleanor; Wittenberg, Stefanie; Graham, Lauren; Lee, Kwijong; Rubloff, Gary; Banerjee, Parag; Lee, Sang Bok

    2015-02-07

    Here we report a strategy for combining techniques for pore branching and barrier layer thinning to produce 3D porous anodized aluminum oxide films with direct ohmic contact to the native aluminum. This method provides an example of a rationally designed template which need not be removed from the aluminum, but which is also not constrained to traditional 2D pore geometry. We first demonstrate the barrier layer removal and pore branching techniques independently, and then combine them to produce free standing arrays of interconnected Ni nanostructures. Nickel nanostructures are deposited directly onto the aluminum to demonstrate the success of the structural modification, and showcase the potential for these films to be used as templates. This approach is the first to demonstrate the design and execution of multiple pore modification techniques in the same membrane, and demonstrates the first directly deposited 3D structures on aluminum substrates.

  8. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    NASA Astrophysics Data System (ADS)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  9. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  10. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  11. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  12. Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores

    SciTech Connect

    Kondo, Atsushi Maeda, Kazuyuki

    2015-01-15

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material are selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.

  13. Characteristics of pore structures in Selma Chalk using dual FIB-SEM 3D imaging and Lattice Boltzmann Modeling

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.

    2012-12-01

    Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structures. This is especially true for chalk materials, where pore networks are small and complex, and often characterized at sub-micron scale. Common techniques such as X-ray microtomography, microscopic imaging, or mercury intrusion porosimetry often show a limit on determining pore throat distributions and seal analysis of such fine-grained rocks. Focused ion beam-scanning electron microscope (FIB-SEM) and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in samples of the Cretaceous Selma Group Chalk. The Selma Chalk is considered the seal for oil and gas fields in the Mississippi Interior Salt Basin and a proposed regional-scale seal identified for CO2 sequestration sites. A series of image analysis techniques is used to process raw images in order to recover both nano-scale pore structure and continuous fracture networks. We apply 3D imaging techniques in interpreting FIB-SEM binary data for characterizing geometric pore body and throat distributions and other topological properties, and lattice-Boltzmann method (LBM) for obtaining permeability at several different scales. In particular, comparison of primary flow paths obtained from 3D image analysis and LBM demonstrates that image analysis results may have too many equally plausible flow paths, compared to LBM results. Upscaling of permeability and LB multiphase flow results with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction during multiphase flow, and seal analysis for geologic CO2 storage. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114

  14. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  15. Pore detection in Computed Tomography (CT) soil 3D images using singularity map analysis

    NASA Astrophysics Data System (ADS)

    Sotoca, Juan J. Martin; Tarquis, Ana M.; Saa Requejo, Antonio; Grau, Juan B.

    2016-04-01

    X-ray Computed Tomography (CT) images have significantly helped the study of the internal soil structure. This technique has two main advantages: 1) it is a non-invasive technique, i.e., it doesńt modify the internal soil structure, and 2) it provides a good resolution. The major disadvantage is that these images are sometimes low-contrast in the solid/pore interface. One of the main problems in analyzing soil structure through CT images is to segment them in solid/pore space. To do so, we have different segmentation techniques at our disposal that are mainly based on thresholding methods in which global or local thresholds are calculated to separate pore space from solid space. The aim of this presentation is to develop the fractal approach to soil structure using "singularity maps" and the "Concentration-Area (CA) method". We will establish an analogy between mineralization processes in ore deposits and morphogenesis processes in soils. Resulting from this analogy a new 3D segmentation method is proposed, the "3D Singularity-CA" method. A comparison with traditional 3D segmentation methods will be performed to show the main differences among them.

  16. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schonherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li -Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2015-09-28

    In this study, multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include (1) methods that explicitly model the three-dimensional geometry of pore spaces and (2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support

  17. Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.

    2015-12-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.

  18. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence

  19. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes.

    PubMed

    Sredar, Nripun; Ivers, Kevin M; Queener, Hope M; Zouridakis, George; Porter, Jason

    2013-07-01

    En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (-0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma.

  20. Heterogeneous force network in 3D cellularized collagen networks.

    PubMed

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-10-25

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml(-1) are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  1. Heterogeneous force network in 3D cellularized collagen networks

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-12-01

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  2. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; ...

    2015-09-28

    In this study, multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include (1) methods that explicitly model the three-dimensional geometry of pore spaces and (2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the firstmore » type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides

  3. Multiscale pore-network representation of heterogeneous carbonate rocks

    NASA Astrophysics Data System (ADS)

    Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Jiang, Zeyun; Surmas, Rodrigo

    2016-07-01

    A multiscale network integration approach introduced by Jiang et al. (2013) is used to generate a representative pore-network for a carbonate rock with a pore size distribution across several orders of magnitude. We predict the macroscopic flow parameters of the rock utilising (i) 3-D images captured by X-ray computed microtomography and (ii) pore-network flow simulations. To capture the multiscale pore size distribution of the rock, we imaged four different rock samples at different resolutions and integrated the data to produce a pore-network model that combines information at several length-scales that cannot be recovered from a single tomographic image. A workflow for selection of the number and length-scale of the required input networks for the network integration process, as well as fine tuning the model parameters is presented. Mercury injection capillary-pressure data were used to evaluate independently the multiscale networks. We explore single-scale, two-scale, and three-scale network models and discuss their representativeness by comparing simulated capillary-pressure versus saturation curves with laboratory measurements. We demonstrate that for carbonate rocks with wide pore size distributions, it may be required to integrate networks extracted from two or three discrete tomographic data sets in order to simulate macroscopic flow parameters.

  4. Filament-length-controlled elasticity in 3D fiber networks.

    PubMed

    Broedersz, C P; Sheinman, M; Mackintosh, F C

    2012-02-17

    We present a model for disordered 3D fiber networks to study their linear and nonlinear elasticity. In contrast to previous 2D models, these 3D networks with binary crosslinks are underconstrained with respect to fiber stretching elasticity, suggesting that bending may dominate their response. We find that such networks exhibit a bending-dominated elastic regime controlled by fiber length, as well as a crossover to a stretch-dominated regime for long fibers. Finally, by extending the model to the nonlinear regime, we show that these networks become intrinsically nonlinear with a vanishing linear response regime in the limit of flexible or long filaments.

  5. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    visualization in OPNET . . . . . . . . . . . . 13 6. Sample NetViz visualization . . . . . . . . . . . . . . . . . . . 15 7. Realistic 3D terrains...scenario in OPNET . . . 19 10. OPNET 3DNV only displays connectivity . . . . . . . . . . . . 29 11. The digitally connected battlefield...confirmation tool 12 OPNET Optimized Network Evaluation Tool . . . . . . . . . . . . 13 NetViz Network Visualization

  6. Construction of programmable interconnected 3D microfluidic networks

    NASA Astrophysics Data System (ADS)

    Hunziker, Patrick R.; Wolf, Marc P.; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B.

    2015-02-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries.

  7. 3D quantitative phase imaging of neural networks using WDT

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  8. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  9. 3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.

    2017-03-01

    The mechanism of reservoir-triggered seismicity is well-understood and explains the earthquake occurrence at different reservoir sites. It can be attributed to the stresses due to water loading and to changes in fluid pressure in pores within the rock matrix. In the present study a 3-D fluid flow numerical model is used to investigate the pore pressure diffusion as a cause for continued seismicity in the Koyna-Warna region in western India. It is shown that reservoir water level fluctuations are sufficient to trigger earthquakes at the seismogenic depths in the region. Our numerical model suggests that a vertical fault with hydraulic conductivity in the range 2-6 m/day facilitates the diffusion of pressure at focal depths of earthquakes in the Koyna-Warna region. Also, for triggering of earthquakes a higher vertical conductivity is required for the Warna region than for the Koyna region. A lag of two months period is found between the maximum water level and the significant hydraulic head required to trigger earthquakes at the focal depth using the appropriate hydraulic conductivity for both the reservoirs.

  10. Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior

    USGS Publications Warehouse

    Heath, J.E.; Dewers, T.A.; McPherson, B.J.O.L.; Petrusak, R.; Chidsey, T.C.; Rinehart, A.J.; Mozley, P.S.

    2011-01-01

    Mudstone pore networks are strong modifiers of sedimentary basin fluid dynamics and have a critical role in the distribution of hydrocarbons and containment of injected fluids. Using core samples from continental and marine mudstones, we investigate properties of pore types and networks from a variety of geologic environments, together with estimates of capillary beam- scanning electron microscopy, suggest seven dominant mudstone pore types distinguished by geometry and connectivity. A dominant planar pore type occurs in all investigated mudstones and generally has high coordination numbers (i.e., number of neighboring connected pores). Connected networks of pores of this type contribute to high mercury capillary pressures due to small pore throats at the junctions of connected pores and likely control most matrix transport in these mudstones. Other pore types are related to authigenic (e.g., replacement or pore-lining precipitation) clay minerals and pyrite nodules; pores in clay packets adjacent to larger, more competent clastic grains; pores in organic phases; and stylolitic and microfracture-related pores. Pores within regions of authigenic clay minerals often form small isolated networks (<3 ??m). Pores in stringers of organic phases occur as tubular pores or slit- and/or sheet-like pores. These form short, connected lengths in 3D reconstructions, but appear to form networks no larger than a few microns in size. Sealing efficiency of the studied mudstones increases with greater distal depositional environments and greater maximum depth of burial. ?? 2011 Geological Society of America.

  11. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    PubMed

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  12. Understanding North Texas Seismicity: A Joint Analysis of Seismic Data and 3D Pore Pressure Modeling

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Hornbach, M. J.; Ellsworth, W. L.; Oldham, H. R.; Hayward, C.; Stump, B. W.; Frohlich, C.; Olson, J. E.; Luetgert, J. H.

    2014-12-01

    In November 2013, a series of earthquakes began along a mapped ancient fault system near Azle, Texas. The Azle events are the third felt earthquake sequence in the Fort Worth (Barnett Shale) Basin since 2008, and several production and injection wells in the area are drilled to depths near the recent seismic activity. Understanding if and/or how injection and removal of fluids in the crystalline crust reactivates faults have important implications for seismology, the energy industry, and society. We assessed whether the Azle earthquakes were induced using a joint analysis of the earthquake data, subsurface geology and fault structure, and 3D pore pressure modeling. Using a 12-station temporary seismic deployment, we have recorded and located >300 events large enough to be recorded on multiple stations and 1000s of events during periods of swarm activity. High-resolution locations and focal mechanisms indicate that events occurred on NE-SW trending, steeply dipping normal faults associated with the southern end of the Newark East Fault Zone with hypocenters between 2-8 km depth. We considered multiple causes that might have changed stress along this system. Earthquakes resulting from natural processes, though perhaps unlikely in this historically inactive region, can be neither ruled out nor confirmed due to lack of information on the natural stress state of these faults. Analysis of lake and groundwater variations near Azle showed that no significant stress changes occurred prior to or during the earthquake sequence. In contrast, analysis of pore-pressure models shows that the combination of formation water production and wastewater injection near the fault could have caused pressure increases that induced earthquakes on near-critically stressed faults.

  13. 3D Network Analysis for Indoor Space Applications

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Dimopoulou, E.

    2016-10-01

    Indoor space differs from outdoor environments, since it is characterized by a higher level of structural complexity, geometry, as well as topological relations. Indoor space can be considered as the most important component in a building's conceptual modelling, on which applications such as indoor navigation, routing or analysis are performed. Therefore, the conceptual meaning of sub spaces or the activities taking place in physical building boundaries (e.g. walls), require the comprehension of the building's indoor hierarchical structure. The scope of this paper is to perform 3D network analysis in a building's interior and is structured as follows: In Section 1 the definition of indoor space is provided and indoor navigation requirements are analysed. Section 2 describes the processes of indoor space modeling, as well as routing applications. In Section 3, a case study is examined involving a 3D building model generated in CityEngine (exterior shell) and ArcScene (interior parts), in which the use of commercially available software tools (ArcGIS, ESRI), in terms of indoor routing and 3D network analysis, are explored. The fundamentals of performing 3D analysis with the ArcGIS Network Analyst extension were tested. Finally a geoprocessing model was presented, which was specifically designed to be used to interactively find the best route in ArcScene. The paper ends with discussion and concluding remarks on Section 4.

  14. Constructing 3D microtubule networks using holographic optical trapping

    PubMed Central

    Bergman, J.; Osunbayo, O.; Vershinin, M.

    2015-01-01

    Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices. PMID:26657337

  15. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  16. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  17. Extraordinary rate capability achieved by a 3D "skeleton/skin" carbon aerogel-polyaniline hybrid with vertically aligned pores.

    PubMed

    Liu, Mingkai; Li, Bomin; Zhou, Hang; Chen, Cong; Liu, Yuqing; Liu, Tianxi

    2017-03-02

    A 3D "skeleton/skin" carbon aerogel-polyaniline (CA-PANI) hybrid with vertically aligned pores exhibits an extraordinary rate capability. A high capacity retention (95%) has been achieved when the current density is increased from 1 to 100 A g(-1).

  18. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  19. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  20. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  1. Pore network and pore scale modeling of reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Adler, P. M.; Vu, T. M.; Varloteaux, C.; Bekri, S.

    2012-12-01

    The study of the evolution of a porous medium where a reactive fluid flows is conditioned by the accurate determination of three macroscopic parameters governing the solute displacement, namely the solute velocity, dispersion and mean reaction rate. Of course, a possible application of such studies is CO2 sequestration. This presentation proposes to approach the determination of these parameters by two different ways and to compare them; both are on the pore scale. In the first one called PNM (for pore-network model), a pore-network is extracted from micro tomography images of a real porous medium. This network is composed of spherical pores joined by circular tubes; it is used to calculate transport macroscopic parameters and porosity-permeability evolution during the reactive transport flow as functions of dimensionless numbers representing the reaction and flow rate regimes. The flow is calculated by using Kirchhoff laws. Transport is determined in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. In the second approach called PSM (for pore scale model), the pore-network model is used as a three dimensional medium which is discretized by the Level Set Method. The Stokes equations are solved in order to determine the local flow field and the corresponding permeability. The solute concentration is obtained by solving the local convection-diffusion equation in the 3D pore-network; numerical dispersion is reduced by a Flux Limiting Scheme. Two different geometries of porous media are addressed by both numerical codes. The first pore-network geometry is used to validate the PNM assumptions, whereas the second pore-network is defined for a better understanding of the dominant solute distribution. One of the main results obtained with the first pore-network is the dependence of the concentration profile on the Péclet number Pe in the pore-bodies. When this number increases, one has to switch from an assumption of

  2. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Shuang; Li, Wanfei; Zhang, Su; Li, Hongfei; Zheng, Zhaozhao; Li, Fujin; Shi, Liyi; Lin, Hongzhen; Zhang, Yuegang

    2016-07-01

    Lithium/sulfur (Li/S) battery is a promising next-generation energy storage system owing to its high theoretical energy density. However, for practical use there remains some key problems to be solved, such as low active material utilization and rapid capacity fading, especially at high areal sulfur loadings. Here, we report a facile one-pot method to prepare porous three-dimensional nitrogen, sulfur-codoped graphene through hydrothermal reduction of graphene oxide with multi-ion mixture modulation. We show solid evidence that the results of multi-ion mixture modulation can not only improve the surface affinity of the nanocarbons to polysulfides, but also alter their assembling manner and render the resultant 3D network a more favorable pore morphology for accommodating and confining sulfur. It also had an excellent rate performance and cycling stability, showing an initial capacity of 1304 mA h g-1 at 0.05C, 613 mA h g-1 at 5C and maintaining a reversible capacity of 462 mA h g-1 after 1500 cycles at 2C with capacity fading as low as 0.028% per cycle. Moreover, a high areal capacity of 5.1 mA h cm-2 at 0.2C is achieved at an areal sulfur loading of 6.3 mg cm-2, which are the best values reported so far for dual-doped sulfur cathodes.

  3. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media

    PubMed Central

    Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Sorbie, Ken S.

    2015-01-01

    Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. PMID:25646491

  4. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Si, Jennifer L; Cooper, David M L; Eames, B Frank; Chen, Daniel X B

    2016-06-22

    Three-dimensional (3D)-printed poly(ε)-caprolactone (PCL)-based scaffolds are increasingly being explored for cartilage tissue engineering (CTE) applications. However, ensuring that the mechanical properties of these PCL-based constructs are comparable to that of articular cartilage that they are meant to regenerate is an area that has been under-explored. This paper presents the effects of PCL's molecular weight (MW) and scaffold's pore geometric configurations; strand size (SZ), strand spacing (SS), and strand orientation (SO), on mechanical properties of 3D-printed PCL scaffolds. The results illustrate that MW has significant effect on compressive moduli and yield strength of 3D-printed PCL scaffolds. Specifically, PCL with MW of 45 K was a more feasible choice for fabrication of visco-elastic, flexible and load-bearing PCL scaffolds. Furthermore, pore geometric configurations; SZ, SS, and SO, all significantly affect on tensile moduli of scaffolds. However, only SZ and SS have statistically significant effects on compressive moduli and porosity of these scaffolds. That said, inverse linear relationship was observed between porosity and mechanical properties of 3D-printed PCL scaffolds in Pearson's correlation test. Altogether, this study illustrates that modulating MW of PCL and pore geometrical configurations of the scaffolds enabled design and fabrication of PCL scaffolds with mechanical and biomimetic properties that better mimic mechanical behaviour of human articular cartilage. Thus, the modulated PCL scaffold proposed in this study is a framework that offers great potentials for CTE applications.

  5. Microwave 3D concept for beam forming networks

    NASA Astrophysics Data System (ADS)

    Vendier, O.; Drevon, C.; Monfraix, P.

    2002-12-01

    The development of active antennas for space applications has reinforced the need for RF BFNs - Beam Forming Networks. A BFN connects m RF inputs to m RF Outputs to form N independent and simultaneous beams. The resulting matrix has m x n internal connections. Typically, this number runs into the hundreds, which make it impossible to be implemented with a classical concept. Even the technology based on multilayer printed circuit boards is limited in : frequency mainly due to the mechanical accuracy on materials and processes, integration because all the components could be bonded only on the surface of the boards. The new concept presented in this paper is compatible with BFN in the Ka band and upper frequencies. This "vertical" BFN is using the RF 3D technology; in that way the capacity of interconnection is drastically improved because all the routing moved to the surface of the module with all the components encapsulated inside the module. Main of the fundamental technology points are addressed : availability for molding very large modules up to 110 x 110 mm with the capability to keep all the advantages of the 3D technology, a 3D CPW (CoPlanar Waveguide) intercon- nection on a low dielectric constant resin, micro-connectors implemented with surface mount technology and working up to 30 GHz. A test vehicle including all those points is also presented with the first results on the reliability tests mainly based on thermal cycles in the range -55/+125°C.

  6. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland.

    PubMed

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-10-03

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.

  7. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland

    PubMed Central

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-01-01

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm–printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro. PMID:27694985

  8. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  9. Quantitative characterization of pore structure of several biochars with 3D imaging.

    PubMed

    Hyväluoma, Jari; Kulju, Sampo; Hannula, Markus; Wikberg, Hanne; Källi, Anssi; Rasa, Kimmo

    2017-03-24

    Pore space characteristics of biochars may vary depending on the used raw material and processing technology. Pore structure has significant effects on the water retention properties of biochar amended soils. In this work, several biochars were characterized with three-dimensional imaging and image analysis. X-ray computed microtomography was used to image biochars at resolution of 1.14 μm and the obtained images were analysed for porosity, pore size distribution, specific surface area and structural anisotropy. In addition, random walk simulations were used to relate structural anisotropy to diffusive transport. Image analysis showed that considerable part of the biochar volume consist of pores in size range relevant to hydrological processes and storage of plant available water. Porosity and pore size distribution were found to depend on the biochar type and the structural anisotopy analysis showed that used raw material considerably affects the pore characteristics at micrometre scale. Therefore, attention should be paid to raw material selection and quality in applications requiring optimized pore structure.

  10. Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture.

    PubMed

    Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem

    2016-01-01

    Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices.

  11. 3D visualization of gene clusters and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Leishi; Sheng, Weiguo; Liu, Xiaohui

    2005-03-01

    In this paper, we try to provide a global view of DNA microarray gene expression data analysis and modeling process by combining novel and effective visualization techniques with data mining algorithms. An integrated framework has been proposed to model and visualize short, high-dimensional gene expression data. The framework reduces the dimensionality of variables before applying appropriate temporal modeling method. Prototype has been built using Java3D to visualize the framework. The prototype takes gene expression data as input, clusters the genes, displays the clustering results using a novel graph layout algorithm, models individual gene clusters using Dynamic Bayesian Network and then visualizes the modeling results using simple but effective visualization techniques.

  12. Using three-dimensional 3D grazing-incidence small-angle X-ray scattering (GISAXS) analysis to probe pore deformation in mesoporous silica films.

    PubMed

    Panduro, Elvia Anabela Chavez; Granlund, Håvard; Sztucki, Michael; Konovalov, Oleg; Breiby, Dag W; Gibaud, Alain

    2014-02-26

    In the past decade, remarkable progress has been made in studying nanoscale objects deposited on surfaces by grazing-incidence small-angle X-ray scattering (GISAXS). However, unravelling the structural properties of mesostructured thin films containing highly organized internal three-dimensional (3D) structures remains a challenging issue, because of the lack of efficient algorithms that allow prediction of the GISAXS intensity patterns. Previous attempts to calculate intensities have mostly been limited to cases of two-dimensional (2D) assemblies of nanoparticles at surfaces, or have been adapted to specific 3D cases. Here, we demonstrate that highly organized 3D mesoscale structures (for example, porous networks) can be modeled by the combined use of established crystallography formalism and the Distorted Wave Born Approximation (DWBA). Taking advantage of the near-zero intensity of symmetry-allowed Bragg reflections, the casual extinction or existence of certain reflections related to the anisotropy of the form factor of the pores can be used as a highly sensitive method to extract structural information. We employ this generic method to probe the slightly compressed anisotropic shape and orientation of pores in a mesoporous silica thin film having P63/mmc symmetry.

  13. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT

    NASA Astrophysics Data System (ADS)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer

    2015-04-01

    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  14. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    PubMed Central

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-01-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields. PMID:26382852

  15. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  16. 3D Scaffold of Electrosprayed Fibers with Large Pore Size for Tissue Regeneration

    PubMed Central

    Hong, Jong Kyu; Madihally, Sundararajan V.

    2010-01-01

    Regeneration of tissues using biodegradable porous scaffolds has been an intensely investigated area. Since electrospinning can produce scaffolds mimicking nanofibrous architecture found in the body, it recently has gained widespread attention. However, a major problem is the lack of pore size necessary for infiltration of cells into the layers below the surface, restricting cell colonization to the surfaces only. This study describes a novel twist to the traditional electrospinning technology. In particular, collector plates are designed which allows forming very thin layers with pore sizes suitable for cell infiltration. Thin samples can be handled without mechanically damaging the structure and can be transferred into cell culture. These thin layers were stacked by layer-by-layer assembly to develop thick structures. Thirty day cultures of fibroblasts show attachment and spreading of cells in every layer. This concept is useful in regenerating thick tissues with uniformly distributed cells and others in vitro cell culture. PMID:20620245

  17. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances

    NASA Astrophysics Data System (ADS)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2016-08-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  18. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  19. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  20. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties.

    PubMed

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-29

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  1. Design of novel 3D gene activated PEG scaffolds with ordered pore structure.

    PubMed

    Orsi, Silvia; Guarnieri, Daniela; Netti, Paolo A

    2010-03-01

    The ability to genetically modify cells seeded inside synthetic hydrogel scaffolds offers a suitable approach to induce and control tissue repair and regeneration guiding cell fate. In fact the transfected cells can act as local in vivo bioreactor, secreting plasmid encoded proteins that augment tissue regeneration processes. We have realized a DNA bioactivated high porous poly(ethylene glycol) (PEG) matrix by polyethyleneimine (PEI)/DNA complexes adsorption. As the design of the microarchitectural features of a scaffold also contributes to promote and influence cell fate, we appropriately designed the inner structure of gene activated PEG hydrogels by gelatine microparticles templating. Microarchitectural properties of the scaffold were analysed by scanning electron microscopy. 3D cell migration and transfection were monitored through time-lapse videomicroscopy and confocal laser scanning microscopy.

  2. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

  3. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair.

    PubMed

    Pietrucha, Krystyna; Marzec, Ewa; Kudzin, Marcin

    2016-11-01

    The design and selection of a suitable scaffold with well-defined pores size distribution and dielectric properties are critical features for neural tissue engineering. In this study we use mercury porosimetry and the dielectric spectroscopy in the alpha-dispersion region of the electric field to determine the microarchitecture and activation energy of collagen (Col) modified by 2,3 dialdehyde cellulose (DAC). The scaffold was synthesized in three steps: (i) preparation of DAC by oxidation of cellulose, (ii) construction of a 3D Col sponge-shape or film, (iii) cross-linkage of the Col samples using DAC. The activation energy needed to break the bonds formed by water in the Col-DAC composite is approximately 2 times lower than that in the unmodified Col. In addition, the magnitude of conductivity for modified Col at 70°C is approximately 40% lower than that recorded for the unmodified Col. The largest fraction, of which at least 70% of the total pore volume comprises the sponge, is occupied by pores ranging from 20 to 100μm in size. The knowledge on the dielectric behaviour and microstructure of the Col-DAC scaffold may prove relevant to neural tissue engineering focused on the regeneration of the nervous system.

  4. Direct Fabrication of 3D Metallic Networks and Their Performance.

    PubMed

    Ron, Racheli; Gachet, David; Rechav, Katya; Salomon, Adi

    2017-02-01

    Fabrication of macroscopic nanoporous metallic networks is challenging, because it demands fine structures at the nanoscale over a large-scale. A technique to form pure scalable networks is introduced. The networked-metals ("Netals") exhibit a strong interaction with light and indicate a large fraction of hot-electrons generation. These hot-electrons are available to derive photocatalytic processes.

  5. Extracting Hidden Hierarchies in 3D Distribution Networks

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    2015-03-01

    Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks - the topology and edge weights - determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical `tiling' in the case of a two dimensional network to an effective tiling of an abstract surface in space that the network may be thought to sit in. Generically these abstract surfaces are richer than the plane and upon sequential removal of the weakest links by edge weight, neighboring tiles merge and a tree characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. This new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs, the root networks of clonal colonies like quaking aspen, or the force networks in jammed granular matter.

  6. Extracting Hidden Hierarchies in 3D Distribution Networks

    NASA Astrophysics Data System (ADS)

    Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni

    2016-07-01

    Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical "tiling" in the case of a two-dimensional network to an effective tiling of an abstract surface in 3-space that the network may be thought to sit in. Generically, these abstract surfaces are richer than the flat plane because there are now two families of fundamental units that may aggregate upon cutting weakest links—the plaquettes of the tiling and the longer "topological" cycles associated with the abstract surface itself. Upon sequential removal of the weakest links, as determined by a physically relevant edge weight, such as flow volume or capacity, neighboring plaquettes merge and a new tree graph characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. The new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs or the force networks in jammed granular matter.

  7. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    system throughput, packet loss, and network congestion as a function of time. This not only gives a better understanding of the network, but it also...only runs on Microsoft Windows, which precludes portability to UNIX-based systems such as Linux or Apple OSX. 3ds Max allows for very extensive scene...simulation. It is often desirable to display this data visually, in order to capitalize on the unique capabilities of the human visual system which

  8. 3D microtumors in vitro supported by perfused vascular networks

    PubMed Central

    Sobrino, Agua; Phan, Duc T. T.; Datta, Rupsa; Wang, Xiaolin; Hachey, Stephanie J.; Romero-López, Mónica; Gratton, Enrico; Lee, Abraham P.; George, Steven C.; Hughes, Christopher C. W.

    2016-01-01

    There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This “organs-on-chips” approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This “tumor-on-a-chip” platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro. PMID:27549930

  9. 3D microtumors in vitro supported by perfused vascular networks.

    PubMed

    Sobrino, Agua; Phan, Duc T T; Datta, Rupsa; Wang, Xiaolin; Hachey, Stephanie J; Romero-López, Mónica; Gratton, Enrico; Lee, Abraham P; George, Steven C; Hughes, Christopher C W

    2016-08-23

    There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This "organs-on-chips" approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This "tumor-on-a-chip" platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro.

  10. New neural-networks-based 3D object recognition system

    NASA Astrophysics Data System (ADS)

    Abolmaesumi, Purang; Jahed, M.

    1997-09-01

    Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.

  11. Evaluating transport in irregular pore networks

    NASA Astrophysics Data System (ADS)

    Klimenko, Dimitri A.; Hooman, Kamel; Klimenko, Alexander Y.

    2012-07-01

    A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized effective medium approximation (EMA) with a macroscopic continuum model in order to derive a transport equation with explicit analytical expressions for the transport coefficients. The proposed form of the EMA is an anisotropic and heterogeneous extension of Kirkpatrick's EMA [Rev. Mod. Phys.RMPHAT0034-686110.1103/RevModPhys.45.574 45, 574 (1973)] which allows the overall model to account for microscopic alterations in connectivity (with the locations of the pores and the orientation and length of the throat) as well as macroscopic variations in transport properties. A comparison to numerical results for randomly generated networks with different properties is given, indicating the potential for this methodology to handle cases that would pose significant difficulties to many other analytical models.

  12. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size.

    PubMed

    Li, Xian; Mehr, Nima Ghavidel; Guzmán-Morales, Jessica; Favis, Basil D; De Crescenzo, Gregory; Yakandawala, Nanda; Hoemann, Caroline D

    2017-04-05

    P15-CSP is a biomimetic cationic fusion peptide that stimulates osteogenesis and inhibits bacterial biofilm formation when coated on 2-D surfaces. This study tested the hypothesis that P15-CSP coatings enhance 3-D osteogenesis in a porous but otherwise hydrophobic poly-(ε-caprolactone) (PCL) scaffold. Scaffolds of 84 µm and 141 µm average pore size were coated or not with Layer-by-Layer polyelectrolytes followed by P15-CSP, seeded with adult primary human mesenchymal stem cells (MSCs), and cultured 10 days in proliferation medium, then 21 days in osteogenic medium. Atomic analyses showed that P15-CSP was successfully captured by LbL. After 2 days of culture, MSCs adhered and spread more on P15-CSP coated pores than PCL-only. At day 10, all constructs contained non-mineralized tissue. At day 31, all constructs became enveloped in a "skin" of tissue that, like 2-D cultures, underwent sporadic mineralization in areas of high cell density that extended into some 141 µm edge pores. By quantitative histomorphometry, 2.5-fold more tissue and biomineral accumulated in edge pores versus inner pores. P15-CSP specifically promoted tissue-scaffold integration, 4-fold higher overall biomineralization, and more mineral deposits in the outer 84 µm and inner 141 µm pores than PCL-only (p<0.05). 3-D Micro-CT revealed asymmetric mineral deposition consistent with histological calcium staining. This study provides proof-of-concept that P15-CSP coatings are osteoconductive in PCL pore surfaces with 3-D topography. Biomineralization deeper than 150 µm from the scaffold edge was optimally attained with the larger 141 µm peptide-coated pores. This article is protected by copyright. All rights reserved.

  13. Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks

    NASA Astrophysics Data System (ADS)

    da Câmara Santa Clara Gomes, Tristan; De La Torre Medina, Joaquín; Lemaitre, Matthieu; Piraux, Luc

    2016-10-01

    Track-etched polymer membranes with crossed nanochannels have been revealed to be most suitable as templates to produce large surface area and mechanically stable 3D interconnected nanowire (NW) networks by electrodeposition. Geometrically controlled NW superstructures made of NiCo ferromagnetic alloys exhibit appealing magnetoresistive properties. The combination of exact alloy compositions with the spatial arrangement of NWs in the 3D network is decisive to obtain specific magnetic and magneto-transport behavior. A proposed simple model based on topological aspects of the 3D NW networks is used to accurately determine the anisotropic magnetoresistance ratios. Despite of their complex topology, the microstructure of Co-rich NiCo NW networks display mixed fcc-hcp phases with the c-axis of the hcp phase oriented perpendicular to their axis. These interconnected NW networks have high potential as reliable and stable magnetic field sensors.

  14. Rapid casting of patterned vascular networks for perfusable engineered 3D tissues

    PubMed Central

    Miller, Jordan S.; Stevens, Kelly R.; Yang, Michael T.; Baker, Brendon M.; Nguyen, Duc-Huy T.; Cohen, Daniel M.; Toro, Esteban; Chen, Alice A.; Galie, Peter A.; Yu, Xiang; Chaturvedi, Ritika; Bhatia, Sangeeta N.; Chen, Christopher S.

    2012-01-01

    In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core [1]. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture [2–4]. Here, we 3D printed rigid filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization, and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices (ECMs), and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core. PMID:22751181

  15. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    SciTech Connect

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  16. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  17. Network-based visualization of 3D landscapes and city models.

    PubMed

    Royan, Jérôme; Gioia, Patrick; Cavagna, Romain; Bouville, Christian

    2007-01-01

    To improve the visualization of large 3D landscapes and city models in a network environment, the authors use two different types of hierarchical level-of-detail models for terrain and groups of buildings. They also leverage the models to implement progressive streaming in both client-server and peer-to-peer network architectures.

  18. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    PubMed

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased.

  19. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  20. Assessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging.

    PubMed

    da Silva, Julio C; Mader, Kevin; Holler, Mirko; Haberthür, David; Diaz, Ana; Guizar-Sicairos, Manuel; Cheng, Wu-Cheng; Shu, Yuying; Raabe, Jörg; Menzel, Andreas; van Bokhoven, Jeroen A

    2015-02-01

    Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase-contrast X-ray microtomography and high-resolution ptychographic X-ray tomography allows the visualization and characterization of the interparticle pores at micro- and nanometer-length scales. Furthermore, individual components in preshaped catalyst bodies used in fluid catalytic cracking, one of the most used catalysts, could be visualized and identified. The distribution of pore sizes, as well as enclosed pores, which cannot be probed by traditional methods, such as nitrogen physisorption and isotherm analysis, were determined.

  1. Analysis and Visualization of 2D and 3D Grain and Pore Size ofFontainebleau Sandstone Using Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Latief, FDE

    2016-08-01

    Fontainebleau sandstone is sandstone found in one of the cities in France. This sandstone has unique characteristics, which is a clean-fme sandstone, composed of 99% quartz, virtually devoid of clay, with the grain size of about 200 μm. Fontainebleau sandstone is widely used as a reference in the study of rock microstructure analysis and modelling. In this work analysis regarding the grain and pore size of Fontainebleau is presented. Calculation of 2D pore size and grain size distribution were done on the 299 slice of digital image of the Fontainebleau sandstone using Feret's diameters, equivalent diameters (d = 4A/P), and by means of local thickness/separation using plate model. For the 3D grain and pore size distribution, calculation of local thickness and local separation of the structure were used. Two dimensional analysis by means of Feret's diameter and equivalent diameter reveal that both grain and pore size distributions are in the form of reverse-J shaped (right skewed) while the local thickness/separation approach produces almost similar to symmetric Gaussian distribution. Three dimensional analysis produces fairly symmetric Gaussian distribution for both the grain and pore size. Further image processing were conducted and were succeed in producing three dimensional visual of the colour coded structure thickness (grain related) and structure separation (pore related).

  2. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  3. The early mouse 3D osteocyte network in the presence and absence of mechanical loading.

    PubMed

    Sugawara, Yasuyo; Kamioka, Hiroshi; Ishihara, Yoshihito; Fujisawa, Naoko; Kawanabe, Noriaki; Yamashiro, Takashi

    2013-01-01

    Osteocytes are considered to act as mechanosensory cells in bone. They form a functional synctia in which their processes become interconnected to constitute a three-dimensional (3D) network. Previous studies reported that in mice, the two-dimensional osteocyte network becomes progressively more regular as they grow, although the key factors governing the arrangement of the osteocyte network during bone growth remain unknown. In this study, we characterized the 3D formation of the osteocyte network during bone growth. Morphological skeletal changes have been reported to occur in response to mechanical loading and unloading. In order to evaluate the effect of mechanical unloading on osteocyte network formation, we subjected newborn mice to sciatic neurectomy in order to immobilize their left hind limb as an unloading model. The osteocyte network was visualized by staining osteocyte cell bodies and processes with fluorescently labeled phalloidin. First, we compared the osteocyte network in the femora of embryonic and 6-week-old mice in order to understand the morphological changes that occur with normal growth and mechanical loading. In embryonic mice, the osteocyte network in the femur cortical bone displayed a random cell body distribution, non-directional orientation of cell processes, and irregularly shaped cells. In 6-week-old mice, the 3D network contained spindle-shaped osteocytes, which were arranged parallel to the longitudinal axis of the femur. In addition, more and longer cell processes radiated from each osteocyte. Second, we compared the cortical osteocyte networks of 6-week-old mice that had or had not undergone sciatic neurectomy in order to evaluate the effect of unloading on osteocyte network formation. The osteocyte network formation in both cortical bone and cancellous bone was affected by mechanical loading. However, there were differences in the extent of network formation between cortical bone and cancellous bone in response to mechanical

  4. Exploring thermal spray gray alumina coating pore network architecture by combining stereological protocols and impedance electrochemical spectroscopy

    NASA Astrophysics Data System (ADS)

    Antou, G.; Montavon, G.; Hlawka, F.; Cornet, A.; Coddet, C.

    2006-12-01

    Complex multiscale pore network architecture characterized by multimodal pore size distribution and connectivity develops during the manufacture of ceramic thermal spray coatings from intra- and interlamellar cracks generated when each lamella spreads and solidifies to globular pores resulting from lamella stacking defects. This network significantly affects the coating properties and their in-service behaviors. De Hoff stereological analysis permits quantification of the three-dimensional (3D) distribution of spheroids (i.e., pores) from the determination of their two-dimensional (2D) distribution estimated by image analysis when analyzing the coating structure from a polished plane. Electrochemical impedance spectroscopy electrochemically examines a material surface by frequency variable current and potential and analyzes the complex impedance. When a coating covers the material surface, the electrolyte percolates through the more or less connected pore network to locally passivate the substrate. The resistive and capacitive characteristics of the equivalent electrical circuit will depend upon the connected pore network architecture. Both protocols were implemented to quantify thermal spray coating structures. Al2O3-13TiO2 coatings were atmospherically plasma sprayed using several sets of power parameters, are current intensity, plasma gas total flow rate, and plasma gas composition in order to determine their effects on pore network architecture. Particle characteristics upon impact, especially their related dimensionless numbers, such as Reynolds, Weber, and Sommerfeld criteria, were also determined. Analyses permitted identification of (a) the major effects of power parameters upon pore architecture and (b) the related formation mechanisms.

  5. Protein-protein interaction networks studies and importance of 3D structure knowledge.

    PubMed

    Lu, Hui-Chun; Fornili, Arianna; Fraternali, Franca

    2013-12-01

    Protein-protein interaction networks (PPINs) are a powerful tool to study biological processes in living cells. In this review, we present the progress of PPIN studies from abstract to more detailed representations. We will focus on 3D interactome networks, which offer detailed information at the atomic level. This information can be exploited in understanding not only the underlying cellular mechanisms, but also how human variants and disease-causing mutations affect protein functions and complexes' stability. Recent studies have used structural information on PPINs to also understand the molecular mechanisms of binding partner selection. We will address the challenges in generating 3D PPINs due to the restricted number of solved protein structures. Finally, some of the current use of 3D PPINs will be discussed, highlighting their contribution to the studies in genotype-phenotype relationships and in the optimization of targeted studies to design novel chemical compounds for medical treatments.

  6. A fast and robust new pore-network extraction method based on hybrid median axis and maximal inscribed ball techniques

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Karsanina, Marina; Byuk, Irina; Gerke, Kirill

    2016-04-01

    To characterize pore structure relevant to single and multi-phase flow modelling it is of special interest to extract topology of the pore space. This is usually achieved using so-called pore-network models. Such models are useful not only to characterize pore space and pore size distributions, but also provide means to simulate flow and transport with very limited computational resources compared to other pore-scale modelling techniques. The main drawback of the pore-network approach is that they have first to simplify the pore space geometry. This crucial step is both time consuming and prone to numerous errors. Two most popular methods based on median axis or inscribed maximal balls have their own strong sides and disadvantages. To address aforementioned problems related to pore-network extraction here we propose a novel method utilizing the advantages of both popular approaches. Combining two algorithms resulted in much faster and robust extraction methodology. Moreover, we have found that accurate topology representation requires extension of the conventional pore-body and pore-throat classification. We test our new methodology using pore structures with "analytical solutions" such as different sphere packs. In addition, we rigorously compare it against inscribed maximal balls methodology's results using numerous 3D images of sandstone and carbonate rocks, soils and some other porous materials. Another verification includes permeability calculations which are also compared both against lab data and voxel based pore-scale modelling simulations. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).

  7. Automatic segmentation and analysis of fibrin networks in 3D confocal microscopy images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Mu, Jian; Machlus, Kellie R.; Wolberg, Alisa S.; Rosen, Elliot D.; Xu, Zhiliang; Alber, Mark S.; Chen, Danny Z.

    2012-02-01

    Fibrin networks are a major component of blood clots that provides structural support to the formation of growing clots. Abnormal fibrin networks that are too rigid or too unstable can promote cardiovascular problems and/or bleeding. However, current biological studies of fibrin networks rarely perform quantitative analysis of their structural properties (e.g., the density of branch points) due to the massive branching structures of the networks. In this paper, we present a new approach for segmenting and analyzing fibrin networks in 3D confocal microscopy images. We first identify the target fibrin network by applying the 3D region growing method with global thresholding. We then produce a one-voxel wide centerline for each fiber segment along which the branch points and other structural information of the network can be obtained. Branch points are identified by a novel approach based on the outer medial axis. Cells within the fibrin network are segmented by a new algorithm that combines cluster detection and surface reconstruction based on the α-shape approach. Our algorithm has been evaluated on computer phantom images of fibrin networks for identifying branch points. Experiments on z-stack images of different types of fibrin networks yielded results that are consistent with biological observations.

  8. Quantitative 3D investigation of Neuronal network in mouse spinal cord model.

    PubMed

    Bukreeva, I; Campi, G; Fratini, M; Spanò, R; Bucci, D; Battaglia, G; Giove, F; Bravin, A; Uccelli, A; Venturi, C; Mastrogiacomo, M; Cedola, A

    2017-01-23

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  9. Proof-of-Concept: Assembling Carbon Nanocrystals for Ordered 3D Network

    DTIC Science & Technology

    2011-12-13

    for 3D ordering carbon nanotube networks. In this project, a ultra-thin poly( methyl methacrylate ) (PMMA) was coated to ~50nm graphene film. At the...mechanical performance. Subsequently, the filtered graphene film was immersed into acetone to etch the filter membrane, and the resultant freestanding

  10. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    PubMed Central

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies. PMID:28112212

  11. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    NASA Astrophysics Data System (ADS)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  12. A pore network model for adsorption in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1995-01-26

    Using a pore network model to represent porous media we investigate adsorption-desorption processes over the entire range of the relative pressure, highlighting in particular capillary condensation. The model incorporates recent advances from density functional theory for adsorption-desorption in narrow pores (of order as low as 1 nm), which improve upon the traditional multi-layer adsorption and Kelvin's equation for phase change and provide for the dependence of the critical pore size on temperature. The limited accessibility of the pore network gives rise to hysteresis in the adsorption-desorption cycle. This is due to the blocking of larger pores, where adsorbed liquid is allowed to but cannot desorb, by smaller pores containing liquid that may not desorb. By allowing for the existence of supercritical liquid in pores in the nm range, it is found that the hysteresis area increases with an increase in temperature, in agreement with experiments of water adsorption-desorption in rock samples from The Geysers. It is also found that the hysteresis increases if the porous medium is represented as a fractured (dual porosity) system. The paper finds applications to general adsorption-desorption problems but it is illustrated here for geothermal applications in The Geysers.

  13. Prediction of empirical properties using direct pore-scale simulation of straining through 3D microtomography images of porous media

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, Maryam; Prodanović, Maša; DiCarlo, David; Ji, Hongyu

    2015-10-01

    Understanding the mechanisms of filtration through porous media is relevant in many engineering applications ranging from waste water treatment and aquifer contamination in environmental engineering to estimating the permeability reduction in near wellbore region during drilling or water re-injection in petroleum engineering. In this paper we present a pore-scale approach that models straining through the pore structures extracted from X-ray tomographic images of rock and grain pack samples from the first principles, enabling the examination of current macroscopic models. While continuum models are widely used for fast prediction of the retention profiles and permeability of the host porous medium, they require a number of phenomenological parameters which are derived from matching experimental results. One of these parameters is the rate of entrapment, which is the sink term in the advection-diffusion equation. Here we find the constitutive relationship for the rate of entrapment as a product of the filtration coefficient, velocity, and concentration and validate it by comparing with core flood experiments. Results show that the pore-scale simulation gives close approximations of filtration coefficient when pore bridging and straining are the main particle capture mechanisms.

  14. Quantum key distribution for security guarantees over QoS-driven 3D satellite networks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zhang, Xi; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2014-06-01

    In recent years, quantum-based communication is emerging as a new technique for ensuring secured communications because it can guarantee absolute security between two different remote entities. Quantum communication performs the transmission and exchange of quantum information among distant nodes within a network. Quantum key distribution (QKD) is a methodology for generating and distributing random encryption keys using the principles of quantum physics. In this paper, we investigate the techniques on how to efficiently use QKD in 3D satellite networks and propose an effective method to overcome its communications-distance limitations. In order to implement secured and reliable communications over wireless satellite links, we develop a free-space quantum channel model in satellite communication networks. To enlarge the communications distances over 3D satellite networks, we propose to employ the intermediate nodes to relay the unconditional keys and guarantee the Quantum Bit Error Rate (QBER) for security requirement over 3D satellite networks. We also propose the communication model for QKD security-Quality of Service (QoS) guarantee and an adaptive cooperative routing selection scheme to optimize the throughput performance of QKD-based satellite communications networks. The obtained simulation results verify our proposed schemes.

  15. Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent.

    PubMed

    Lebed, Pablo J; de Souza, Kellen; Bilodeau, François; Larivière, Dominic; Kleitz, Freddy

    2011-11-07

    A new type of radionuclide extraction material is reported based on phosphonate functionalities covalently anchored on the mesopore surface of 3-D cubic mesoporous silica (KIT-6). The easily prepared nanoporous hybrid shows largely superior performance in selective sorption of uranium and thorium as compared to the U/TEVA commercial resin and 2-D hexagonal SBA-15 equivalent.

  16. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network.

    PubMed

    Zoghlami, Karima; Gómez-Gras, David; Corbella, Mercè; Darragi, Fadila

    2008-11-01

    In the present work, we propose the use of the Laser Scanning Confocal Microscopy (LSCM) to determine the effect of water repellents on rock's pore-network configuration and interconnection. The rocks studied are sandstones of Miocene age, a building material that is commonly found in the architectural heritage of Tunisia. The porosity quantitative data of treated and untreated samples, obtained by mercury porosimetry tests, were compared. The results show a slight decrease in total porosity with the water repellent treatment, which reduced both microporosity and macroporosity. This reduction produced a modification in pore size distribution and a shift of the pore access size mode interval toward smaller pore diameters (from the 30-40 microm to the 20-30 microm intervals). The water repellent was observed in SEM images as a continuous film coating grain surfaces; moreover, it was easily visualized in LSCM, by staining the water repellent with Epodye fluorochrome, and the coating thickness was straightforwardly measured (1.5-2 microm). In fact, the combination of mercury intrusion porosimetry data and LSCM observations suggests that the porosity reduction and the shift of the pore diameter mode were mainly due to the general reduction of pore diameters, but also to the plugging of the smallest pores (less than 3-4 microm in diameter) by the water repellent film. Finally, the LSCM technique enabled the reconstruction of 3D views of the water repellent coating film in the pore network, indicating that its distribution was uniform and continuous over the 100 microm thick sample. The LSCM imaging facilitates the integration and interpretation of mercury porosimetry and SEM data.

  17. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data

    NASA Astrophysics Data System (ADS)

    Anirudh, Rushil; Thiagarajan, Jayaraman J.; Bremer, Timo; Kim, Hyojin

    2016-03-01

    Early detection of lung nodules is currently the one of the most effective ways to predict and treat lung cancer. As a result, the past decade has seen a lot of focus on computer aided diagnosis (CAD) of lung nodules, whose goal is to efficiently detect, segment lung nodules and classify them as being benign or malignant. Effective detection of such nodules remains a challenge due to their arbitrariness in shape, size and texture. In this paper, we propose to employ 3D convolutional neural networks (CNN) to learn highly discriminative features for nodule detection in lieu of hand-engineered ones such as geometric shape or texture. While 3D CNNs are promising tools to model the spatio-temporal statistics of data, they are limited by their need for detailed 3D labels, which can be prohibitively expensive when compared obtaining 2D labels. Existing CAD methods rely on obtaining detailed labels for lung nodules, to train models, which is also unrealistic and time consuming. To alleviate this challenge, we propose a solution wherein the expert needs to provide only a point label, i.e., the central pixel of of the nodule, and its largest expected size. We use unsupervised segmentation to grow out a 3D region, which is used to train the CNN. Using experiments on the SPIE-LUNGx dataset, we show that the network trained using these weak labels can produce reasonably low false positive rates with a high sensitivity, even in the absence of accurate 3D labels.

  18. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung.

  19. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  20. 3D Smart Monitoring Network Establishment for Rainfall-triggered Shallow Landslide

    NASA Astrophysics Data System (ADS)

    Liu, C.; Li, W.; Scaioni, M.; Wu, H.; Lu, P.; Li, R.

    2012-12-01

    The most important objective of the monitoring is the discovery of the omen of the landslide. Actually, an efficient monitoring solution is important to collect information as much as possible, either in term of multiple processes observation. It leads to setup 3D smart sensor networks, intended as the whole set of different measurement systems aiming at gathering data on the whole body of landslide site. Actually, sensor networks can be used for both analysis and early-warning. However, some existing sensors network observation method is only paid emphasis on the capture of multiple sources of data. Different with them, this task consider not only on the interpretation of monitoring measurements, but also on the relationships between the observation and the environmental conditions (rainfall). Actually, as the reference of the 3D smart sensors network establishment in this task, the rainfall-triggered landslides is emphasized to use some physically based models that reveal the dynamic changes in positive and negative (suction) pressure heads in the soil during the infiltration process in a regional scale. Nowadays, many physically based slope-stability models have been developed suitable for individual sites of different dimensions (Sidle and Hirotaka, 2006). The representative models are SHALSTAB (Dietrich et al, 1994) and TRIGRS (Baum et al, 2002). Based on the data captured from the 3D smart sensors network, the task will take the model of SHALSTAB and TRIGRS as examples, and analyzed their advantages and disadvantages. It revealed that there are some questions in the exiting shallow rainfall-landslide models: ignoring initial precipitation, rainfall-runoff, saturated-unsaturated infiltration processes. At the same time, we can also optimized the model and the 3D monitoring network, and made it more universality. Couple with the task, an established simulation 3D smart sensors network at Tongji University, Shanhgai, China is introduced in order to explain idea

  1. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  2. Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Gil, Joon-Min

    2015-03-01

    The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.

  3. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  4. Pore network model of electrokinetic transport through charged porous media

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Jardat, Marie; Coelho, Daniel; Bekri, Samir; Rotenberg, Benjamin

    2014-04-01

    We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.

  5. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  6. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks

    PubMed Central

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-01-01

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735

  7. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    PubMed

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  8. Application of real rock pore-threat statistics to a regular pore network model

    SciTech Connect

    Rakibul, M.; Sarker, H.; McIntyre, D.; Ferer, M.; Siddiqui, S.; Bromhal. G.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results

  9. Application of real rock pore-throat statistics to a regular pore network model

    SciTech Connect

    Sarker, M.R.; McIntyre, D.; Ferer, M.; Siddigui, S.; Bromhal. G.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results

  10. Preparation of Tunable 3D Pillared Carbon Nanotube-Graphene Networks for High-Performance Capacitance

    DTIC Science & Technology

    2011-01-01

    puter modeling has predicted that such a 3D pillared VACNT graphene structure can be used for efficient hydrogen storage after being doped with...Pillared Carbon Nanotube Graphene Networks for High-Performance Capacitance Feng Du,†,§ Dingshan Yu,†,§ Liming Dai,†,* S. Ganguli,‡ V. Varshney,‡ and A...nanotubes (CNTs) and two-dimensional (2D) single-atomic layer graphene , have been demonstrated to show superior thermal, electrical, and mechanical

  11. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  12. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  13. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.

  14. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  15. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Mani, Ali

    2014-11-01

    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  16. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  17. Morphogenesis of 3D vascular networks is regulated by tensile forces

    PubMed Central

    Rosenfeld, Dekel; Landau, Shira; Shandalov, Yulia; Raindel, Noa; Freiman, Alina; Shor, Erez; Blinder, Yaron; Vandenburgh, Herman H.; Mooney, David J.; Levenberg, Shulamit

    2016-01-01

    Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair. PMID:26951667

  18. Artificial neural networks and model-based recognition of 3-D objects from 2-D images

    NASA Astrophysics Data System (ADS)

    Chao, Chih-Ho; Dhawan, Atam P.

    1992-09-01

    A computer vision system is developed for 3-D object recognition using artificial neural networks and a knowledge-based top-down feedback analysis system. This computer vision system can adequately analyze an incomplete edge map provided by a low-level processor for 3-D representation and recognition using key features. The key features are selected using a priority assignment and then used in an artificial neural network for matching with model key features. The result of such matching is utilized in generating the model-driven top-down feedback analysis. From the incomplete edge map we try to pick a candidate pattern utilizing the key feature priority assignment. The highest priority is given for the most connected node and associated features. The features are space invariant structures and sets of orientation for edge primitives. These features are now mapped into real numbers. A Hopfield network is then applied with two levels of matching to reduce the search time. The first match is to choose the class of possible model, the second match is then to find the model closest to the data patterns. This model is then rotated in 3-D to find the best match with the incomplete edge patterns and to provide the additional features in 3-D. In the case of multiple objects, a dynamically interconnected search strategy is designed to recognize objects using one pattern at a time. This strategy is also useful in recognizing occluded objects. The experimental results presented show the capability and effectiveness of this system.

  19. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    PubMed

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  20. Cyclic Deformation-Induced Solute Transport in Tissue Scaffolds with Computer Designed, Interconnected, Pore Networks: Experiments and Simulations

    PubMed Central

    Op Den Buijs, Jorn; Dragomir-Daescu, Dan; Ritman, Erik L.

    2014-01-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid–structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold. PMID:19466547

  1. Engineering of functional, perfusable 3D microvascular networks on a chip.

    PubMed

    Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li

    2013-04-21

    Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

  2. Statistical and neural network classifiers in model-based 3-D object recognition

    NASA Astrophysics Data System (ADS)

    Newton, Scott C.; Nutter, Brian S.; Mitra, Sunanda

    1991-02-01

    For autonomous machines equipped with vision capabilities and in a controlled environment 3-D model-based object identification methodologies will in general solve rigid body recognition problems. In an uncontrolled environment however several factors pose difficulties for correct identification. We have addressed the problem of 3-D object recognition using a number of methods including neural network classifiers and a Bayesian-like classifier for matching image data with model projection-derived data [1 21. Neural network classifiers used began operation as simple feature vector classifiers. However unmodelled signal behavior was learned with additional samples yielding great improvement in classification rates. The model analysis drastically shortened training time of both classification systems. In an environment where signal behavior is not accurately modelled two separate forms of learning give the systems the ability to update estimates of this behavior. Required of course are sufficient samples to learn this new information. Given sufficient information and a well-controlled environment identification of 3-D objects from a limited number of classes is indeed possible. 1.

  3. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wall was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.

  4. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  5. Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells

    PubMed Central

    Liang, Jun; Susan Sun, Xiuzhi; Yang, Zhilong; Cao, Shuai

    2017-01-01

    Development of a biomimetic 3D culture system for drug screening is necessary to fully understand the in vivo environment. Previously, a self-assembling peptide hydrogel has been reported; the hydrogel exhibited physiological properties superior to a 3D cell culture matrix. In this work, further research using H9e hydrogel with HeLa cells was carried out considering H9e hydrogel’s interaction with camptothecin, a hydrophobic drug. According to AFM images, a PGworks solution triggered H9e hydrogel fiber aggregation and forms a 3D matrix suitable for cell culture. Dynamic rheological studies showed that camptothecin was encapsulated within the hydrogel network concurrently with peptide self-assembly without permanently destroying the hydrogel’s architecture and remodeling ability. Fluorescence measurement indicated negligible interaction between the fluorophore part of camptothecin and the hydrogel, especially at concentration 0.25 and 0.5 wt%. Using a dialysis method, we found that H9e hydrogel could not significantly inhibit the diffusion of camptothecin encapsulated inside the hydrogel matrix. In the cell culture experiment, HeLa cells were simultaneously embedded in the H9e hydrogel with the initialization of hydrogelation. Most importantly, cell viability data after camptothecin treatment showed responses that were drug-dose dependent but unaffected by the H9e hydrogel concentration, indicating that the hydrogel did not inhibit the drug. PMID:28145436

  6. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  7. Analysis of fracture networks in a reservoir dolomite by 3D micro-imaging

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Hoyer, Stefan; Exner, Ulrike; Reuschlé, Thierry

    2013-04-01

    Narrow fractures in reservoir rocks can be of great importance when determining the hydrocarbon potential of such a reservoir. Such fractures can contribute significantly to - or even be dominant for - the porosity and permeability characteristics of such rocks. Investigating these narrow fractures is therefore important, but not always trivial. Standard laboratory measurements on sample plugs from a reservoir are not always suitable for fractured rocks. Thin section analysis can provide very important information, but mostly only in 2D. Also other sources of information have major drawbacks, such as FMI (Formation Micro-Imager) during coring (insufficient resolution) and hand specimen analysis (no internal information). 3D imaging of reservoir rock samples is a good alternative and extension to the methods mentioned above. The 3D information is in our case obtained by X-ray Micro-Computed Tomography (µCT) imaging. Our used samples are 2 and 3 cm diameter plugs of a narrowly fractured (apertures generally <200 µm) reservoir dolomite (Hauptdolomit formation) from below the Vienna Basin, Austria. µCT has the large advantage of being non-destructive to the samples, and with the chosen sample sizes and settings, the sample rocks and fractures can be imaged with sufficient quality at sufficient resolution. After imaging, the fracture networks need to be extracted (segmented) from the background. Unfortunately, available segmentation approaches in the literature do not provide satisfactory results on such narrow fractures. We therefore developed the multiscale Hessian fracture filter, with which we are able to extract the fracture networks from the datasets in a better way. The largest advantages of this technique are that it is inherently 3D, runs on desktop computers with limited resources, and is implemented in public domain software (ImageJ / FIJI). The results from the multiscale Hessian fracture filtering approach serve as input for porosity determination. Also

  8. Clean Synthesis of an Economical 3D Nanochain Network of PdCu Alloy with Enhanced Electrocatalytic Performance towards Ethanol Oxidation.

    PubMed

    Liu, Jiawei; Huang, Zhao; Cai, Kai; Zhang, Huan; Lu, Zhicheng; Li, Tingting; Zuo, Yunpeng; Han, Heyou

    2015-12-01

    A one-pot method for the fast synthesis of a 3D nanochain network (NNC) of PdCu alloy without any surfactants is described. The composition of the as-prepared PdCu alloy catalysts can be precisely controlled by changing the precursor ratio of Pd to Cu. First, the Cu content changes the electronic structure of Pd in the 3D NNC of PdCu alloy. Second, the 3D network structure offers large open pores, high surface areas, and self-supported properties. Third, the surfactant-free strategy results in a relatively clean surface. These factors all contribute to better electrocatalytic activity and durability towards ethanol oxidation. Moreover, the use of copper in the alloy lowers the price of the catalyst by replacing the noble metal palladium with non-noble metal copper. The composition-optimized Pd80 Cu20 alloy in the 3D NNC catalyst shows an increased electrochemically active surface area (80.95 m(2)  g(-1) ) and a 3.62-fold enhancement of mass activity (6.16 A mg(-1) ) over a commercial Pd/C catalyst.

  9. Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration.

    PubMed

    Zhang, Yuye; Zhou, Zhixin; Shen, Yanfei; Zhou, Qing; Wang, Jianhai; Liu, Anran; Liu, Songqin; Zhang, Yuanjian

    2016-09-27

    Responsive assembly of 2D materials is of great interest for a range of applications. In this work, interfacial functionalized carbon nitride (CN) nanofibers were synthesized by hydrolyzing bulk CN in sodium hydroxide solution. The reversible assemble and disassemble behavior of the as-prepared CN nanofibers was investigated by using CO2 as a trigger to form a hydrogel network at first. Compared to the most widespread absorbent materials such as active carbon, graphene and previously reported supramolecular gel, the proposed CN hydrogel not only exhibited a competitive absorbing capacity (maximum absorbing capacity of methylene blue up to 402 mg/g) but also overcame the typical deficiencies such as poor selectivity and high energy-consuming regeneration. This work would provide a strategy to construct a 3D CN network and open an avenue for developing smart assembly for potential applications ranging from environment to selective extraction.

  10. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  11. Pore connectivity, electrical conductivity, and partial water saturation: Network simulations

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Bai, X. Y.; Zhang, L. H.

    2015-06-01

    The electrical conductivity of brine-saturated rock is predominantly dependent on the geometry and topology of the pore space. When a resistive second phase (e.g., air in the vadose zone and oil/gas in hydrocarbon reservoirs) displaces the brine, the geometry and topology of the pore space occupied by the electrically conductive phase are changed. We investigated the effect of these changes on the electrical conductivity of rock partially saturated with brine. We simulated drainage and imbibition as invasion and bond percolation processes, respectively, in pipe networks assumed to be perfectly water-wet. The simulations included the formation of a water film in the pipes invaded by the nonwetting fluid. During simulated drainage/imbibition, we measured the changes in resistivity index as well as a number of relevant microstructural parameters describing the portion of the pore space saturated with water. Except Euler topological number, all quantities considered here showed a significant level of "universality," i.e., insensitivity to the type of lattice used (simple cubic, body-centered cubic, or face-centered cubic). Hence, the coordination number of the pore network appears to be a more effective measure of connectivity than Euler number. In general, the simulated resistivity index did not obey Archie's simple power law. In log-log scale, the resistivity index curves displayed a substantial downward or upward curvature depending on the presence or absence of a water film. Our network simulations compared relatively well with experimental data sets, which were obtained using experimental conditions and procedures consistent with the simulations. Finally, we verified that the connectivity/heterogeneity model proposed by Bernabé et al. (2011) could be extended to the partial brine saturation case when water films were not present.

  12. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-07-29

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).

  13. Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud

    PubMed Central

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  14. Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application.

    PubMed

    Khamlich, S; Khamliche, T; Dhlamini, M S; Khenfouch, M; Mothudi, B M; Maaza, M

    2017-05-01

    Silver nanoparticles (AgNPs) grown on a three dimensional (3d) graphene networks (GNs) has been successfully prepared by an efficient and rapid microwave-assisted growth process to form GNs/AgNPs nanocomposite electrode materials for supercapacitor application. The 3d nature of the used GNs offers a unique architecture, which creates an efficient conduction networks and maximum utilization of space and interface, and acts as a conductive layer for the deposited AgNPs. The electrochemical performances of the fabricated electrode were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) tests. Specifically, the optimal GNs/AgNPs nanocomposite exhibits remarkable performances with a high specific capacitance of 528Fg(-1) at a current density of 1Ag(-1) and excellent capacitance retention of ∼93% after 3000cycles. Moreover, this microwave-assisted growth strategy of AgNPs is simple and effective, which could be extended to the construction of other three dimensional graphene based metallic composites for energy storage and conversion applications.

  15. Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images

    NASA Astrophysics Data System (ADS)

    Xu, Zhihua; Wu, Lixin; Gerke, Markus; Wang, Ran; Yang, Huachao

    2016-11-01

    Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-view images. However, due to the large computational costs of SfM methods there is a major challenge in processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from a large set of UAV images. First, the flight control data are used within a weighted graph to construct a topologically connected camera network (TCN) to determine the spatial connections between UAV images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM method, which allows performing tie-point matching only for the actually connected image pairs. The proposed method was applied in three experiments with images from two fixed-wing UAVs and an octocopter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for image connectivity determination. The comparison shows a significant reduction in the number of matched images if our method is used, which leads to less computational costs. At the same time the achieved scene completeness and geometric accuracy are comparable.

  16. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  17. Interim results from a neural network 3-D automatic target recognition program

    NASA Astrophysics Data System (ADS)

    Thoet, William; Rainey, Timothy G.; Slutz, Lee A.; Weingard, Fred

    1992-09-01

    Recent results from the Artificial Neural VIsion Learning (ANVIL) program are presented. The focus of the ANVIL program is to apply neural network technologies to the air-to-surface 3D automatic target recognition (ATR) problem. The 3D Multiple Object Detection and Location System (MODALS) neural network was developed under the ANVIL program to simultaneously detect, locate, segment, and identify multiple targets. The performance results show a very high identification accuracy, a high detection rate, and low false alarm rate, even for areas with high clutter and shadowing. The results are shown as detection/false alarm curves and identification/false alarm curves. In addition, positional detection accuracy is shown for various scale sizes. To provide data for the program, visible terrain board imagery was collected under a variety of background and lighting conditions. Tests were made on over 500 targets of five types and two classes. These targets varied in scale by up to -25%, varied in azimuth by up to 120 degrees, and varied in elevation by up to 10 degrees. The performance results are shown for targets with resolution ranging from 9 to 700 pixels on target. This work is being performed under contract to Wright Laboratory AAAT-1.

  18. A streamline splitting pore-network approach for computationally inexpensive and accurate simulation of transport in porous media

    SciTech Connect

    Mehmani, Yashar; Oostrom, Martinus; Balhoff, Matthew

    2014-03-20

    Several approaches have been developed in the literature for solving flow and transport at the pore-scale. Some authors use a direct modeling approach where the fundamental flow and transport equations are solved on the actual pore-space geometry. Such direct modeling, while very accurate, comes at a great computational cost. Network models are computationally more efficient because the pore-space morphology is approximated. Typically, a mixed cell method (MCM) is employed for solving the flow and transport system which assumes pore-level perfect mixing. This assumption is invalid at moderate to high Peclet regimes. In this work, a novel Eulerian perspective on modeling flow and transport at the pore-scale is developed. The new streamline splitting method (SSM) allows for circumventing the pore-level perfect mixing assumption, while maintaining the computational efficiency of pore-network models. SSM was verified with direct simulations and excellent matches were obtained against micromodel experiments across a wide range of pore-structure and fluid-flow parameters. The increase in the computational cost from MCM to SSM is shown to be minimal, while the accuracy of SSM is much higher than that of MCM and comparable to direct modeling approaches. Therefore, SSM can be regarded as an appropriate balance between incorporating detailed physics and controlling computational cost. The truly predictive capability of the model allows for the study of pore-level interactions of fluid flow and transport in different porous materials. In this paper, we apply SSM and MCM to study the effects of pore-level mixing on transverse dispersion in 3D disordered granular media.

  19. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  20. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    PubMed

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity.

  1. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  2. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks.

    PubMed

    Rowe, Laura; Almasri, Mahmoud; Lee, Kil; Fogleman, Nick; Brewer, Gregory J; Nam, Yoonkey; Wheeler, Bruce C; Vukasinovic, Jelena; Glezer, Ari; Frazier, A Bruno

    2007-04-01

    This work demonstrated the design, fabrication, packaging, and characterization of an active microscaffold system with fluid perfusion/nutrient delivery functionalities for culturing in vitro neuronal networks from dissociated hippocampal rat pup neurons. The active microscaffold consisted of an 8 x 8 array of hollow, microfabricated, SU-8 towers (1.0 mm or 1.5 mm in height), with integrated, horizontal, SU-8 cross-members that connect adjacent towers, thus forming a 3-D grid that is conducive to branching, growth, and increased network formation of dissociated hippocampal neurons. Each microtower in the microscaffold system contained a hollow channel and multiple fluid ports for media delivery and perfusion of nutrients to the in vitro neuronal network growing within the microscaffold system. Additionally, there were two exposed Au electrodes on the outer wall of each microtower at varying heights (with insulated leads running within the microtower walls), which will later allow for integration of electrical stimulation/recording functionalities into the active microscaffold system. However, characterization of the stimulation/recording electrodes was not included in the scope of this paper. Design, fabrication, fluid packaging, and characterization of the active microscaffold system were performed. Furthermore, use of the active microscaffold system was demonstrated by culturing primary hippocampal embryonic rat pup neurons, and characterizing cell viability within the microscaffold system.

  3. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  4. Structural and property studies on metal-organic compounds with 3-D supramolecular network

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Ying; Ma, Ke-Fang; Xiao, Hong-Ping; Li, Xin-Hua; Shi, Qian

    2014-07-01

    Two carboxylato-bridged allomeric compounds, {[Cu2(dbsa)2(hmt) (H2O)4]1/2·2H2O}n (1), {[Ni(dbsa)(H2O)2]1/2[Ni(dbsa)(hmt)(H2O)2]1/2·2H2O}n (2) (H2dbsa=meso-2,3-dibromosuccinic acid, hmt=hexamethylenetetramine) have been synthesized and characterized by X-ray structral analyses. The metal ions have two kinds of coordination fashion in one unit, and bridged by carboxylate and hmt ligands along with weak interactions existing in the solid structure, forming a 3-D supramolecular network. Variable-temperature magnetic property studies reveal the existence of antiferromagnetic interactions in 1 and 2 with g=2.2, J1=-3.5 cm-1, J2=-2.8 cm-1 for 1, and g=2.1, J=-3.5 cm-1 for 2.

  5. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  6. Hydration State and Aqueous Phase Connectivity Shape Microbial Dispersal Rates in Unsaturated Angular Pore Networks

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2014-12-01

    The limited dispersal of self-propelled microorganisms and constrained nutrient transport in unsaturated soils are considered key factors in the promotion and maintenance of soil microbial diversity. Despite the importance of microbial dispersal to biogeochemical and ecological functioning of soil, little is known about how pore spaces and hydration conditions affect dispersal ranges and rates of motile bacteria. To address these questions quantitatively, we developed a novel 3-D pore network model (PNM) composed of triangular bonds connected to cubic (volumeless) bonds to mimic the salient geometrical and physical properties of natural pore spaces. Within this abstracted physical domain we employed individual based models for motile microorganisms that are capable of motion, nutrient consumption, growth and cell division. We focused on dispersal rates through the network as a function of hydration conditions through its impact on aqueous phase fragmentation that suppress nutrient diffusion (hence growth rates) and dispersal rates in good agreement with limited experimental data. Chemotactically-biased mean travel rates of microbial cells across the saturated PNM was ~3 mm/hr and decreased exponentially to 0.45 mm/hr for matric potential of (at dispersal practically ceases and cells are pinned by capillary forces). Individual-based results were upscaled to describe population scale dispersal rates, and PNM predictions considering different microbial cell sizes were in good agreement with experimental results for unsaturated soils. The role of convection for most unsaturated conditions was negligible relative to self-motility highlighting the need to constrain continuum models with respect to cell size and motility to imporve predictions of transport of motile microorganisms. The modeling platform confirms universal predictions based on percolation theory for the onset of aqueous phase fragmentation that limit dispersal and provide niches essential for species

  7. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    PubMed

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  8. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples

    PubMed Central

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-01-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method – non-destructive 3D X-ray micro-Computed Tomography (μCT) – to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations – in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these

  9. A new electrical formation factor model for bimodal carbonates: numerical studies using dual-pore percolation network

    NASA Astrophysics Data System (ADS)

    Tang, Y. B.; Li, M.; Bernabé, Y.; Tang, H. M.; Li, X. F.; Bai, X. Y.; Tao, Z. W.

    2015-06-01

    In this paper, we modelled the electrical transport behaviour of bimodal carbonate rocks from a reservoir in China using dual-pore networks. One basic assumption, generally supported by experimental data and microstructure observations in the reservoir samples, was that the low porosity, monomodal rocks had the same properties and structure as the microporous matrix of the high porosity, bimodal samples. We assumed that the matrix was homogeneous and always interconnected but that the connectivity and the pore size distribution of macropore system was randomly variable. Both pore systems were supposed to act locally as `in parallel' electrical conductors, an approach previously used by Bauer et al. Hence, the effect of matrix properties, macropore size distribution and connectivity on electrical properties of bimodal rocks could be modelled and investigated. We simulated electrical current through 3-D, simple cubic and body-centred cubic networks with different coordination numbers, different pipe radius distributions of macropore system and different matrix properties. The main result was that the formation factor of dual-pore network obeyed a `universal' scaling relationship (i.e. independent of lattice type). Based on this result, we extended the power-law model derived by Bernabé et al. for monomodal porous media. We developed methods for evaluating the scale-invariant pore structure parameters in the model using conventional core analysis and satisfactorily tested the proposed model against experimental data from the Chinese reservoir as well as some other previously published data sets.

  10. Accurate and efficient maximal ball algorithm for pore network extraction

    NASA Astrophysics Data System (ADS)

    Arand, Frederick; Hesser, Jürgen

    2017-04-01

    The maximal ball (MB) algorithm is a well established method for the morphological analysis of porous media. It extracts a network of pores and throats from volumetric data. This paper describes structural modifications to the algorithm, while the basic concepts are preserved. Substantial improvements to accuracy and efficiency are achieved as follows: First, all calculations are performed on a subvoxel accurate distance field, and no approximations to discretize balls are made. Second, data structures are simplified to keep memory usage low and improve algorithmic speed. Third, small and reasonable adjustments increase speed significantly. In volumes with high porosity, memory usage is improved compared to classic MB algorithms. Furthermore, processing is accelerated more than three times. Finally, the modified MB algorithm is verified by extracting several network properties from reference as well as real data sets. Runtimes are measured and compared to literature.

  11. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  12. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    SciTech Connect

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  13. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m. In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.

  14. Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2016-06-01

    In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.

  15. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2012-12-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R&D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  16. Performance of a neural-network-based 3-D object recognition system

    NASA Astrophysics Data System (ADS)

    Rak, Steven J.; Kolodzy, Paul J.

    1991-08-01

    Object recognition in laser radar sensor imagery is a challenging application of neural networks. The task involves recognition of objects at a variety of distances and aspects with significant levels of sensor noise. These variables are related to sensor parameters such as sensor signal strength and angular resolution, as well as object range and viewing aspect. The effect of these parameters on a fixed recognition system based on log-polar mapped features and an unsupervised neural network classifier are investigated. This work is an attempt to quantify the design parameters of a laser radar measurement system with respect to classifying and/or identifying objects by the shape of their silhouettes. Experiments with vehicle silhouettes rotated through 90 deg-of-view angle from broadside to head-on ('out-of-plane' rotation) have been used to quantify the performance of a log-polar map/neural-network based 3-D object recognition system. These experiments investigated several key issues such as category stability, category memory compression, image fidelity, and viewing aspect. Initial results indicate a compression from 720 possible categories (8 vehicles X 90 out-of-plane rotations) to a classifier memory with approximately 30 stable recognition categories. These results parallel the human experience of studying an object from several viewing angles yet recognizing it through a wide range of viewing angles. Results are presented illustrating category formation for an eight vehicle dataset as a function of several sensor parameters. These include: (1) sensor noise, as a function of carrier-to-noise ratio; (2) pixels on the vehicle, related to angular resolution and target range; and (3) viewing aspect, as related to sensor-to-platform depression angle. This work contributes to the formation of a three- dimensional object recognition system.

  17. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology

    PubMed Central

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-01-01

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386

  18. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology.

    PubMed

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-06-30

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.

  19. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    NASA Astrophysics Data System (ADS)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (< 1E+06 nm³), often isolated pores are much more compact and show higher shape factors (G) up to 0.03. WMI in combination with BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore

  20. Templated assembly of BiFeO₃ nanocrystals into 3D mesoporous networks for catalytic applications.

    PubMed

    Papadas, I T; Subrahmanyam, K S; Kanatzidis, M G; Armatas, G S

    2015-03-19

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO₃ material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO₃) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO₃ nanoparticles (∼6-7 nm in diameter) and has a moderately high surface area (62 m(2) g(-1)) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO₃ nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.

  1. 3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search

    PubMed Central

    Wang, Zhao; Jenkins, Michael W.; Linderman, George C.; Bezerra, Hiram G.; Fujino, Yusuke; Costa, Marco A.; Wilson, David L.

    2015-01-01

    Worldwide, many hundreds of thousands of stents are implanted each year to revascularize occlusions in coronary arteries. Intravascular optical coherence tomography (OCT) is an important emerging imaging technique, which has the resolution and contrast necessary to quantitatively analyze stent deployment and tissue coverage following stent implantation. Automation is needed, as current, it takes up to 16 hours to manually analyze hundreds of images and thousands of stent struts from a single pullback. For automated strut detection, we used image formation physics and machine learning via a Bayesian network, and 3-D knowledge of stent structure via graph search. Graph search was done on en face projections using minimum spanning tree algorithms. Depths of all struts in a pullback were simultaneously determined using graph cut. To assess the method, we employed the largest validation data set used so far, involving more than 8,000 clinical images from 103 pullbacks from 72 patients. Automated strut detection achieved a 0.91±0.04 recall, and 0.84±0.08 precision. Performance was robust in images of varying quality. This method can improve the workflow for analysis of stent clinical trial data, and can potentially be used in the clinic to facilitate real-time stent analysis and visualization, aiding stent implantation. PMID:25751863

  2. Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN).

    PubMed

    Chou, Nigel; Wu, Jiarong; Bai Bingren, Jordan; Qiu, Anqi; Chuang, Kai-Hsiang

    2011-09-01

    Brain extraction is an important preprocessing step for further processing (e.g., registration and morphometric analysis) of brain MRI data. Due to the operator-dependent and time-consuming nature of manual extraction, automated or semi-automated methods are essential for large-scale studies. Automatic methods are widely available for human brain imaging, but they are not optimized for rodent brains and hence may not perform well. To date, little work has been done on rodent brain extraction. We present an extended pulse-coupled neural network algorithm that operates in 3-D on the entire image volume. We evaluated its performance under varying SNR and resolution and tested this method against the brain-surface extractor (BSE) and a level-set algorithm proposed for mouse brain. The results show that this method outperforms existing methods and is robust under low SNR and with partial volume effects at lower resolutions. Together with the advantage of minimal user intervention, this method will facilitate automatic processing of large-scale rodent brain studies.

  3. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  4. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    SciTech Connect

    Bossa, Nathan; Chaurand, Perrine; Vicente, Jérôme; Borschneck, Daniel; Levard, Clément; Aguerre-Chariol, Olivier; Rose, Jérôme

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) and nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.

  5. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  6. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.

    PubMed

    Crandell, L E; Peters, C A; Um, W; Jones, K W; Lindquist, W B

    2012-04-01

    At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.

  7. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes

    SciTech Connect

    Crandell, L. E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2012-04-01

    At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.

  8. Application of artificial neural network in 3D imaging with lanthanum bromide calorimeter

    NASA Astrophysics Data System (ADS)

    Gostojic, A.; Tatischeff, V.; Kiener, J.; Hamadache, C.; Karkour, N.; Linget, D.; Grave, X.; Gibelin, L.; Travers, B.; Blin, S.; Barrillon, P.

    2015-07-01

    Gamma-ray astronomy in the energy range from 0.1 up to 100 MeV holds many understudied questions connected with e.g. stellar nucleosynthesis, the active Sun, neutron stars and black holes. To access the physics behind, a significant improvement in detection sensitivity is needed compared to previous missions, e.g. CGRO and INTEGRAL. One of the promising concepts for a future gamma-ray mission is an Advanced Compton Telescope. Under the project of creating a prototype of such instrument, we study the perspectives of using a novel inorganic scintillator as a calorimeter part. Modern inorganic crystal or ceramics scintillators are constantly improving on qualities such as energy resolution and radiation hardness, and this makes them a smart choice for a new space-borne telescope. At CSNSM Orsay, we have assembled a detection module from a 5 × 5cm2 area and 1 cm thick, cerium-doped lanthanum (III) bromide (LaBr3:Ce) inorganic scintillator coupled to a 64 channel multi-anode photomultiplier. The readout of the PMT signals is carried out with the ASIC MAROC, used previously for the luminometer of the ATLAS detector (CERN). Characterization, thorough measurements with various radioactive sources, as well as, single photoelectron detection have been done. Furthermore, we made a comparison of measurements with a detailed GEANT4-based simulation which includes tracking of the optical photons. Finally, we have studied the 3D reconstruction of the first interaction point of incident gamma rays, utilizing a neural network algorithm. This spatial position resolution plays a crucial part in the future implementations and, together with the other measured properties, it makes our detector module very interesting for the next generation of space telescopes operating in the MeV range.

  9. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  10. Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates

    NASA Astrophysics Data System (ADS)

    Qin, Chao-Zhong; Hassanizadeh, S. Majid; Ebigbo, Anozie

    2016-11-01

    The engineering of microbially induced calcium carbonate precipitation (MICP) has attracted much attention in a number of applications, such as sealing of CO2 leakage pathways, soil stabilization, and subsurface remediation of radionuclides and toxic metals. The goal of this work is to gain insight into pore-scale processes of MICP and scale dependence of biogeochemical reaction rates. This will help us develop efficient field-scale MICP models. In this work, we have developed a comprehensive pore-network model for MICP, with geochemical speciation calculated by the open-source PHREEQC module. A numerical pseudo-3-D micromodel as the computational domain was generated by a novel pore-network generation method. We modeled a three-stage process in the engineering of MICP including the growth of biofilm, the injection of calcium-rich medium, and the precipitation of calcium carbonate. A number of test cases were conducted to illustrate how calcite precipitation was influenced by different operating conditions. In addition, we studied the possibility of reducing the computational effort by simplifying geochemical calculations. Finally, the effect of mass transfer limitation of possible carbonate ions in a pore element on calcite precipitation was explored.

  11. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

    PubMed

    Domingos, M; Intranuovo, F; Russo, T; De Santis, R; Gloria, A; Ambrosio, L; Ciurana, J; Bartolo, P

    2013-12-01

    Novel additive manufacturing processes are increasingly recognized as ideal techniques to produce 3D biodegradable structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. With regard to the mechanical and biological performances of 3D scaffolds, pore size and geometry play a crucial role. In this study, a novel integrated automated system for the production and in vitro culture of 3D constructs, known as BioCell Printing, was used only to manufacture poly(ε-caprolactone) scaffolds for tissue engineering; the influence of pore size and shape on their mechanical and biological performances was investigated. Imposing a single lay-down pattern of 0°/90° and varying the filament distance, it was possible to produce scaffolds with square interconnected pores with channel sizes falling in the range of 245-433 µm, porosity 49-57% and a constant road width. Three different lay-down patterns were also adopted (0°/90°, 0°/60/120° and 0°/45°/90°/135°), thus resulting in scaffolds with quadrangular, triangular and complex internal geometries, respectively. Mechanical compression tests revealed a decrease of scaffold stiffness with the increasing porosity and number of deposition angles (from 0°/90° to 0°/45°/90°/135°). Results from biological analysis, carried out using human mesenchymal stem cells, suggest a strong influence of pore size and geometry on cell viability. On the other hand, after 21 days of in vitro static culture, it was not possible to detect any significant variation in terms of cell morphology promoted by scaffold topology. As a first systematic analysis, the obtained results clearly demonstrate the potential of the BioCell Printing process to produce 3D scaffolds with reproducible well organized architectures and tailored mechanical properties.

  12. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  13. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  14. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  15. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  16. Visualization and simulation of bubble growth in pore networks

    SciTech Connect

    Li, Xuehai; Yortsos, Y.C.

    1994-03-01

    Bubble nucleation and bubble growth in porous media is an important problem encountered in processes, such as pressure depletion and boiling. To understand its basic aspects, experiments and numerical simulations in micromodel geometries were undertaken. Experiments of bubble growth by pressure depletion were carried out in 2-D etched-glass micromodels and in Hele-Shaw cells. Nucleation of bubbles and the subsequent growth of gas clusters were visualized. Contrary to the bulk or to Hele-Shaw cells, gas clusters in the micromodel have irregular and ramified shapes and share many of the features of an external invasion process (e.g. of percolation during drainage). A pore network numerical model was developed to simulate the growth of multiple gas clusters under various conditions. The model is based on the solution of the convection-diffusions equation and also accounts for capillary and viscous forces, which play an important role in determining the growth patterns. Numerical simulation resulted in good agreement with the experimental results.

  17. Segmentation of Textures Defined on Flat vs. Layered Surfaces using Neural Networks: Comparison of 2D vs. 3D Representations.

    PubMed

    Oh, Sejong; Choe, Yoonsuck

    2007-08-01

    Texture boundary detection (or segmentation) is an important capability in human vision. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct (i.e., occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments with artificial neural networks to investigate the relative difficulty of learning to segment textures defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by occluding surfaces and their change over time due to the observer's motion. It turns out that learning is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results showed that the neural network's learned ability to segment texture in 3D transfers well into 2D texture segmentation, bolstering our initial hypothesis, and providing insights on the possible developmental origin of 2D texture segmentation function in human vision.

  18. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  19. Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks

    PubMed Central

    Simão, Daniel; Terrasso, Ana P.; Teixeira, Ana P.; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M.

    2016-01-01

    The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-13C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889

  20. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport

    NASA Astrophysics Data System (ADS)

    Xiong, Qingrong; Baychev, Todor G.; Jivkov, Andrey P.

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community.

  1. Webs on the Web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education

    NASA Astrophysics Data System (ADS)

    Yoon, Ilmi; Williams, Rich; Levine, Eli; Yoon, Sanghyuk; Dunne, Jennifer; Martinez, Neo

    2004-06-01

    This paper describes information technology being developed to improve the quality, sophistication, accessibility, and pedagogical simplicity of ecological network data, analysis, and visualization. We present designs for a WWW demonstration/prototype web site that provides database, analysis, and visualization tools for research and education related to food web research. Our early experience with a prototype 3D ecological network visualization guides our design of a more flexible architecture design. 3D visualization algorithms include variable node and link sizes, placements according to node connectivity and tropic levels, and visualization of other node and link properties in food web data. The flexible architecture includes an XML application design, FoodWebML, and pipelining of computational components. Based on users" choices of data and visualization options, the WWW prototype site will connect to an XML database (Xindice) and return the visualization in VRML format for browsing and further interactions.

  2. Molecular tectonics: pyridyl containing thiacalix[4]arene based tectons for the generation of 2- and 3-D silver coordination networks.

    PubMed

    Ovsyannikov, A; Lang, M N; Ferlay, S; Solovieva, S E; Antipin, I S; Konovalov, A I; Kyritsakas, N; Hosseini, M W

    2013-01-07

    Three new organic tectons (2–4) based on the p-tert-butylthiacalix[4]arene backbone, blocked in the 1,3-alternate conformation, bearing four pyridyl coordinating moieties, have been synthesised and characterised in the solid state. The ligands are positional isomers and differ by the position of the N atom on the pyridyl unit (ortho for 2, meta for 3 and para for 4). Their combination with the Ag+ cation leads, reproducibly, to the formation of 2- and 3-D infinite silver coordination networks. Independent of the nature of the anion, the combination of 2 offering four (N,S) type chelates with the Ag+ cation affords an unprecedented diamond type 3D network. Both 3 and 4, behaving as tetrakis monodentate ligands, lead to the formation of 2-D architectures.

  3. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  4. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    PubMed

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  5. A Pore-Network Model of In-Situ Combustion in Porous Media

    SciTech Connect

    Lu, Chuan; Yortsos, Y.C.

    2001-01-29

    This report the use of dual pore networks (pores and solid sites) for modeling the effect of the microstructure on combustion processes in porous media is considered. The model accounts for flow and transport of the gas phase in the porespace, where convection predominates, and for heat transfer by conduction in the solid phase. Gas phase flow in the pore and throats is governed by Darcy's law.

  6. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  7. VISUALIZATION AND SIMULATION OF NON-AQUEOUS PHASE LIQUIDS SOLUBILIZATION IN PORE NETWORKS

    EPA Science Inventory

    The design of in-situ remediation of contaminated soils is mostly based on a description at the macroscopic scale using a averaged quantities. These cannot address issues at the pore and pore network scales. In this paper, visualization experiments and numerical simulations in ...

  8. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    USGS Publications Warehouse

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure-saturation curves. The predicted network residual styrene blob-size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous-phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  9. 3D structure of macropore networks within natural and de-embarked estuary saltmarsh sediments: towards an improved understanding of network structural control over hydrologic function

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Spencer, Kate; James, Tempest; Lucy, Diggens

    2015-04-01

    Saltmarshes are globally important environments which, though occupying < 4% of the Earth's surface, provide a range of ecosystem services. Yet, they are threatened by sea level rise, human population growth, urbanization and pollution resulting in degradation. To compensate for this habitat loss many coastal restoration projects have been implemented over the last few decades, largely driven by legislative requirements for improved biodiversity e.g. the EU Habitats Directive and Birds Directive. However, there is growing evidence that restored saltmarshes, recreated through the return to tidal inundation of previously drained and defended low-lying coastal land, do not have the same species composition even after 100 years and while environmental enhancement has been achieved, there may be consequences for ecosystem functioning This study presents the findings of a comparative analysis of detailed sediment structure and hydrological functioning of equivalent natural and de-embanked saltmarsh sediments at Orplands Farm, Essex, UK. 3D x-ray CT scanning of triplicate undisturbed sediment cores recovered in 2013 have been used to derive detailed volumetric reconstructions of macropore structure and networks, and to infer differences in bulk microporosity between natural and de-embanked saltmarshes. These volumes have been further visualised for qualitative analysis of the main sediment components, and extraction of key macropore space parameters for quantified analysis including total porosity and connectivity, as well as structure, organisation and efficiency (tortuosity) of macropore networks. Although total porosity was significantly greater within the de-embanked saltmarsh sediments, pore networks in these samples were less organised and more tortuous, and were also inferred to have significantly lower micro-porosity than those of the natural saltmarsh. These datasets are applied to explain significant differences in the hydraulic behaviour and functioning

  10. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.

    PubMed

    Jeong, Gi Seok; Kwon, Gu Han; Kang, Ah Ran; Jung, Bo Young; Park, Yongdoo; Chung, Seok; Lee, Sang-Hoon

    2011-08-01

    Cell migration through the extracellular matrix (ECM) is one of the key features for physiological and pathological processes such as angiogenesis, cancer metastasis, and wound healing. In particular, the quantitative assay of endothelial cell migration under the well-defined three dimensional (3D) microenvironment is important to analyze the angiogenesis mechanism. In this study, we report a microfluidic assay of endothelial cell sprouting and migration into an interpenetrating polymer semi-network HA-Collagen (SIPNs CH) hydrogel as ECM providing an enhanced in vivo mimicking 3D microenvironment to cells. The microfluidic chip could provide a well-controlled gradient of growth factor to cells, whereas the hydrogel could mimic a well-defined 3D microenvironment in vivo. (In addition/Furthermore, the microfluidic chip gives a well-controlled gradient of growth factor to cells) For this reason, three types of hydrogel, composed of semi-interpenetrating networks of collagen and hyaluronic acid were prepared, and firstly we proved the role of the hydrogel in endothelial cell migration. The diffusion property and swelling ratio of the hydrogel were characterized. It modulated the migration of endothelial cells in quantified manner, also being influenced by additional synthesis of Matrix metalloproteinase(MMP)-sensitive remodeling peptides and Arginine-glycine-lycinee (RGD) cell adhesion peptides. We successfully established a novel cell migration platform by changing major determinants such as ECM material under biochemical synthesis and under growth factor gradients in a microfluidic manner.

  11. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  12. Preliminary Measurement of Communication Rates on the Cray T3D Interprocessor Network

    NASA Technical Reports Server (NTRS)

    Springer, Paul; Peterson, John; Numrich, Robert

    1993-01-01

    None given.(from task description): Objectives: test the communication network, determine how communication rates scale with message size, test the effect of contention, show the effect of contention.

  13. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  14. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  15. 3D face recognition system using cylindrical hidden-layer neural network: spatial domain and its eigenspace domain

    NASA Astrophysics Data System (ADS)

    Kusumoputro, Benyamin; Pangabean, Martha Y.; Rachman, Leila F.

    2001-09-01

    In this paper, a 3-D face recognition system is developed using a modified neural network. This modified neural network is constructed by substituting each of neuron in its hidden layer of conventional multilayer perceptron with a circular-structure of neurons. This neural system is then called as cylindrical-structure of hidden layer neural network (CHL-NN). The neural system is then applied on a real 3-D face image database that consists of 5 Indonesian persons. The images are taken under four different expressions such as neutral, smile, laugh and free expression. The 2-D images is taken from the human face images by gradually changing visual points, which is done by successively varies the camera position from - 90 to +90 with an interval of 15 degree. The experimental result has shown that the average recognition rate of 60% could be achieved when we used the image in its spatial domain. Improvement of the system is then developed, by transforming the image in its spatial domain into its eigenspace domain. Karhunen Loeve transformation technique is used, and each image in the spatial domain is represented as a point in the eigenspace domain. Fisherface method is then utilized as a feature extraction on the eigenspace domain, and using the same database and experimental procedure, the recognition rate of the system could be increased into 84% in average.

  16. Related pituitary cell lineages develop into interdigitated 3D cell networks.

    PubMed

    Budry, Lionel; Lafont, Chrystel; El Yandouzi, Taoufik; Chauvet, Norbert; Conéjero, Geneviève; Drouin, Jacques; Mollard, Patrice

    2011-07-26

    The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.

  17. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility

    PubMed Central

    Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios

    2016-01-01

    Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. PMID:27007373

  18. AxeCorp's "Team Challenge": Teaching Teamwork via 3D Social Networking Platforms

    ERIC Educational Resources Information Center

    Carmichael, Kendra

    2011-01-01

    To prepare business communication undergraduates for a changing work world and to engage today's tech-savvy students, many instructors have embraced social media by incorporating its use in the classroom. This article describes AxeCorp, a fictional company headquartered on the immersive social networking platform, Second Life, and one particular…

  19. Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Meyer, D. W.; Khayrat, K.; Jenny, P.

    2015-12-01

    Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network

  20. Pore-network study of the mechanisms of foam generation in porous media.

    PubMed

    Chen, Min; Yortsos, Yannis C; Rossen, William R

    2006-03-01

    Understanding the role of pore-level mechanisms is essential to the mechanistic modeling and simulation of foam processes in porous media. Three different pore-level events can lead to foam formation: snapoff, leave behind, and lamella division. The initial state of the porous medium (fully saturated with liquid or already partially drained), as surfactant is introduced, also affects the different foam-generation mechanisms. Bubbles created by any of these mechanisms cause the formation of new bubbles by snapoff and leave behind as gas drains liquid-saturated pores. Lamellae are stranded unless the pressure gradient is sufficient to mobilize those that have been created. To appreciate the roles of these mechanisms, their interaction at the pore-network level was studied. We report an extensive pore-network study that incorporates the above pore-level mechanisms, as foam is created by drainage or by the continuous injection of gas and liquid in porous media. Pore networks with up to 10 000 pores are considered. The study explores the roles of the pore-level events, and by implication, the appropriate form of the foam-generation function for mechanistic foam simulation. Results are compared with previous studies. In particular, the network simulations reconcile an apparent contradiction in the foam-generation model of Rossen and Gauglitz [AIChE J. 36, 1176 (1990)], and identify how foam is created near the inlet of the porous medium when lamella division controls foam generation. In the process, we also identify a new mechanism of snap-off and foam generation near the inlet of the medium.

  1. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst.

  2. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    PubMed Central

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-01-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices. PMID:28287138

  3. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. K. M. Rezaul Haque; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2017-03-01

    Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices.

  4. Trabecular network arrangement within the human patella: how osteoarthritis remodels the 3D trabecular structure

    NASA Astrophysics Data System (ADS)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2016-10-01

    Following the principles of "morphology reveals biomechanics", the anatomical structure of the cartilage-osseous interface and the supporting trabecular network show defined adaptation in their architectural properties to physiological loading. In case of a faulty relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise and disturb the balanced formation and resorption processes. To describe and quantify the changes occurring, 10 human OA patellae were analysed concerning the architectural parameters of the trabecular network within the first five mms by the evaluation of 3Dmicro-CT datasets. The analysed OA-samples showed a strong irregularity for all trabecular parameters across the trabecular network, no regularity in parameter distribution was found. In general, we saw a decrease of material in the OA population as BV/TV, BS/TV, Tb.N and Tb.Th were decreased and the spacing increased. The development into depth showed a logarithmic dependency, which revealed the greatest difference for all parameters within the first mm in comparison to the physiologic samples. The differences decreased towards the 5th mm. The interpretation of the mathematic dependency leads to the conclusion that the main impact of OA is beneath the subchondral bone plate (SBP) and lessens with depth. Next to the clear difference in material, the architectural arrangement is more rod-like and isotropic just beneath the SBP in comparison to the plate-like and more anisotropic physiological arrangement.

  5. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node

    PubMed Central

    Kelch, Inken D.; Bogle, Gib; Sands, Gregory B.; Phillips, Anthony R. J.; LeGrice, Ian J.; Rod Dunbar, P.

    2015-01-01

    Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs. PMID:26567707

  6. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  7. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord.

    PubMed

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-02-17

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.

  8. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    PubMed Central

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-01-01

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system. PMID:25686728

  9. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.

    PubMed

    Wang, Xue-Ying; Jin, Zi-He; Gan, Bo-Wen; Lv, Song-Wei; Xie, Min; Huang, Wei-Hua

    2014-08-07

    Engineering 3D perfusable vascular networks in vitro and reproducing the physiological environment of blood vessels is very challenging for tissue engineering and investigation of blood vessel function. Here, we engineer interconnected 3D microfluidic vascular networks in hydrogels using molded sodium alginate lattice as sacrificial templates. The sacrificial templates are rapidly replicated in polydimethylsiloxane (PDMS) microfluidic chips via Ca⁺²-crosslinking and then fully encapsulated in hydrogels. Interconnected channels with well controlled size and morphology are obtained by dissolving the monolayer or multilayer templates with EDTA solution. The human umbilical vein endothelial cells (HUVECs) are cultured on the channel linings and proliferated to form vascular lumens. The strong cell adhesion capability and adaptive response to shear stress demonstrate the excellent cytocompatibility of both the template and template-sacrificing process. Furthermore, the barrier function of the endothelial layer is characterized and the results show that a confluent endothelial monolayer is fully developed. Taken together, we develop a facile and rapid approach to engineer a vascular model that could be potentially used in physiological studies of vascular functions and vascular tissue engineering.

  10. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  11. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Bukreeva, Inna; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spanò, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2015-02-01

    Faults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal system represents a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of ex-vivo mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with nor contrast agent nor sectioning and neither destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is very suitable for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries, in particular to resolve the entangled relationship between VN and neuronal system.

  12. Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations

    NASA Astrophysics Data System (ADS)

    Normani, S. D.

    2015-12-01

    Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.

  13. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  14. Pore-network study of bubble growth in porous media driven by heat transfer

    SciTech Connect

    Satik, C.; Yortsos, Y.C.

    1996-05-01

    We present experimental and theoretical investigations of vapor phase growth in pore-network models of porous media. Visualization experiments of boiling of ethyl alcohol in horizontal etched-glass micromodels were conducted. The vapor phase was observed to grow into a disordered pattern following a sequence of pressurization and pore-filling steps. At sufficiently small cluster sizes, growth occurred `one pore at a time,` leading to invasion percolation patterns. Single-bubble (cluster) growth was next simulated with a pore-network simulator that includes heat transfer (convection and conduction), and capillary and viscous forces, although not gravity. A boundary in the parameter space was delineated that separates patterns of growth dictated solely by capillarity (invasion percolation) from other patterns. The region of validity of invasion percolation was found to decrease as the supersaturation (heat flux), the capillary number, the thermal diffusivity, and the vapor cluster size increase. Implications to continuum models are discussed. 33 refs., 9 figs.

  15. 3D functional and perfusable microvascular networks for organotypic microfluidic models.

    PubMed

    Bersini, Simone; Moretti, Matteo

    2015-05-01

    The metastatic dissemination of cancer cells from primary tumors to secondary loci is a complex and multistep process including local invasion, intravasation, survival in the blood stream and extravasation towards the metastatic site. It is well known cancer metastases follow organ-specific pathways with selected primary tumors mainly metastasizing towards a specific panel of secondary organs (Steven Paget's theory 1889). However, circulatory patterns and microarchitecture of capillary networks play a key role in the metastatic spread as well (James Ewing's theory 1929). Taking into account both these factors would be critical to develop more complex and physiologically relevant in vitro cancer models. This review presents recent advances in the generation of microvascularized systems through microfluidic approaches and discusses promising results achieved by organ-on-a-chip platforms mimicking the pathophysiology of the functional units of specific organs. The combination of physiologically-like microvascular networks and organotypic microenvironments would foster a new generation of in vitro cancer models to more effectively screen new therapeutics, design personalized medicine treatments and investigate molecular pathways involved in cancer metastases.

  16. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  17. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    SciTech Connect

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine; Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot

    2010-12-01

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, a first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for

  18. Analysis of quasi-periodic pore-network structure of centric marine diatom frustules

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Alvarez, Christine E.; Meyers, Keith; Deheyn, Dimitri D.; Hildebrand, Mark; Kieu, Khanh; Norwood, Robert A.

    2015-03-01

    Diatoms are a common type of phytoplankton characterized by their silica exoskeleton known as a frustule. The diatom frustule is composed of two valves and a series of connecting girdle bands. Each diatom species has a unique frustule shape and valves in particular species display an intricate pattern of pores resembling a photonic crystal structure. We used several numerical techniques to analyze the periodic and quasi-periodic valve pore-network structure in diatoms of the Coscinodiscophyceae order. We quantitatively identify defect locations and pore spacing in the valve and use this information to better understand the optical and biological properties of the diatom.

  19. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects

    NASA Astrophysics Data System (ADS)

    Mouzakis, K. M.; Sitchler, A.; McCray, J. E.; Rother, G.; Dewers, T.; Heath, J. E.

    2010-12-01

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth’s surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, a first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for

  20. Layout search of a gene regulatory network for 3-D visualization.

    PubMed

    Hosoyama, Naoki; Nasimul, Noman; Iba, Hitoshi

    2003-01-01

    In recent years, base sequences have been increasingly unscrambled through attempts represented by the human genome project. Accordingly, the estimation of the genetic network has been accelerated. However, no definitive method has become available for drawing a large effective graph. This paper proposes a method which allows for coping with an increase in the number of nodes by laying out genes on planes of several layers and then overlapping these planes. This layout involves an optimization problem which requires maximizing the fitness function. To demonstrate the effectiveness of our approach, we show some graphs using actual data on 82 genes and 552 genes. We also describe how to lay out nodes by means of stochastic searches, e.g., stochastic hill-climbing and incremental methods. The experimental results show the superiority and usefulness of two search methods in comparison with the simple random search.

  1. 3-D multilateration for measurement of earth crustal deformation and network densification

    NASA Technical Reports Server (NTRS)

    Ong, K. M.

    1973-01-01

    Discussion of how range and range-difference data types can make possible precise three-dimensional measurement of ground station positions and the position of an artificial signal source, without explicit dependence upon the signal source trajectory. An effective strategy for such measurement is to combine the multilateration approach with a VLBI system using natural radio sources. The VLBI methods would provide a coarse grid of three-dimensional benchmark locations on a regional and global scale. Multilateration stations would then occupy these coarse grid locations and provide a means for highly portable, relatively low-cost units to then densify networks on a regional and local scale. Because a multilateration approach can make use of strong artificial radio sources, it makes possible the use of relatively low-cost, highly mobile stations. Such mobile stations are virtually essential for three dimensional surveying in heavily urbanized areas or in rugged terrain.

  2. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  3. Dynamic network morphology and tension buildup in a 3D model of cytokinetic ring assembly.

    PubMed

    Bidone, Tamara C; Tang, Haosu; Vavylonis, Dimitrios

    2014-12-02

    During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.

  4. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was

  5. Metastatic liver tumour segmentation with a neural network-guided 3D deformable model.

    PubMed

    Vorontsov, Eugene; Tang, An; Roy, David; Pal, Christopher J; Kadoury, Samuel

    2017-01-01

    The segmentation of liver tumours in CT images is useful for the diagnosis and treatment of liver cancer. Furthermore, an accurate assessment of tumour volume aids in the diagnosis and evaluation of treatment response. Currently, segmentation is performed manually by an expert, and because of the time required, a rough estimate of tumour volume is often done instead. We propose a semi-automatic segmentation method that makes use of machine learning within a deformable surface model. Specifically, we propose a deformable model that uses a voxel classifier based on a multilayer perceptron (MLP) to interpret the CT image. The new deformable model considers vertex displacement towards apparent tumour boundaries and regularization that promotes surface smoothness. During operation, a user identifies the target tumour and the mesh then automatically delineates the tumour from the MLP processed image. The method was tested on a dataset of 40 abdominal CT scans with a total of 95 colorectal metastases collected from a variety of scanners with variable spatial resolution. The segmentation results are encouraging with a Dice similarity metric of [Formula: see text] and demonstrates that the proposed method can deal with highly variable data. This work motivates further research into tumour segmentation using machine learning with more data and deeper neural networks.

  6. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network.

    PubMed

    Kim, Jaerim; Chung, Minhwan; Kim, Sudong; Jo, Dong Hyun; Kim, Jeong Hun; Jeon, Noo Li

    2015-01-01

    Pericytes enveloping the endothelium play an important role in the physiology and pathology of microvessels, especially in vessel maturation and stabilization. However, our understanding of fundamental pericyte biology is limited by the lack of a robust in vitro model system that allows researchers to evaluate the interactions among multiple cell types in perfusable blood vessels. The present work describes a microfluidic platform that can be used to investigate interactions between pericytes and endothelial cells (ECs) during the sprouting, growth, and maturation steps of neovessel formation. A mixture of ECs and pericytes was attached to the side of a pre-patterned three dimensional fibrin matrix and allowed to sprout across the matrix. The effects of intact coverage and EC maturation by the pericytes on the perfused EC network were confirmed using a confocal microscope. Compared with EC monoculture conditions, EC-pericyte co-cultured vessels showed a significant reduction in diameter, increased numbers of junctions and branches and decreased permeability. In response to biochemical factors, ECs and pericytes in the platform showed the similar features with previous reports from in vivo experiments, thus reflect various pathophysiological conditions of in vivo microvessels. Taken together, these results support the physiological relevancy of our three-dimensional microfluidic culture system but also that the system can be used to screen drug effect on EC-pericyte biology.

  7. Applications of neural networks to landmark detection in 3-D surface data

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.

    1992-09-01

    The problem of identifying key landmarks in 3-dimensional surface data is of considerable interest in solving a number of difficult real-world tasks, including object recognition and image processing. The specific problem that we address in this research is to identify the specific landmarks (anatomical) in human surface data. This is a complex task, currently performed visually by an expert human operator. In order to replace these human operators and increase reliability of the data acquisition, we need to develop a computer algorithm which will utilize the interrelations between the 3-dimensional data to identify the landmarks of interest. The current presentation describes a method for designing, implementing, training, and testing a custom architecture neural network which will perform the landmark identification task. We discuss the performance of the net in relationship to human performance on the same task and how this net has been integrated with other AI and traditional programming methods to produce a powerful analysis tool for computer anthropometry.

  8. Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network

    NASA Astrophysics Data System (ADS)

    Ammendola A, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2014-06-01

    APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.

  9. Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks

    NASA Astrophysics Data System (ADS)

    Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad

    2001-04-01

    The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.

  10. Capillary effects in drainage in heterogeneous porous media: Continuum modeling, experiments and pore network simulations

    SciTech Connect

    Xu, Baomin; Yortsos, Y.C.

    1993-04-01

    We investigate effects of capillary heterogeneity induced by variations in permeability in the direction of displacement in heterogeneous porous media under drainage conditions. The investigation is three-pronged and uses macroscopic simulation, based on the standard continuum equations, experiments with the use of an acoustic technique and pore network numerical models. It is found that heterogeneity affects significantly the saturation profiles, the effect being stronger at lower rates. A good agreement is found between the continuum model predictions and the experimental results based on which it can be concluded that capillary heterogeneity effects in the direction of displacement act much like a body force (e.g. gravity). A qualitative agreement is also found between the continuum approach and the pore network numerical models, which is expected to improve when finite size effects in the pore network simulations diminish. The results are interpreted with the use of invasion percolation concepts.

  11. 3D geological modelling of a complex buried-valley network delineated from borehole and AEM data

    NASA Astrophysics Data System (ADS)

    Høyer, A.-S.; Jørgensen, F.; Sandersen, P. B. E.; Viezzoli, A.; Møller, I.

    2015-11-01

    Buried tunnel valleys are common features in formerly glaciated areas, and where present, they are very important for the groundwater recharge and flow. Delineation of the structures and modelling of the infill is therefore very important in relation to groundwater mapping. Typically, borehole information is too sparse to enable a detailed delineation of the structures, whereas densely covering airborne electromagnetic data have proven to be very useful for this. In the last decades, the mapping approach has been studied carefully, but the 3D modelling of the valley structures has not been described to the same degree yet. In this study, we create a 3D geological model of an area that is characterised by a complex network of buried valleys mapped with a spatially dense airborne electromagnetic survey. Due to the comprehensive dataset, the modelling requires formulation of an advanced strategy. This contains a number of steps, where the AEM-derived resistivity data are initially interpreted based on the geological background knowledge to identify the buried valleys and build a conceptual geological model. Secondly, the age relationships between the valleys are established from the valley orientations and their internal cross-cut relationships. Thirdly, the deep erosional surfaces are modelled. Subsequently, the interpreted age relationships are utilised to trim the valley floor surfaces, such that younger valleys cut older. Finally, a voxel model is built and populated with lithofacies and stratigraphical units. The model is constructed as a combined layer-based and voxel model in order to map both the overall structures as well as the lithological variations within the 3D model domain. The final model contains 20 buried valleys that show a complex cross-cut setting that indicate the presence of at least eight valley generations. Most of the valley infills show lithological variations, and the final voxel model thus contains 42 different geological units.

  12. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time.

  13. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application.

    PubMed

    Peng, Qingyu; Wei, Hongqiu; Qin, Yuyang; Lin, Zaishan; Zhao, Xu; Xu, Fan; Leng, Jinsong; He, Xiaodong; Cao, Anyuan; Li, Yibin

    2016-10-27

    Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.6 MPa) during shape recovery. We further studied the construction of a double-layer composite structure for bidirectional actuation, in which the shape change is dominated by the temperature-dependent exerting force from the top and bottom layer, alternately. An inchworm-type robot is demonstrated whose locomotion is realized by such bidirectional shape memory. Our large stroke shape-memory nanocomposites have promising applications in many areas including artificial muscles and bionic robots.

  14. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  15. Elastic anisotropy and pore space geometry of schlieren granite: direct 3-D measurements at high confining pressure combined with microfabric analysis

    NASA Astrophysics Data System (ADS)

    Staněk, Martin; Géraud, Yves; Lexa, Ondrej; Špaček, Petr; Ulrich, Stanislav; Diraison, Marc

    2013-07-01

    Pore space geometry of granitic rocks and its evolution with depth are key factors in large-scale seismics or in projects of enhanced geothermal systems or of deep hazardous waste repositories. In this study, we studied macroscopically anisotropic schlieren-bearing granite by experimental P-wave velocity (VP) measurements on spherical sample in 132 directions at seven different confining pressures in the range 0.1-400 MPa. In order to discriminate the phenomena affecting the rock elastic properties we analysed the orientation of microcracks and of grain boundaries and we measured the anisotropy of magnetic susceptibility of the rock. Three sets of microcracks were defined, with two of them linked to the massif exfoliation process and one to cooling contraction of the massif. During pressurization the measured mean VP and VP anisotropy degree at ambient pressure and at highest confinement (400 MPa) yielded 3.3 km s-1 and 24 per cent, and 6.2 km s-1 and 3 per cent, respectively. The associated VP anisotropy pattern was transversely isotropic and governed by the schlieren, with a minimum VP direction perpendicular to them and a girdle of high VP directions parallel to them. The highest change in VP was observed between 0.1 and 10 MPa, suggesting a significant closure of porosity below depths of 500 m. Change of the VP anisotropy pattern to orthorhombic together with increase of mean VP and VP anisotropy degree during depressurization was attributed to inelastic response of one of the sets of microcracks to the loading-unloading cycle.

  16. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  17. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M João; Silva, Teresa M; Montemor, M Fátima

    2015-08-07

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  18. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization

    PubMed Central

    Liu, Yong; Ma, Jiaqi; Lu, Ting; Pan, Likun

    2016-01-01

    Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g−1 at 1.2 V in 500 mg l−1 NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications. PMID:27608826

  19. Pose-invariant face-head identification using a bank of neural networks and the 3D neck reference point

    NASA Astrophysics Data System (ADS)

    Hild, Michael; Yoshida, Kazunobu; Hashimoto, Motonobu

    2003-03-01

    A method for recognizing faces in relativley unconstrained environments, such as offices, is described. It can recognize faces occurring over an extended range of orientations and distances relative to the camera. As the pattern recognition mechanism, a bank of small neural networks of the multilayer perceptron type is used, where each perceptron has the task of recognizing only a single person's face. The perceptrons are trained with a set of nine face images representing the nine main facial orientations of the person to be identified, and a set face images from various other persons. The center of the neck is determined as the reference point for face position unification. Geometric normalization and reference point determination utilizes 3-D data point measurements obtained with a stereo camera. The system achieves a recognition rate of about 95%.

  20. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

    NASA Astrophysics Data System (ADS)

    Lee, Yunjeong; Lim, Yeongjin; Shin, Heungjoo

    2016-06-01

    Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ~90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection.Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic

  1. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  2. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    -deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.

  3. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  4. A 2-D Pore-Network Model of the Drying of Single-Component Liquids in Porous Media

    SciTech Connect

    Yortsos, Yanic C.; Yiotis, A.G.; Stubos, A.K.; Boundovis, A.G.

    2000-01-20

    The drying of liquid-saturated porous media is typically approaching using macroscopic continuum models involving phenomenological coefficients. Insight on these coefficients can be obtained by a more fundamental study at the pore- and pore-network levels. In this report, a model based on pore-network representation of porous media that accounts for various process at the pore-scale is presented. These include mass transfer by advection and diffusion in the gas phase, viscous flow in liquid and gas phases and capillary effects at the gas-liquid menisci in the pore throats.

  5. Petrophysical and magnetic pore network anisotropy of some cretaceous sandstone from Tushka Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; Rochette, Pierre; Géraud, Yves

    2009-04-01

    Pore magnetic fabric is a well-established technique for the determination of pore elongation and preferred directions for migration of the interstitial fluids. This study further exemplify this technique on a set of the Nubia sandstones through a comparison with the pore anisotropy obtained from measuring permeability in three orthogonal directions in a gaz permeameter. The Nubia sandstones are represented in Tushka area (South Egypt) by quartz arenite of large porosity (29-40 per cent) which was measured on thin sections parallel and perpendicular to the bedding plane and petrophysically by helium pycnometry and ferrofluid injection at 1 bar pressure. Petrographically, there is a detectable difference between the porosity values in the bedding plane and in the perpendicular direction indicating inhomogeneity in the pore space network distribution. The petrophysical studies indicate large porosity and permeability values with some differences between the helium and ferrofluid porosity due to presence of micro pore spaces not accessible for the ferrofluid molecules having relatively high diameters and injected at low pressure. An overall agreement is observed between the permeability anisotropy and the magnetic grain and pore fabrics (magnetic anisotropy measured before and after ferrofluid injection). The three fabrics are mainly dominated by a bedding parallel foliation. In a few cases maximum permeability appears to be perpendicular to bedding. Within the bedding plane, maximum pore elongation direction from ferrofluid injection is NNW for Adindan and Kesieba formations and NW for Abu Simbil Formation. The maximum pore elongation direction for Abu Ballas samples showed a direction fluctuating around the E-W direction, the main fault trends in Tushka area. The pore fabric of Abu Ballas formation seems therefore to be structurally controlled, while it would be originated from palaeocurrent directions in the other formations.

  6. Imaging of pore networks and related interfaces in soil systems by using high resolution X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias

    2016-04-01

    Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the

  7. Determination of 3D surface displacement rates in the Upper Rhine Graben based on GURN (GNSS Upper Rhine Graben Network)

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Knöpfler, A.; Masson, F.; Ulrich, P.; Heck, B.

    2012-04-01

    regional network GURN actually consists of approx. 80 permanently operating GNSS sites of different data providers in Germany, France and Switzerland. The first work steps in the context of GURN were dominated by a detailed analysis of the GNSS data base (e.g., instrumental change artefacts). This analysis included a comparison of the working group related results (EOST, GIK), where different software packages and data handling strategies were used to derive 3D coordinate time series as basis for the determination of a 3D surface displacement field. Due to very small expected velocities in the URG region, the recent GURN focus is on the reliable derivation of site velocities, therefore effects of datum realisation have to be handled with care. The presentation gives an insight into the joint venture GURN focussing on recent results (e.g., 3D surface velocity field).

  8. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    NASA Astrophysics Data System (ADS)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI

  9. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    NASA Astrophysics Data System (ADS)

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-05-01

    Injection of anthropogenic carbon dioxide (CO2) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO2 that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (Snw) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in Snw. In either pore networks, the specific interfacial length is linearly proportional to Snw during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on Snw for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  10. iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations.

    PubMed

    Liang, Siqi; Tippens, Nathaniel D; Zhou, Yaoda; Mort, Matthew; Stenson, Peter D; Cooper, David N; Yu, Haiyuan

    2017-01-18

    The mechanistic details of most disease-causing mutations remain poorly explored within the context of regulatory networks. We present a high-resolution three-dimensional integrated regulatory network (iRegNet3D) in the form of a web tool, where we resolve the interfaces of all known transcription factor (TF)-TF, TF-DNA and chromatin-chromatin interactions for the analysis of both coding and non-coding disease-associated mutations to obtain mechanistic insights into their functional impact. Using iRegNet3D, we find that disease-associated mutations may perturb the regulatory network through diverse mechanisms including chromatin looping. iRegNet3D promises to be an indispensable tool in large-scale sequencing and disease association studies.

  11. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  12. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  13. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  14. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  15. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  16. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  17. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  18. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  19. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  20. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  1. A series of rare earth complexes with novel non-interpenetrating 3D networks: synthesis, structures, magnetic and optical properties.

    PubMed

    Wei, Xiao-Hua; Yang, Lin-Yan; Liao, Sheng-Yun; Zhang, Ming; Tian, Jin-Lei; Du, Pei-Yao; Gu, Wen; Liu, Xin

    2014-04-21

    A series of metal-organic framework {Ln(BCPBA)(H2O)}n {Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5)}; {[Ln(BCPBA)(H2O)](H2O)}n {Ln = Pr (6), Gd (7)} have been synthesized through the hydrothermal synthesis method. These compounds possess non-interpenetrating 3D networks with 10.1438 Å× 17.9149 Å rhombic channels along the [001] direction. The results of temperature-dependent magnetic susceptibility measurements indicate that compounds 4 and 7 exhibit Ln(III)Ln(III) antiferromagnetic interactions, while compound 5 exhibits Ln(III)Ln(III) ferromagnetic interactions. Frequency dependent out-of-phase signals were observed in alternating current (ac) magnetic susceptibility measurements which indicate that they have slow magnetic relaxation characteristics. The luminescent properties of 1, 2, 3, 4, and 5 are also discussed. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, compound 4 has longer fluorescence lifetime (τ1 = 400.0000 ms, τ2 = 1143.469 ms) and higher quantum yield (Φ = 42%) compared with other compounds.

  2. Cataloguing Seismic Waveform Properties Recorded With a 3D Network in a Gold Mine in South Africa

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nyblade, A. A.; Gok, R.; Walter, W. R.; Linzer, L.; Durrheim, R. J.; Dirks, P.

    2007-12-01

    The SAVUKA gold mine is located in the northwestern edge of the Witwatersrand basin, a Late Archean (3.07- 2.71~Ga) intracratonic basin in South Africa that hosts the largest known gold-uranium-pyrite ore deposits in the world. Seismic events related to the mine activity span several orders of magnitude through a variety of sources that include mine blasts, pillar collapses, and faulting events. These events are systematically recorded and catalogued through an in-mine, 3D seismic network consisting of 20, three-component, short-period stations with natural frequencies ranging between 4.5 and 28.0~Hz and deployed as deep as ~3.5 km. After 5 months of seismic monitoring of the mine, we have been able to assemble a database of over 6000 events spanning magnitudes in the -2.5 < ML < 4.4 range. The potential of this unique data set for characterizing the detailed seismic properties of the basin and studying source properties of non-double couple events is explored through simple, first-pass analysis on the recorded waveforms. Moreover, the in-mine network is complemented by a small array of 4 broadband stations interspaced ~10~km apart on the surface of the mine, and by a number of AfricaArray stations in South Africa and neighboring countries located at regional distances (50- 1000~km) from the mine. The largest mine-induced events are clearly recorded at distances as far away from the mine as 450~km and provide a unique opportunity for studying the regional propagation of seismic phases as well as the structure of the cratonic crust underlying the basin.

  3. Impact of NAPL architecture on interphase mass transfer: A pore network study

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2016-09-01

    Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.

  4. Evaluation and localization of an artificial drainage network by 3D time-lapse electrical resistivity tomography.

    PubMed

    Jouen, T; Clément, R; Henine, H; Chaumont, C; Vincent, B; Tournebize, J

    2016-08-26

    In France, 10 % of total arable land is equipped with subsurface drainage systems, to control winter and spring waterlogging due to a temporary perched water table. Most of these systems were installed in the1980s and have aged since then and may now need maintenance. Sometimes, the location of the systems is known, but the standard situation in France is that the original as-built master sketches are no longer available. Performance assessment of drainage systems and curative actions are complicated since drain location is unknown. In this article, the authors test the application of a non-destructive drain detection method which consists in water injection at the outfall of the drainage network combined with time-lapse electrical resistivity tomography (ERT) monitoring. To assess the performance of this methodology, which consists in measuring electrical resistivity from electrodes placed at the nodes of a 1.2-m regular mesh, the authors interpreted the signal using a two-step approach. The first step is based on 3D ERT numerical modelling during a scenario of surface infiltration processes (forward modelling followed by geophysical inversion); this step optimizes the ERT method for locating the infiltration at depths below 1 m. The second step is the validation of the results obtained by numerical modelling with an experimental data set, using water injection into the drainage network combined with time-lapse ERT monitoring on an experimental field site. The results showed the relevance of time-lapse ERT monitoring on a small agricultural plot for locating the drainage network. The numerical results also showed several limitations of the combined methodology: (i) it is necessary to use an electrode spacing unit less than 1.20 m, which does not facilitate investigation on large agriculture plots, (ii) measurements must be taken when resistivity contrast is the strongest between the infiltration area and the soil and (iii) the volume of water needed for

  5. Neural network system for 3-D object recognition and pose estimation from a single arbitrary 2-D view

    NASA Astrophysics Data System (ADS)

    Khotanzad, Alireza R.; Liou, James H.

    1992-09-01

    In this paper, a robust, and fast system for recognition as well as pose estimation of a 3-D object from a single 2-D perspective of it taken from an arbitrary viewpoint is developed. The approach is invariant to location, orientation, and scale of the object in the perspective. The silhouette of the object in the 2-D perspective is first normalized with respect to location and scale. A set of rotation invariant features derived from complex and orthogonal pseudo- Zernike moments of the image are then extracted. The next stage includes a bank of multilayer feed-forward neural networks (NN) each of which classifies the extracted features. The training set for these nets consists of perspective views of each object taken from several different viewing angles. The NNs in the bank differ in the size of their hidden layer nodes as well as their initial conditions but receive the same input. The classification decisions of all the nets are combined through a majority voting scheme. It is shown that this collective decision making yields better results compared to a single NN operating alone. After the object is classified, two of its pose parameters, namely elevation and aspect angles, are estimated by another module of NNs in a two-stage process. The first stage identifies the likely region of the space that the object is being viewed from. In the second stage, an NN estimator for the identified region is used to compute the pose angles. Extensive experimental studies involving clean and noisy images of seven military ground vehicles are carried out. The performance is compared to two other traditional methods, namely a nearest neighbor rule and a binary decision tree classifier and it is shown that our approach has major advantages over them.

  6. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    SciTech Connect

    Frary, R.; Louie, J.; Pullammanappallil, S.; Eisses, A.

    2016-08-01

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  7. Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, Alireza; Kharaghani, Abdolreza; Tsotsas, Evangelos; Prat, Marc

    2017-02-01

    We study the velocity field in the liquid phase during the drying of a porous medium in the capillarity-dominated regime with evaporation from the top surface. A simple mass balance in the continuum framework leads to a linear variation of the filtration velocity across the sample. By contrast, the instantaneous slice-averaged velocity field determined from pore network simulations leads to step velocity profiles. The vertical velocity profile is almost constant near the evaporative top surface and zero close to the bottom of the sample. The relative extent of the two regions with constant velocity is dictated by the position of the most unstable meniscus. It is shown that the continuum and pore network results can be reconciled by averaging the velocity field obtained from the pore network simulations over time. This opens up interesting prospects regarding the transport of dissolved species during drying. Also, the study reveals the existence of an edge effect, which is not taken into account in the classical continuum models of drying.

  8. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.

    PubMed

    Moebius, Franziska; Or, Dani

    2014-08-01

    The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone. The study presents a pore-throat network model that focuses on quantifying interfacial dynamics and interactions along fluid displacement fronts. The porous medium is represented by a lattice of connected pore throats capable of detaining menisci and giving rise to fluid-fluid interfacial jumps (the study focuses on flow rate controlled drainage). For each meniscus along the displacement front we formulate a local inertial, capillary, viscous, and hydrostatic force balance that is then solved simultaneously for the entire front. The model enables systematic evaluation of the role of inertia and boundary conditions. Results show that while displacement patterns are affected by inertial forces mainly by invasion of throats with higher capillary resistance, phase entrapment (residual saturation) is largely unaffected by inertia, limiting inertial effects on hydrological properties behind a front. Interfacial jump velocities are often an order of magnitude larger than mean front velocity, are strongly dependent on geometrical throat dimensions, and become less predictable (more scattered) when inertia is considered. Model simulations of the distributions of capillary pressure fluctuations and waiting times between invasion events follow an exponential distribution and are in good agreement with experimental results. The modeling approach provides insights

  9. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  10. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    SciTech Connect

    Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.

    2015-05-15

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  11. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    SciTech Connect

    Miller, S. M.; Xiao, X.; Faber, K. T.

    2015-11-01

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys, and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.

  12. Recoverable gas from hydrate-bearing sediments: Pore network model simulation and macroscale analyses

    NASA Astrophysics Data System (ADS)

    Jang, Jaewon; Santamarina, J. Carlos

    2011-08-01

    The volume of hydrate expands into a significantly larger volume of water and gas upon dissociation. Gas recovery and capillary-trapped residual gas saturation are investigated by simulating hydrate dissociation within pore networks. A fluid pressure-controlled boundary condition is used to determine the amount of recovered gas as a function of volume expansion; in this form, results are applicable to gas production by either thermal stimulation or depressurization when production rates prevent secondary hydrate or ice formation. Simulation results show that gas recovery is proportional to gas expansion, initial hydrate saturation, and the sediment pore size distribution (i.e., capillary pressure). Gas recovery is not affected by pore size in coarse-grained sediments with pores larger than 1 μm. Hydrate-bearing sediments with low hydrate saturation yield low gas recovery. Macroscale close form solutions, validated using the numerical results, provide estimates for recoverable gas as a function of the initial hydrate saturation and the fluid expansion factor.

  13. A Sequential Dynamic Bayesian Network for Pore Pressure Prediction and Quantification of Uncertainty.

    NASA Astrophysics Data System (ADS)

    Oughton, R. H.; Wooff, D. A.; Hobbs, R. W.; Swarbrick, R. E.

    2014-12-01

    Pore pressure prediction is vital when drilling a well, as unexpected overpressure can cause drilling challenges and uncontrolled hydrocarbon leakage. One cause of overpressure is when pore fluid is trapped during burial and takes on part of the lithostatic load. Predictions often use porosity-based techniques, such as the Eaton Ratio method and equivalent depth method. These rely on an idealised compaction trend and use a single wireline log as a proxy for porosity. Such methods do not account for the many sources of uncertainty, or for the multivariate nature of the system. We propose a sequential dynamic Bayesian network (SDBN) as a solution to these issues. The SDBN models the quantities in the system (such as pressures, porosity, lithology, wireline logs, fluid properties and so on) using conditional probability distributions to capture their joint behaviour. A compaction model is central to the SDBN, relating porosity to vertical effective stress, with uncertainty in the relationship, so that the logic is similar to that of the equivalent depth method. The probability distribution for porosity depends on VES and lithology, with much more uncertainty in sandstone-like rocks than in shales to reflect a general lack of understanding of sandstone compaction. The distributions of the wireline logs depend on porosity and lithology, along with other quantities, and so when they are observed the SDBN learns about porosity and lithology and in turn VES and pore pressure, using Bayes theorem. The probability distribution for each quantity in the SDBN is updated in light of any data, so that rather than giving a single-valued prediction for pore pressure, the SDBN gives a prediction with uncertainty that takes into account the whole system, knowledge and data. The dynamic nature of the SDBN enables it to use the bulk density to calculate total vertical stress, and to account for the dissipation of pore pressure. The vertical correlation in the SDBN means it is suited to

  14. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    SciTech Connect

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  15. A New Dual-Pore Formation Factor Model: A Percolation Network Study and Comparison to Experimental Data

    NASA Astrophysics Data System (ADS)

    Tang, Y. B.; Li, M.; Bernabe, Y.

    2014-12-01

    We modeled the electrical transport behavior of dual-pore carbonate rocks in this paper. Based on experimental data of a carbonate reservoir in China, we simply considered the low porosity samples equivalent to the matrix (micro-pore system) of the high porosity samples. For modeling the bimodal porous media, we considered that the matrix is homogeneous and interconnected. The connectivity and the pore size distribution of macro-pore system are varied randomly. Both pore systems are supposed to act electrically in parallel, connected at the nodes, where the fluid exchange takes place, an approach previously used by Bauer et al. (2012). Then, the effect of the properties of matrix, the pore size distribution and connectivity of macro-pore system on petrophysical properties of carbonates can be investigated. We simulated electrical current through networks in three-dimensional simple cubic (SC) and body-center cubic (BCC) with different coordination numbers and different pipe radius distributions of macro-pore system. Based on the simulation results, we found that the formation factor obeys a "universal" scaling relationship (i.e. independent of lattice type), 1/F∝eγz, where γ is a function of the normalized standard deviation of the pore radius distribution of macro-pore system and z is the coordination number of macro-pore system. This relationship is different from the classic "universal power law" in percolation theory. A formation factor model was inferred on the basis of the scaling relationship mentioned above and several scale-invariant quantities (such as hydraulic radius rH and throat length l of macro-pore). Several methods were developed to estimate corresponding parameters of the new model with conventional core analyses. It was satisfactorily tested against experimental data, including some published experimental data. Furthermore, the relationship between water saturation and resistivity in dual-pore carbonates was discussed based on the new model.

  16. Preparation of 3D network Na2Ti2O4(OH)2 nanotube film and study on formation mechanism of nanotubes and light absorption properties.

    PubMed

    Miao, Hui; Hu, Xiaoyun; Shang, Yibo; Zhang, Dekai; Ji, Ruonan; Liu, Enzhou; Zhang, Qian; Wang, Yue; Fan, Jun

    2012-10-01

    The 3D network Na2Ti2O4(OH)2 nanotube film was prepared by combining interface chemical reaction with hydrothermal reaction. It can be readily indexed based on an orthorhombic system Na2Ti2O4(OH)2 (JCPDS, 47-0124), corresponding with (200), (110), (600), and (020). The nanotubes are commonly multiwalled with a diameter about 40 nm, and a length more than 2000 nm. The interlamellar space of the nanotubes is about 0.9 nm, and these nanotubes loaded with silver exhibit a strong UV-Vis-NIR absorption from 200 nm to 1000 nm, with a resonance-absorption peak at 490 nm. In addition, the formation mechanism of 3D network Na2Ti2O4(OH)2 nanotube film was investigated, the formation mechanism can be expressed as follows: Ti --> TiCl3 --> TiO2(anatase) --> Na2Ti2O4(OH)2(nanotube).

  17. Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2015-04-01

    The multi-phase flow behavior of complex rocks with broad pore size distributions often digresses from classical relations. Pore-scale simulation methods can be a great tool to improve the understanding of this behavior. However, the broad range of pore sizes present makes it difficult to gather the experimental input data needed for these simulations and poses great computational challenges. We developed a novel micro-computed-tomography (micro-CT) based dual pore network model (DPNM), which takes microporosity into account in an upscaled fashion using symbolic network elements called micro-links, while treating the macroporosity as a traditional pore network model. The connectivity and conductivity of the microporosity is derived from local information measured on micro-CT scans. Microporous connectivity is allowed both in parallel and in series to the macropore network. We allow macropores to be drained as a consequence of their connection with microporosity, permitting simulations where the macropore network alone does not percolate. The validity of the method is shown by treating an artificial network and a network extracted from a micro-CT scan of Estaillades limestone.

  18. Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO2 and Au-TiO2

    DTIC Science & Technology

    2013-05-23

    Y. Titania Aerogels as a Superior Mesoporous Structure for Photoanodes of Dye-Sensitized Solar Cells . Int. J. Electrochem. Sci. 2012, 7, 6910−6919...methanol photochemistry at three-dimensionally (3D) networked aerogels of TiO2 or Au– TiO2 reveals that incorporated Au nanoparticles strongly sensitize...the oxide nanoarchitecture to visible light. Methanol dissociatively adsorbs at the surfaces of TiO2 and Au– TiO2 aerogels under dark, high-vacuum

  19. Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices

    NASA Astrophysics Data System (ADS)

    Peng, Yuncheng; Wang, Yao; Deng, Yuan

    2016-08-01

    With the ever increasing level of performance of energy conversion micro-devices, such as thin-film solar cells and thermoelectric micro-generators or coolers, their reliability and stability still remain a challenge. The high electrical and mechanical stability of an electrode is two of the critical factors that affect the long-term life of devices. Here we show that these factors can be achieved by constructing a 3D porous network of nanostructures in copper film using facile magnetron sputtering technology without any templates. The constructed 3D porous network of nanostructures in Cu film provides not only the advantages of light weight, prominently high conductivity, and large elastic deformation, but also the ability to absorb stress, preventing crack propagation, which is crucial for electrodes to maintain stable electrical and mechanical properties under working conditions. The nanopores inside the 3D network are capable of unrestrained deformation under applied stress resulting in strong elastic recovery. This work puts forward a feasible solution for manufacturing electrodes with excellent electrical and mechanical properties for micro-energy devices.

  20. Experimental Diagenesis and 3D Printing of Evolving Carbonate Microstructures

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2014-12-01

    Understanding how rock microstructures and, in turn, the spatial distribution of the properties of the rock skeleton (porosity, permeability, and elastic properties) evolve because of time-variant, thermo-chemo-mechanical processes is fundamental to decipher changes in the earth's crust due to rock-fluid interactions using remote geophysical monitoring methods. Laboratory experiments undoubtedly play a vital role in understanding the underlying basic rules that are needed to inform both simulations and modeling. Nevertheless, capturing coupled chemo-mechanical processes experimentally is a very challenging problem because as pore space deforms chemo-mechanically, the fluid reacts and flows through a deforming pore space. The result is that as much as we strive to achieve controlled conditions in laboratory experiments, it is extremely difficult to control for all of the possible responses of the highly heterogeneous pore network. To overcome such a limitation, we often resort to the fabrication of rock samples in the laboratory. Nevertheless, analogs are not rocks. This level of complexity requires an approach that advances beyond the limitations of each method, be it experimental or computational. I present an approach that takes advantage of the favorable aspects of experimental diagenesis, multi-scale imaging techniques (from pore scale to 3D rock volumes) and 3D printed models of varying carbonate microstructures. This approach allows us to study the evolution of natural pore network geometries from diagenesis experiments, use the basic rules of the evolving microstructures to drive the digital change of the pore network of the printed models in a well-controlled fashion as much possible in the analog experiments, and then iteratively measure the properties of the printed models at the scale of the laboratory. This integration can help make sense of the trackless evolution of properties in apparently scattered datasets such as those characterizing carbonate

  1. Enhanced Retention of Chemotactic Bacteria in a Pore Network with Residual NAPL Contamination.

    PubMed

    Wang, Xiaopu; Lanning, Larry M; Ford, Roseanne M

    2016-01-05

    Nonaqueous-phase liquid (NAPL) contaminants are difficult to eliminate from natural aquifers due, in part, to the heterogeneous structure of the soil. Chemotaxis enhances the mixing of bacteria with contaminant sources in low-permeability regions, which may not be readily accessible by advection and dispersion alone. A microfluidic device was designed to mimic heterogeneous features of a contaminated groundwater aquifer. NAPL droplets (toluene) were trapped within a fine pore network, and bacteria were injected through a highly conductive adjacent macrochannel. Chemotactic bacteria (Pseudomonas putida F1) exhibited greater accumulation near the pore network at 0.5 m/day than both the nonchemotactic control and the chemotactic bacteria at a higher groundwater velocity of 5 m/day. Chemotactic bacteria accumulated in the vicinity of NAPL droplets, and the accumulation was 15% greater than a nonchemotactic mutant. Indirect evidence showed that chemotactic bacteria were retained within the contaminated low-permeability region longer than nonchemotactic bacteria at 0.25 m/day. This retention was diminished at 5 m/day. Numerical solutions of the bacterial-transport equations were consistent with the experimental results. Because toluene is degraded by P. putida F1, the accumulation of chemotactic bacteria around NAPL sources is expected to increase contaminant consumption and improve the efficiency of bioremediation.

  2. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  3. Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques

    NASA Astrophysics Data System (ADS)

    Sharqawy, Mostafa H.

    2016-12-01

    Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.

  4. The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network

    NASA Astrophysics Data System (ADS)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-04-01

    3-D photo-reconstruction (PR) techniques have been successfully used to produce high resolution elevation models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present in challenging scenarios. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-meters-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17% required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two light-weight automatic cameras (1 s time-lapse mode) and a 6 m-long pole is an efficient method for 3-D monitoring of gullies, at a low cost (about EUR 1000 budget for the field equipment) and time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  5. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    SciTech Connect

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  6. An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Xie, Chiyu; Raeini, Ali Q.; Wang, Yihang; Blunt, Martin J.; Wang, Moran

    2017-02-01

    Viscous coupling during simultaneous flow of different fluid phases has a significant impact on their flow through porous media. In this work, a new multiscale strategy is proposed for multiphase flow in porous media. We use the lattice Boltzmann method (LBM) to simulate two-phase flow at pore scale and obtain empirical terms for the viscous coupling inside individual pores. The empirical coupling terms are then used in a pore-network model to efficiently simulate two-phase flow through porous media at core scale. It is shown that including viscous coupling leads to better predictions of relative permeability.

  7. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael; Warner, Marvin G.; Anheier, Norm C.; Suter, Jonathan; Kelly, Ryan; Oostrom, Mart

    2013-06-01

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures that serve as representations of normally-opaque porous media. These structures enable, for example, visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulolytic respiring microorganisms.

  8. 3D coordination networks based on supramolecular chains as building units: synthesis and crystal structures of two silver(I) pyridyldiethynides.

    PubMed

    Zhang, Tianle; Kong, Jianxi; Hu, Yuejie; Meng, Xianggao; Yin, Hongbing; Hu, Dongshuang; Ji, Changpeng

    2008-04-21

    Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.

  9. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks

    NASA Astrophysics Data System (ADS)

    Nogues, Juan P.; Fitts, Jeffrey P.; Celia, Michael A.; Peters, Catherine A.

    2013-09-01

    A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reaction-induced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain.

  10. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    PubMed Central

    Osman, Onur; Ucan, Osman N.

    2008-01-01

    Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. Results The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Conclusion Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. PMID:18253070

  11. Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel

    SciTech Connect

    Zhang, Changyong; Oostrom, Martinus; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.

    2011-09-01

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2) - water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over two orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

  12. A heterogeneous sensor network simulation system with integrated terrain data for real-time target detection in 3D space

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Tanner, Steve; Rushing, John; Graves, Sara; Criswell, Evans

    2008-03-01

    Large scale sensor networks composed of many low-cost small sensors networked together with a small number of high fidelity position sensors can provide a robust, fast and accurate air defense and warning system. The team has been developing simulations of such large networks, and is now adding terrain data in an effort to provide more realistic analysis of the approach. This work, a heterogeneous sensor network simulation system with integrated terrain data for real-time target detection in a three-dimensional environment is presented. The sensor network can be composed of large numbers of low fidelity binary and bearing-only sensors, and small numbers of high fidelity position sensors, such as radars. The binary and bearing-only sensors are randomly distributed over a large geographic region; while the position sensors are distributed evenly. The elevations of the sensors are determined through the use of DTED Level 0 dataset. The targets are located through fusing measurement information from all types of sensors modeled by the simulation. The network simulation utilizes the same search-based optimization algorithm as in our previous two-dimensional sensor network simulation with some significant modifications. The fusion algorithm is parallelized using spatial decomposition approach: the entire surveillance area is divided into small regions and each region is assigned to one compute node. Each node processes sensor measurements and terrain data only for the assigned sub region. A master process combines the information from all the compute nodes to get the overall network state. The simulation results have indicated that the distributed fusion algorithm is efficient enough so that an optimal solution can be reached before the arrival of the next sensor data with a reasonable time interval, and real-time target detection can be achieved. The simulation was performed on a Linux cluster with communication between nodes facilitated by the Message Passing Interface

  13. 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing.

    PubMed

    Liu, Yuan-An; Chung, Yuan-Chiang; Pan, Shien-Tung; Hou, Yung-Chi; Peng, Shih-Jung; Pasricha, Pankaj J; Tang, Shiue-Cheng

    2012-05-15

    Morphological changes of interstitial cells of Cajal (ICC) have been proposed to characterize motility disorders. However, a global view of the network orientations of ICC subgroups has not been established to illustrate their three-dimensional (3-D) architectures in the human colon. In this research, we integrate c-kit immunostaining, 3-D microscopy with optical clearing, and image rendering to present the location-dependent network orientations with high definition. Full-depth colonic tissues were obtained from colectomies performed for nonobstructing carcinoma. Specimens of colon wall were prepared away from the tumor site. C-kit and nuclear fluorescent staining were used to identify the ICC processes and cell body. Optical clearing was used to generate transparent colon specimens, which led to panoramic visualization of the fluorescence-labeled ICC networks at the myenteric plexus (ICC-MY), longitudinal (ICC-LM) and circular (ICC-CM) muscles, and submucosal boundary (ICC-SM) up to 300 μm in depth via confocal microscopy with subcellular level resolution. We observed four distinct network patterns: 1) periganglionic ICC-MY that connect with ICC-LM and ICC-CM, 2) plexuses of ICC-LM within the longitudinal muscle and extending toward the serosa, 3) repetitive and organized ICC-CM layers running parallel to the circular muscle axis and extending toward the submucosa, and 4) a condensed ICC-SM layer lining the submucosal border. Among the four patterns, the orderly aligned ICC-CM layers provide an appropriate target for quantitation. Our results demonstrate the location-dependent network orientations of ICC subgroups and suggest a practical approach for in-depth imaging and quantitative analysis of ICC in the human colon specimen.

  14. 3-D ADI-FDTD modeling of GPR backscatter from complex targets for the training of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Sassen, D. S.; Everett, M. E.

    2007-12-01

    Artificial neural networks can provide approximate solutions to ground-penetrating radar (GPR) problems in cases where real time performance is needed. Examples include discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. The training of neural networks to work within even a limited range of targets and electromagnetic properties requires a large set of successive examples generated from numerical methods such as finite difference time domain (FDTD). The traditional FDTD technique suffers from numerical dispersion unless time steps are kept below the Courant stability limit. The accurate modeling of electromagnetic scattering by complex targets require a refined grid, subgrids, or conformal grids that can significantly increase computation time, making neural network training inefficient. A relatively recent FDTD technique, ADI-FDTD, uses implicit equations that help to cancel numerical dispersion and allow for unconditionally stable modeling of EM propagation and therefore is not bound by the Courant stability limit. The technique is especially efficient for the accurate modeling of complex targets. Our ADI-FDTD code includes the ability to refine the model grid and to implement a conformal gridding to improve model accuracy without effecting the overall computation time. We will explore the tradeoff in computation time and accuracy in modeling the GPR backscatter of various targets using both the ADI-FDTD technique and the traditional FDTD technique for the purpose of neural network training.

  15. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    NASA Astrophysics Data System (ADS)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  16. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  17. A neural network-based 2D/3D image registration quality evaluator for pediatric patient setup in external beam radiotherapy.

    PubMed

    Wu, Jian; Su, Zhong; Li, Zuofeng

    2016-01-01

    Our purpose was to develop a neural network-based registration quality evaluator (RQE) that can improve the 2D/3D image registration robustness for pediatric patient setup in external beam radiotherapy. Orthogonal daily setup X-ray images of six pediatric patients with brain tumors receiving proton therapy treatments were retrospectively registered with their treatment planning computed tomography (CT) images. A neural network-based pattern classifier was used to determine whether a registration solution was successful based on geometric features of the similarity measure values near the point-of-solution. Supervised training and test datasets were generated by rigidly registering a pair of orthogonal daily setup X-ray images to the treatment planning CT. The best solution for each registration task was selected from 50 optimizing attempts that differed only by the randomly generated initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error tolerance to determine whether that solution was acceptable. A supervised training was then used to train the RQE. Performance of the RQE was evaluated using test dataset consisting of registration results that were not used in training. The RQE was integrated with our in-house 2D/3D registration system and its performance was evaluated using the same patient dataset. With an optimized sampling step size (i.e., 5 mm) in the feature space, the RQE has the sensitivity and the specificity in the ranges of 0.865-0.964 and 0.797-0.990, respectively, when used to detect registration error with mean voxel displacement (MVD) greater than 1 mm. The trial-to-acceptance ratio of the integrated 2D/3D registration system, for all patients, is equal to 1.48. The final acceptance ratio is 92.4%. The proposed RQE can potentially be used in a 2D/3D rigid image registration system to improve the overall robustness by rejecting

  18. Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    The two-phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image-based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore-size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water-and oil-wet simulations show good results, as do mixed-wettability scenarios with different pore-scale wettability distributions. We also show simulations on a network extracted from a micro-CT scan of Estaillades limestone, which yields good agreement with water-wet and mixed-wet experimental results.

  19. Identifying High-Traffic Patterns in the Workplace with Radio Tomographic Imaging in 3D Wireless Sensor Networks

    DTIC Science & Technology

    2014-03-27

    monitored. The sensor network used in this research employs a token ring protocol, where each receiver reports respective RSS values to a base station...USAF AFIT-ENG-14-M-24 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION...Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment

  20. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform

    PubMed Central

    Wevers, Nienke R.; van Vught, Remko; Wilschut, Karlijn J.; Nicolas, Arnaud; Chiang, Chiwan; Lanz, Henriette L.; Trietsch, Sebastiaan J.; Joore, Jos; Vulto, Paul

    2016-01-01

    With great advances in the field of in vitro brain modelling, the challenge is now to implement these technologies for development and evaluation of new drug candidates. Here we demonstrate a method for culturing three-dimensional networks of spontaneously active neurons and supporting glial cells in a microfluidic platform. The high-throughput nature of the platform in combination with its compatibility with all standard laboratory equipment allows for parallel evaluation of compound effects. PMID:27934939

  1. Self-organizing task modules and explicit coordinate systems in a neural network model for 3-D saccades.

    PubMed

    Smith, M A; Crawford, J D

    2001-01-01

    The goal of this study was to train an artificial neural network to generate accurate saccades in Listing's plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional eye orientation and to generate the correct head-centric motor error vector within Listing's plane. Analysis of the hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a dominant "vector-propagation" class (approximately 50% of units) with similar visual and motor tuning but negligible position sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly, the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system aligned with Listing's plane. Selective "lesions" confirmed that the vector-propagation module provided the main drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was sufficient to produce a "neural" algorithm with discrete functional modules and explicit coordinate systems, much like those observed in the real saccade generator.

  2. Pore Pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale.

    NASA Astrophysics Data System (ADS)

    Aliouane, Leila; Ouadfeul, Sid-Ali; Boudella, Amar

    2015-04-01

    The main goal of the proposed idea is to use the artificial intelligence such as the neural network and fuzzy logic to predict the pore pressure in shale gas reservoirs. Pore pressure is a very important parameter that will be used or estimation of effective stress. This last is used to resolve well-bore stability problems, failure plan identification from Mohr-Coulomb circle and sweet spots identification. Many models have been proposed to estimate the pore pressure from well-logs data; we can cite for example the equivalent depth model, the horizontal model for undercompaction called the Eaton's model…etc. All these models require a continuous measurement of the slowness of the primary wave, some thing that is not easy during well-logs data acquisition in shale gas formtions. Here, we suggest the use the fuzzy logic and the multilayer perceptron neural network to predict the pore pressure in two horizontal wells drilled in the lower Barnett shale formation. The first horizontal well is used for the training of the fuzzy set and the multilayer perecptron, the input is the natural gamma ray, the neutron porosity, the slowness of the compression and shear wave, however the desired output is the estimated pore pressure using Eaton's model. Data of another horizontal well are used for generalization. Obtained results clearly show the power of the fuzzy logic system than the multilayer perceptron neural network machine to predict the pore pressure in shale gas reservoirs. Keywords: artificial intelligence, fuzzy logic, pore pressure, multilayer perecptron, Barnett shale.

  3. A one-dimensional analysis of sol-gel film-coating drying: Pore evolution, network shrinkage and stress development

    SciTech Connect

    Chen, K.S.; Schunk, P.R.

    1998-02-01

    Highly porous sol-gel films have potential applications as electrical and thermal insulators, catalyst supports, sensors, and membranes for gas separations. Pore dimensions in these sol-gel films are usually small e.g., on the order of tens of nanometers or less. Their successful fabrications, however, greatly depend on the fundamental understanding of mechanisms that underlie the phenomena of pore evolution, network shrinkage, and stress development since the final microstructure of a solid gel film is strongly affected by composition of its starting sol and its processing conditions. This report documents a simplified one-dimensional analysis of drying a solidifying sol-gel thin film coating supported by an impermeable solid substrate. Portions of this work were presented at the 1994 Annual Joint Meeting of the New Mexico Section of the American Ceramic Society and Materials Research Society in Albuquerque. The authors considered the solid/liquid two phase coexistent regime during the drying solidifying process in which solvent is removed continuously via evaporation, the solid phase grows significantly in mechanical strength, and pore space shrinks appreciably. From overall and differential mass balances and a force balance at equilibrium, coupled with empirical correlations of solid phase modulus and permeability to strain or deformation, the authors followed the evolution of pore space, solid phase elastic stress, and liquid phase hydrodynamic pressure; they also determined their respective values at equilibrium. By assuming microscopic pore shape models, they estimated and compared the predicted mean pore radii. Their simplified one-dimensional analysis shows that the final mean pore radius is controlled by four parameters: pore-liquid surface tension, solid phase modulus, mean pore radius, and porosity at the initial stress-free state. The one-dimensional model can be employed to guide process design and optimization in sol-gel film fabrications.

  4. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  5. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    NASA Astrophysics Data System (ADS)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  6. Architectural improvements and 28 nm FPGA implementation of the APEnet+ 3D Torus network for hybrid HPC systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lo Cicero, Francesca; Stanislao Paolucci, Pier; Lonardo, Alessandro; Rossetti, Davide; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2014-06-01

    Modern Graphics Processing Units (GPUs) are now considered accelerators for general purpose computation. A tight interaction between the GPU and the interconnection network is the strategy to express the full potential on capability computing of a multi-GPU system on large HPC clusters; that is the reason why an efficient and scalable interconnect is a key technology to finally deliver GPUs for scientific HPC. In this paper we show the latest architectural and performance improvement of the APEnet+ network fabric, a FPGA-based PCIe board with 6 fully bidirectional off-board links with 34 Gbps of raw bandwidth per direction, and X8 Gen2 bandwidth towards the host PC. The board implements a Remote Direct Memory Access (RDMA) protocol that leverages upon peer-to-peer (P2P) capabilities of Fermi- and Kepler-class NVIDIA GPUs to obtain real zero-copy, low-latency GPU-to-GPU transfers. Finally, we report on the development activities for 2013 focusing on the adoption of the latest generation 28 nm FPGAs and the preliminary tests performed on this new platform.

  7. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  8. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  9. N-Body Classical Systems and Neural Networks on a 3d SIMD Massive Parallel Processor:. APE100/QUADRICS

    NASA Astrophysics Data System (ADS)

    Paolucci, P. S.

    A number of physical systems (e.g., N body Newtonian, Coulombian or Lennard-Jones systems) can be described by N2 interaction terms. Completely connected neural networks are characterised by the same kind of connections: Each neuron sends signals to all the other neurons via synapses. The APE100/Quadricsmassive parallel architecture, with processing power in excess of 100 Gigaflops and a central memory of 8 Gigabytes seems to have processing power and memory adequate to simulate systems formed by more than 1 billion synapses or interaction terms. On the other hand the processing nodes of APE100/Quadrics are organised in a tridimensional cubic lattice; each processing node has a direct communication path only toward the first neighboring nodes. Here we describe a convenient way to map systems with global connectivity onto the first-neighbors connectivity of the APE100/Quadrics architecture. Some numeric criteria, which are useful for matching SIMD tridimensional architectures with globally connected simulations, are introduced.

  10. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  11. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect

    Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  12. Supercritical CO2 Dissolution and Mass Transfer in a Heterogeneous Pore Network under Drainage and Imbibition Conditions

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Chang, C.; Zhou, Q.; Oostrom, M.; Wietsma, T. W.; Yu, Q.

    2015-12-01

    Dissolution trapping of supercritical CO2 (scCO2) is usually modeled by assuming instantaneous scCO2 dissolution and equilibrium phase partitioning. Our recent core-scale imbibition experiments show a prolonged depletion of residual scCO2 by dissolution, implying a non-equilibrium mechanism. In our 2D sandstone-analogue micromodel experimental study, pore-scale scCO2 dissolution was inferred from imaging (1) drainage using a pH-sensitive water dye and (2) imbibition using a scCO2 dye. The drainage experiment was conducted by injecting scCO2 into the dissolved-CO2 (dsCO2)-free water-filled pore network. The time-lapse images of non-uniform dye intensities indicating varying pH show that dsCO2 concentration varies from zero to solubility in individual pores and pore clusters and the average concentration gradually increases with time. The different rates of dissolution in different pores/clusters can be attributed to (1) fast scCO2 dissolution at scCO2-water interfaces, (2) rate-limited mass transfer due to limited interface areas, and (3) a transition from rate-limited to diffusion-limited mass transfer, revealed by detailed analysis on selected pores and pore clusters. The imbibition experiments conducted by injecting deionized water at different rates show (1) water flow in channels bypassing scCO2 at high residual saturations, (2) subsequent, slow scCO2 depletion by dissolution and mass transfer as effluent dsCO2 concentration varies from 0.06% to 4.44% of solubility, and (3) creation of new water flow paths by dissolution, enhancing scCO2 depletion by coupled displacement and dissolution. Both the drainage and imbibitions experiments indicate non-equilibrium scCO2 dissolution in the centimeter-scale pore network over 4.5 hours and up to 14 hours, respectively. The pore-scale imaging can help better understand the effects of pore-throat characteristics on scCO2 dissolution and mass transfer during drainage and imbibition and the interplay between displacement and

  13. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.

    PubMed

    Gholipour, A; Arjmand, N

    2016-09-06

    Spinal posture is a crucial input in biomechanical models and an essential factor in ergonomics investigations to evaluate risk of low back injury. In vivo measurement of spinal posture through the common motion capture techniques is limited to equipped laboratories and thus impractical for workplace applications. Posture prediction models are therefore considered indispensable tools. This study aims to investigate the capability of artificial neural networks (ANNs) in predicting the three-dimensional posture of the spine (S1, T12 and T1 orientations) in various activities. Two ANNs were trained and tested using measurements from spinal postures of 40 male subjects by an inertial tracking device in various static reaching and lifting (of 5kg) activities. Inputs of each ANN were position of the hand load and body height, while outputs were rotations of the three foregoing segments relative to their initial orientation in the neutral upright posture. Effect of posture prediction errors on the estimated spinal loads in symmetric reaching activities was also investigated using a biomechanical model. Results indicated that both trained ANNs could generate outputs (three-dimensional orientations of the segments) from novel sets of inputs that were not included in the training processes (root-mean-squared-error (RMSE)<11° and coefficient-of-determination (R(2))>0.95). A graphic user interface was designed and made available to facilitate use of the ANNs. The difference between the mean of each measured angle in a reaching task and the corresponding angle in a lifting task remained smaller than 8°. Spinal loads estimated by the biomechanical model based on the predicted postures were on average different by < 12% from those estimated based on the exact measured postures (RMSE=173 and 35N for the L5-S1 compression and shear loads, respectively).

  14. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  15. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  16. Fast two-dimensional bubble analysis of biopolymer filamentous networks pore size from confocal microscopy thin data stacks.

    PubMed

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-03-05

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data.

  17. Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Li, Dagang

    2017-03-01

    As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.

  18. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na3 V2 (PO4 )3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na3 V2 (PO4 )3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na3 V2 (PO4 )3 -carbon paper (Na3 V2 (PO4 )3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na3 V2 (PO4 )3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm(-2) . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage.

  19. On the integration of protein-protein interaction networks with gene expression and 3D structural data: What can be gained?

    NASA Astrophysics Data System (ADS)

    Bertolazzi, Paola; Bock, Mary Ellen; Guerra, Concettina; Paci, Paola; Santoni, Daniele

    2014-06-01

    The biological role of proteins has been analyzed from different perspectives, initially by considering proteins as isolated biological entities, then as cooperating entities that perform their function by interacting with other molecules. There are other dimensions that are important for the complete understanding of the biological processes: time and location. However a protein is rarely annotated with temporal and spatial information. Experimental Protein-Proteins Interaction (PPI) data are static; furthermore they generally do not include transient interactions which are a considerable fraction of the interactome of many organisms. One way to incorporate temporal and condition information is to use other sources of information, such as gene expression data and 3D structural data. Here we review work done to understand the insight that can be gained by enriching PPI data with gene expression and 3D structural data. In particular, we address the following questions: Can the dynamics of a single protein or of an interaction be accurately derived from these data? Can the assembly-disassembly of protein complexes be traced over time? What type of topological changes occur in a PPI network architecture over time?

  20. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    NASA Astrophysics Data System (ADS)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  1. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  2. Characterizing two-phase flow relative permeabilities in chemicalflooding using a pore-scale network model

    SciTech Connect

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2004-03-15

    A dynamic pore-scale network model is presented for investigating the effects of interfacial tension and oil-water viscosity on relative permeability during chemical flooding. This model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, as opposed to the conventional or invasion percolation algorithm which incorporates capillary pressure only. The study results indicate that both water and oil relative-permeability curves are dependent strongly on interfacial tension as well as an oil-water viscosity ratio. In particular, water and oil relative-permeability curves are both found to shift upward as interfacial tension is reduced, and they both tend to become linear versus saturation once interfacial tension is at low values. In addition, the oil-water viscosity ratio appears to have only a small effect under conditions of high interfacial tension. When the interfacial tension is low, however, water relative permeability decreases more rapidly (with the increase in the aqueous-phase viscosity) than oil relative permeability. The breakthrough saturation of the aqueous phase during chemical flooding tends to decrease with the reduction of interfacial tension and may also be affected by the oil-water viscosity ratio.

  3. Development of hydraulic fracture network propagation model in shale gas reservoirs: 2D, single-phase and 3D, multi-phase model development, parametric studies, and verification

    NASA Astrophysics Data System (ADS)

    Ahn, Chong Hyun

    The most effective method for stimulating shale gas reservoirs is a massive hydraulic fracture treatment. Recent analysis using microseismic technology have shown that complex fracture networks are commonly created in the field as a result of the stimulation of shale wells. The interaction between pre-existing natural fractures and the propagating hydraulic fracture is a critical factor affecting the created complex fracture network; however, many existing numerical models simulate only planar hydraulic fractures without considering the pre-existing fractures in the formation. The shale formations already contain a large number of natural fractures, so an accurate fracture propagation model needs to be developed to optimize the fracturing process. In this research, we first characterized the mechanics of hydraulic fracturing and fluid flow in the shale gas reservoir. Then, a 2D, single-phase numerical model and a 3D, 2-phase coupled model were developed, which integrate dynamic fracture propagation, interactions between hydraulic fractures and pre-existing natural fractures, fracture fluid leakoff, and fluid flow in a petroleum reservoir. By using the developed model, we conducted parametric studies to quantify the effects of treatment rate, treatment size, fracture fluid viscosity, differential horizontal stress, natural fracture spacing, fracture toughness, matrix permeability, and proppant size on the geometry of the hydraulic fracture network. The findings elucidate important trends in hydraulic fracturing of shale reservoirs that are useful in improving the design of treatments for specific reservoir settings.

  4. SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network

    NASA Astrophysics Data System (ADS)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-08-01

    Three-dimensional photo-reconstruction (PR) techniques have been successfully used to produce high-resolution surface models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present for field image acquisition in challenging scene geometries. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-metres-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17 % required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two lightweight automatic cameras (1 s time-lapse mode) and a 6 m long pole is an efficient method for 3-D monitoring of gullies, at a low cost (~ EUR 1000 budget for the field equipment) and the time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  5. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment.

  6. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell

    PubMed Central

    Grellet-Tinner, Gerald; Foley, Matthew; Thompson, Michael B.

    2016-01-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. PMID:27009182

  7. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure.

    PubMed

    Grate, Jay W; Kelly, Ryan T; Suter, Jonathan; Anheier, Norm C

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water-wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen-sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges of oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain defined spatial structure in the sensor image.

  8. Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure

    SciTech Connect

    Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

    2012-11-21

    Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

  9. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; Leeuw, Frank-Erik de; Ginneken, Bram van; Marchiori, Elena; Platel, Bram

    2017-01-01

    Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  11. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    PubMed

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity.

  12. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  13. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  14. A-type Lamins Form Distinct Filamentous Networks with Differential Nuclear Pore Complex Associations.

    PubMed

    Xie, Wei; Chojnowski, Alexandre; Boudier, Thomas; Lim, John S Y; Ahmed, Sohail; Ser, Zheng; Stewart, Colin; Burke, Brian

    2016-10-10

    The nuclear lamina is a universal feature of metazoan nuclear envelopes (NEs) [1]. In mammalian cells, it appears as a 10-30 nm filamentous layer at the nuclear face of the inner nuclear membrane (INM) and is composed primarily of A- and B-type lamins, members of the intermediate filament family [2]. While providing structural integrity to the NE, the lamina also represents an important signaling and regulatory platform [3]. Two A-type lamin isoforms, lamins A and C (LaA and LaC), are expressed in most adult human cells. Encoded by a single gene, these proteins are largely identical, diverging only in their C-terminal tail domains. By contrast with that of LaC, the unique LaA tail undergoes extensive processing, including farnesylation and endo-proteolysis [4, 5]. However, functional differences between LaA and LaC are still unclear. Compounding this uncertainty, the structure of the lamina remains ill defined. In this study, we used BioID, an in vivo proximity-labeling method to identify differential interactors of A-type lamins [6]. One of these, Tpr, a nuclear pore complex (NPC) protein, is highlighted by its selective association with LaC. By employing superresolution microscopy, we demonstrate that this Tpr association is mirrored in enhanced interaction of LaC with NPCs. Further superresolution studies visualizing both endogenous A- and B-type lamins have allowed us to construct a nanometer-scale model of the mammalian nuclear lamina. Our data indicate that different A- and B-type lamin species assemble into separate filament networks that together form an extended composite structure at the nuclear periphery providing attachment sites for NPCs, thereby regulating their distribution.

  15. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  16. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando

    2014-02-03

    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.

  17. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.

    PubMed

    Song, Rui; Liu, Jianjun; Cui, Mengmeng

    2016-01-01

    Due to the intricate structure of porous rocks, relationships between porosity or saturation and petrophysical transport properties classically used for reservoir evaluation and recovery strategies are either very complex or nonexistent. Thus, the pore network model extracted from the natural porous media is emphasized as a breakthrough to predict the fluid transport properties in the complex micro pore structure. This paper presents a modified method of extracting the equivalent pore network model from the three-dimensional micro computed tomography images based on the maximum ball algorithm. The partition of pore and throat are improved to avoid tremendous memory usage when extracting the equivalent pore network model. The porosity calculated by the extracted pore network model agrees well with the original sandstone sample. Instead of the Poiseuille's law used in the original work, the Lattice-Boltzmann method is employed to simulate the single- and two- phase flow in the extracted pore network. Good agreements are acquired on relative permeability saturation curves of the simulation against the experiment results.

  18. Individual 3D region-of-interest atlas of the human brain: automatic training point extraction for neural-network-based classification of brain tissue types

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-04-01

    Individual region-of-interest atlas extraction consists of two main parts: T1-weighted MRI grayscale images are classified into brain tissues types (gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), scalp/bone (SB), background (BG)), followed by class image analysis to define automatically meaningful ROIs (e.g., cerebellum, cerebral lobes, etc.). The purpose of this algorithm is the automatic detection of training points for neural network-based classification of brain tissue types. One transaxial slice of the patient data set is analyzed. Background separation is done by simple region growing. A random generator extracts spatially uniformly distributed training points of class BG from that region. For WM training point extraction (TPE), the homogeneity operator is the most important. The most homogeneous voxels define the region for WM TPE. They are extracted by analyzing the cumulative histogram of the homogeneity operator response. Assuming a Gaussian gray value distribution in WM, a random number is used as a probabilistic threshold for TPE. Similarly, non-white matter and non-background regions are analyzed for GM and CSF training points. For SB TPE, the distance from the BG region is an additional feature. Simulated and real 3D MRI images are analyzed and error rates for TPE and classification calculated.

  19. Real-time and in situ enzyme inhibition assay for the flux of hydrogen sulfide based on 3D interwoven AuPd-reduced graphene oxide network.

    PubMed

    Yang, Hongmei; Zhang, Yan; Li, Li; Sun, Guoqiang; Zhang, Lina; Ge, Shenguang; Yu, Jinghua

    2017-01-15

    A highly sensitive enzyme inhibition analytical platform was established firstly based on paper-supported 3D interwoven AuPd-reduced graphene oxide (rGO) network (NW) for real-time and in situ analysis of H2S released from cancer cells. The novel paper working electrode (PWE) with large electric conductivity, effective surface area and unusual biocompatibility, was fabricated via controllably assembling rGO and AuPd alloy nanoparticles onto the surface of cellulose fibers and into the macropores of paper, which was employed as affinity matrix for horseradish peroxidase (HRP) loading and cells capture. It was the superior performances of AuPd-rGO-NW-PWE that made the loaded HRP exhibit excellent electrocatalytic behavior to H2O2, bring the rapid enhancement of current response. After releasing H2S, the current response would be obviously decreased due to the efficient inhibition effect of H2S on HRP activity. The inhibition degree of HRP was directly proportional to the amount of H2S, and so, the flux of H2S released from cells could be recorded availably. Thus, this proposed enzyme inhibition cyto-sensor could be applied for efficient recording of the release of H2S, which had potential utility to cellular biology and pathophysiology.

  20. Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data.

    PubMed

    Raith, Stefan; Vogel, Eric Per; Anees, Naeema; Keul, Christine; Güth, Jan-Frederik; Edelhoff, Daniel; Fischer, Horst

    2017-01-01

    Chairside manufacturing based on digital image acquisition is gainingincreasing importance in dentistry. For the standardized application of these methods, it is paramount to have highly automated digital workflows that can process acquired 3D image data of dental surfaces. Artificial Neural Networks (ANNs) arenumerical methods primarily used to mimic the complex networks of neural connections in the natural brain. Our hypothesis is that an ANNcan be developed that is capable of classifying dental cusps with sufficient accuracy. This bears enormous potential for an application in chairside manufacturing workflows in the dental field, as it closes the gap between digital acquisition of dental geometries and modern computer-aided manufacturing techniques.Three-dimensional surface scans of dental casts representing natural full dental arches were transformed to range image data. These data were processed using an automated algorithm to detect candidates for tooth cusps according to salient geometrical features. These candidates were classified following common dental terminology and used as training data for a tailored ANN.For the actual cusp feature description, two different approaches were developed and applied to the available data: The first uses the relative location of the detected cusps as input data and the second method directly takes the image information given in the range images. In addition, a combination of both was implemented and investigated.Both approaches showed high performance with correct classifications of 93.3% and 93.5%, respectively, with improvements by the combination shown to be minor.This article presents for the first time a fully automated method for the classification of teeththat could be confirmed to work with sufficient precision to exhibit the potential for its use in clinical practice,which is a prerequisite for automated computer-aided planning of prosthetic treatments with subsequent automated chairside manufacturing.

  1. Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic£ξ

    PubMed Central

    Yao, Huili; Rui, Huan; Kumar, Ritesh; Eshelman, Kate; Lovell, Scott; Battaile, Kevin P.; Im, Wonpil; Rivera, Mario

    2015-01-01

    X-ray crystallography, molecular dynamics (MD) simulations and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility, and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral. PMID:25640193

  2. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  3. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.

    PubMed

    Bukhari, W; Hong, S-M

    2016-03-07

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+) , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+) . The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating

  4. 3D-calibration of three- and four-sensor hot-film probes based on collocated sonic using neural networks

    NASA Astrophysics Data System (ADS)

    Kit, Eliezer; Liberzon, Dan

    2016-09-01

    High resolution measurements of turbulence in the atmospheric boundary layer (ABL) are critical to the understanding of physical processes and parameterization of important quantities, such as the turbulent kinetic energy dissipation. Low spatio-temporal resolution of standard atmospheric instruments, sonic anemometers and LIDARs, limits their suitability for fine-scale measurements of ABL. The use of miniature hot-films is an alternative technique, although such probes require frequent calibration, which is logistically untenable in field setups. Accurate and truthful calibration is crucial for the multi-hot-films applications in atmospheric studies, because the ability to conduct calibration in situ ultimately determines the turbulence measurements quality. Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41) described a novel methodology for calibration of hot-film probes using a collocated sonic anemometer combined with a neural network (NN) approach. An important step in the algorithm is the generation of a calibration set for NN training by an appropriate low-pass filtering of the high resolution voltages, measured by the hot-film-sensors and low resolution velocities acquired by the sonic. In Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41), Kit and Grits (2011 J. Atmos. Ocean. Technol. 28 104-10) and Vitkin et al (2014 Meas. Sci. Technol. 25 75801), the authors reported on successful use of this approach for in situ calibration, but also on the method’s limitations and restricted range of applicability. In their earlier work, a jet facility and a probe, comprised of two orthogonal x-hot-films, were used for calibration and for full dataset generation. In the current work, a comprehensive laboratory study of 3D-calibration of two multi-hot-film probes (triple- and four-sensor) using a grid flow was conducted. The probes were embedded in a collocated sonic, and their relative pitch and yaw orientation to the mean flow was changed by means of motorized

  5. Large-Pore 3D Cubic Mesoporous (KIT-6) Hybrid Bearing a Hard-Soft Donor Combined Ligand for Enhancing U(VI) Capture: An Experimental and Theoretical Investigation.

    PubMed

    Yuan, Li-Yong; Zhu, Lin; Xiao, Cheng-Liang; Wu, Qun-Yan; Zhang, Nan; Yu, Ji-Pan; Chai, Zhi-Fang; Shi, Wei-Qun

    2017-02-01

    A preorganized tetradentate phenanthrolineamide (DAPhen) ligand with hard and soft donors combined in the same molecule has been found to possess high extraction ability toward actinides over lanthanides from acidic aqueous solution in our previous work. Herein we grafted phenanthrolineamide groups onto a large-pore three-dimensional cubic silica support by the reaction of DAPhen siloxane with KIT-6 substrate to prepare a novel uranium-selective sorbent, KIT-6-DAPhen. The as-synthesized sorbent was well-characterized by scanning electron microscopy, high-resolution transmission electron microscopy, N2 adsorption/desorption, X-ray diffraction, FT-IR, (13)C cross-polarization magic-angle spinning NMR, and TGA techniques, which confirmed the consummation of the functionalization. Subsequently, the effects of contact time, solution pH, initial U(VI) concentration, and the presence of competing metal ions on the U(VI) sorption onto KIT-6-DAPhen sorbent were investigated in detail. It was found that KIT-6-DAPhen showed largely enhanced sorption capacity and excellent selectivity toward U(VI). The maximum sorption capacity of KIT-6-DAPhen at pH 5.0 reaches 328 mg of U/g of sorbent, which is superior to most of functionalized mesoporous silica materials. Density functional theory coupled with quasi-relativistic small-core pseudopotentials was used to explore the sorption interaction between U(VI) and KIT-6-DAPhen, which gives a sorption reaction of KIT-6-DAPhen + [UO2(H2O)5](2+) + NO3(-) ⇄ [UO2(KIT-6-DAPhen)(NO3)](+) + 5H2O. The findings of the present work provide new clues for developing new actinide sorbents by combining new ligands with various mesoporous matrixes.

  6. A 3D oxalate-based network as a precursor for the CoMn₂O₄ spinel: synthesis and structural and magnetic studies.

    PubMed

    Habjanič, Jelena; Jurić, Marijana; Popović, Jasminka; Molčanov, Krešimir; Pajić, Damir

    2014-09-15

    A novel heterometallic oxalate-based compound of the formula {[Co(bpy)3][Mn2(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) was synthesized and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction (XRD), and magnetization measurement. The molecular structure of 1 is made of a three-dimensional (3D) anionic network, [Mn2(C2O4)3]n(2n-), and tris-chelated cations [Co(bpy)3](2+) occupying the vacancies of the framework. Splitting between the zero-field-cooled (ZFC) and field-cooled (FC) branches of susceptibility below the small peak at 13 K indicates magnetic ordering. Compound 1 was used as a single-source precursor for the formation of the mixed-metal oxide CoMn2O4. This conversion via thermal decomposition was explored by thermal analysis (TGA and DTA), IR spectroscopy, powder XRD, and magnetic susceptibility measurement. From refined structural parameters, it could be seen that the spinel obtained by the thermal treatment of 1 at 800 °C is characterized by the inversion parameter δ = 21%, and therefore the structural formula at room temperature can be written as (tet)[Co(0.79)Mn(0.21)](oct)[Co(0.105)Mn(0.895)]2O4. The temperature dependence of magnetization for CoMn2O4 points to at least three magnetic phases: the ferrimagnetic state is observed below 83 K, and up to 180 K blocking of the magnetic moments of nanocrystallites of 31 nm appears, transforming to paramagnetic-like behavior above 180 K. Microstructural characterization of the CoMn2O4 sample was carried out by means of XRD line-broadening analysis.

  7. Encapsulated discrete octameric water cluster, 1D water tape, and 3D water aggregate network in diverse MOFs based on bisimidazolium ligands

    NASA Astrophysics Data System (ADS)

    Shi, Ruo-Bing; Pi, Min; Jiang, Shuang-Shuang; Wang, Yuan-Yuan; Jin, Chuan-Ming

    2014-08-01

    Four new metal-organic frameworks, [Zn(2-mBIM)2(SO3CF3)2·(H2O)4] (1), [Zn(BMIE)(1,4-BDC)]·(H2O)3 (2), [Cd(BIM)2(OH)(H2O)2(PF6)]·(H2O)4 (3), and [Cd(PA-BIM)2 (ClO4)2]·11.33H2O (4) (2-mBIM = bis(2-methylimidazol-1-yl)methane, BMIE = 1,2-bis[1-(2-methylimidazole)-diethoxy]ethane, BIM = bis(imidazol-1-yl)methane, and PA-BIM = 1,1-bis [(2-phenylazo)imidazol-1-yl]methane) have been prepared and structurally characterized. Complex 1 exhibits an infinite 1D cationic beaded-chain structure, which encapsulated discrete octameric water clusters that are comprised of a chair-like hexameric water cluster with two extra water molecules dangling on two diagonal vertices of the chair. Complex 2 forms a 1D infinite zigzag metal-organic chain structure with a 1D T4(0)A(4) water tape. Complexes 3 show a 2D grid-like sheet structure with the 1D water tape T4(0)A(0)2(0) motif. Complex 4 is a porous 3D MOF with tetrahedron-coordinated Cd(II) centers and trans-conformation PA-BIM ligands. These holes are occupied by a fascinating three-dimensional water clathrate network, which consists of cage-shaped structural tetradecameric water cluster (H2O)14 units and six independent bridged water molecules. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures and different guest water aggregations. Additionally, the thermal stabilities and photoluminescence spectra of the complexes have been discussed.

  8. Corrigendum to "The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network" [J. African Earth Sci. 115 (2016) 246-270

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-12-01

    In the article titled "The 3-D Strain patterns in Turkey using Geodetic velocity fields from the RTK-CORS (TR) Network" published in Journal of African Earth Sciences Vol. 11, pp.246-270, the black arrows on the Figs. 10 and 12 are shifted due to printing error to undesired places. The correct form of Figs. 10 and 12 are given below:

  9. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  14. Pore network connectivity anisotropy in Jurassic argillite specimens from eastern Paris Basin (France)

    NASA Astrophysics Data System (ADS)

    Esteban, Lionel; Géraud, Yves; Bouchez, Jean Luc

    In order to test the feasibility of nuclear waste storage, Andra, the French radioactive waste management agency, gave us the opportunity to study preserved specimens of Jurassic clay-rich rocks from eastern Paris Basin. These rocks, deposited during the Callovian and beginning of the Oxfordian, are dark- to light-grey marls that consist mainly in a mixture of clay, calcite and silt. Magnetic susceptibility and remanence vary according to the clay/calcite/silt ratios and the mineral preferred orientations are characterized by the anisotropy of the magnetic susceptibility. A few test specimens, sampled from borehole-core #HTM 102, and coming from the base and top levels of the Callovo-Oxfordian argillite formation, were subjected to connected porosity measurements using the mercury injection technique. By imposing mercury to flow parallel to a given direction, we were able to determine the anisotropy of connectivity along the three principal magnetic susceptibility axes. We find that the clay-richest specimens have a large and sub-isotropic connected porosity which is mostly accessible through the smallest pore threshold diameters (<0.02 μm). By contrast, carbonate-enriched specimens have anisotropic and smaller connected porosities accessible through larger pore thresholds (˜0.08 μm). Except in a carbonate-enriched specimen where the largest connectivity axis is vertical, attributed to tension cracks normal to bedding, the pore connectivity anisotropy positively correlates with the magnetic anisotropy, hence with the mineral arrangement.

  15. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  16. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  17. A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Blunt, M.J.

    2001-01-01

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .

  18. Number of microstates and configurational entropy for steady-state two-phase flows in pore networks

    NASA Astrophysics Data System (ADS)

    Daras, T.; Valavanides, M. S.

    2015-01-01

    Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is a stationary, off equilibrium process -in the sense that it is maintained in dynamic equilibrium on the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics scale) and a configurational entropy production component (a Boltzmann-type statistical-entropy component, klnW), due to the existence of a canonical ensemble of flow configurations, physically admissible to the externally imposed macrostate stationary conditions. Here, the number of microstates, lnW, in steady-state two-phase flows in pore networks is estimated in three stages: Combinatorics are implemented to evaluate the number of identified microstates per physically admissible internal flow arrangement compatible with the imposed stationary flow conditions. Then, "Stirling's approximation limiting procedure" is applied to downscale the computational effort associated with the operations between large factorial numbers. Finally, the number of microstates is estimated by contriving a limiting procedure over the canonical ensemble of the physically admissible flow configurations. Counting the microstates is a prerequisite for estimating the process configurational entropy in order to implement the Maximum Entropy Production principle and justify the existence of optimum operating conditions.

  19. 3D-printing of undisturbed soil imaged by X-ray

    NASA Astrophysics Data System (ADS)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  20. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Quon 3D language for quantum information

    PubMed Central

    Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.

    2017-01-01

    We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790

  2. Cell proliferation and migration in silk fibroin 3D scaffolds.

    PubMed

    Mandal, Biman B; Kundu, Subhas C

    2009-05-01

    Pore architecture in 3D polymeric scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different freezing temperature regimes on silk fibroin protein 3D scaffold pore microstructure. The fabricated scaffolds using freeze-dry technique were used as a 3D model to monitor cell proliferation and migration. Pores of 200-250microm diameter were formed by slow cooling at temperatures of -20 and -80 degrees C but were found to be limited in porosity and pore interconnectivity as observed through scanning electron microscopic images. In contrast, highly interconnected pores with 96% porosity were observed when silk solutions were rapidly frozen at -196 degrees C. A detailed study was conducted to assess the affect of pore size, porosity and interconnectivity on human dermal fibroblast cell proliferation and migration on these 3D scaffolds using confocal microscopy. The cells were observed to migrate within the scaffold interconnectivities and were found to reach scaffold periphery within 28 days of culture. Confocal images further confirmed normal cell attachment and alignment of actin filaments within the porous scaffold matrix with well-developed nuclei. This study indicates rapid freeze-drying technique as an alternative method to fabricate highly interconnected porous scaffolds for developing functional 3D silk fibroin matrices for potential tissue engineering, biomedical and biotechnological applications.

  3. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  5. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  6. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires.

    PubMed

    Tétreault, Nicolas; Horváth, Endre; Moehl, Thomas; Brillet, Jérémie; Smajda, Rita; Bungener, Stéphane; Cai, Ning; Wang, Peng; Zakeeruddin, Shaik M; Forró, László; Magrez, Arnaud; Grätzel, Michael

    2010-12-28

    Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%.

  7. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  8. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Regional geothermal 3D modelling in Denmark

    NASA Astrophysics Data System (ADS)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  10. Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-03-01

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m2 g-1, and the total pore volume is about 1.17 cm3 g-1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

  11. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells.

    PubMed

    Qiu, Hua-Jun; Guan, Yongxin; Luo, Pan; Wang, Yu

    2017-03-15

    Graphene shows great potential in biosensing and bioelectronics. To facilitate graphene's applications and enhance its performance, recently, three-dimensional (3D) graphene-based materials especially free-standing porous graphene with tunable pore size and void space, have attracted increasing attention for bio-related applications owing to their special features. 3D graphene usually shows the following merits such as an interconnected porous network, a high electronic conductivity, a large active surface area, good chemical/thermal stability and can be more easily handled compared with dispersed graphene sheets. With modified surface properties, graphene can also be bio-friendly. These properties make 3D graphene a perfect candidate as high-performance electrode materials in bioelectronics devices. In this review, we discuss recent advance in fabricating monolithic 3D graphene and their applications in biosensing and biofuel cells.

  12. 3D MI-DRAGON: new model for the reconstruction of US FDA drug- target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE.

    PubMed

    Prado-Prado, Francisco; García-Mera, Xerardo; Escobar, Manuel; Alonso, Nerea; Caamaño, Olga; Yañez, Matilde; González-Díaz, Humberto

    2012-01-01

    The number of neurodegenerative diseases has been increasing in recent years. Many of the drug candidates to be used in the treatment of neurodegenerative diseases present specific 3D structural features. An important protein in this sense is the acetylcholinesterase (AChE), which is the target of many Alzheimer's dementia drugs. Consequently, the prediction of Drug-Protein Interactions (DPIs/nDPIs) between new drug candidates and specific 3D structure and targets is of major importance. To this end, we can use Quantitative Structure-Activity Relationships (QSAR) models to carry out a rational DPIs prediction. Unfortunately, many previous QSAR models developed to predict DPIs take into consideration only 2D structural information and codify the activity against only one target. To solve this problem we can develop some 3D multi-target QSAR (3D mt-QSAR) models. In this study, using the 3D MI-DRAGON technique, we have introduced a new predictor for DPIs based on two different well-known software. We have used the MARCH-INSIDE (MI) and DRAGON software to calculate 3D structural parameters for drugs and targets respectively. Both classes of 3D parameters were used as input to train Artificial Neuronal Network (ANN) algorithms using as benchmark dataset the complex network (CN) made up of all DPIs between US FDA approved drugs and their targets. The entire dataset was downloaded from the DrugBank database. The best 3D mt-QSAR predictor found was an ANN of Multi-Layer Perceptron-type (MLP) with profile MLP 37:37-24-1:1. This MLP classifies correctly 274 out of 321 DPIs (Sensitivity = 85.35%) and 1041 out of 1190 nDPIs (Specificity = 87.48%), corresponding to training Accuracy = 87.03%. We have validated the model with external predicting series with Sensitivity = 84.16% (542/644 DPIs; Specificity = 87.51% (2039/2330 nDPIs) and Accuracy = 86.78%. The new CNs of DPIs reconstructed from US FDA can be used to explore large DPI databases in order to discover both new drugs

  13. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering.

    PubMed

    Izquierdo, R; Garcia-Giralt, N; Rodriguez, M T; Cáceres, E; García, S J; Gómez Ribelles, J L; Monleón, M; Monllau, Joan C; Suay, J

    2008-04-01

    A technique for producing controlled interconnected porous structures for application as a tissue engineering scaffold is presented in this article. The technique is based on the fabrication of a template of interconnected poly(ethyl methacrylate) (PEMA) microspheres, the introduction of a biodegradable polymer, poly-epsilon-caprolactone (PCL), and the elimination of the template by a selective solvent. A series of PCL scaffolds with a porosity of 70% and pore sizes up to 200 microm were produced and characterized (both thermally and mechanically). Human chondrocytes were cultured in monolayer on bulk PCL disks or seeded into porous PCL scaffolds. Cell adhesion, viability, proliferation, and proteoglycan (PG) synthesis were tested and compared with monolayer cultures on tissue-treated polystyrene or pellet cultures as reference controls. Cells cultured on PCL disks showed an adhesion similar to that of the polystyrene control (which allowed high levels of proliferation). Stained scaffold sections showed round-shaped chondrocyte aggregates embedded into porous PCL. PG production was similar to that of the pellet cultures and higher than that obtained with monolayer postconfluence cultures. This shows that the cells are capable of attaching themselves to PCL. Furthermore, in porous PCL, cells maintain the same phenotype as the chondrocytes within the native cartilage. These results suggest that PCL scaffolds may be a suitable candidate for chondrocyte culture.

  14. Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid

    2015-10-01

    Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.

  15. Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network

    SciTech Connect

    Rodriquez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Martinus; Joekar-Niasar, Vahid

    2015-10-28

    Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.

  16. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  17. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  18. Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: new methods for the generation and comparison of 3D models.

    PubMed

    Parr, W C H; Chamoli, U; Jones, A; Walsh, W R; Wroe, S

    2013-01-04

    Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs).

  19. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  20. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita F.; Shokri, Nima

    2014-04-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics and morphology of desiccating clays. In this study, we used X-ray microtomography to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers were packed with slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3-D at multiple intervals. The characterization of cracking and branching behavior shows a high extent of localized surficial crack networks at low salinity, with a transition to less extensive but more centralized crack networks with increased salinity. The observed behavior was described in the context of the physicochemical properties of the montmorillonite clay, where shifts from an "entangled" (large platelet spacing, small pore structure) to a "stacked" (small platelet spacing, open pore structure) network influence fluid distribution and thus extent of cracking and branching behavior. This is further corroborated by vertical profiles of water distribution, which shows localized desiccation fronts that shift to uniform desaturation with increasing salt concentration. Our results provide new insights regarding the formation, dynamics, and patterns of desiccation cracks formed during evaporation from 3-D saline clay structures, which will be useful in hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  1. A FUNCTIONAL RELATION FOR FIELD-SCALE NONAQUEOUS PHASE LIQUID DISSOLUTION DEVELOPED USING A PORE NETWORK MODEL. (R825689C079)

    EPA Science Inventory

    Abstract

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai

  2. A FUNCTIONAL RELATION FOR FIELD-SCALE NONAQUEOUS PHASE LIQUID DISSOLUTION DEVELOPED USING A PORE NETWORK MODEL. (R825689C080)

    EPA Science Inventory

    Abstract

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai

  3. Objective assessment of the contribution of the RECOPESCA network to the monitoring of 3D coastal ocean variables in the Bay of Biscay and the English Channel

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Charria, Guillaume; De Mey, Pierre; Raynaud, Stéphane; Heyraud, Catherine; Craneguy, Philippe; Dumas, Franck; Le Hénaff, Matthieu

    2016-04-01

    In the Bay of Biscay and the English Channel, in situ observations represent a key element to monitor and to understand the wide range of processes in the coastal ocean and their direct impacts on human activities. An efficient way to measure the hydrological content of the water column over the main part of the continental shelf is to consider ships of opportunity as the surface to cover is wide and could be far from the coast. In the French observation strategy, the RECOPESCA programme, as a component of the High frequency Observation network for the environment in coastal SEAs (HOSEA), aims to collect environmental observations from sensors attached to fishing nets. In the present study, we assess that network using the Array Modes (ArM) method (a stochastic implementation of Le Hénaff et al. Ocean Dyn 59: 3-20. doi: 10.1007/s10236-008-0144-7, 2009). That model ensemble-based method is used here to compare model and observation errors and to quantitatively evaluate the performance of the observation network at detecting prior (model) uncertainties, based on hypotheses on error sources. A reference network, based on fishing vessel observations in 2008, is assessed using that method. Considering the various seasons, we show the efficiency of the network at detecting the main model uncertainties. Moreover, three scenarios, based on the reference network, a denser network in 2010 and a fictive network aggregated from a pluri-annual collection of profiles, are also analysed. Our sensitivity study shows the importance of the profile positions with respect to the sheer number of profiles for ensuring the ability of the network to describe the main error modes. More generally, we demonstrate the capacity of this method, with a low computational cost, to assess and to design new in situ observation networks.

  4. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  5. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  8. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions

    NASA Astrophysics Data System (ADS)

    Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.

    2016-02-01

    The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

  9. The 2D versus 3D imaging trade-off: The impact of over- or under-estimating small throats for simulating permeability in porous media

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.

    2011-12-01

    Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 μm. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore

  10. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.

    PubMed

    Michna, Sarah; Wu, Willie; Lewis, Jennifer A

    2005-10-01

    Hydroxyapatite (HA) scaffolds with a 3-D periodic architecture and multiscale porosity have been fabricated by direct-write assembly. Concentrated HA inks with tailored viscoelastic properties were developed to enable the construction of complex 3-D architectures comprised of self-supporting cylindrical rods in a layer-by-layer patterning sequence. By controlling their lattice constant and sintering conditions, 3-D periodic HA scaffolds were produced with a bimodal pore size distribution. Mercury intrusion porosimetry (MIP) was used to determine the characteristic pore size and volume associated with the interconnected pore channels between HA rods and the finer pores within the partially sintered HA rods.

  11. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  12. Graphene originated 3D structures grown on the assembled nickel particles

    NASA Astrophysics Data System (ADS)

    Paronyan, Tereza; Harutyunyan, Avetik; Honda Research Institute USA Inc. Team

    2013-03-01

    Recently, the fabrication of various morphologies of graphene originated structures became very important due to the perspective of wide range of new applications. Particularly, free standing 3D structured graphene foams could be imperative in energy related areas . Here, we present the new approach of the CVD growth of 3D graphene network by using primarily sintered Ni particle's (~40 μm size) assembles as a template-catalyst via decomposition of low rate of CH4 at 1100° C based on synthesis method described earlier. SEM and Raman spectra analysis revealed the formation of graphene structure containing a single up to few layers grown on the sintered metal particles served as a catalyst-template. After etching the metal frame without using any support polymer, 3D free-standing graphene microporous structure was formed demonstrating high BET surface area. Two probe measurements of frame resistance were ~2-8 Ω. Our approach allows controllable tune the pore size and thereby the surface area of 3D graphene network through the variation of the template-catalyst particles size.

  13. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  14. 3D image-based characterization and flow modeling of quartz-filled microfractures

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Eichhubl, P.; Bryant, S. L.; Davis, J. S.; Wanat, E. C.

    2011-12-01

    Accurate representation of geometry has first order influence on multiphase fluid flow in porous media on all relevant scales. 3D X-Ray computed microtomography (XCMT) has proved crucial in providing geometry information of many porous and fractured media of interest. Here we characterize 3D XCMT images of natural, quartz-filled fractures in tight gas sandstone from Piceance Basin, Colorado, and then build a representative flow model. While many rough-walled fractures have been analyzed/modeled using XCMT, this is to our knowledge the first 3D characterization and flow modeling of quartz-filled fractures. Natural quartz-filled fractures in samples analyzed are found to be very constricted, with many crystals bridging across the fracture but keeping large portions open to flow. In addition, this causes extreme local aperture variation. The affiliated pore space can be divided into fracture pores connected via very tight channels: a characterization typical for sandstones rather than microfractures, but with aspect ratios much higher than those found in sandstones. Single phase flow simulation in these network shows that the absolute permeability is about 100 times larger than in a conventional sandstone. We further simulate two phase fluid displacement directly in the pore space (using level-set based progressive quasi-static algorithm): both drainage and imbibition are characterized by discrete jumps in capillary-pressure vs. saturation relationships, as well as large residual saturations. Future work will include connecting the fracture network that represents both inter-granular and intra-granular porosity in the neighboring matrix.

  15. 3D Ta/TaO x /TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications

    NASA Astrophysics Data System (ADS)

    Wang, I.-Ting; Chang, Chih-Cheng; Chiu, Li-Wen; Chou, Teyuh; Hou, Tuo-Hung

    2016-09-01

    The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.

  16. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.

    PubMed

    Zhang, Xue; Li, Xiao-Wu; Li, Ji-Guang; Sun, Xu-Dong

    2014-09-01

    Porous magnesium has been recently recognized as a biodegradable metal for bone substitute applications. A novel porous Mg scaffold with three-dimensional (3D) interconnected pores and with a porosity of 33-54% was produced by the fiber deposition hot pressing (FDHP) technology. The microstructure and morphologies of the porous Mg scaffold were characterized by scanning electron microscopy (SEM), and the effects of porosities on the microstructure and mechanical properties of the porous Mg were investigated. Experimental results indicate that the measured Young's modulus and compressive strength of the Mg scaffold are ranged in 0.10-0.37 GPa, and 11.1-30.3 MPa, respectively, which are fairly comparable to those of cancellous bone. Such a porous Mg scaffold having a 3D interconnected network structure has the potential to be used in bone tissue engineering.

  17. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  18. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  19. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  20. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  1. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.

    PubMed

    Fei, Ling; Xu, Yun; Wu, Xiaofei; Chen, Gen; Li, Yuling; Li, Binsong; Deng, Shuguang; Smirnov, Sergei; Fan, Hongyou; Luo, Hongmei

    2014-04-07

    Three-dimensional (3D) nanoporous architectures, possessing high surface area, massive pores, and excellent structural stability, are highly desirable for many applications including catalysts and electrode materials in lithium ion batteries. However, the preparation of such materials remains a major challenge. Here, we introduce a novel method, instant gelation, for the synthesis of such materials. The as-prepared porous 3D MoS2@C nanocomposites, with layered MoS2 clusters or strips ingrained in porous and conductive 3D carbon matrix, indeed showed excellent electrochemical performance when applied as anode materials for lithium ion batteries. Its interconnected carbon network ensures good conductivity and fast electron transport; the micro-, and mesoporous nature effectively shortens the lithium ion diffusion path and provides room necessary for volume expansion. The large specific surface area is beneficial for a better contact between electrode materials and electrolyte.

  2. Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks

    NASA Astrophysics Data System (ADS)

    Tsakiroglou, C. D.; Avraam, D. G.; Payatakes, A. C.

    2007-09-01

    The water krw and oil kro relative permeability curves of a glass-etched planar pore network are estimated with history matching from transient displacement experiments performed at varying values of the capillary number, Ca, for two fluid systems: one of intermediate and one of strong wettability. The transient k,k are compared to corresponding ones measured with the steady-state method on the same porous medium [Avraam DG, Payatakes AC. Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J Fluid Mech 1995;293:207-36; Avraam DG, Payatakes AC. Generalized relative permeability coefficients during steady-state two-phase flow in porous media and correlation with the flow mechanisms. Transport Porous Med 1995;20:135-68; Avraam DG, Payatakes AC. Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability. Ind Eng Chem Res 1999;38:778-86.], and potential differences from them are interpreted in the light of the differences between the transient growth pattern, and the steady-state two-phase flow regime. For intermediate wettability, the transient kro and krw exceed the corresponding steady-state functions at low Ca values and have the tendency to become smaller than the steady-state ones at high Ca values. For strong wettability, the transient kro and krw are increasing functions of Ca, the transient kro is higher than the steady-state one, whereas the transient krw decreases substantially and becomes lower than the steady-state one at low Ca values. The dynamic capillary pressure estimated from transient experiments is a decreasing function of Ca in agreement with previous theoretical and experimental studies.

  3. Classical and quantum aspects of spin interaction in 3 d chains on a C u3N -Cu(110) molecular network

    NASA Astrophysics Data System (ADS)

    Bazhanov, D. I.; Stepanyuk, O. V.; Farberovich, O. V.; Stepanyuk, V. S.

    2016-01-01

    We present a study of the magnetic states and exchange coupling in transition-metal Mn, Fe, and Co atomic chains deposited on a self-corrugated C u3N -Cu(110) molecular network by means of first-principles calculations based on the density functional theory. The various adsorption sites on a bumping area of a self-corrugated C u3N layer are investigated where the atomic chains are formed at the initial stage of nanowire growth. We demonstrate, by calculating the ground-state magnetic configurations, that the exchange coupling, magnetic order, and anisotropies in atomic chains depend sensitively on their chemical composition and adsorption sites on the C u3N network. We find that the exchange interactions in atomic chains could lead to ferromagnetic or antiferromagnetic coupling of atomic spins depending on the position of the chain on the surface. The classical spin dynamics is investigated by means of the kinetic Monte Carlo method based on transition-state theory. Moreover we evaluate the Heisenberg-Dirac-Van Vleck quantum spin Hamiltonian for calculations of the magnetic susceptibility, in order to demonstrate the existence of quantum entanglement in the antiferromagnetic atomic chains at low temperatures.

  4. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble

    PubMed Central

    Liang, Zhe; Liu, Chenguang; Li, Lili; Xu, Peidi; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-01-01

    Fabrication of cell-encapsulated fibers could greatly contribute to tissue engineering and regenerative medicine. However, existing methods suffered from not only unavoidability of cell damaging conditions and/or sophisticated equipment, but also unavailability of proper materials to satisfy both mechanical and biological expectations. In this work, a simple method is proposed to prepare cell-encapsulated fibers with tunable mechanical strength and stretching behavior as well as diameter and microstructure. The hydrogel fibers are made from optimal combination of alginate and poly(N-iso-propylacrylamide)-poly(ethylene glycol), characteristics of double-network hydrogel, with enough stiffness and flexibility to create a variety of three dimensional structures like parallel helical and different knots without crack. Furthermore, such hydrogel fibers exhibit better compatibility as indicated by the viability, proliferation and expression of pluripotency markers of embryonic stem cells encapsulated after 4-day culture. The double-network hydrogel possesses specific quick responses to either of alginate lyase, EDTA or lower environmental temperature which facilitate the optional degradation of fibers or fibrous assemblies to release the cells encapsulated for subsequent assay or treatment. PMID:27628933

  5. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both

  6. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  8. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  9. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  10. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  11. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  12. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  13. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  14. Global optimization of data quality checks on 2-D and 3-D networks of GPR cross-well tomographic data for automatic correction of unknown well deviations

    SciTech Connect

    Sassen, D. S.; Peterson, J. E.

    2010-03-15

    Significant errors related to poor time zero estimation, well deviation or mislocation of the transmitter (TX) and receiver (RX) stations can render even the most sophisticated modeling and inversion routine useless. Previous examples of methods for the analysis and correction of data errors in geophysical tomography include the works of Maurer and Green (1997), Squires et al. (1992) and Peterson (2001). Here we follow the analysis and techniques of Peterson (2001) for data quality control and error correction. Through our data acquisition and quality control procedures we have very accurate control on the surface locations of wells, the travel distance of both the transmitter and receiver within the boreholes, and the change in apparent zero time. However, we often have poor control on well deviations, either because of economic constraints or the nature of the borehole itself prevented the acquisition of well deviation logs. Also, well deviation logs can sometimes have significant errors. Problems with borehole deviations can be diagnosed prior to inversion of travel-time tomography data sets by plotting the apparent velocity of a straight ray connecting a transmitter (TX) to a receiver (RX) against the take-off angle of the ray. Issues with the time-zero pick or distances between wells appear as symmetric smiles or frown in these QC plots. Well deviation or dipping-strong anisotropy will result in an asymmetric correlation between apparent velocity and take-off angle (Figure 1-B). In addition, when a network of interconnected GPR tomography data is available, one has the additional quality constraint of insuring that there is continuity in velocity between immediately adjacent tomograms. A sudden shift in the mean velocity indicates that either position deviations are present or there is a shift in the pick times. Small errors in well geometry may be effectively treated during inversion by including weighting, or relaxation, parameters into the inversion (e

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  17. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  18. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size

    PubMed Central

    Loh, Qiu Li

    2013-01-01

    Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted. PMID:23672709

  19. 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3)

    NASA Astrophysics Data System (ADS)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo

    2016-09-01

    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  20. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  1. Reply to the 'Comment on "Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry"' by G. Schröder-Turk, M. Fischer and S. Hyde.

    PubMed

    Sorenson, Gregory P; Mahanthappa, Mahesh K

    2015-02-14

    A new calculation by Fischer et al. suggests that the 3etc network phase with 3D-hexagonal symmetry (space group #193: P63/mcm) may be a generic structure adopted by self-assembling soft materials, thereby broadening the context for our recent report of its spontaneous formation in lyotropic liquid crystals. The experimental observation of the 3etc phase further validates previous theoretical models used to predict its stability, provocatively suggesting that other polycontinuous network phases predicted by these methods may be discovered in the future. While these network phase morphologies are often mathematically described in terms of their underlying triply periodic minimal surfaces (TPMS), the numerous potential applications of these functional nanostructured soft materials require the development of a concise, consistent, and unambiguous nomenclature for their complete description. In this comment, we propose adoption of a nomenclature that describes each mesophase more generally in terms of the total number of non-intersecting domains into which three-dimensional space is partitioned.

  2. Surface water, groundwater and unified 3D-crack network as a triple coupling dynamic system for a river watershed functioning - manifestation in catastrophic floods

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Tulenev, Nikita; Trifonov, Dmitriy; Arakelian, Sergei

    2014-05-01

    1. Surface water and groundwater interaction model under conditions of huge level of precipitation in catastrophic floods and mudflows for mountain river watershed is introduced. Seismic processes and volcanic activity impact on the formation of disastrous floods due to dramatic change of the pressure field in groundwater horizons, is under discussion for such a triple coupling system, i.e. surface water - groundwater - crack network. Under the conception we analyze recent (2013) catastrophic water events: the catastrophic floods in Western Europe (May-June, 2013), in the Amur river basin, Russia/China (Aug.-Sept, 2013) and in Colorado, USA (Sept. 12-15,2013). In addition, a separate analysis is carried out for debris event in the Krimsk-city, Caucasus (Krasnodar) region, Russia (July 06-07, 2012). 2. There is a group of problems determined by dramatic discrepancies in water mass balance and other vital parameters, on the one hand, by estimation for different types of atmospheric precipitation (both torrential rain and continuous precipitations) and, on the other hand, for observable natural water events (i.e. catastrophic floods and/or mudflows/debris) on concrete territory. Analysis of many facts result in conclusion that we have the hard comparable/coincidence parameters under traditional conception for discussed events as an isolated/closed (river + rain) runoff-system. In contrast, the reasonable point of view does exist if we take into account the contribution of extra water source, which should be localized in river channel, i.e. functioning of open [(river + rain) + groundwater] flow-system has a principal meaning to understand the events occurrence. 3. The analysis and modeling for the events are carried out by us taking into account the following databases: (i) groundwater map dislocation, it resources and flow balance in studied areas, especially near the land surface being unstable in hydrological sense by many reasons, as well due to heavy rain

  3. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  4. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  5. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  6. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area

  7. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  8. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  9. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  10. Variational-based segmentation of bio-pores in tomographic images

    NASA Astrophysics Data System (ADS)

    Bauer, Benjamin; Cai, Xiaohao; Peth, Stephan; Schladitz, Katja; Steidl, Gabriele

    2017-01-01

    X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components keep the segmentation of single components within these highly heterogeneous samples a challenging problem. Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the surrounding soil structure. Recently, variational models in connection with algorithms from convex optimization were successfully applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are reported for different real-world 3D data sets as well as for simulated data. These results are compared with two gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a morphological approach. Pros and cons of the methods are assessed by considering geometric features of the segmented bio-pore systems. The variational approach features well-connected smooth pores while not detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as observed for the other thresholding methods.

  11. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  12. Tracking earthquake source evolution in 3-D

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.

    2014-08-01

    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  13. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  14. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  15. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  16. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  17. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  18. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  19. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  20. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  1. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  2. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  3. 3D Bioprinting for Organ Regeneration.

    PubMed

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.

  4. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  5. Sequential assembly of 3D perfusable microfluidic hydrogels.

    PubMed

    He, Jiankang; Zhu, Lin; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2014-11-01

    Bottom-up tissue engineering provides a promising way to recreate complex structural organizations of native organs in artificial constructs by assembling functional repeating modules. However, it is challenging for current bottom-up strategies to simultaneously produce a controllable and immediately perfusable microfluidic network in modularly assembled 3D constructs. Here we presented a bottom-up strategy to produce perfusable microchannels in 3D hydrogels by sequentially assembling microfluidic modules. The effects of agarose-collagen composition on microchannel replication and 3D assembly of hydrogel modules were investigated. The unique property of predefined microchannels in transporting fluids within 3D assemblies was evaluated. Endothelial cells were incorporated into the microfluidic network of 3D hydrogels for dynamic culture in a house-made bioreactor system. The results indicated that the sequential assembly method could produce interconnected 3D predefined microfluidic networks in optimized agarose-collagen hydrogels, which were fully perfusable and successfully functioned as fluid pathways to facilitate the spreading of endothelial cells. We envision that the presented method could be potentially used to engineer 3D vascularized parenchymal constructs by encapsulating primary cells in bulk hydrogels and incorporating endothelial cells in predefined microchannels.

  6. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  7. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  8. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.